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Polycomb Repressive Complex 2
(PRC2) comprises core and accessory
subunits in animals and plants.

Recent structural insights revealed
mechanisms for mammalian PRC2 sub-
strate specificity, and allosteric and com-
petitive inhibition, some ofwhich are likely
conserved in plants.
Polycomb repressive complex (PRC)-mediated gene silencing is vital for cell iden-
tity and development in both the plant and the animal kingdoms. It alsomodulates
responses to stress. Two major protein complexes, PRC1 and PRC2, execute
conserved nuclear functions in metazoans and plants through covalent modifica-
tion of histones and by compacting chromatin. While a general requirement for
Polycomb complexes in mitotically heritable gene repression in the context of
chromatin is well established, recent studies have brought new insights into the
regulation of Polycomb complex activity and recruitment. Here, we discuss
these recent advances with emphasis on PRC2.
Different recruitment modes for PRC2 in
mammals as opposed to Drosophila
and plants suggest that different con-
straints operate in organisms with larger
genomes.

H3K27me3 deposited by PRC2 is
interpreted by reader protein-containing
complexes to repress transcription,
compact local chromatin, and form
long-range loops and Polycomb bodies
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Polycomb complexes as blackout artists of the genome
Despite having the same genome, different cell types exist in multicellular eukaryotes that each
have unique identities, due, in large part, to the fact that unique portions of the genome are acces-
sible in each cell type. Genome accessibility is controlled at the level of chromatin, that is, by inter-
actions between the genomic DNA and small basic proteins called histones in nucleosomes, as
well as non-histone proteins [1]. On the one hand, the formation of nucleosomes and condensation
of the chromatin into tertiary structures as well as incorporation of linker histone H1 enables the
genomic DNA to fit into the nucleus, a ~10 000-fold compaction [2]. On the other hand, the orga-
nization of the genomic DNA into chromatin creates regions of the genome that are more accessi-
ble (such as the linker DNA not wrapped around the nucleosome), or less accessible (such as
nucleosomal DNA). Certain genomic regions are constitutively inaccessible to promote genome
integrity and to silence selfish DNA (such as transposons) in the gene-poor heterochromatin [3].
However, in the gene-rich euchromatin, condensed chromatin prevents access to vital genomic
information. This limitation can be overcome by enzymatic machineries, such as chromatin-
modifying and remodeling activities that can increase or decrease the accessibility of genomic
DNA. Genome accessibility is modulated such that genomic information that is not needed or
even detrimental at a given stage, in a given tissue or condition is ‘shut off’ [4]. In this manner,
the same genome can give rise to different cell types. Thus, the identity of a cell relies, in large
part, on the genetic programs not actualized, in much the same way as meaning is derived after
hiding information in newspaper blackout poems (Figure 1A).

The major chromatin regulatory mechanism for silencing unnecessary or unwanted gene expres-
sion programs in euchromatin is Polycomb repression. This is carried out by two general classes
of protein complexes, PRC1 (see Glossary) and PRC2. Both can form unique variant complexes
based on the subunits present and their activity [5,6]. Consistent with their critical roles, malfunc-
tion of Polycomb repression leads to homeotic developmental transformations in drosophila
(Drosophila melanogaster), mammals, and plants (Figure 1B). A major tenet of Polycomb repres-
sion is its mitotic inheritance and, hence, ‘memory’ of the silent chromatin state. Several recent
studies in animals and plants have shed light on the mechanism that enables memory of silencing
[5,7,8]. PRC1 complexes are often subdivided into canonical PRC1, which is recruited by
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Figure 1. Polycomb: hiding away unnecessary or detrimental information. As in newspaper blackout poems by
anonymous authors, where meaning arises from hiding words (A), in the context of cells, identity is aided by hiding
unnecessary or detrimental genetic programs through Polycomb repression (B). Defects in Polycomb repression lead to
homeotic defects in flies [top center: ectopic expression of the homeotic gene ULTRABITHORAX in suz12 mutants (right)
compared with the wildtype (left)], in mammals [bottom center: posterior transformations of the axial skeleton in mice
deficient in Cbx2 (right) compared with the wildtype (left)], or arabidopsis (Arabidopsis thaliana) [right-most images, top:
ectopic expression of the floral homeotic gene AGAMOUS in seedling leaves in clf mutants (right) compared with the
wildtype (left). Below: the small upward-curling leaves typical of clf mutants represent a partial phenocopy of carpels, floral
organs patterned by AGAMOUS]. Modified from [118] (B); clf images from [119].
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Glossary
Accessory subunit: subunits present in
a subpopulation of a given protein
complex enabling it to bind specific
substrates or modulating its activity.
Affinity purification followed by
mass spectrometry (AP-MS):
method for identification of protein
interactors in which a protein of interest
is purified under native conditions using
antibodies or other enrichment methods
to identify interactions with other
proteins by MS.
Allosteric regulation: form of
enzymatic activity regulation in which
binding of regulatory molecules outside
the catalytic center induces changes in
enzyme conformation and activity.
Chromatin loop anchor:
intramolecular contacts between two
chromosomal sites that bring together
distant chromosomal sites at the base of
chromatin loops.
Chromatin loop: interphase chromatin
structures formed when two distant
chromosomal sites are brought
together.
Competitive regulation: form of
enzymatic activity regulation in which
regulatory molecules compete with the
substrate for access to the catalytic
center of the enzyme.
CpG islands (CGIs): long stretches of
low complexity sequences rich in
cytosine-guanine dinucleotides;
frequently found upstream of
mammalian genes.
Cryogenic electron microscopy
(cryo-EM): combination of highly
sensitive electron microscopy with
advanced computational methods that
can resolve 3D structures of large
protein complexes with resolution
previously achieved only by X-ray
crystallography.
Degron: short amino acid sequence
recognized by ubiquitin ligases, which
mark the degron-containing protein for
degradation.
H3K27me3 nucleation: H3K27
methylation at the initial site of PRC2
recruitment.
H3K27me3 spreading: formation of
larger domains of H3K27me3-marked
chromatin.
Long non-coding (lnc)RNA:
nonprotein-coding, functionally diverse
RNAs longer than 200 bp.
Polycomb body: 3D chromatin
structures formed by spatial
concentration of distant PRC2
recruitment sites, visible by light
H3K27me3 readers and can compact nucleosomes, and noncanonical or variant PRC1, which
is recruited to chromatin independently of H3K27me3 and can ubiquitylate histone H2A
(H2AK119/121ub) [9,10]. Excellent recent reviews have addressed the roles and mechanisms of
action of PRC1 [11,12]. Here, we mainly focus on PRC2, which is highly conserved even between
different kingdoms of life and the catalytic role of which ismono-, di-, and tri-methylation of lysine 27
of histone H3 (H3K27me1/2/3) by the histone methyltransferase (HMT) or ‘writer’ EZH.

Polycomb repressive complex composition
To execute its diverse roles with precision, different PRC2 complexes with specific functions have
evolved. Moreover, the activity and recruitment of PRC2 complexes is tightly regulated.

Core complex components
PRC2 comprises four core subunits (in humans: SUZ12, EED, EZH1/EZH2, and RBBP4/7), which
form two functional ‘lobes’ [13]. The catalytic lobe comprises either of the two paralogous histone
H3K27 methyltransferases (EZH1 or EZH2), EED (which binds H3K27me3), and the C-terminal
VEFS domain of SUZ12 (a PRC2 scaffold protein) (Figure 2). This may be the ancestral PRC2 com-
plex [14]. The targeting lobe of PRC2 is formed by the SUZ12 N terminus together with RBBP4/7
[13,15] (Figure 2). EZH2 is the major isoform in dividing cells, while EZH1 expression is lower overall
but uniform [5]. Unlike EZH1-PRC2, EZH2-PRC2 requires an accessory subunit called JARID2
(see later for more details) for efficient nucleosome binding in vitro [16] and is strongly dependent
on allosteric activation [17]. Accordingly, PRC2 relies on EZH1 in cells that do not express
JARID2 [16]. EZH1-PRC2 displays higher chromatin affinity and may be able to compact nucleo-
somes in vivo and in vitro independent of its catalytic activity (discussed in [5]), perhaps due to its
ability to simultaneously bind two nucleosomes [18].

In arabidopsis (Arabidopsis thaliana), two subunits of the PRC2 core complex (SUZ12 and EZH2)
are encoded by multiple genes: SUZ12 (FIS2, EMF2 and VRN2) and EZH2 (MEA,CLF and SWN).
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Figure 2. Residues conserved in plants map to functionally important regions of Polycomb repressive complex
2 (PRC2). (A) Two views of the PRC2 complex and its catalytic and targeting lobes. Residues conserved between human
and arabidopsis (Arabidopsis thaliana) PRC2 core subunits mapped onto the structure of the complete human PRC2.2
interacting with a H2K119ub nucleosome [15] [Protein Data Bank (PDB): 6WKR]. Residues of EZH2, EED, SUZ12, and
RBBP4 conserved in their arabidopsis homologs are displayed as atomic spheres. The remaining structure is overlayed as
a color-matched transparent surface. The accessory subunits AEBP2 and JARID2 have no known homologs in
arabidopsis and are displayed as transparent surfaces. (B) The interface between EZH2 (red, cartoon), the N-terminal tail
of the substrate histone H3 (turquoise, cartoon), and nucleosomal DNA (gray, surface). Critical residues conserved in
plants are displayed as atomic stick structures with heteroatoms N and S colored blue and yellow, respectively. Lack of
M700 conservation in CLF is indicated by an asterisk. (C) Alignment of the amino acid sequence surrounding M700 in
EZH2, MEA, SWN, and CLF. Images in panels (A) and (B) were generated with UCSF ChimeraX software [120].
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microscopy as speckles after
fluorescent labeling of PRC2 proteins.
Polycomb domain: large
chromosomal region of continuous
H3K27me3-nucleosomal marking
covering multiple genes.
Polycomb repressive complex 1
(PRC1): complex that promotes H2A
ubiquitination or chromatin compaction
for transcriptional gene silencing; often
contains H3K27me3 reader subunits.
Polycomb repressive complex
(PRC2): enzymatic protein complex
that catalyzesH3K27mono-, di-, and tri-
methylation.
Polycomb response element (PRE):
DNA regulatory element containing
cognate motifs bound by a combination
of TFs, which cooperatively recruit
PRC2.
Quadruplex RNA: stable secondary
structure formed by G-rich RNAs
involved in specific interactions with
proteins.
Recruitment: stable binding of an
enzyme to specific genomic locations in
the chromatin substrate, often aided by
TFs or accessory subunits.
R-loop: RNA–DNA hybrids, in which
one strand in a DNA duplex is replaced
with RNA.
Telobox: short DNA sequence forming
telomeric repeats; also found in low copy
number in regulatory regions of genes.
There is one EED (FIE) and one RBBP4/7 (MSI1) subunit (Figure 2). The SUZ12 and EZH2 core
subunits exhibit spatiotemporally restricted and inducible accumulation, generating PRC2 com-
plexes with distinct and overlapping function [19]. The H3K27me3 methyltransferase MEA is
specifically expressed in the female gametophyte and endosperm and forms a complex with
FIS2 in these tissues [19]. Moreover, an F-box protein specifically degrades CLF in the endo-
sperm, in which CLF and MEA RNA accumulation overlaps [20]. Finally, the hormone auxin
removes sporophytic PRC2 activity, by a mechanism not yet understood, to allow formation of
the seed coat [21]. Conversely, in inflorescences, FIE forms cytoplasmic complexes with MEA
[22] (Figure 3A).
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Figure 3. Regulation of Polycomb repressive complex 2 (PRC2) by subunit composition. (A) In the endosperm,
the FIS2-PRC2 subunit MEA replaces CLF, which is targeted for degradation [20]. (B) In warm temperatures, PRC2
activity is blocked by H3K36me3 present at the active FLC locus. The intensities of the small yellow circles indicate
unmethylated or methylated states of H3K27 and H3K36 [25,51]. (C) VRN2 is stabilized by cold (during vernalization) and
may form an H3K36me3-insensitive complex with SWN for H3K27me3 nucleation at the FLC locus [25,50]. After a return
to warm conditions, H3K27me3 is mediated by CLF, possibly aided by ICU11 demethylating H3K36me3 [8,33].
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Environmental cues and stress conditions also modulate the expression of core PRC2 compo-
nents. UV-B light downregulates the expression of MSI1 and CLF, resulting in delayed develop-
mental phase transitions [23]. Pathogens or biotic stress hormones induce the expression of
MEA in vegetative tissues, such as leaves, to blunt the defense response [24]. An oxygen-
sensitive N-terminal degron leads to VRN2 protein accumulation in hypoxia and cold, increasing
tolerance to stress [25] (Figure 3B,C). Regulation of PRC2 complex composition via controlled
turnover of specific core subunits has not yet been observed in animals. Moreover, different
activities have been described for the CLF and SWN PRC2 subunits. Although generally
expressed at similar levels and in the same tissues of the sporophyte, clf mutants display more
dramatic developmental phenotypes and effects on H3K27me3 deposition compared with
swn; yet, phenotypic and H3K27me3 deposition defects are enhanced in the clf swn double
mutant [26]. At some loci, including FLC, SWN appears to be responsible for nucleation/
recruitment, while CLF aids in spreading of H3K27me3 (reviewed in [8]; Figure 3C). Differences
in enzymatic activities and substrate preferences of the CLF or SWN PRC2 complexes are not
yet well understood.

Accessory PRC2 subunits
Accessory subunits, defined as genetic modifiers of PRC2 that physically interact with core com-
plex subunits, have been described for arabidopsis PRC2. Most of these phenocopy PRC2
subunit mutants when mutated, co-purify with core complex components based on affinity
purification followed by mass spectrometry (AP-MS), and reduce H3K27me3 accumulation/
spread (Table 1). Several accessory proteins bind different histone modifications, including
H3K27me2/3 through CHROMO (LHP1; reviewed in [27]) or BAH domains (SHL and EBS
[28–30]); H3K4me2/3 via PHD domains (VIN3, VRN5, SHL, and EBS [29,31]) or H3 (not
H3S28p) via the PWWP domain (PWO1 [32]). The H3K27me3 reader LHP1 is a homolog of
HETEROCHROMATIN PROTEIN1 in animals, VIN3 and VRN5 share the PHD domain and
winged helix DNA contact domain with mammalian POLYCOMB LIKE (PCL) accessory com-
plex components, while EMF1 shares features with subunits of the canonical PRC1 complexes
in animals, which compact nucleosomes (reviewed in [8,27]). Two members of a novel family of
putative Jumonji-type 2-oxoglutarate/Fe(II)-dependent dioxygenases, called ICU11 and CP2,
Table 1. Accessory PRC2 subunits in arabidopsis (Arabidopsis thaliana)a,b

Accessory subunit of
PRC2

Core PRC2 subunit interaction determined by AP-MS PRC2-loss phenotype Reduced
H3K27me3

As bait (prey names) As prey (bait names)

LHP1, EBS No data MSI1 (LHP1 only) [105], CLF (EBS only)
[33]

√ [28,29] √ [28]

ICU11, CP2 CLF, SWN, FIE, MSI1 [33] CLF [33,35], SWN [33] √ [113] √ [33,113]

EMF1 CLF, SWN, FIE [33] CLF [33,35], SWN [33] √ [27] √ [114]

VIN3 or VRN5 SWN, FIE, MSI1 [115] CLF, SWN [33], MSI1 (VRN5 only) [105] No [116] √ [116]

TRB1/2/3 No data CLF [33,35], SWN [33] √ [34] √ [34]

ALP1/ALP2 CLF SWN, FIE, MSI1
[35,36]

CLF [33,35], SWN [33] No: suppress lhp and clf
[35,36]

No [36]

VAL1/2 None detected [70] Not detected √ [71] √ [71]

PWO1 None detected [117] Not detected No: enhances clf [32] No: reduced
nucleosome [32]

aPutative accessory subunits were selected based on reported physical interaction with PRC2 and assessed using the following criteria: AP-MS-confirmed physical asso-
ciation with PRC2 core subunits (columns 2 and 3), genetic interaction with PRC2 subunit mutants (column 4), or reduced H3K27me3 in their absence (column 5).
bSymbols and shortcuts used: √, condition met; no data, this protein has not been used as a bait in any of the published AP-MS experiments; none detected, no PRC2 core
subunits have been identifiedwhen this protein was used as an AP-MS bait (column 2); not detected, this protein has not been detected in published AP-MS experiments that
used PRC2 core subunits as baits (column 3).
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may enable the transition between H3K36me3-marked active and H3K27me3-marked inactive
chromatin states [33]. Other accessory proteins include telomere repeat-binding factors
(TRB1–3), which contribute to PRC2 recruitment and phenocopy strong PRC2 subunit mu-
tants [34] as well as harbinger transposase-derived ALP1 and ALP2 proteins, which antagonize
PRC2 activity [35,36].

In animals, two PRC2 complexes have been described based on the presence of alternative
accessory subunits [37]. PRC2.1 contains one of the three PCL family proteins (PHF1, MTF2,
or PHF19), as well as either EPOP or PALI1/2. PRC2.2 contains JARID2 and AEBP2. Subunits
characteristic of either of the two complexes compete for binding to SUZ12, considered a
PRC2 scaffold protein due to its direct contact with all other subunits [5]. The accessory subunits
of the mammalian PRC2 have roles such as DNA binding (PCLs, AEBP2, and JARID2), complex
stabilization (AEBP2 and JARID2), binding to histone post-translational modifications (PHF1/19
to H3K36me3; JARID2 and AEBP2 to H2AK119ub) and allosteric autoactivation of the complex
(JARID2 and PALI1) [13,15,38]. PRC2.1 and PRC2.2 largely colocalize on chromosomes and
maintain H3K27me3 in mouse embryonic stem cells (ESCs) both synergistically and indepen-
dently [39]. While loss of either complex alone leads to partial displacement of the other and
moderate loss of H3K27me3, simultaneous disruption of both complexes leads to complete
loss of H3K27me3 over Polycomb targets [39]. Instead of covering different targets, PRC2.1 and
PRC2.2were proposed to function sequentially, with PCL proteins mediating initial PRC2.1 recruit-
ment to unmethylated CG islands (‘initiation phase’), followed by PRC2.2-dependent spreading of
H3K27me3 (‘amplification’), enhanced by the PRC2–PRC1 feedback loop involving reciprocal
readers JARID2 (H2AK119ub) and CBX (H3K27me3) (discussed in [40]). Auxin-dependent degra-
dation was used to reveal that, while PRC2.1 promotes H3K27me3 maintenance at target genes
already repressed by Polycomb in ESCs, PRC2.2 silences new target genes during differentiation
[41]. Biochemical data suggest that PRC2.1 and PRC2.2 can contain either EZH1 or EZH2 as the
catalytic subunit [37].

Regulation of PRC2 activity
Post-translational modifications
Proteins forming the PRC2 complex in mammals are targets of many different post-translational
modifications, which can affect their stability, interactions with other subunits of the complex, and
the activity of the whole complex (reviewed in [42]). Essential PRC2 modifications involve
automethylation of EZH2 at lysines 510, and 514, which enhance enzymatic conversion of
H3K27me2 to H3K27me3 [43]. Interestingly this activity is sensitive to the cellular levels of the
methyl group donor S-adenosyl-L-methionine -as well as competition from the H3 tails [44].
The automethylated loop region of EZH2 becomes structured upon nucleosome binding, forming
an alpha helix that bridges EZH2 to nucleosomal DNA and the H3 tail [15]. The modified amino
acids are conserved in CLF [15], suggesting conservation of this mechanism (Figure 2B).

Histone substrates and modifications
Different histone substrates can regulate the activity of PRC2 [5]. Not all H3 variants make equally
good substrates for K27 methylation. H3.1 and H3.3 display similar levels of K27me3 in
arabidopsis and neither of them is favored by the plant PRC2 in vitro [45]. However, H3.1 is a
preferred substrate of the monomethylases ATXR5/6 [45], which are crucial for maintenance of
H3K27 methylation through mitotic divisions [45,46]. Methylation of H3K27 by an enzyme other
that PRC2 is unique to plants. The preference of ATRX5/6 for H3.1 over H3.3 is due to a single
amino acid difference at position 31 of H3, where alanine promotes methylation of H3.1 and
threonine blocks methylation of H3.3 [45]. Interestingly, the animal H3.3 variant also differs from
the replicative H3.1 histone by a small hydrophilic residue (serine) instead of alanine at position
1190 Trends in Plant Science, November 2021, Vol. 26, No. 11
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31. Phosphorylation of this residue activates transcription, while possibly also interfering with the
recruitment of PRC2 by a PCL accessory subunit [47]. Evidence for H3.3T31 phosphorylation is
lacking. Recently, a more specialized H3 variant, H3.10, has been found to be refractive to H3K27
methylation in arabidopsis. Accordingly, H3.10 is deployed in arabidopsis sperm cells to erase
H3K27me3 [48]. Similarly, wounding-induced activation of the H3.15 variant lacking K in position
27 decreases H3K27me3 levels, promoting cell dedifferentiation [49]).

Histone modifications also impact PRC2 activity. H3K27ac cannot be methylated unless the
acetyl group has been removed. In addition, H3K27ac, H3K4me3, and H3K36me2/3 strongly
reduce di- and tri-methylation of H3K27 by core PRC2 complexes reconstituted with recombi-
nant Drosophila, mouse, or arabidopsis homologs of EZH2, EED, and SUZ12 in vitro [50]. The
mechanism of allosteric inhibition of PRC2 by H3K4me3 may involve loss of stable binding of
the H3 tail to the active site of the complex, as indicated by a recent structure of the complete
human PRC2.2 complex bound to an H3K4me3-modified nucleosome [15]. Inhibition of PRC2
by H3K36me3 is possibly explained by a compound effect of a steric clash with surrounding
EZH2 residues and loss of electrostatic interaction between H3K36 and nucleosomal DNA
[15]. Indeed, H3K36me3 and H3K27me3 generally do not colocalize on chromatin in mammals
[13]. In vitro, human PRC2 can methylate H3K27me3 even when H3K36me3 is present on the
same tail, albeit at a reduced efficiency and only when the AEBP2 and JARID2 subunits are
present [15].

In arabidopsis, H3K36me3 and H3K27me3 rarely coexist on the same histone tail [51]. HMT
activity of EMF2-PRC2 is inhibited on H3K4me3- or H3K36me3-containing nucleosomes,
whereas that of the VRN2-PRC2 is not [50]. A gain-of-functionmutant ofCLF has been described
in which P704 is replaced by S [52]. P704 of CLF aligns with P572 of EZH2 at the H3 interface.
The proline to serine substitution may increase flexibility in this region and loss of CLF sensitivity
to inhibition by H3K36me2/3. Indeed, the CLFP704S-PRC2 complex does not require VRN2 for
FLC silencing [52]. Loss of H3K36me3-dependent inhibition was recently engineered into
human EZH2 by substation of M700 in the M700M701 dipeptide by either A or V [53]. P572
and M700 are located close to each other and to the axis connecting K27 and K36-binding
pockets in the folded EZH2 (Figure 2B). Interestingly, the MM dipeptide of human EZH2 is re-
placed by MI in MEA, MF in SWN, and IM in CLF (Figure 2C).

Allosteric and competitive regulation of PRC2 catalytic activity
Allosteric activation of PRC2 is important for H3K27me3 spreading beyond the site of PRC2
recruitment and epigenetic memory of the H3K27 methylated chromatin state; however, the
underlying molecular mechanism became clear only recently [13,54]. Activation of PRC2 by
H3K27me3 requires cooperation between two of its subunits, EZH2, containing the catalytic
center of the complex, and EED, containing the aromatic cage that binds the allosteric
H3K27me3 on a second nucleosome. Crucial to this process is the Stimulation-Responsive
Motif (SRM) of EZH2. SRM makes direct contacts with EED, H3K27me3, and the SET inserted
(SET-I) domain of EZH2 [55]. Binding of H3K27me3 to EED forces SRM to transition from an
unstructured state to an α-helical conformation, which induces downstream structural changes
in the substrate-binding pocket of EZH2, leading to increased HMT activity [55]. Two distinct
active conformations of the human PRC2 were revealed by cryogenic electron microscopy
(cryo-EM) imaging of the human PRC2 complex with bound cofactors JARID2 and AEBP2
[56]. The EZH2 conformation differs between the two structures in the region of the SBD–
SANT1 intramolecular contact referred to as a ‘buckle’ which closes a belt-like structure sur-
rounding EED [55,56]. Another difference between the two structures is the configuration of the
SRM domain, α-helical in one and disordered in the other, despite no significant difference in
Trends in Plant Science, November 2021, Vol. 26, No. 11 1191
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the structure of the SET domain [56]. In agreement with this role, a single amino acid substitution
within the SRM domain was found to be the likely cause of the difference in allosteric activation
potential between EZH1 and EZH2 [17].

Allosteric activation of PRC2 is also a focal point of natural regulatory mechanisms, clinically
important mutations, and potential therapeutic interventions [57]. PRC2 self-activates by tri-
methylating the JARID2 or PALI1 subunits of PRC2.2 and PRC2.1, respectively, which mimic
the binding of H3K27me3 to EED [38,58]. Molecular mimicry can also be used to specifically
block allosteric activation of PRC2 with synthetic compounds imitating amino acid residues of
the SRM α-helix or blocking the H3K27me3 binding pocket of EED [59]. Finally, recent elegant
studies showed that G-tract quadruplex RNA can allosterically inhibit PRC2 by binding to the
crucial regulatory site formed by EZH2 and EED [60]. Inhibition by quadruplex RNA is overcome
by H3K27me3 or JARID2-K116me3 [60].

In addition, a common oncomutation underlying glioblastomas, substitution of lysine 27 of H3.3
with methionine (H3K27M), acts as a strong competitive inhibitor, especially on the allosterically
activated PRC2 [61]. An endogenous locus, termed EZHIP/Catacomb, expressed in germ cells
in mice [62] (and in U2OS and DAOY cancer cell lines [63]), contains a short peptide that resem-
bles H3K27M and likewise blocks PRC2 activity [63].

Recruitment of PRCs to Polycomb targets
Besides regulation of activity, how PRC2 ‘finds’ the genomic regions that need to be silenced is
tightly controlled. Recent data converge on the conclusion that de novo recruitment of PRC2 to
‘nucleation sites’ is frequently genetically encoded.

PRE mode of recruitment
First observed in drosophila, multiple transcription factors (TFs) jointly recruit Polycomb com-
plexes to cismotifs found in small genomic regions (~600 bp in size) called Polycomb response
elements (PREs) [64]. Loss of the cismotifs or trans factors involved causes a significant reduc-
tion of H3K27me3 levels and PcG protein binding in canonical Polycomb domains [65]. Re-
cently, PREs were also shown to globally contribute to PRC2 recruitment in arabidopsis. Two
key cis motifs and associated TFs were identified: a GA repeat bound by class I BPC TFs and
the telobox (AAACCCTA) bound by a family of zinc finger TFs. Members of both TF families colo-
calize with PRC2 at thousands of loci and their loss of/reduction in function causes morphological
andmolecular phenotypes typical of Polycombmutants, as well as widespread loss of PRC2 bind-
ing [66] (Figure 4A). Moreover, the combined cismotifs were necessary and sufficient for PRE ac-
tivity [66]. Of note, GA repeats are also one of the functionally important motifs of PREs in
drosophila [64]. The single telobox motif in arabidopsis PREs is recognized by a second class of
proteins, telomere repeat-binding factors (TRBs), which recruit PRC2 andmay represent PRC2 ac-
cessory proteins [33,34] (Figure 4A).

In addition, RY cis motifs (TGCATG) have also been linked to PRC2 recruitment during
vernalization-triggered silencing of the flowering repressor FLC and silencing of the seed program
during germination (reviewed in [8]; see also [67,68]). The RY motif is bound by the B3 TFs VAL1
and VAL2, also featuring an H3K27me3-specific PHD domain. VAL1 and VAL2were proposed to
interact with PRC2 core and accessory subunits [67,69]. Whether VAL1 and VAL2 are PRC2
accessory subunits is unclear, because published AP-MS data instead revealed copurification
with subunits of PRC1 and histone deacetylase complexes [70]. Nevertheless, val1 val2 double
mutants phenocopy clf swn mutants and trigger a reduction in SWN occupancy at VAL/SWN
co-occupied genomic regions [71]. Interestingly, the VAL1/VAL2 PRC2 targets are largely
1192 Trends in Plant Science, November 2021, Vol. 26, No. 11
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Figure 4. Recruitment of Polycomb repressive complex 2 (PRC2) to Polycomb targets and PRC2/H3K27me3-
mediated silencing. (A) Top left: the Polycomb response element (PRE) and transcription factor-mediated recruitment o
PRC2 first described in drosophila [64] is also found in arabidopsis (Arabidopsis thaliana). GA repeats (the telobox in
arabidopsis) are bound by transcription factors, which directly interact with, and recruit, PRC2 to targets [34,66]. Below
other motifs that are also likely to directly or indirectly contribute to PRC2 recruitment [71]. Bottom left: the chromatin-
scanning mode of PRC2 recruitment in mammals. PRC2 associates with unmethylated CG-rich promoter proximal DNA
via PCL and with H2AK119ub via the JARID2 accessory complex components. Additional interactions further stabilize the
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independent of those of class I BPC and zinc finger TFs and those of TRB1–3 [71] (Figure 4A). To-
gether, these three PRE recruitment modules account for approximately two-thirds of global
H3K27me3 peaks [34,66,71].

The scanning mode of recruitment
In mammals, a ‘scanning model’ instead underlies PRC2 genome targeting to unmethylated
promoter proximal CpG islands (CGIs) via core and accessory PRC2 components (reviewed
in [5,54]). This mode differs from that described earlier in that no recurrent cis motifs or sequence-
specific binding proteins are involved; instead, PRC2 residence time is enhanced by a combination
of factors that includes presence of CG repeats or G/A tracks, DNA conformation, DNA methylation
status, histone occupancy, or histonemodification status (reviewed in [54]) (Figure 4A). Both core and
PCL-containing PRC2 prefer binding to naked DNA, as often found at PREs and CGIs (reviewed in
[13,54]). The N-terminal region of SUZ12 forms a PRC2 recruitment module together with accessory
PRC2 complex subunits [13,56]. The PCL accessory components of PRC2.1 recognize
unmethylated CpG repeats via their extended homologous (EH) region, which folds into a non-
canonical winged-helix structure [72]. PCL-mediated PRC2 recruitment to unmethylated CGIs is
enhanced in the context of reduced helical twist [73]. PCLs also enhance PRC2 residence time
on nucleosomal templates [74].

That PREs and unmethylated CGIs are necessary and sufficient for recruitment of PRC2 is
underscored by loss- and gain-of-function approaches. Deletion of these DNA elements led to
loss of H3K27me3 specifically in dividing cells, suggesting a role in PRC2 recruitment and re-
establishment of silencing after replication; while their ectopic insertion into the genome triggered
PRC2 binding and silencing in flies, plants, and mammals ([34,66,75]; reviewed in [54]). It is
tempting to speculate that the scanning mode of recruitment may be better suited to larger
genomes, given that the PRE-TF mode has thus far been observed in organisms with very
compact genomes.

Finally, H2AK119ub, deposited by noncanonical PRC1, promotes PRC2 recruitment via the
JARID2 accessory subunit (as well as PRC2 activity via the AEBP accessory subunit) of
PRC2.2 ([15,75]; reviewed in [76]). In a recent structure of human PRC2.2, JARID2 binds
H2AK119ub and the acidic patch of the H2A-H2B histone dimer through its N-terminal
ubiquitin-interacting motif (UIM) and a second motif rich in positively charged residues [15]. In
arabidopsis, H2AK121ub marks the majority of PRC2 targets [77].

Role of ncRNA in recruitment?
While noncoding (nc)RNA may be linked to PRC2 recruitment in animals and plants, this is not
always mediated via direct RNA/PRC2 interaction or of functional importance, as recently
shown for the XIST and HOTAIR long (l)ncRNAs (reviewed in [78]). Yet, perturbation of the
RNA-PRC2 interaction suggests a role for RNA in PRC2 targeting in human pluripotent stem
cells [79]. PRC2 has a strong affinity for RNA and interactions with diverse RNAs likely modulate
activity of this complex in as many diverse ways as protein–PRC2 interactions do. In particular,
inactivation of PRC2 activity by RNA is becoming well established; this includes nascent RNA
complex on chromatin [5,54]. Right: the role of noncoding (nc)RNA in PRC2 recruitment and regulation (bottom). RNAs may
indirectly [via RNA-binding proteins (RBPs)] recruit PRC2 and RNA/DNA hybrids (R-loops) target PRC2 to promoters [82]
while the long (l)ncRNAs COLDAIR and COLDWRAP recruit PRC2 to FLC in cis [79,83]. Finally, RNA functions as a decoy
to compete with PRC2 binding to DNA [121]. (B) Gene silencing mediated by PRCs/H3K27me3. H3K27me3 promotes
silencing by recruiting reader proteins, such as LHP1 or BAH domain proteins, that inhibit transcription via inactivation o
Pol II [28–30,90,92]. These readers and additional PRC1 components direct local chromatin compaction, formation o
short- or long-range chromatin loops, as well as phase-separated Polycomb bodies [95,122].
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from actively transcribed loci, as well as RNA competition with DNA binding of this complex
([60,80]; reviewed in [78]). Recently, promoter proximal RNA/DNA loops (R loops) were shown
to tether PRC2 to promoter proximal sites and to regulate PRC2 activity [81,82] (Figure 4A).

In plants, some lncRNAs generated from the FLC locus have been implicated in recruitment of
PRC2 (reviewed in [83]). The antisense COOLAIR lncRNA does not directly interact with PRC2
and is not required for initial PRC2 recruitment and H3K27me3 nucleation [84]. More recently,
PRC2 was linked to COOLAIR via the intermediary RNA-binding protein FCA [85]. Two additional
lncRNAs have been described at FLC: the intronic lncRNA COLDAIR and COLDWRAP, which
originates 225 bp upstream of the FLC transcription start site. These lncRNA are induced by
vernalization, and point mutations in each lead to reduced PRC2 occupancy and H3K27me3
during nucleation, suggesting a role in recruitment [86,87].

PRC2/H3K27me3-mediated silencing
Spreading of H3K27me3 and inheritance of silencing
After PRC2 recruitment to nucleation sites and initial deposition of H3K27me3, H3K27 methyla-
tion spreads to cover entire genes (arabidopsis) or larger Polycomb domains that include multiple
genes (mammals), supported by the ‘write and read’ capability of PRC2 core subunits and acces-
sory proteins and allosteric stimulation by dense nucleosome templates (reviewed in [5,7,14]). In
both animals and plants, this requires histone turnover during replication [46,88], in agreement
with the idea that replication-based parental histone dilution represents a window of opportunity
for faithful inheritance of the chromatin state or for overturning it [7,89]. In plants, the H3K27me3
reader LHP1 has been linked to the spreading of H3H27me3 ([90]; reviewed in [7]; Figure 4B).
Whether the BAH domain proteins EBS and SHL, which act in parallel with LHP1 [28–30],
contribute to this process remains to be determined. Tethering revealed the CBX7 reader of
the canonical PRC1 complex in mammals to contribute to inheritance of the silent state [91].

H3K27me3 readout and phase separation-mediated chromatin compaction
How PRC2-derived H3K27me3 directs transcriptional silencing is just beginning to be unraveled.
Importantly, H3K27me3 recruits ‘readers’ or ‘effectors’, such as BAH domain-containing
proteins in plants and animals and the canonical PRC1 complex in animals (reviewed in [14]).
These effectors in turn engage in diverse activities that include blocking transcription, formation
of local and long-range chromatin loops, as well as nuclear condensates that include small
protein clusters and phase-separated Polycomb bodies (Figure 4B) [14]. Accumulating
evidence suggests that some of these processes are linked.

For example, a complex containing a BAH and a PHD domain protein recruited to H3K27me3 in
the context of unmodified H3K4was described in plants that directs transcriptional repression via
RNA polymerase dephosphorylation [92]. Likewise, a BAH H3K27me3 reader was identified in
mammals (BAHCC1) that is required for gene silencing via recruitment of histone deacetylases
and co-repressors [93]. In addition, H3K27me3 recruits Polycomb or CBX reader proteins in dro-
sophila or mammals, respectively, that are part of the canonical PRC1 complex. The canonical
PRC1 complex also contains Pleiohomeotic [Ph (drosophila)] and PHC1/2 (mammals). In dro-
sophila, canonical PRC1 mediates gene repression via chromatin loops and long-range interac-
tion that depend on protein clusters and liquid–liquid phase separation (LLPS) [94–97]. Of
importance for this chromatin condensation is the STERILE ALPHA MOTIF SAM oligomerization
domain of drosophila Ph [96,97]. In mammals, charged residues in the intrinsically disordered re-
gion of the H3K27me3 reader CBX2 have instead been linked to LLPS, as well as to chromatin
compaction in vitro and the ability to silence critical target genes in vivo [98–100]. In addition,
the SAM domain of Ph homolog PHC1/2 contributes to chromatin loop formation in ESCs in
Trends in Plant Science, November 2021, Vol. 26, No. 11 1195
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Outstanding questions
What is the structure and subunit
composition of different types of
PRC2 holo-complexes in plants and
do they have unique biochemical
activities?

Are there canonical PRC1-like activi-
ties in plants and what proteins and
complexes execute these activities?

What is the role of Polycomb complex
components in regulating 3D chromatin
structure, especially in plant species
with larger genome, such as rice, maize,
and soybean?

Does the mode of PRC2 recruitment in
plant species with larger genomes
differ from that of arabidopsis?
mammals, where H3K27me3 demarcates anchors of chromatin loops [75,101,102]. It is not yet
clear whether PHC1/2 can undergo LLPS in ESCs, in which CBX2 is not expressed.

Plants do not have homologs of Polycomb or Ph, but do form chromatin loops the anchors of
which are enriched in H3K27me3 [103]. In arabidopsis, the H3K27me3 reader LHP1 is not
only implicated in local loops that generate polycomb domains, but also links to both PRC1
and PRC2 [90,104,105]. Of note, the intrinsically disordered hinge region of LHP1, similar to
that of the related H3K9me reader Heterochromatin Protein 1 in animals, is required for formation
of subnuclear foci that resemble Polycomb bodies and arise via LLPS [106–109]. The PRC2
accessory factor EMF1 also links to PRC1 in arabidopsis [33,110] and shows structural and func-
tional similarities with drosophila PSC, at least in vitro ([111]; reviewed in [27]; Figure 4B). A 500-
amino acid region in the center of EMF1 is required for formation of Polycomb bodies [112]. More
recently, EMF1 was implicated in forming a PRC1 complex together with the BAH domain
H3K27me3 reader EBS [28].

Concluding remarks
In summary, the combined recent findings, despite notable differences, suggest remarkable
functional and mechanistic conservation of PRC2 in animals and plants. Recent structural,
genetic, and genomic investigations have increased our understanding of the regulation of
PRC2 enzymatic activity and recruitment, and have begun to shed light on steps that lead from
H3K27me3-marked domains to compacted and transcriptionally silent chromatin. However,
many questions remain (see Outstanding questions). A key frontier is the identification of novel
PRC2 reader complexes and their activities, as well as the role of Polycomb protein clusters
and larger Polycomb bodies in alteration of chromatin topology and silencing. Likewise, how
tissue and condition-specific PRC2 activity is triggered and leads to gene silencing are active
areas of investigation.
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