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In stochastic simulation, input uncertainty refers to the output variability arising from the statistical noise

in specifying the input models. This uncertainty can be measured by a variance contribution in the out-

put, which, in the nonparametric setting, is commonly estimated via the bootstrap. However, due to the

convolution of the simulation noise and the input noise, the bootstrap consists of a two-layer sampling and

typically requires substantial simulation effort. This paper investigates a subsampling framework to reduce

the required effort, by leveraging the form of the variance and its estimation error in terms of the data size

and the sampling requirement in each layer. We show how the total required effort can be reduced from an

order bigger than the data size in the conventional approach to an order independent of the data size in

subsampling. We explicitly identify the procedural specifications in our framework that guarantee relative

consistency in the estimation, and the corresponding optimal simulation budget allocations. We substantiate

our theoretical results with numerical examples.

Key words : bootstrap, subsampling, input uncertainty, variance estimation, nonparametric, nested

simulation

1. Introduction

Stochastic simulation is one of the most widely used analytic tools in operations research. It

provides a flexible means to approximate complex models and to inform decisions. See, for instance,

Law et al. (1991) for applications in manufacturing, revenue management, service and operations

systems etc. In practice, the simulation platform relies on input models that are typically observed

or calibrated from data. These statistical noises can propagate to the output analysis, leading
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to significant errors and suboptimal decision-making. In the literature, this problem is commonly

known as input uncertainty or extrinsic uncertainty.

In conventional simulation output analysis where the input model is completely pre-specified,

the statistical errors come solely from the Monte Carlo noises, and it suffices to account only

for such noises in analyzing the output variability. When input uncertainty is present, such an

analysis will undermine the actual variability. One common approach to quantify the additional

uncertainty is to estimate the variance in the output that is contributed from the input noises

(e.g., Song et al. (2014)); for convenience, we call this the input variance. This quantity acts as

an uncertainty measure which, when added together with the Monte Carlo variance, gives rise

to the overall variance in the outputs. A refined decomposition of input variance across multiple

input sources can be used to identify models that are overly ambiguous and flag the need of more

data collection (e.g., Song et al. (2014)). Input variance also provides a building block to construct

valid output confidence intervals (CIs) that account for combined input and simulation errors (e.g.,

Cheng and Holland (2004)). Motivated by its central role in quantifying input uncertainty, this

paper aims to study the efficient estimation of input variance.

In the literature, bootstrap resampling is a common approach for the above purpose. This applies

most prominently in the nonparametric regime, namely when no assumptions are placed on the

input parametric family. It could also be used in the parametric case (where more alternatives

are available). For example, Cheng and Holland (1997) proposes the variance bootstrap, and Song

and Nelson (2015) studies the consistency of this strategy on a random-effect model that describes

the uncertainty propagation. A bottleneck with using bootstrap resampling in estimating input

variances, however, is the need to “outwash” the simulation noise, which often places substantial

burden on the required simulation effort. More precisely, to handle both the input and the simula-

tion noises, the bootstrap procedure typically comprises a two-layer sampling that first resamples

the input data (i.e., outer sampling), followed by running simulation replications using each resam-

ple (i.e., inner replications). Due to the reciprocal relation between the magnitude of the input
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variance and the input data, the input variance becomes increasingly small as the input data

size increases. This deems the control of the relative estimation error increasingly expensive, and

requires either a large outer bootstrap size or inner replication size to extinguish the effect of

simulation noises.

The main goal of this paper is to investigate subsampling as a simulation saver for input variance

estimation. This means that, instead of creating distributions by resampling a data set of the full

size, we only resample (with or without replacement) a set of smaller size. We show that a judicious

use of subsampling can reduce the total simulation effort from an order bigger than the data size in

the conventional two-layer bootstrap to an order independent of the data size, while retaining the

estimation accuracy. This approach leverages the interplay between the form of the input variance

and its estimation error, in terms of the data size and the sampling effort in each layer of the

bootstrap. On a high level, the subsample is used to estimate an input variance as if less data are

available, followed by a correction of this discrepancy in the data size by properly rescaling the input

variance. We call this approach proportionate subsampled variance bootstrap. We explicitly identify

the procedural specifications in our approach that guarantee estimation consistency, including

the minimally required simulation effort in each layer. We also study the theoretical behavior of

our estimation error, in relation to the simulation effort allocation in these layers as well as the

input data and subsample sizes, which in turn reveals the optimal configurations and provides

implementation guidance.

In the statistics literature, subsampling has been used as a remedy for situations where the full-

size bootstrap does not apply, due to a lack (or undeterminability) of uniform convergence required

for its statistical consistency, which relates to the functional smoothness or regularity of the esti-

mators (e.g., Politis and Romano (1994)). Subsampling has been used in time series and dependent

data (e.g., Politis et al. (1999), Hall et al. (1995), Datta and McCormick (1995)), extremal esti-

mation (e.g., Bickel and Sakov (2008)), shape-constrained estimation (e.g., Sen et al. (2010)) and

other econometric contexts (e.g., Abadie and Imbens (2008), Andrews and Guggenberger (2009,
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2010)). In contrary to these works, our subsampling approach is introduced to reduce the simula-

tion effort faced by the two-layer sampling necessitated from the presence of both the input and

simulation noises. In other words, we are not concerned about the issue of uniform convergence,

but instead, we aim to distort the relation between the required simulation effort and data size in a

way that allows more efficient deconvolution of the effects of the two noises. We also note that, as

we will use resampling with replacement (instead of without replacement), our approach is closer

to the so-called m out of n bootstrap (Bickel et al. (1997), Bickel and Sakov (2008)). For coherence,

throughout the paper we use the term subsampling broadly to indicate a bootstrap with a smaller

resample size than the original data size.

We close this introduction with a brief review of other related work in input uncertainty. In the

nonparametric regime (the focus of this paper), besides Cheng and Holland (1997) and Song and

Nelson (2015) that study bootstrap-based estimation of the input variance, Barton and Schruben

(1993) and Barton and Schruben (2001) investigate the percentile bootstrap to construct CIs (i.e.,

the CI limits are determined from the quantiles of the bootstrap distributions). Like variance

bootstrap, percentile bootstrap also encounters two-layer sampling that requires substantial simu-

lation efforts. Yi and Xie (2017) investigates adaptive budget allocation policies based on ranking

and selection to reduce simulation cost in the percentile bootstrap, and empirically shows the

computational advantage of their approach. On the other hand, contrary to this paper, they do

not investigate the required simulation efforts in relation to the input data size. Lam and Qian

(2016, 2017) study the use of empirical likelihood as an optimization-based alternative to the

percentile bootstrap, which requires simulation efforts to estimate the gradient information that

remain substantial. Beyond the frequentist regime considered in this paper, Xie et al. (2019) stud-

ies nonparametric Bayesian methods based on Dirichlet process mixtures to estimate the variance

contributed from input uncertainty and construct CIs. Glasserman and Xu (2014), Hu et al. (2012),

Lam (2016b) and Ghosh and Lam (2019) study input uncertainty from a robust optimization view-

point, where they compute worst-case bounds subject to constraints or so-called uncertainty sets
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that represent partial beliefs on unknown distributions. In the parametric regime, Barton et al.

(2013) and Xie et al. (2016) investigate the basic bootstrap with a metamodel built in advance,

a technique known as the metamodel-assisted bootstrap. Xie et al. (2016) and Biller and Corlu

(2011) study multivariate input uncertainty assuming a parametric dependency structure in the

form of product-moment correlations. Cheng and Holland (1997) studies the delta method, and

Cheng and Holland (1998, 2004) reduce its computation burden via the so-called two-point method.

Lin et al. (2015) and Song and Nelson (2019) study regression approaches to estimate sensitivity

coefficients which are used to apply the delta method, generalizing the gradient estimation method

in Wieland and Schmeiser (2006). Zhu et al. (2020) studies risk criteria and computation to quan-

tify parametric uncertainty. Finally, Chick (2001), Zouaoui and Wilson (2003), Zouaoui and Wilson

(2004) and Xie et al. (2014) study variance estimation and interval construction from a Bayesian

perspective. We comment that although the exposition in this paper focuses on the nonparametric

setting, the same idea of subsampling can be adapted naturally to the parametric setting, with

similar advantages in computational efficiency. For general surveys on input uncertainty, readers

are referred to Barton et al. (2002), Henderson (2003), Chick (2006), Barton (2012), Song et al.

(2014), Lam (2016a), and Nelson (2013) Chapter 7.

The remainder of the paper is as follows. Section 2 introduces the input uncertainty problem

and explains the simulation complexity bottleneck in the existing bootstrap schemes. Section 3

presents our subsampling idea, procedures and the main statistical results. Section 4 discusses the

key steps in our theoretical developments. Section 5 reports our numerical experiments. Section 6

concludes the paper. All proofs are relegated to the Appendix.

2. Problem Motivation

This section describes the problem and our motivation. Section 2.1 first describes the input uncer-

tainty problem, Section 2.2 presents the existing bootstrap approach, and Section 2.3 discusses its

computational barrier, thus motivating our subsampling investigation. We aim to provide intuitive

explanations in this section, and defer mathematical details to later sections.
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2.1. The Input Uncertainty Problem

Suppose there are m independent input processes driven by input distributions F1,F2, . . . ,Fm.

We consider a generic performance measure ψ(F1, . . . ,Fm) that is simulable, i.e., given the input

distributions, independent unbiased replications of ψ can be generated in a computer. As a primary

example, think of F1 and F2 as the interarrival and service time distributions in a queue, and ψ is

some output measure such as the mean queue length averaged over a time horizon. Our study also

applies when the Fi’s are multivariate distributions.

The input uncertainty problem arises in situations where the input distributions F1, . . . ,Fm are

unknown but real-world data are available. One then has to use their estimates F̂1, . . . , F̂m to drive

the simulation. Denote a point estimate of ψ(F1, . . . ,Fm) as ψ̄(F̂1, . . . , F̂m), where typically we take

ψ̄(F̂1, . . . , F̂m) =
1

q

q∑
r=1

ψ̂r(F̂1, . . . , F̂m)

with ψ̂r(F̂1, . . . , F̂m) being a conditionally unbiased simulation replication driven by F̂1, . . . , F̂m.

This point estimate is affected by both the input statistical noises and the simulation noises. By

conditioning on the estimated input distributions (or viewing the point estimate as a random

effect model with uncorrelated input and simulation noises), the variance of ψ̄(F̂1, . . . , F̂m) can be

expressed as

Var[ψ̄(F̂1, . . . , F̂m)] = σ2
I +σ2

S

where

σ2
I = Var[ψ(F̂1, . . . , F̂m)] (1)

is the input variance, and

σ2
S =

E[Var[ψ̂r(F̂1, . . . , F̂m)|F̂1, . . . , F̂m]]

q

is the variance contributed from the simulation noises. Assuming that the estimates F̂i’s are consis-

tent in estimating Fi’s, then, as input data sizes grow, σ2
S is approximately Var[ψ̂r(F1, . . . ,Fm)]/q

and can be estimated by taking the sample variance of all simulation replications (see, e.g., Cheng
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and Holland (1997)). On the other hand, σ2
I signifies the output variance contributed solely from

the input data noises, assuming a fully accurate evaluation of the performance measure ψ. Esti-

mating σ2
I is the key and the challenge in quantifying input uncertainty, which is the focus of this

paper.

Before going into details, we discuss two conceptual properties on σ2
I that would be relevant in

motivating and pinpointing our study. First, suppose further that for each input model i, we have

ni i.i.d. data {Xi,1, . . . ,Xi,ni} generated from the distribution Fi. When ni’s are large, typically the

overall input variance σ2
I is decomposable into

σ2
I ≈

m∑
i=1

σ2
i

ni
(2)

where σ2
i /ni is the variance contributed from the data noise for model i, with σ2

i being a constant. In

the parametric case where F̂i comes from a parametric family containing the estimated parameters,

this decomposition is well known from the delta method (Asmussen and Glynn (2007), Chapter 3).

Here, σ2
i /ni is typically ∇iψ′Σi∇iψ, where ∇iψ is the collection of sensitivity coefficients, i.e., the

gradient, with respect to the parameters in model i, and Σi is the asymptotic estimation variance

of the point estimates of these parameters (scaled reciprocally with ni). In the nonparametric case

where the empirical distribution F̂i(x) :=
∑ni

j=1 δXi,j (x)/ni is used (where δXi,j denotes the delta

measure at Xi,j), (2) still holds under mild conditions (e.g., Propositions 1 and 2 in the sequel). In

this setting the quantity σ2
i is equal to VarFi [gi(Xi)], where gi(·) is the influence function (Hampel

(1974)) of ψ with respect to the distribution Fi, whose domain is the value space of the input

variate Xi, and VarFi [·] denotes the variance under Fi. The influence function can be viewed as a

functional derivative taken with respect to the probability distributions Fi’s (see Serfling (2009),

Chapter 6), and dictates the first-order asymptotic behavior of the plug-in estimate of ψ. Although

the mathematical form of σ2
i ’s is known, it relies on gradient information that needs to be estimated

via simulation itself. Moreover, in the nonparametric case, the gradient dimension in a sense grows

with the data size. Thus directly using the delta method in this case could be challenging. In

our subsequent developments, we focus on the nonparametric case, both because this is more
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challenging, and also that this can be viewed as a generalization of the parametric case by viewing

the “parameter” simply as a function of Fi’s.

Second, under further regularity conditions, a Gaussian approximation holds for ψ̄(F̂1, . . . , F̂m)

so that

ψ̄(F̂1, . . . , F̂m)± z1−α/2
√
σ2
I +σ2

S (3)

is an asymptotically tight (1−α)-level CI for ψ(F1, . . . ,Fm), where z1−α/2 is the standard normal

1−α/2 quantile. This CI, which provides a bound-based alternative to quantify input uncertainty,

again requires a statistically valid estimate of σ2
I or

∑m

i=1 σ
2
i /ni (and σ2

S). In this paper we primarily

focus on the estimation of σ2
I and how our proposed approach substantially improves upon previous

methods in this regard. Naturally, the improved estimate of σ2
I also translates into a better CI

when using (3). We caution, however, that an optimal procedural configuration to estimate σ2
I does

not necessarily correspond to an optimal configuration in constructing the CI, as the performance

of the latter is measured by different criteria such as coverage or half-width (such a difference in

optimally estimating variance versus CI has also been observed in other contexts such as time series

(Sun et al. (2008))). Nonetheless, we will show that a direct plug-in of our new estimator of σ2
I

into (3) is already enough to significantly outperform conventional bootstrap-based CIs suggested

in the literature, both theoretically and also supported by consistent empirical evidence.

Next we will discuss bootstrap resampling, the commonest estimation technique that forms the

basis of our comparison.

2.2. Bootstrap Resampling

Let F̂ ∗i represent the empirical distribution constructed using a bootstrap resample from the orig-

inal data {Xi,1, . . . ,Xi,ni} for input Fi, i.e., ni points drawn by uniformly sampling with replace-

ment from {Xi,1, . . . ,Xi,ni}. The bootstrap variance estimator is Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)], where Var∗[·]

denotes the variance over the bootstrap resamples from the data, conditional on F̂1, . . . , F̂m.

The principle of bootstrap entails that Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] ≈ Var[ψ(F̂1, . . . , F̂m)] = σ2

I . Here

Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] is obtained from a (hypothetical) infinite number of bootstrap resamples and
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simulation runs per resample. In practice, however, one would need to use a finite bootstrap size

and a finite simulation size. This comprises B conditionally independent bootstrap resamples of

{F̂ ∗1 , . . . , F̂ ∗m}, and R simulation replications driven by each realization of the resampled input

distributions. This generally incurs two layers of Monte Carlo errors.

Denote ψ̂r(F̂
b
1 , . . . , F̂

b
m) as the r-th simulation run driven by the b-th bootstrap resample

{F̂ b
1 , . . . , F̂

b
m}. Denote ψ̄b as the average of the R simulation runs driven by the b-th resample, and ¯̄ψ

as the grand sample average from all the BR runs. An unbiased estimator for Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)]

is given by

1

B− 1

B∑
b=1

(ψ̄b− ¯̄ψ)2− V
R

(4)

where

V =
1

B(R− 1)

B∑
b=1

R∑
r=1

(ψ̂r(F̂
b
1 , . . . , F̂

b
m)− ψ̄b)2.

To explain, the first term in (4) is an unbiased estimate of the variance of ψ̄b, which is

Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] + (1/R)E∗[Var[ψ̂r(F̂

∗
1 , . . . , F̂

∗
m)|F̂ ∗1 , . . . , F̂ ∗m]] (where E∗[·] denotes the expecta-

tion on F̂ ∗i ’s conditional on F̂i’s), since ψ̄b incurs both the bootstrap noise and the simulation noise.

In other words, the variance of ψ̄b is upward biased for Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)]. The second term in (4),

namely V/R, removes this bias. This bias adjustment can be derived by viewing Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)]

as the variance of a conditional expectation. Alternately, ψ̂r(F̂
∗
1 , . . . , F̂

∗
m) can be viewed as a random

effect model where each “group” corresponds to each realization of F̂ ∗1 , . . . , F̂
∗
m, and (4) estimates

the “between-group” variance in an analysis-of-variance (ANOVA). Formula (4) has appeared in

the input uncertainty literature, e.g., Cheng and Holland (1997), Song and Nelson (2015), Lin et al.

(2015), and also in Zouaoui and Wilson (2004) in the Bayesian context. Algorithm 1 summarizes

the procedure.

More generally, to estimate the variance contribution from the data noise of model i only, namely

σ2
i /ni, one can bootstrap only from {Xi,1, . . . ,Xi,ni} and keep other input distributions F̂j, j 6= i

fixed. Then F̂ ∗i and F̂j, j 6= i are used to drive the simulation runs. With this modification, the

same formula (4) or Algorithm 1 is an unbiased estimate for Var∗[ψ(F̂1, . . . , F̂i−1, F̂
∗
i , F̂i+1, . . . , F̂m)],
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Algorithm 1 ANOVA-based Variance Bootstrap

Given: B ≥ 2,R≥ 2; data = {Xi,j : i= 1, . . . ,m, j = 1, . . . , ni}

for b= 1 to B do

For each i, draw a sample {Xb
i,1, . . . ,X

b
i,ni
} uniformly with replacement from the data to obtain

a resampled empirical distribution F̂ b
i

for r= 1 to R do

Simulate ψ̂r(F̂
b
1 , . . . , F̂

b
m)

end for

Compute ψ̄bBV = 1
R

∑R

r=1 ψ̂r(F̂
b
1 , . . . , F̂

b
m)

end for

Compute V = 1
B(R−1)

∑B

b=1

∑R

r=1(ψ̂r(F̂
b
1 , . . . , F̂

b
m)− ψ̄bBV )2 and ¯̄ψBV = 1

B

∑B

b=1 ψ̄
b
BV

Output σ̂2
BV = 1

B−1

∑B

b=1(ψ̄
b
BV − ¯̄ψBV )2− V

R

which is approximately Var[ψ(F1, . . . ,Fi−1, F̂i,Fi+1, . . . ,Fm)] by the bootstrap principle, in turn

asymptotically equal to σ2
i /ni introduced in (2). This observation appeared in, e.g., Song et al.

(2014); in Section 4 we give further justifications.

In subsequent discussions, we use the following notations. For any sequences a and b, both

depending on some parameter, say, n, we say that a=O(b) if |a/b| ≤C for some constant C > 0 for

all sufficiently large n, and a= o(b) if a/b→ 0 as n→∞. Alternately, we say a= Ω(b) if |a/b| ≥C

for some constant C > 0 for all sufficiently large n, and a= ω(b) if |a/b| →∞ as n→∞. We say that

a= Θ(b) if C ≤ |a/b| ≤ C as n→∞ for some constants C,C > 0. We use A=Op(b) to represent

a random variable A that has stochastic order at least b, i.e., for any ε > 0, there exists M,N > 0

such that P (|A/b| ≤M)> 1− ε for n>N . We use A= op(b) to represent a random variable A that

has stochastic order less than b, i.e., A/b
p→ 0. We use A= Θp(b) to represent a random variable A

that has stochastic order exactly at b, i.e., A satisfies A=Op(b) but not A= op(b).
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2.3. A Complexity Barrier

We explain intuitively the total number of simulation runs needed to ensure that the variance

bootstrap depicted above can meaningfully estimate the input variance. For convenience, we call

this number the simulation complexity. This quantity turns out to be of order bigger than the data

size. On a high level, it is because the input variance scales reciprocally with the data size (recall

(2)). Thus, when the data size increases, the input variance becomes smaller and increasingly diffi-

cult to estimate with controlled relative error. This in turn necessitates the use of more simulation

runs.

To explain more concretely, denote n as a scaling of the data size, i.e., we assume ni all grow

linearly with n, which in particular implies that σ2
I is of order 1/n. We analyze the error of σ̂2

BV

from Algorithm 1 in estimating σ2
I . Since σ̂2

BV is unbiased for Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] which is in turn

close to σ2
I , roughly speaking it suffices to focus on the variance of σ̂2

BV . To analyze this later

quantity, we denote a generic simulation run in our procedure, ψ̂r(F̂
∗
1 , . . . , F̂

∗
m), as

ψ̂r(F̂
∗
1 , . . . , F̂

∗
m) =ψ(F̂1, . . . , F̂m) + δ+ ξ

where

δ :=ψ(F̂ ∗1 , . . . , F̂
∗
m)−ψ(F̂1, . . . , F̂m), ξ := ψ̂r(F̂

∗
1 , . . . , F̂

∗
m)−ψ(F̂ ∗1 , . . . , F̂

∗
m).

are the errors arising from the bootstrap of the input distributions and the simulation respectively.

If ψ is sufficiently smooth, δ elicits a central limit theorem and is of order Θp(1/
√
n). On the other

hand, the simulation noise ξ is of order Θp(1).

Via an ANOVA-type analysis as in Sun et al. (2011), we have

Var∗[σ̂
2
BV ] =

1

B
(E∗[δ4]− (E∗[δ2])2) +

2

B(B− 1)
(E∗[δ2])2 +

2

B2R2(B− 1)
(E∗[ξ2])2 +

2

B2R3
E∗[ξ4]

+
2(B+ 1)

B2R(B− 1)
E∗[δ2]E∗[ξ2] +

2(BR2 +R2− 4R+ 3)

B2R3(R− 1)
E∗[(E[ξ2|F̂ ∗1 , . . . , F̂ ∗m])2]

+
4B+ 2

B2R
E∗[δ2ξ2] +

4

B2R2
E∗[δξ3]. (5)
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Now, putting δ= Θp(1/
√
n) and ξ = Θp(1) formally into (5), and ignoring constant factors, results

in

Var∗[σ̂
2
BV ] =Op

(
1

Bn2
+

1

B2n2
+

1

B3R2
+

1

B2Rn
+

1

B2R3
+

1

BR2
+

1

BRn
+

1

B2R2
√
n

)
or simply

Op

(
1

Bn2
+

1

BR2

)
(6)

The two terms in (6) correspond to the variances coming from the bootstrap resampling and the

simulation runs respectively.

Since σ2
I is of order 1/n, meaningful estimation of σ2

I needs measured by the relative error. In

other words, we want to achieve σ̂2
BV /σ

2
I

p→ 1 as the simulation budget grows. This property, which

we call relative consistency, requires σ̂2
BV to have a variance of order o(1/n2) in order to compensate

for the decreasing order of σ2
I .

We argue that this implies unfortunately that the total number of simulation runs, BR, must

be ω(n), i.e., of order higher than the data size. To explain, note that the first term in (6) forces

one to use B = ω(1), i.e., the bootstrap size needs to grow with n, an implication that is quite

natural. The second term in (6), on the other hand, dictates also that BR2 = ω(n2). Suppose, for

the sake of contradiction, that B and R are chosen such that BR=O(n). Then, because we need

BR×R=BR2 = ω(n2), R must be ω(n) which, combining with B = ω(1), implies that BR= ω(n)

and leads to a contradiction.

We summarize the above with the following result. Let N be the total simulation effort, and

recall n as the scaling of the data size. We have:

Theorem 1 (Simulation complexity of the variance bootstrap). Under Assumptions 1-7

to be stated in Section 4.1, the required simulation budget to achieve relative consistency in esti-

mating σ2
I by Algorithm 1, i.e., σ̂2

BV /σ
2
I

p→ 1, is N = ω(n).

Though out of the scope of this paper, there are indications that such a computational barrier

occurs in other types of bootstrap. For instance, the percentile bootstrap studied in Barton and
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Schruben (1993, 2001) appears to also require an inner replication size large enough compared

to the data size in order to obtain valid quantile estimates (the authors actually used one inner

replication, but Barton (2012) commented that more is needed). Yi and Xie (2017) provides an

interesting approach based on ranking and selection to reduce the simulation effort, though they

do not investigate the order of the needed effort relative to the data size. The empirical likelihood

framework studied in Lam and Qian (2017) requires a similarly higher order of simulation runs

to estimate the influence function. Nonetheless, in this paper we focus only on how to reduce

computation load in variance estimation.

3. Procedures and Guarantees in the Subsampling Framework

This section presents our methodologies and results on subsampling. Section 3.1 first explains the

rationale and the subsampling procedure. Section 3.2 then presents our main theoretical guarantees,

deferring some elaborate developments to Section 4.

3.1. Proportionate Subsampled Variance Bootstrap

As explained before, the reason why the σ̂2
BV in Algorithm 1 requires a huge simulation effort,

as implied by its variance (6), lies in the small scale of the input variance. In general, in order

to estimate a quantity that is of order 1/n, one must use a sample size more than n so that the

estimation error relatively vanishes. This requirement manifests in the inner replication size in

constructing σ̂2
BV .

To reduce the inner replication size, we leverage the relation between the form of the input

variance and the estimation variance depicted in (6) as follows. The approximate input variance

contributed from model i, with data size ni, has the form σ2
i /ni. If we use the variance bootstrap

directly as in Algorithm 1, then we need an order more than n total simulation runs due to (6). Now,

pretend that we have fewer data, say si, then the input variance will be σ2
i /si, and the required

simulation runs is now only of order higher than si. An estimate of σ2
i /si, however, already gives

us enough information in estimating σ2
i /ni, because we can rescale our estimate of σ2

i /si by si/ni
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to get an estimate of σ2
i /ni. Estimating σ2

i /si can be done by subsampling the input distribution

with size si. With this, we can both use fewer simulation runs and also retain correct estimation

via multiplying by a si/ni factor.

To make the above argument more transparent, the bootstrap principle and the asymptotic

approximation of the input variance imply that

Var∗[ψ(F̂ ∗1 , . . . , F̂
∗
m)] =

m∑
i=1

σ2
i

ni
(1 + op(1)).

The subsampling approach builds on the observation that a similar relation holds for

Var∗[ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m

)] =
m∑
i=1

σ2
i

si
(1 + op(1))

where F̂ ∗si,i denotes a bootstrapped input distribution of size si (i.e., an empirical distribution of

size si that is uniformly sampled with replacement from {Xi,1, . . . ,Xi,ni}). If we let si = bθnic for

some θ > 0 so that si→∞ (where b·c is the floor function, i.e. the largest integer less than or equal

to ·), then we have

Var∗[ψ(F̂ ∗bθn1c,1, . . . , F̂
∗
bθnmc,m)] =

m∑
i=1

σ2
i

θni
(1 + op(1)).

Multiplying both sides with θ, we get

θVar∗[ψ(F̂ ∗bθn1c,1, . . . , F̂
∗
bθnmc,m)] =

m∑
i=1

σ2
i

ni
(1 + op(1)).

Note that the right hand side above is the original input variance of interest. This leads to our

proportionate subsampled variance bootstrap: We repeatedly subsample collections of input distri-

butions from the data, with size bθnic for model i, and use them to drive simulation replications.

We then apply the ANOVA-based estimator in (4) on these replications, and multiply it by a

factor of θ to obtain our final estimate. We summarize this procedure in Algorithm 2. The term

“proportionate” refers to the fact that we scale the subsample size for all models with a single

factor θ. For convenience, we call θ the subsample ratio.

Similar ideas apply to estimating the individual variance contribution from each input model,

namely σ2
i /ni. Instead of subsampling all input distributions, we only subsample the distribution,
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Algorithm 2 Proportionate Subsampled Variance Bootstrap

Parameters: B ≥ 2,R≥ 2,0< θ≤ 1; data = {Xi,j : i= 1, . . . ,m, j = 1, . . . , ni}

Compute si = bθnic for all i

for b= 1 to B do

For each i, draw a subsample {Xb
i,1, . . . ,X

b
i,si
} uniformly with replacement from the data, which

forms the empirical distribution F̂ b
si,i

for r= 1 to R do

Simulate ψ̂r(F̂
b
s1,1

, . . . , F̂ b
sm,m

)

end for

Compute ψ̄b = 1
R

∑R

r=1 ψ̂r(F̂
b
s1,1

, . . . , F̂ b
sm,m

)

end for

Compute V = 1
B(R−1)

∑B

b=1

∑R

r=1(ψ̂r(F̂
b
s1,1

, . . . , F̂ b
sm,m

)− ψ̄b)2 and ¯̄ψ= 1
B

∑B

b=1 ψ̄
b

Output σ̂2
SV B = θ( 1

B−1

∑B

b=1(ψ̄
b− ¯̄ψ)2− V

R
)

say F̂ ∗si,i whose uncertainty is of interest, while fixing all the other distributions as the original

empirical distributions, i.e., F̂j, j 6= i. All the remaining steps in Algorithm 2 remain the same (thus

the “proportionate” part can be dropped). This procedure is depicted in Algorithm 3.

3.2. Statistical Guarantees

Algorithm 2 provides the following guarantees. Recall that N =BR is the total simulation effort,

and n is the scaling of the data size. We have the following result:

Theorem 2 (Procedural configurations to achieve relative consistency). Under

Assumptions 1-7 to be stated in Section 4.1, if the parameters B,R,θ of Algorithm 2 are chosen

such that

B = ω(1), BR2 = ω
(
(θn)2

)
, θ= ω

( 1

n

)
(7)

then the variance estimate σ̂2
SV B is relatively consistent, i.e. σ̂2

SV B/σ
2
I

p→ 1.
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Algorithm 3 Subsampled Variance Bootstrap for Variance Contribution from the i-th Input

Model

Parameters: B ≥ 2,R≥ 2,0< θ≤ 1; data = {Xi,j : i= 1, . . . ,m, j = 1, . . . , ni}

Compute si = bθnic

for b= 1 to B do

Draw a subsample {Xb
i,1, . . . ,X

b
i,si
} uniformly with replacement from the i-th input data set,

which forms the empirical distribution F̂ b
si,i

for r= 1 to R do

Simulate ψ̂r(F̂1, . . . , F̂i−1, F̂
b
si,i
, F̂i+1, . . . , F̂m)

end for

Compute ψ̄b = 1
R

∑R

r=1 ψ̂r(F̂1, . . . , F̂i−1, F̂
b
si,i
, F̂i+1, . . . , F̂m)

end for

Compute V = 1
B(R−1)

∑B

b=1

∑R

r=1(ψ̂r(F̂1, . . . , F̂i−1, F̂
b
si,i
, F̂i+1, . . . , F̂m)− ψ̄b)2 and ¯̄ψ= 1

B

∑B

b=1 ψ̄
b

Output σ̂2
SV B,i = θ( 1

B−1

∑B

b=1(ψ̄
b− ¯̄ψ)2− V

R
)

Theorem 2 tells us what orders of the bootstrap size B, inner replication size R and subsample

ratio θ would guarantee a meaningful estimation of σ2
I . Note that θ ≈ si/ni for each i, so that

θ= ω(1/n) is equivalent to setting the subsample size si = ω(1). In other words, we need the natural

requirement that the subsample size grows with the data size, albeit can have an arbitrary rate.

Given a subsample ratio θ specified according to (7), the configurations of B and R under (7)

that achieve the minimum overall simulation budget is B = ω(1) and R= Ω(θn). This is because to

minimize N =BR while satisfying the second requirement in (7), it is more economical to allocate

as much budget to R instead of B. This is stated precisely as:

Corollary 1 (Minimum configurations to achieve relative consistency). Under the

same conditions of Theorem 2, given θ= ω(n−1), the values of B and R to achieve (7) and hence

relative consistency that requires the least order of effort are B = ω(1) and R= Ω(θn), leading to

a total simulation budget N = ω(θn).
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Note that θn is the order of the subsample size. Thus Corollary 1 implies that the required

simulation budget must be of higher order than the subsample size. However, since the subsample

size can be chosen to grow at an arbitrarily small rate, this implies that the total budget can also

grow arbitrarily slowly. Therefore, we have:

Corollary 2 (Simulation complexity of proportionate subsampled variance bootstrap).

Under the same conditions of Theorem 2, the minimum required simulation budget to achieve

relative consistency in estimating σ2
I by Algorithm 2, i.e., σ̂2

SV B/σ
2
I

p→ 1, is N = ω(1) by using

θ= ω(n−1).

Compared to Theorem 1, Corollary 2 stipulates that our subsampling approach reduces the

required simulation effort from a higher order than n to an arbitrary order, i.e., independent of the

data size. This is achieved by using a subsample size that grows with n at an arbitrary order, or

equivalently a subsample ratio θ that grows faster than 1/n.

The following result describes the configurations of our scheme when a certain total simulation

effort is given. In particular, it shows, for a given total simulation effort, the range of subsample ratio

for which Algorithm 2 can possibly generate valid variance estimates by appropriately choosing B

and R:

Theorem 3 (Valid subsample ratio given total budget). Assume the same conditions of

Theorem 2. Given a total simulation budget N = ω(1), if the subsample ratio satisfies ω(1/n)≤ θ≤

o(N/n)∧ 1, then the bootstrap size B and the inner replication size R can be appropriately chosen

according to criterion (7) to achieve relative consistency, i.e., σ̂2
SV B/σ

2
I

p→ 1.

The next result is on the optimal configurations of our scheme in minimizing the Monte Carlo

error. To proceed, define

σ2
SV B = θVar∗[ψ(F̂ ∗bθn1c,1, . . . , F̂

∗
bθnmc,m)] (8)

as the perfect form of our proportionate subsampled variance bootstrap introduced in Section 3.1,

namely without any Monte Carlo noises, and 0< θ≤ 1 is the subsample ratio. We have:
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Theorem 4. Assume the same conditions of Theorem 2. Given a simulation budget N and a

subsample ratio θ such that N = ω(θn) and θ = ω(n−1), the optimal outer and inner sizes that

minimize the order of the conditional mean squared error E∗[(σ̂2
SV B −σ2

SV B)2] are

B∗ =
N

R∗
, R∗ = Θ(θn)

giving a conditional mean squared error E∗[(σ̂2
SV B −σ2

SV B)2] = Θ(θ/(Nn))(1 + op(1)).

Note that the mean squared error, i.e. E∗[(σ̂2
SV B − σ2

SV B)2], of the Monte Carlo estimate σ̂2
SV B is

random because the underlying resampling is conditioned on the input data, therefore the bound

at the end of Theorem 4 contains a stochastically vanishing term op(1).

We next present the optimal tuning of the subsample ratio. This requires a balance of the trade-

off between the input statistical error and the Monte Carlo simulation error. To explain, the overall

error of σ̂2
SV B by Algorithm 2 can be decomposed as

σ̂2
SV B −σ2

I = (σ̂2
SV B −σ2

SV B) + (σ2
SV B −σ2

I ). (9)

The first term is the Monte Carlo error for which the optimal outer size B, inner size R and the

resulting mean squared error are governed by Theorem 4. In particular, the mean squared error

there shows that under a fixed simulation budget N and the optimal allocation R = Θ(θn), the

Monte Carlo error gets larger as θ increases. The second term is the statistical errors due to the

finiteness of input data and θ. Since θ measures the amount of data contained in the resamples,

we expect this second error to become smaller as θ increases. The optimal tuning of θ relies on

balancing such a trade-off between the two sources of errors.

We have the following optimal configurations of B, R and θ altogether given a budget N :

Theorem 5 (Optimal subsample size and budget allocation). Suppose Assumptions 1, 3-7

in Section 4.1 and Assumptions 10-12 in Section 4.3 hold. For a given simulation budget N = ω(1),

if the subsample ratio θ and outer and inner sizes B,R for Algorithm 2 are set to
θ∗ = Θ

(
N 1/3n−1

)
if 1�N ≤ n3/2

Θ(n−1/2)≤ θ∗ ≤Θ
(
Nn−2 ∧ 1

)
if N >n3/2

(10)
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R∗ = Θ(θ∗n), B∗ =
N

R∗
(11)

then the gross error σ̂2
SV B − σ2

I = E + op(N
−1/3n−1 + n−3/2), where the leading term has a mean

squared error

E[E2] =O
( 1

N 2/3n2
+

1

n3

)
. (12)

Moreover, if R = Θ((ns)−1) and at least one of the Σi’s are positive definite, where R and Σi

are as defined in Lemma 2, then (12) holds with an exact order (i.e., O(·) becomes Θ(·)) and the

configuration (10), (11) is optimal in the sense that no configuration gives rise to a gross error

σ̂2
SV B −σ2

I = op
(
N−1/3n−1 +n−3/2

)
.

Note from (12) that, if the budget N = ω(1), our optimal configurations guarantee the estimation

mean squared error decays faster than 1/n2. Recall that the input variance is of order 1/n, and thus

an estimation error of order higher than 1/n2 ensures that the estimator is relatively consistent

in the sense σ̂2
SV B/σ

2
I

p→ 1. This recovers the result in Corollary 2. We also comment that the

algorithmic configuration given in Theorem 5 is chosen to optimize the mean squared error of the

input variance estimate, but does not necessarily generates the most accurate CI. There exists

evidence (e.g., Sun et al. (2008)) that the optimal choice to minimize the mean squared error of the

variance estimate can be different from the one that is optimal for statistical inference, although

in our experiments they seem to match closely with each other.

We comment that all the results in this section hold if one estimates the individual variance

contribution from each input model i, namely by using Algorithm 3. In this case we are interested

in estimating the variance σ2
i /ni, and relative consistency means σ̂2

SV B,i/(σ
2
i /ni)

p→ 1. The data size

scaling parameter n can be replaced by ni in all our results.

Finally, we also comment that the complexity barrier described in Section 2.3 and our framework

presented in this section applies in principle to the parametric regime, i.e., when the input distri-

butions are known to lie in parametric families with unknown parameters. The assumptions and

mathematical details would need to be catered to that situation, which could be done naturally by

viewing the “parameter” as a function of Fi’s.
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4. Developments of Theoretical Results

We present our main developments leading to the algorithms and results in Section 3. Section

4.1 first states in detail our assumptions on the performance measure. Section 4.2 presents the

theories leading to estimation accuracy, simulation complexity and optimal budget allocation in

the proportionate subsampled variance bootstrap. Section 4.3 investigates optimal subsample sizes

that lead to overall best configurations.

4.1. Regularity Assumptions

We first assume that the data sets for all input models are of comparable size.

Assumption 1 (Balanced data). limsupall ni→∞
maxi ni
mini ni

<∞ as all ni→∞.

Recall in Sections 2 and 3 that we have denoted n as a scaling of the data size. More concretely,

we take n= (1/m)
∑m

i=1 ni as the average input data size under Assumption 1.

We next state a series of general assumptions on the performance measure ψ. These assumptions

hold for common finite-horizon measures, as we will present. For each i let Ξi be the support of

the i-th true input model Fi, and the collection of distributions Pi be the convex hull spanned by

Fi and all Dirac measures on Ξi, i.e.

Pi =
{
ν1Fi +

l∑
k=2

νk1xk :
l∑

k=1

νk = 1, νk ≥ 0, l <∞, xk ∈Ξi for all k
}
.

We assume the following differentiability of the performance measure.

Assumption 2 (First order differentiability). For any distributions Pi,Qi ∈Pi, denote P νi
i =

(1− νi)Pi + νiQi for νi ∈ [0,1]. Assume there exist functions gi(P1, . . . , Pm; ·) : Ξi → R such that

EPi [gi(P1, . . . , Pm;Xi)] = 0 for i= 1, . . . ,m and as all νi’s approach zero

ψ(P ν1
1 , . . . , P νm

m )−ψ(P1, . . . , Pm) =
m∑
i=1

νi

∫
gi(P1, . . . , Pm;x)d(Qi−Pi)(x) + o

(√√√√ m∑
i=1

ν2i

)
. (13)

The differentiability described above is defined with respect to a particular direction, namely

Qi−Pi, in the space of probability measures, and is known as Gateaux differentiability or directional
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differentiability (e.g., Serfling (2009), Van der Vaart (2000)). Assumption 2 therefore requires the

performance measure ψ to be Gateaux differentiable when restricted to the convex set P1×· · ·×Pm.

The functions gi’s are also called the influence functions (e.g., Hampel (1974)) that play analogous

roles as standard gradients in the Euclidean space. The condition of gi’s having vanishing means

is without loss of generality since such a condition can always be achieved by centering, i.e.,

subtracting the mean. Note that doing this does not make any difference to the first term of

expansion (13) because both Qi and Pi are probability measures. Taking each νi = 1 in (13), one

informally obtains the Taylor expansion of ψ around Pi’s

ψ(Q1, . . . ,Qm)−ψ(P1, . . . , Pm)≈
m∑
i=1

∫
gi(P1, . . . , Pm;x)d(Qi−Pi)(x).

When each Pi is set to be the true input model Fi and Qi to be the empirical input model F̂i, the

above linear expansion is expected to be a reasonably good approximation as the data size grows.

The next assumption imposes a moment bound on the error of this approximation:

Assumption 3 (Smoothness at true input models). Denote by gi(·) := gi(F1, . . . ,Fm; ·) the

influence functions at the true input distributions Fi, i= 1, . . . ,m. Assume that the remainder in

the Taylor expansion of the performance measure

ψ(F̂1, . . . , F̂m) =ψ(F1, . . . ,Fm) +
m∑
i=1

∫
gi(x)d(F̂i−Fi)(x) + ε (14)

satisfies E[ε2] = o(n−1), and the influence functions gi’s are non-degenerate, i.e. σ2
i :=

VarFi [gi(Xi)]> 0, and have finite fourth moments, i.e. EFi [g4i (Xi)]<∞.

Assumption 3 entails that the error of the linear approximation formed by influence functions

is negligible in the asymptotic sense. Indeed, the linear term in (14) is asymptotically of order

Θp(n
−1/2) by the central limit theorem, whereas the error ε is implied by Assumption 3 to be

op(n
−1/2). Hence the variance of the linear term contributes dominantly to the overall input variance

as ni’s are large. Then, thanks to the independence among the input models, the input variance

can be expressed in the additive form described in (2) together with a negligible error.
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Proposition 1. Under Assumptions 1-3, the input variance σ2
I defined in (1) takes the form

σ2
I =

m∑
i=1

σ2
i

ni
+ o
( 1

n

)
where each σ2

i = VarFi [gi(Xi)] is the variance of the i-th influence function.

As the higher order o
(
1/n

)
error suggests, the additive decomposition

∑m

i=1

σ2i
ni

is guaranteed to be

accurate only in the large-sample regime. Note that this decomposition is used solely as a theoretical

vehicle for asymptotic analysis rather than the actual input variance estimator in our procedure,

the latter using bootstrapping schemes that could exhibit better finite-sample performances.

As mentioned before, consistent estimation of input variance σ2
I relies on the bootstrap principle,

for which we make the following additional assumptions. The assumption states that the error of

the linear approximation (14) remains small when the underlying distributions Fi are replaced by

the empirical input distributions F̂i, hence can be viewed as a bootstrapped version of Assumption

3.

Assumption 4 (Smoothness at empirical input models). Denote by ĝi(·) := gi(F̂1, . . . , F̂m; ·)

the influence functions at the empirical input distributions F̂i, i= 1, . . . ,m. Assume the empirical

influence function converges to the truth in the sense that E[(ĝi− gi)4(Xi,1)]→ 0. For each i let F i

be either the i-th empirical input model F̂i or the resampled model F̂ ∗si,i. For every (F 1, . . . , Fm) ∈∏m

i=1{F̂i, F̂ ∗si,i}, assume the remainder in the Taylor expansion

ψ(F 1, . . . , Fm) =ψ(F̂1, . . . , F̂m) +
m∑
i=1

∫
ĝi(x)d(F i− F̂i)(x) + ε∗ (15)

satisfies E∗[(ε∗)4] = op
(
s−2
)
.

As the data sizes ni’s grow, the empirical input distributions F̂i converge to the true ones Fi. Hence

the empirical influence functions ĝi’s are expected to approach the influence functions gi’s associated

with the true input distributions, which explains the convergence condition in Assumption 4. The

fourth moment condition on the remainder ε∗ is needed for controlling the variance of our variance

estimator. Since the fourth moment is with respect to the resampling measure and thus depends
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on the underlying input data, the condition is described in terms of stochastic order. Note that we

require (15) to hold not just when F i = F̂ ∗si,i for all i but also when some F i = F̂i. This allows us

to estimate the variance contributed from an arbitrary group of input models and in particular an

individual input model.

Assumptions 2-4 are on the performance measure ψ itself. Next we impose assumptions on the

simulation noise, i.e. the stochastic error ψ̂r−ψ where ψ̂r is an unbiased simulation replication for

ψ. We denote by τ 2(P1, . . . , Pm) the variance of ψ̂r when simulation is driven by arbitrary input

models P1, . . . , Pm, i.e.

τ 2(P1, . . . , Pm) =EP1,...,Pm [(ψ̂r−ψ(P1, . . . , Pm))2].

Similarly we denote by µ4(P1, . . . , Pm) the fourth central moment of ψ̂r under the input models

P1, . . . , Pm

µ4(P1, . . . , Pm) =EP1,...,Pm [(ψ̂r−ψ(P1, . . . , Pm))4].

In particular, for convenience we write τ 2 = τ 2(F1, . . . ,Fm) for the variance of ψ̂ under the true

input models, and τ̂ 2 = τ 2(F̂1, . . . , F̂m) for that under the empirical input models.

The assumptions on the simulation noise are:

Assumption 5 (Convergence of empirical variance). τ̂ 2
p→ τ 2.

Assumption 6 (Convergence of bootstrapped variance). For every (F 1, . . . , Fm) ∈∏m

i=1{F̂i, F̂ ∗si,i}, it holds that E∗[(τ 2(F 1, . . . , Fm)− τ̂ 2)2] = op(1).

Assumption 7 (Boundedness of the fourth moment). For every (F 1, . . . , Fm) ∈∏m

i=1{F̂i, F̂ ∗si,i}, it holds that E∗[µ4(F 1, . . . , Fm)] =Op(1).

Assumptions 5 and 6 stipulate that the variance of the simulation replication ψ̂r as a functional

of the underlying input models is smooth enough in the inputs. Conceptually Assumption 5 is in

line with Assumption 3 in the sense that both concern smoothness of a functional around the true

input models, whereas Assumption 6 is similar to Assumption 4 since both are about smoothness
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property around the empirical input models. Assumption 7 is a fourth moment condition like in

Assumption 4 used to control the variance of the variance estimator. Similar to Assumption 4, we

impose Assumptions 6 and 7 for each F i = F̂i or F̂ ∗si,i so that the same guarantees remain valid

when estimating input variances from individual input models, i.e., Algorithm 3.

Although the above assumptions may look complicated, they can be verified, under minimal

conditions, for generic finite-horizon performance measures in the form

ψ(F1, . . . ,Fm) =EF1,...,Fm [h(X1, . . . ,Xm)] (16)

where Xi = (Xi(1), . . . ,Xi(Ti)) represents the i-th input process consisting of Ti i.i.d. variables

distributed under Fi, each Ti being a deterministic time, and h is a performance function. An

unbiased simulation replication ψ̂r of the performance measure is h(X1, . . . ,Xm).

Suppose we have the following conditions for the performance function h:

Assumption 8. For each i, 0<VarFi [
∑Ti

t=1EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) =Xi]]<∞.

Assumption 9 (Parameter k). For each i let Ii = (Ii(1), . . . , Ii(Ti)) be a sequence of indices such

that 1≤ Ii(t)≤ t, and Xi,Ii = (Xi(Ii(1)), . . . ,Xi(Ii(Ti))). Assume

max
I1,...,Im

EF1,...,Fm [|h(X1,I1 , . . . ,Xm,Im)|k]<∞.

The conditional expectation in Assumption 8 is in fact the influence function of the performance

measure (16) under the true input models. So Assumption 8 is precisely the non-degenerate variance

condition in Assumption 3. All other parts of Assumptions 2-7 are consequences of the moment

condition in Assumption 9:

Theorem 6. Under Assumptions 1, 8 and Assumption 9 with k = 4, we have Assumptions 2-7

hold for the finite-horizon performance measure ψ given by (16).

4.2. Simulation Complexity and Allocation

This section presents theoretical developments on our proportionate subsampled variance boot-

strap. We first establish relative consistency assuming infinite computation resources. Recall (8)
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as the proportionate subsampled variance bootstrap estimator without any Monte Carlo errors.

The following theorem gives a formal statement on the performance of this estimator discussed in

Section 3.1.

Theorem 7. Under Assumptions 1-4, if the subsample ratio θ = ω(n−1), then the proportionate

subsampled variance bootstrap without Monte Carlo error, namely (8), is relatively consistent as

ni→∞, i.e.

σ2
SV B/σ

2
I

p→ 1.

The requirement θ = ω(n−1) implies that si →∞, which is natural as one needs minimally an

increasing subsample size to ensure the consistency of our estimator. It turns out that this minimal

requirement is enough to ensure consistency even relative to the magnitude of σ2
I .

Now we turn to the discussion of the Monte Carlo estimate of the bootstrap variance generated

from Algorithm 2. The following lemma characterizes the amount of Monte Carlo noise in terms

of mean squared error.

Lemma 1. The output σ̂2
SV B of Algorithm 2 is unbiased for the proportionate subsampled variance

bootstrap without Monte Carlo errors, namely σ2
SV B. Furthermore, under Assumptions 1-7, if

B = ω(1), θ= ω
( 1

n

)
(17)

and R is arbitrary, then the conditional mean squared error

E∗[(σ̂2
SV B −σ2

SV B)2] =
2

B

( m∑
i=1

σ2
i

ni
+
τ 2θ

R

)2

(1 + op(1)). (18)

In addition to the condition θ= ω(n−1) which has appeared in Theorem 7, we also require B = ω(1)

in Lemma 1. As the proof reveals, with such a choice of B, we can extract the leading term of the

conditional mean squared error shown in (18), which takes a neat form and is easy to analyze.

Note that σ2
I here is of order n−1 by Proposition 1. Hence the Monte Carlo noise of the vari-

ance estimate output by our algorithm has to vanish faster than n−1 in order to achieve relative

consistency. Combining Theorem 7 and Lemma 1, we obtain the simulation complexity of σ̂2
SV B in
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Theorem 2. To establish the theoretical optimal allocation on the outer and inner sizes B, R, for

given data sizes ni, subsample ratio θ, and total simulation budget N , we minimize the conditional

mean square error (18) subject to the budget constraint BR=N . This gives rise to the following

result that gives a more precise (theoretical) statement than Theorem 4.

Theorem 8. Suppose Assumptions 1-7 hold. Given a simulation budget N and a subsample ratio

θ such that N = ω(θn) and θ= ω(n−1), the optimal outer and inner sizes that minimize the condi-

tional mean squared error E∗[(σ̂2
SV B −σ2

SV B)2] are

B∗ =
N

R∗
, R∗ =

θτ 2∑m

i=1 σ
2
i /ni

which gives a conditional mean squared error

E∗[(σ̂2
SV B −σ2

SV B)2] =
8θτ 2

N

m∑
i=1

σ2
i

ni
(1 + op(1)). (19)

Theorem 8 gives the exact choices of B and R that minimize the Monte Carlo error. However,

this is more of theoretical interest because the optimal R∗ involves the desired input variance∑m

i=1 σ
2
i /ni. Having said that, we can conclude from the theorem that the optimal inner size R is

of order Θ(θn), the same as the subsample size, because the input variance is of order Θ(1/n) by

Proposition 1 and τ 2 is a constant. This results in Theorem 4 in Section 3.2.

4.3. Optimal Subsample Ratio

In this section we further establish the optimal subsample ratio θ or equivalently subsample sizes

si that balance the two sources of errors in (9). For this, we need more regularity conditions on

the performance measure. The first assumption we need is third order Gateaux differentiability in

the convex set P1× · · ·×Pm:

Assumption 10 (Third order differentiability). Using the same notations Pi,Qi, P
νi
i as in

Assumption 2, assume that there exist second order influence functions gi1i2(P1, . . . , Pm; ·) : Ξi1 ×
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Ξi2→R and third order influence functions gi1i2i3(P1, . . . , Pm; ·) : Ξi1 ×Ξi2 ×Ξi3→R for i1, i2, i3 =

1, . . . ,m which are symmetric under permutations, namely

gi1i2(P1, . . . , Pm;x1, x2) = gi2i1(P1, . . . , Pm;x2, x1)

gi1i2i3(P1, . . . , Pm;x1, x2, x3) = gi2i1i3(P1, . . . , Pm;x2, x1, x3) = gi1i3i2(P1, . . . , Pm;x1, x3, x2).

and for all x, y satisfy

EPi2 [gi1i2(P1, . . . , Pm;x,Xi2)] = 0, EPi3 [gi1i2i3(P1, . . . , Pm;x, y,Xi3)] = 0.

Moreover, as all νi’s approach zero the following Taylor expansion holds

ψ(P ν1
1 , . . . , P νm

m )−ψ(P1, . . . , Pm)

=
m∑
i=1

νi

∫
gi(P1, . . . , Pm;x)d(Qi−Pi)(x) +

1

2

m∑
i1,i2=1

νi1νi2

∫
gi1i2(P1, . . . , Pm;x1, x2)

2∏
k=1

d(Qik −Pik)(xk)

+
1

6

m∑
i1,i2,i3=1

νi1νi2νi3

∫
gi1i2i3(P1, . . . , Pm;x1, x2, x3)

3∏
k=1

d(Qik −Pik)(xk) + o
(( m∑

i=1

ν2i
) 3

2

)
.

Assumption 10 complements and strengthens Assumption 2 in that it imposes stronger differ-

entiability property. Similarly, the following two assumptions strengthen Assumptions 3 and 4

respectively by considering cubic expansions.

Assumption 11 (Third order smoothness at true input models). Denote by gi1i2(·) :=

gi1i2(F1, . . . ,Fm; ·) and gi1i2i3(·) := gi1i2i3(F1, . . . ,Fm; ·) the second and third order influence func-

tions under the true input models. Assume the remainder in the Taylor expansion of the plug-in

estimator ψ(F̂1, . . . , F̂m)

ψ(F̂1, . . . , F̂m) =ψ(F1, . . . ,Fm) +
m∑
i=1

∫
gi(x)d(F̂i−Fi)(x) +

1

2

m∑
i1,i2=1

∫
gi1i2(x1, x2)

2∏
k=1

d(F̂ik −Fik)(xk)

+
1

6

m∑
i1,i2,i3=1

∫
gi1i2i3(x1, x2, x3)

3∏
k=1

d(F̂ik −Fik)(xk) + ε3

satisfies E[ε23] = o(n−3), and the high order influence functions satisfy the moment conditions

E[g4i1i2(Xi1,1,Xi2,j2)]<∞, E[g2i1i2i3(Xi1,1,Xi2,j2 ,Xi3,j3)]<∞

for all i1, i2, i3 and j2 ≤ 2, j3 ≤ 3, where Xi,j is the j-th data point from the i-th input model.
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Similar to the remainder ε in Assumption 3, the moment condition on ε3 here is used to control

the error of the cubic approximation of ψ formed by up to third order influence functions. With

these additional assumptions, the error term in Proposition 1 can be refined as follows:

Proposition 2. Under Assumptions 1, 3 and 10-11, the overall input variance, as defined in (1),

can be expressed as

σ2
I =

m∑
i=1

σ2
i

ni
+O

( 1

n2

)
.

We also need third order differentiability around the empirical input models:

Assumption 12 (Third order smoothness at empirical input models). Denote by

ĝi1i2(·) := gi1i2(F̂1, . . . , F̂m; ·) and ĝi1i2i3(·) := gi1i2i3(F̂1, . . . , F̂m; ·) the second and third order

influence functions under the empirical input models. Assume that the remainder in the Taylor

expansion of the bootstrapped performance measure ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m

)

ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m

) =ψ(F̂1, . . . , F̂m) +

∫
ĝi(x)d(F̂ ∗si,i− F̂i)(x) +

1

2

m∑
i1,i2=1

∫
ĝi1i2(x1, x2)

2∏
k=1

d(F̂ ∗sik ,ik
− F̂ik)(xk)

+
1

6

m∑
i1,i2,i3=1

∫
ĝi1i2i3(x1, x2, x3)

3∏
k=1

d(F̂ ∗sik ,ik
− F̂ik)(xk) + ε∗3

satisfies E∗[(ε∗3)2] = op(s
−3). In addition, assume the high order empirical influence functions ĝi1i2

and ĝi1i2i3 converge in mean square error, i.e.

E[(ĝi1i2 − gi1i2)2(Xi1,1,Xi2,j2)]→ 0, E[(ĝi1i2i3 − gi1i2i3)2(Xi1,1,Xi2,j2 ,Xi3,j3)]→ 0

for all i1, i2, i3 and j2 ≤ 2, j3 ≤ 3, where Xi,j is the j-th data point from the i-th input model. For

the first order influence function ĝi, assume the remainder in the Taylor expansion

ĝi(Xi,1) = gi(Xi,1) +
m∑
i′=1

∫
gii′(Xi,1, x)d(F̂i′ −Fi′)(x)−

∫
gi(x)d(F̂i−Fi)(x) + εg

satisfies E[ε2g] = o(n−1).

As for Assumptions 3 and 4, finite-horizon performance measures under mild conditions satisfy

the above two assumptions:
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Theorem 9. Under Assumptions 1, 8 and Assumption 9 with k= 4, we have Assumptions 10-12

hold for the finite-horizon performance measure ψ given by (16).

With Assumptions 11 and 12, we can identify the statistical error of our variance estimator assum-

ing infinite computation resources, which we summarize in the following lemma.

Lemma 2. Under Assumptions 1, 3-4 and 10-12, the statistical error of the proportionate subsam-

pled bootstrap variance is characterized by

σ2
SV B −σ2

I =Z +R+ op(
1

n3/2
+

1

ns
) (20)

where Z is a random variable such that

E[Z] = 0, Var[Z] =
m∑
i=1

λTi Σiλi
ni

with λi = (1/ni,2/n1, . . . ,2/nm)T and

Σi = covariance matrix of (g2i (Xi),EX′1 [g1(X
′
1)g1i(X

′
1,Xi)], . . . ,EX′m [gm(X ′m)gmi(X

′
m,Xi)]).

R is defined as

R =
m∑
i=1

1

nisi
Cov(gi(Xi), gii(Xi,Xi)) +

m∑
i,i′=1

1

nisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi,X

′
i′ ,X

′
i′)])

+
m∑
i=1

frac(θni)σ
2
i

nisi
+

m∑
i,i′=1

Var[gii′(Xi,X
′
i′)]

4nisi′

where frac(x) := x−bxc denotes the fraction part of x∈R, and for each i, Xi,X
′
i are independent

copies of the random variable distributed under Fi.

Combining the statistical error (20), and the minimal Monte Carlo error (19) under the optimal

budget allocation into the trade-off (9), we obtain the overall error of the output σ̂2
SV B of Algorithm

2:

Theorem 10 (Overall error of the variance estimate). Suppose Assumptions 1, 3-7 and 10-

12 hold. Given a simulation budget N and a subsample ratio θ such that N = ω(θn) and θ= ω(n−1),
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if outer and inner sizes B,R for Algorithm 2 are chosen to be R= Θ(θn),B =N/R, then the gross

error of our Monte Carlo estimate σ̂2
SV B − σ2

I = E + op(θ
1/2(Nn)−1/2 + θ−1n−2 + n−3/2), where the

leading term has a mean squared error

E[E2] = Θ
( θ

Nn
+R2 +

m∑
i=1

λTi Σiλi
ni

)
(21)

where R, λi’s and Σi’s are defined in Lemma 2.

It is clear from their definitions in Lemma 2 that R=O(θ−1n−2) and each (λTi Σiλi)/ni =O(n−3),

hence the mean squared error (21) is in general of order O(θ(Nn)−1 + θ−2n−4 + n−3). When R

and at least one of the λTi Σiλi’s satisfy the non-degeneracy condition in Theorem 5, this bound

becomes tight in order, and the optimal subsample ratio can be established by minimizing the

order of the leading overall error E .

5. Numerical Experiments

This section reports our experimental findings. We consider two examples with different scales and

complexities:

M/M/1 queue: The first example we consider is an M/M/1 queue that has true arrival rate

0.5 and service rate 1. Suppose the system is empty at time zero. The performance measure of

interest is the probability that the waiting time of the 20-th arrival exceeds 2 units of time, whose

true value is approximately 0.182. Specifically, the system has two input distributions, i.e., the

inter-arrival time distribution F1 = Exp(0.5) and the service time distribution F2 = Exp(1), for

which we have n1 and n2 i.i.d. data available respectively. If At is the inter-arrival time between the

t-th and (t+ 1)-th arrivals, and St is the service time for the t-th arrival, then the system output

ψ(F1,F2) =EF1,F2 [1{W20 > 2}]

where the waiting time W20 is calculated by the Lindley recursion Wt+1 = max{Wt + St −At,0}

for t= 1, . . . ,19 and W1 = 0. To test the proposed approach under different levels of utilization, we

also consider true arrival rate 0.9 and service rate 1, for which case the target performance measure
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is taken to be the probability that the waiting time of the 20-th arrival exceeds 6 units of time

(true value 0.190). The data sizes n1, n2 are chosen so that n1 = 2n2 in the experiments, so only

the minimum mini ni is reported for convenience.

Computer network: We also consider a computer communication network borrowed from

Cheng and Holland (1997) and Lin et al. (2015). The structure of the system is characterized by

the undirected graph in Figure 1: Four message-processing units, which correspond to the nodes,

are connected by four transport channels that are represented by the edges. For every pair i, j

Figure 1 A computer network with four nodes and four channels.

of processing units with i 6= j, there are external messages that enter into unit i and are to be

transmitted to unit j through a fixed path, and their arrival follows a Poisson process with rate

λi,j. The specific values for λi,j’s are summarized in Table 1. Each unit takes a constant time of

node i

node j
1 2 3 4

1 n.a. 40 30 35

2 50 n.a. 45 15

3 60 15 n.a. 20

4 25 30 40 n.a.

Table 1 True arrival rates λi,j of messages to be transmitted from node i to node j.

0.001 seconds to process a message, and has unlimited storage capacity. The messages have lengths

that are independent and follow an exponential distribution with mean 300 bits, and each channel



32 Lam and Qian: Subsampling for Input Uncertainty Quantification

has a capacity of 275000 bits, therefore there are queuing and transmission delays. The messages

travel through the channels with a velocity of 150000 miles per second, and the i-th channel has

a length of 100 · i miles for i= 1,2,3,4, leading to a propagation delay of 100·i
150000

seconds along the

i-th channel. The total time that a message of length l bits occupies the i-th channel is therefore

l
275000

+ 100·i
150000

seconds. Suppose the system is empty at time zero. The performance measure of

interest is the average delay of the first 30 messages that arrive to the system, or mathematically,

E[ 1
30

∑30

k=1Dk], where Dk is the time for the k-th message to be transmitted from its entering

node to destination node. The true value of the performance measure is approximately 6.91×10−3

seconds. In the experiment, we assume that the arrival rates of the different types of messages, as

well as the distribution of the message length, are unknown, therefore there are 13 input models in

total. Like in the example of M/M/1 queue, the data sizes across different input models are kept

proportional to each other and only the minimum size is reported.

In the experiments we investigate the simulation efforts needed for our subsampling procedure

to generate accurate estimates of the input variance, the impacts of the procedural parameters

θ,B,R on the estimation accuracy, and practical guidelines on optimal choices of these parameters.

Regarding performance metrics of the method, we primarily focus on the mean squared error of

the obtained input variance estimate. In addition, note that our estimated input variance can also

be used to construct CIs by plugging into formula (3). We also examine the quality of these CIs,

measured by coverage accuracy and width, as impacted by the estimation accuracy of the input

variance.

We compare our subsampling approach with the variance bootstrap depicted in Algorithm 1 and

the percentile bootstrap suggested by Barton and Schruben (1993, 2001). The percentile bootstrap

adopts the same nested simulation structure as in variance bootstrap, but does not estimate the

input variance and instead directly outputs order statistics of the resampled performance measures

to construct CIs. Specifically, after obtaining B bootstrapped performance measure estimates ψ̄b :=

1
R

∑R

r=1 ψ̂r(F̂
b
1 , . . . , F̂

b
m), each averaged over R i.i.d. replications, the percentile bootstrap outputs

the α
2
(B+ 1)-th and (1− α

2
)(B+ 1)-th order statistics of {ψ̄b : b= 1, . . . ,B} as a (1−α)-level CI.



Lam and Qian: Subsampling for Input Uncertainty Quantification 33

In converting our subsampled input variance estimate to CI, we also investigate the use of a

“splitting” versus a “non-splitting” approach. In most part of this section, we use the splitting

approach that divides the budget into two portions with one used to estimate the input variance

and the other to compute the point estimator. To describe it in detail, suppose we have a total

budget of N simulation runs. We allocate Rv simulation runs to estimate σ2
I using either Algorithm

1 or 2, and the remaining Re =N −Rv simulation runs driven by the empirical input distributions

to compute the point estimator ψ̄(F̂1, . . . , F̂m). When constructing the CI in (3), the simulation

variance σ2
S is calculated as τ̃2

Re
, where τ̃ 2 is the sample variance computed from the Re simulation

replications. The second, “non-splitting”, approach invests all the N simulation runs in estimating

σ2
I , and constructs the point estimator by averaging all the replications, i.e., ψ̄= 1

B

∑B

b=1 ψ̄
b, where

ψ̄b is the performance measure estimate for the b-th resample from Algorithm 2. The simulation

variance σ2
S in this case is taken to be the sample variance of all the ψ̄b’s divided by the bootstrap

size B. The rationale for this approach is that, when the subsample size θn is large, E∗[ψ̄] should

accurately approximate the plug-in estimator ψ(F̂1, . . . , F̂m) with an error that is negligible relative

to the input variability. Using the former as a surrogate for the latter avoids splitting the budget;

however, we will see later that this may introduce too much bias to maintain the desired coverage

level when the subsample size is relatively small.

The rest of this section is organized as follows. Section 5.1 investigates practical guidelines for

choosing the algorithmic parameters in our procedure. Using these guidelines, in Section 5.2 we

compare the proposed procedure with the variance bootstrap and the percentile bootstrap. Section

5.3 studies further the conversion of input variance estimate into CI, and compares the associated

splitting and non-splitting approaches.

5.1. Guidelines for Algorithmic Configuration

We examine the performances using a wide range of parameter choices for θ,B,R. For each of

the two considered examples, and input data sizes from 30 to 2000, we test our subsampling

approach at various combinations of θ,B,R where the subsample size θmini ni ∈ {5,15,30,60,120}
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(a) θmini ni = 5.
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(b) θmini ni = 30.
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M/M/1 queue, arrival rate 0.5, min
i
n

i
=300

M/M/1 queue, arrival rate 0.5, min
i
n

i
=1000

M/M/1 queue, arrival rate 0.5, min
i
n

i
=2000

M/M/1 queue, arrival rate 0.9, min
i
n

i
=300

M/M/1 queue, arrival rate 0.9, min
i
n

i
=1000

M/M/1 queue, arrival rate 0.9, min
i
n

i
=2000

M/M/1 queue, arrival rate 0.9, min
i
n

i
=4000

computer network, min
i
n

i
=750

computer network, min
i
n

i
=180

(c) θmini ni = 120.

Figure 2 Input variance estimation accuracy under different configurations of B,R such that BR= 1000.

and the budget allocation parameters (B,R)∈ {(25,40), (50,20), (100,10), (200,5)} (a total of 1000

simulation runs). To calculate the mean square error of the input variance estimate, we perform

1000 independent runs of the procedure, each on an independently generated input data set, and

then take the average of the squared errors. The reported error metric is the relative root mean

squared error (rmse) which can be expressed as

√
E[(σ̂2

I
−σ2

I
)2]

σ2
I

where σ̂2
I and σ2

I are the estimated

and true input variances respectively.

We first study and establish guidelines for the outer size B and inner size R for a given subsample

size. Figure 2 shows how the estimation error changes as the inner replication size R grows from 5

to 40 (correspondingly the outer size B drops from 200 to 25) and the subsample size θmini ni is

fixed at a certain value. Each curve represents the results for one of the considered examples under

a particular input data size. Although the precise optimal choice for B,R varies from one example

to another even when the subsample size is chosen the same, the estimation error appears robust
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to the parameter choices, with a range of values that only slightly underperform the optimal. In

particular, compared to the unknown optimal choice, an R between 1
6
θmini ni and 1

3
θmini ni seems

to achieve a comparable accuracy level in the variance estimation, hence is recommended as a

general choice.
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Figure 3 Input variance estimation accuracy under different subsample sizes with B,R optimally tuned.

Now we turn to optimal choices for the subsample size. Provided that B,R is properly chosen as

above, we examine the behavior of the variance estimation error as the subsample size varies. As

we have discussed in Section 3.1, subsampling is preferred when the input data size is relatively

large, and thus we consider input data sizes ≥ 500 for our M/M/1 queue and computer network,

and for each considered data size we plot the variance estimation error versus the subsample size

in Figure 3. We see that a too large size such as 120 always leads to a larger estimation error than

moderate sizes like 30, whereas a too small size around 5 can lift the error by even more in some

cases, which is consistent with the theoretical insight from the bound (21). Therefore, in general

we recommend the use of a subsample size θmini ni between 20 and 40 to optimize the estimation

accuracy. Figure 3 shows that, under the suggested subsample size, the relative rmse is as low as

0.2-0.5 across all the cases.

5.2. Comparisons with the Variance Bootstrap and the Percentile Bootstrap

We compare our subsampling method with the standard variance bootstrap and the percentile

bootstrap, under the same total budget of 1500 simulation runs. In addition to the relative rmse
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of the input variance estimate, we also report the actual coverage probability and width of the CI

constructed by plugging in the input variance estimate. To estimate all these performance metrics,

we construct 1000 95%-level CIs for the target performance measures, each from an independently

generated input data set. The “splitting” approach that splits the total budget into Rv = 1000,Re =

500 is adopted for the subsampling approach and the variance bootstrap, whereas for the percentile

bootstrap all the 1500 simulation runs are used for the resamples. As suggested in Section 5.1, we

use the parameter values θ= 30
mini ni

,B = 100,R= 10 in our method in all the cases, whereas for the

other two methods we vary the parameter configurations over a reasonable range constrained by the

simulation budget and then report the best results generated by these considered configurations.

In particular, the parameters for the variance bootstrap are chosen to minimize the mean square

error of the input variance estimate from four combinations, “B = 25,R= 40”, “B = 50,R= 20”,

“B = 100,R= 10”, “B = 200,R= 5”, and those for the percentile bootstrap are chosen to achieve

the best the coverage accuracy from four combinations, “B = 50,R= 30”, “B = 100,R= 15”, “B =

300,R= 5”, “B = 1500,R= 1”. Note that these give an upper hand to our competing alternatives

in the comparisons.

Tables 2 and 3 summarize the experimental results for the M/M/1 queue when the true arrival

rate is 0.5 and 0.9 respectively, and Table 4 shows those for the computer network. The shorthand

“PSVB” stands for proportionate subsampled variance bootstrap, i.e., our subsampling approach.

For each method, the “coverage estimate” column displays estimates of the actual coverage prob-

ability based on 1000 independent CIs, and the “CI width” column shows their average width.

The second column of each table shows the ratio between the input standard error σI and the

simulation standard error σS for different input data sizes in our “splitting” approach. A ratio close

to or greater than 1 means that the input noise is a major source of uncertainty relative to the

simulation noise, thus indicating the need to be taken into account in output analysis.

We compare the approaches based on Tables 2-4. Firstly, our subsampling approach significantly

outperforms the variance bootstrap in terms of estimation accuracy of the input variance. The
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mini ni
σI
σS

PSVB variance bootstrap percentile bootstrap

relative

rmse

coverage

estimate

CI width
relative

rmse

coverage

estimate

CI width
coverage

estimate

CI width

30 7.74 0.73 84.3% 0.422 0.73 84.3% 0.422 91.9% 0.467

100 3.77 0.55 92.5% 0.251 0.80 88.6% 0.248 98.8% 0.356

300 2.13 0.44 94.8% 0.156 1.04 85.6% 0.148 99.9% 0.307

1000 1.15 0.38 95.0% 0.103 2.48 89.4% 0.111 100% 0.285

2000 0.79 0.38 95.9% 0.087 5.43 92.8% 0.107 100% 0.280

Table 2 Results for the M/M/1 queue with arrival rate 0.5 and service rate 1.

mini ni
σI
σS

PSVB variance bootstrap percentile bootstrap

relative

rmse

coverage

estimate

CI width
relative

rmse

coverage

estimate

CI width
coverage

estimate

CI width

30 11.12 0.59 81.4% 0.609 0.59 81.4% 0.609 94.6% 0.639

100 6.22 0.42 89.9% 0.372 0.63 88.6% 0.386 97.2% 0.446

300 3.46 0.32 92.6% 0.225 0.71 87.0% 0.225 99.3% 0.348

1000 1.86 0.27 93.3% 0.137 1.21 86.3% 0.137 100% 0.307

2000 1.30 0.24 95.0% 0.108 2.19 90.7% 0.119 100% 0.294

4000 0.91 0.23 94.9% 0.089 3.61 91.2% 0.106 100% 0.288

Table 3 Results for the M/M/1 queue with arrival rate 0.9 and service rate 1.

estimates generated by our approach have a smaller relative error than those by the variance

bootstrap in all considered cases, and the gap becomes more significant as the data size grows

larger. In particular, as the data size grows from 30 to thousands, the estimation error keeps

decreasing from 0.7 to 0.25 in our approach, whereas in variance bootstrap it keeps increasing from

0.7 to larger than 1, a level that makes the estimate too crude to be useful. These demonstrate the

computational advantage and dictate the use of subsampling especially when the input data size

is relatively large. Note that the same budget of 1000 simulation runs are used in input variance
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mini ni
σI
σS

PSVB variance bootstrap percentile bootstrap

relative

rmse

coverage

estimate

CI width

(×10−4)

relative

rmse

coverage

estimate

CI width

(×10−4)

coverage

estimate

CI width

(×10−4)

30 12.60 0.74 92.0% 19.3 0.74 92.0% 19.3 95.2% 22.0

150 5.36 0.41 94.3% 8.85 0.53 91.3% 8.50 98.3% 11.2

750 2.35 0.32 94.2% 4.27 0.94 86.9% 3.88 100% 7.97

1800 1.53 0.28 95.3% 3.03 1.63 87.1% 3.01 100% 7.34

Table 4 Results for the computer network.

estimation for all considered data sizes and that the estimation accuracy seems much better for

large data sizes than for small sizes, and one may wonder whether more simulation runs should

be used for small data sizes to further improve the estimation accuracy. It turns out that the

estimation errors are mostly due to the inadequacy of the input data rather than the simulation

budget, hence a budget of 1000 is already large enough and further increasing the budget does not

bring much benefit. For instance, in the case of data size 30 in Table 2, the relative error of the

input variance estimate remains as large as 0.69 even if the simulation budget is increased by 10

times.

Secondly, thanks to the high accuracy in the input variance estimates, our subsampling approach

generates accurate CIs whose coverage probabilities quickly approach the nominal level 95% as the

input data size grows. In contrast, the CIs using the variance bootstrap exhibit under-coverage,

and the percentile bootstrap CIs significantly over-cover the truth. We see that the coverage of

the variance bootstrap is below 90% in most considered cases, and in the very few cases where

the CIs happen to have relatively good coverages, the intervals are much wider than those by our

subsampling approach. For example, in the case of data size 2000 in Table 2, the variance bootstrap

gives a fairly accurate coverage 92.8%, but on average the interval is 1.23 times as wide as that by

our method. This shows that the better estimates of the input variance using subsampling translate

to better CIs significantly compared to using the variance bootstrap, in terms of both coverage
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accuracy and width. The percentile bootstrap CIs show an overly high coverage probability close to

100% and are 2-3 times wider than those by subsampling for all considered input data sizes except

30. The over-coverage issue of the percentile CIs arises because the order statistics capture only the

input noise but not the simulation noise in the resampled performance measures, a phenomenon

that has been discussed in Barton et al. (2007, 2018). When one can afford a sufficiently large

budget of simulation relative to the input data size, the simulation noise can be made negligible so

that the CIs have the correct coverage. However, when simulation resources are relatively limited

(e.g., when data size ≥ 100 in Tables 2-4), the CIs are unnecessarily widened by the extra simulation

noise that leads to over-coverage. We also notice that the percentile bootstrap CIs do show more

accurate coverage than the other two methods when the input data size is 30, which may suggest

that the percentile bootstrap is the preferred approach to constructing CIs in small data cases.

However, this outperformance is a result of optimally choosing the parameters B,R in hindsight. In

our experiments, this best parameter set varies from one case to another, and the actual coverage

under different configurations varies in a range of 8%.

Thirdly, results across different input data sizes show that, the advantages of subsampling in

both input variance estimation and CI construction are most significant in situations with relatively

large input data size. Note that one may argue in such situations input uncertainty is negligible.

However, whether this is indeed the case relates to the error tolerance of the decision-maker and the

magnitude of the target performance measure itself. For the large data sizes we consider, the input

noise appears still relatively substantial. For instance, when the input data size is 2000 in Table

3, the average width of the CIs as a measure of the input uncertainty and simulation uncertainty

combined amounts to as much as 57% of the target tail probability, and that the input uncertainty

serves as a major component of the total uncertainty (a ratio of 1.3 relative to the simulation

uncertainty).

Lastly, in situations with small input data size like 30 the CI coverage clearly falls below 95% in

Tables 2 and 3. This under-coverage phenomenon may appear to stem from the nonlinear effect of
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the performance measure that is inadequately captured by the Gaussian-approximation-based CI

given in (3). The real reason, as our experiments suggest, turns out to be the insufficient accuracy

of the input variance estimates. In fact, if the true input variance σ2
I (which can be accurately

estimated by repeatedly generating independent input data sets) is plugged into (3) to construct

CIs, the coverage probability under the data size 30 rises to 94%-95% for both the M/M/1 queue

and the computer network. This indicates a positive impact of an accurate input variance estimate

on the CI quality, a point that we will discuss further momentarily.

5.3. Constructing CI via Input Variance and Comparisons of the Splitting and Non-Splitting

Approaches

We study in more depth the relation between the input variance estimation accuracy and CI quality,

and compare the splitting approach for CI construction that has been used in previous subsections,

with the alternate non-splitting approach described at the beginning of this section. Finally, we

provide practical budget allocation strategies for the splitting approach.

First, to see how the estimation accuracy of the input variance affects the coverage accuracy

of the CIs, we use the splitting approach to compute 95%-level CIs, with 1000 simulation runs

assigned to input variance estimation and another 500 runs to point estimator evaluation. Figure

4a plots the coverage probability versus the relative rmse when the subsample size θmini ni is

chosen 30 in the M/M/1 queue example, where each point corresponds to a particular combination

of the data size mini ni, the outer replication size B, and the inner replication size R. Figure 4b

plots the same for the computer network example with subsample size 30. Both figures clearly

show that, the more accurately the input variance is estimated, the closer to the nominal level 95%

the coverage probability will be. Accurate estimation of the input variance thus appears to play a

crucial role in the construction of accurate CIs.

Next we compare the splitting and non-splitting approaches under the same total budget of

1500 simulation runs. Like in the splitting approach, we use a subsample size θmini ni = 30 for

our non-splitting approach, but use B = 75,B = 20 to consume all the 1500 simulation runs. We
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(a) M/M/1 queue with arrival rate 0.5, θmini ni = 30.
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(b) Computer network, θmini ni = 30.

Figure 4 Monotonicity between coverage accuracy and input variance estimation accuracy.

find that the CIs generated from the two approaches have similar lengths, but the non-splitting

approach underperforms in terms of coverage accuracy. Each plot in Figure 5 shows the coverage

probabilities of the non-splitting CIs versus the splitting ones for each of the considered example

systems, as the input data size grows from 30 to thousands. We see that when the data size is

relatively small (e.g., below 500), the two approaches generate CIs with similar coverage accuracy.

When the data size grows larger, however, the coverage probability of the non-splitting CIs keeps

dropping in all the three examples, especially in the M/M/1 queue with arrival rate 0.9 where

a drop towards 86% is observed, whereas the splitting CIs exhibit almost exact 95% coverage.

A possible cause of the undercoverage is the overly small subsample size compared to the input

data size, which leads to a high bias in the point estimator. With a subsample size s, the bias of

the non-splitting point estimator E∗[ψ̄] with respect to the truth ψ(F1, . . . ,Fm) can be as large as

O(1/s). Given that the input standard error is Θ(1/
√
n), E∗[ψ̄] has a negligible bias only when

the subsample size is large enough, namely when s = ω(
√
n), indicating that a small subsample

size relative to the data size can corrupt the CI. In our experiment, we find that the (supposedly

unobservable) bias can be as large as 25% of the CI width when the input data size is 2000 in the

M/M/1 queue with arrival rate 0.9, and that artificially removing the bias from the point estimator

can improve the coverage to a similar level achieved by the splitting approach. Because of the bias

and the consequent under-coverage issue, we caution the use of the non-splitting approach, that it

should only be used when a relatively large subsample size is adopted.
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(a) M/M/1 queue with arrival rate 0.5.
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(b) M/M/1 queue with arrival rate 0.9.
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(c) Computer network.

Figure 5 Coverage comparison under the splitting and non-splitting approaches.

Since the splitting approach is recommended, next we explore strategies of splitting a given

budget. Our goal is to generate shortest possible CIs that have a sufficiently accurate coverage

probability. As in the beginning of the section, denote by Rv the number of simulation runs used to

estimate the input variance, and by Re to construct the point estimator. Under a fixed total budget

Rv +Re = 1500, we try four different splits Rv = 100,250,500,1000 (accordingly Re = 1500−Rv),

and for each split the subsample size is fixed at θmini ni = 30 and several choices of B,R are

tested among which the one with the best coverage probability is reported. Figure 6 plots the

coverage probability versus the CI width for the four considered splits, where the M/M/1 queue

with arrival rate 0.9 is considered and input data size is 2000. We notice that the split controls a

tradeoff between the coverage accuracy and the CI width. The more simulation runs one allocates

to input variance estimation, the more accurate but wider CIs one would obtain, because the input

variance is more accurately estimated while the point estimator becomes more noisy. The plot
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suggests that allocating 500-1000 replications to variance estimation achieves a good balance of

accuracy and width, in the sense that the intervals from the split “500+1000” or “1000 + 500”

are only slightly wider than those by other splits and that allocating less (say 250) to variance

estimation results in a considerable drop in coverage probability from the nominal level 95%. The

results from Tables 2-4, where the split “1000+500” is used, also validates the effectiveness of such

a strategy. Therefore, for a given simulation budget, we recommend that the user allocate 500-1000

replications to input variance estimation with our subsampling approach and all the remaining

budget to the construction of the point estimator.
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Figure 6 Coverage probability versus CI width, under different budget splits in the form of “Rv +Re”.

Lastly, to validate the various guidelines proposed in this section regarding the choices of the

subsample size θmini ni, outer size B and inner size R, as well as budget allocation strategies

for the splitting approach to CI construction, we test their effectiveness and robustness under

different configurations of the computer network. Specifically, under a fixed total simulation budget

of 1500 runs, we vary the channel capacity, the transmission speed of the channels, and the arrival

rates of messages for the computer network (see Appendix EC.5 for these configuration details),

otherwise keeping the same setting as stated at the beginning of this section, and apply PSVB

with budget split “1000 + 500”, subsample size θmini ni = 30, and B = 100,R = 10 to compute

input variance estimates and CIs. The standard variance bootstrap is also tested as a benchmark,

with the B and R chosen in hindsight from four candidate combinations, “B = 25,R= 40”, “B =



44 Lam and Qian: Subsampling for Input Uncertainty Quantification

50,R= 20”, “B = 100,R= 10”, and “B = 200,R= 5”, to minimize the mean squared error of the

input variance estimate. Plots of relative rmse, CI coverage estimate, and CI width against the
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Figure 7 Comparison of PSVB and variance bootstrap under various configurations of the computer network.

input data size mini ni are shown in Figure 7, where each line corresponds to either PSVB or

the variance bootstrap applied to one of the four differently configured computer networks. The

phenomena that we have observed in Tables 2-4 still persist for all the four computer networks. As

the input data size grows, the estimation accuracy of the input variance improves to a level of 0.3 in

relative rmse for PSVB, but deteriorates significantly for the variance bootstrap. Accordingly the

CI coverage of PSVB stays within a 1% margin around the nominal level 95%, whereas the variance

bootstrap shows a significantly lower coverage than the nominal level because of inaccurate input

variance estimates. All these demonstrate that the proposed guidelines for using PSVB deliver

superior and robust performance across different systems, and therefore can be used as a default

algorithmic configuration in practice. However, the relatively low accuracy of the variance estimates

and CIs appears again in our approach when the input data size is limited (around 30). The same

limitation arises for the variance bootstrap. This reconciles with our observation from Section 5.2

that subsampling is most beneficial for cases with moderately large input data sizes where other

approaches like the variance bootstrap start to become computationally demanding.
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6. Conclusion

We have explained how estimating input variances in stochastic simulation can require large com-

putation effort when using conventional bootstrapping. This arises as the bootstrap involves a

two-layer sampling, which adds up to a total effort of larger order than the data size in order

to achieve relative consistency. To alleviate this issue, we have proposed a subsampling method

that leverages the relation between the structure of input variance and the estimation error from

the two-layer sampling, so that the resulting total effort can be reduced to being independent of

the data size. We have presented the theoretical results in this effort reduction, and the optimal

choices of the subsample ratio and simulation budget allocation in terms of the data size and

the budget. We have also demonstrated numerical results to support our theoretical findings, and

provided guidelines in using our proposed methods to estimate input variances and also construct

output CIs. Future work comprises a more comprehensive investigation of our subsampling scheme,

including its generalization to input processes with serial dependence and potentially non-smooth

performance measures such as quantiles and other risk measures.
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JL, Charnes JM, eds., Proceedings of the 2002 Winter Simulation Conference, 353–369 (Piscataway,

New Jersey: IEEE).

Barton RR, Lam H, Song E (2018) Revisiting direct bootstrap resampling for input model uncertainty. 2018

Winter Simulation Conference (WSC), 1635–1645 (IEEE).

Barton RR, Nelson BL, Xie W (2013) Quantifying input uncertainty via simulation confidence intervals.

INFORMS Journal on Computing 26(1):74–87.

Barton RR, Schruben LW (1993) Uniform and bootstrap resampling of empirical distributions. Evans GW,

Mollaghasemi M, Russell E, Biles W, eds., Proceedings of the 1993 Winter Simulation Conference,

503–508 (ACM).

Barton RR, Schruben LW (2001) Resampling methods for input modeling. Peters BA, Smith JS, Medeiros

DJ, Rohrer MW, eds., Proceedings of the 2001 Winter Simulation Conference, volume 1, 372–378

(Piscataway, New Jersey: IEEE).

Barton RR, et al. (2007) Presenting a more complete characterization of uncertainty: Can it be done.

Proceedings of the 2007 INFORMS simulation society research workshop, 26–60 (INFORMS Simulation

Society).

Bickel PJ, Gtze F, van Zwet WR (1997) Resampling fewer than n observations: Gains, losses, and remedies

for losses. Statistica Sinica 7(1):1–31.

Bickel PJ, Sakov A (2008) On the choice of m in the m out of n bootstrap and confidence bounds for extrema.

Statistica Sinica 18(3):967–985.



Lam and Qian: Subsampling for Input Uncertainty Quantification 47

Biller B, Corlu CG (2011) Accounting for parameter uncertainty in large-scale stochastic simulations with

correlated inputs. Operations Research 59(3):661–673.

Cheng RC, Holland W (1997) Sensitivity of computer simulation experiments to errors in input data. Journal

of Statistical Computation and Simulation 57(1-4):219–241.

Cheng RC, Holland W (1998) Two-point methods for assessing variability in simulation output. Journal of

Statistical Computation Simulation 60(3):183–205.

Cheng RC, Holland W (2004) Calculation of confidence intervals for simulation output. ACM Transactions

on Modeling and Computer Simulation 14(4):344–362.

Chick SE (2001) Input distribution selection for simulation experiments: Accounting for input uncertainty.

Operations Research 49(5):744–758.

Chick SE (2006) Bayesian ideas and discrete event simulation: Why, what and how. Perrone LF, Wieland

FP, Liu J, Lawson BG, Nicol DM, Fujimoto RM, eds., Proceedings of the 2006 Winter Simulation

Conference, 96–106 (Piscataway, New Jersey: IEEE).

Datta S, McCormick WP (1995) Bootstrap inference for a first-order autoregression with positive innovations.

Journal of the American Statistical Association 90(432):1289–1300.

Efron B, Stein C (1981) The jackknife estimate of variance. The Annals of Statistics 586–596.

Ghosh S, Lam H (2019) Robust analysis in stochastic simulation: Computation and performance guarantees.

Operations Research 67(1):232–249.

Glasserman P, Xu X (2014) Robust risk measurement and model risk. Quantitative Finance 14(1):29–58.

Hall P, Horowitz JL, Jing BY (1995) On blocking rules for the bootstrap with dependent data. Biometrika

82(3):561–574.

Hampel FR (1974) The influence curve and its role in robust estimation. Journal of the American Statistical

Association 69(346):383–393.

Henderson SG (2003) Input modeling: Input model uncertainty: Why do we care and what should we do

about it? Chick S, Sánchez PJ, Ferrin D, Morrice DJ, eds., Proceedings of the 2003 Winter Simulation

Conference, 90–100 (Piscataway, New Jersey: IEEE).



48 Lam and Qian: Subsampling for Input Uncertainty Quantification

Hu Z, Cao J, Hong LJ (2012) Robust simulation of global warming policies using the dice model. Management

science 58(12):2190–2206.

Lam H (2016a) Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation. Winter

Simulation Conference (WSC), 2016, 178–192 (IEEE).

Lam H (2016b) Robust sensitivity analysis for stochastic systems. Mathematics of Operations Research

41(4):1248–1275.

Lam H, Qian H (2016) The empirical likelihood approach to simulation input uncertainty. Winter Simulation

Conference (WSC), 2016, 791–802 (IEEE).

Lam H, Qian H (2017) Optimization-based quantification of simulation input uncertainty via empirical

likelihood. arXiv preprint arXiv:1707.05917 .

Lam H, Qian H (2018) Subsampling variance for input uncertainty quantification. 2018 Winter Simulation

Conference (WSC), 1611–1622 (IEEE).

Law AM, Kelton WD, Kelton WD (1991) Simulation modeling and analysis, volume 2 (McGraw-Hill New

York).

Lin Y, Song E, Nelson B (2015) Single-experiment input uncertainty. Journal of Simulation 9(3):249–259.

Nelson B (2013) Foundations and Methods of Stochastic Simulation: A First Course (Springer Science &

Business Media).

Politis DN, Romano JP (1994) Large sample confidence regions based on subsamples under minimal assump-

tions. The Annals of Statistics 2031–2050.

Politis DN, Romano JP, Wolf M (1999) Subsampling (Springer).

Searle SR, Casella G, McCulloch CE (2009) Variance components, volume 391 (John Wiley & Sons).

Sen B, Banerjee M, Woodroofe M, et al. (2010) Inconsistency of bootstrap: The grenander estimator. The

Annals of Statistics 38(4):1953–1977.

Serfling RJ (2009) Approximation Theorems of Mathematical Statistics, volume 162 (John Wiley & Sons).

Song E, Nelson BL (2015) Quickly assessing contributions to input uncertainty. IIE Transactions 47(9):893–

909.



Lam and Qian: Subsampling for Input Uncertainty Quantification 49

Song E, Nelson BL (2019) Input–output uncertainty comparisons for discrete optimization via simulation.

Operations Research 67(2):562–576.

Song E, Nelson BL, Pegden CD (2014) Advanced tutorial: Input uncertainty quantification. Tolk A, Diallo S,

Ryzhov I, Yilmaz L, Buckley S, Miller J, eds., Proceedings of the 2014 Winter Simulation Conference,

162–176 (Piscataway, New Jersey: IEEE).

Sun Y, Apley DW, Staum J (2011) Efficient nested simulation for estimating the variance of a conditional

expectation. Operations research 59(4):998–1007.

Sun Y, Phillips PC, Jin S (2008) Optimal bandwidth selection in heteroskedasticity–autocorrelation robust

testing. Econometrica 76(1):175–194.

Van der Vaart AW (2000) Asymptotic Statistics, volume 3 (Cambridge University Press).

Wieland JR, Schmeiser BW (2006) Stochastic gradient estimation using a single design point. Perrone

LF, Wieland FP, Liu J, Lawson BG, Nicol DM, Fujimoto RM, eds., Proceedings of the 2006 Winter

Simulation Conference, 390–397 (Piscataway, New Jersey: IEEE).

Xie W, Li C, Wu Y, Zhang P (2019) A Bayesian nonparametric framework for uncertainty quantification in

simulation. arXiv preprint arXiv:1910.03766 .

Xie W, Nelson BL, Barton RR (2014) A Bayesian framework for quantifying uncertainty in stochastic

simulation. Operations Research 62(6):1439–1452.

Xie W, Nelson BL, Barton RR (2016) Multivariate input uncertainty in output analysis for stochastic

simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS) 27(1):1–22.

Yi Y, Xie W (2017) An efficient budget allocation approach for quantifying the impact of input uncertainty in

stochastic simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS) 27(4):1–

23.

Zhu H, Liu T, Zhou E (2020) Risk quantification in stochastic simulation under input uncertainty. ACM

Transactions on Modeling and Computer Simulation (TOMACS) 30(1):1–24.

Zouaoui F, Wilson JR (2003) Accounting for parameter uncertainty in simulation input modeling. IIE Trans-

actions 35(9):781–792.



50 Lam and Qian: Subsampling for Input Uncertainty Quantification

Zouaoui F, Wilson JR (2004) Accounting for input-model and input-parameter uncertainties in simulation.

IIE Transactions 36(11):1135–1151.



e-companion to Lam and Qian: Subsampling for Input Uncertainty Quantification ec1

Proofs of Statements

We first verify the proposed assumptions for the special case of finite-horizon performance mea-

sures in Section EC.1. Section EC.2 then proves results on the validity of the input variance

decomposition (2). Section EC.3 proves the consistency of the proposed input variance estimate

and analyzes its Monte Carlo error in relation to the parameters B,R. Lastly, Section EC.4 further

analyzes the statistical error to obtain the overall error of the input variance estimate, and derives

the optimal choices for θ,B,R that minimizes the overall error. In all the proofs, we write a≈ b to

mean a/b
p→ 1.

EC.1. Finite-Horizon Performance Measures

In this section, we show that Assumptions 2-7 and 10-12 hold for the finite-horizon performance

measure (16), thereby proving Theorems 6 and 9. We first prove Assumptions 2 and 10, then

present the useful Lemma EC.1 which will later be used to prove all other assumptions.

Proof of Assumptions 2 and 10. The finite horizon structure allows the following expansion of

the performance measure ψ(P ν1
1 , . . . , P νm

m ) around the input models P1, . . . , Pm

ψ(P ν1
1 , . . . , P νm

m )

=

∫
h(x1, . . . ,xm)

m∏
i=1

Ti∏
t=1

d(νi(Qi−Pi) +Pi)(xi,t)

=ψ(P1, . . . , Pm) +
T∑
d=1

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
h(x1, . . . ,xm)

m∏
i=1

∏
t/∈Ti

dPi(xi,t)
m∏
i=1

∏
t∈Ti

d(Qi−Pi)(xi,t)

=ψ(P1, . . . , Pm) +
T∑
d=1

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi−Pi)(xi,t)

where T =
∑m

i=1 Ti is the total run length, each Ti = {Ti(1), . . . ,Ti(|Ti|)} is an ordered subset of

{1,2, . . . , Ti}, and

hT1,...,Tm(x1,T1 , . . . ,xm,Tm) =EP1,...,Pm [h(X1, . . . ,Xm)|Xi(t) = xi,t for i, t∈ Ti]. (EC.1)

Here each xi,Ti := (xi,t)t∈Ti . Expressing terms with d= 1,2,3 in a more explicit form gives

ψ(P ν1
1 , . . . , P νm

m )
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=ψ(P1, . . . , Pm) +
m∑
i=1

νi

∫
g̃i(x)d(Qi−Pi)(x) +

∑
i1≤i2

νi1νi2

∫
g̃i1i2(x, y)d(Qi1 −Pi1)(x)d(Qi2 −Pi2)(y)

+
∑

i1≤i2≤i3

νi1νi2νi3

∫
g̃i1i2i3(x, y, z)d(Qi1 −Pi1)(x)d(Qi2 −Pi2)(y)d(Qi3 −Pi3)(z)

+
T∑
d=4

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi−Pi)(xi,t). (EC.2)

where

g̃i(x) =
∑

1≤t≤Ti

EP1,...,Pm [h(X1, . . . ,Xm)|Xi(t) = x]

g̃i1i2(x, y) =


∑

1≤t1<t2≤Ti
EP1,...,Pm [h(X1, . . . ,Xm)|Xi(t1) = x,Xi(t2) = y], if i1 = i2 = i

∑Ti1
t1=1

∑Ti2
t2=1EP1,...,Pm [h(X1, . . . ,Xm)|Xi1(t1) = x,Xi2(t2) = y], if i1 < i2

g̃i1i2i3(x, y, z) =



∑
1≤t1<t2<t3≤Ti

EP1,...,Pm [h|Xi(t1) = x,Xi(t2) = y,Xi(t3) = z], if i1 = i2 = i3 = i

∑
1≤t1<t2≤Ti

∑Ti3
t3=1EP1,...,Pm [h|Xi(t1) = x,Xi(t2) = y,Xi3(t3) = z], if i1 = i2 = i < i3∑Ti1

t1=1

∑
1≤t2<t3≤Ti

EP1,...,Pm [h|Xi1(t1) = x,Xi(t2) = y,Xi(t3) = z], if i1 < i2 = i3 = i

∑Ti1
t1=1

∑Ti2
t2=1

∑Ti3
t3=1EP1,...,Pm [h|Xi1(t1) = x,Xi2(t2) = y,Xi3(t3) = z], if i1 < i2 < i3

.

Since each signed measure Qi−Pi in the product measure in (EC.2) has zero total measure, adding

to the integrand a function that is independent of at least one of the integration variables does

not change the integral value. Hence one can replace g̃’s by the following centered versions for

i1 ≤ i2 ≤ i3

g̃ci (x) = g̃i(x)−E[g̃i(Xi)]

g̃ci1i2(x, y) = g̃i1i2(x, y)−E[g̃i1i2(Xi1 , y)]−E[g̃i1i2(x,Xi2)] +E[g̃i1i2(Xi1 ,X
′
i2

)]

g̃ci1i2i3(x, y, z) = g̃i1i2i3(x, y, z)−E[g̃i1i2i3(Xi1 , y, z)]−E[g̃i1i2i3(x,Xi2 , z)]−E[g̃i1i2i3(x, y,Xi3)]

+E[g̃i1i2i3(Xi1 ,X
′
i2
, z)] +E[g̃i1i2i3(Xi1 , y,X

′
i3

)] +E[g̃i1i2i3(x,Xi2 ,X
′
i3

)]

−E[g̃i1i2i3(Xi1 ,X
′
i2
,X ′′i3)]
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where Xi,X
′
i,X

′′
i denote independent variables distributed under Fi, and replace the function

hT1,...,Tm by

hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

=hT1,...,Tm −
∑
i,t∈Ti

∫
hT1,...,TmdPi(xi,t) +

∑
(i1,t1)<(i2,t2),t1∈Ti1 ,t2∈Ti2

∫
hT1,...,TmdPi1(xi1,t1)dPi2(xi2,t2) + · · ·

+ (−1)
∑m
i=1|Ti|

∫
hT1,...,Tm

m∏
i=1

∏
t∈Ti

dPi(xi,t) (EC.3)

where the order (i1, t1)< (i2, t2) is defined as either i1 < i2, or i1 = i2 but t1 < t2. This leads to the

new Taylor expansion

ψ(P ν1
1 , . . . , P νm

m )

=ψ(P1, . . . , Pm) +
m∑
i=1

νi

∫
g̃ci (x)d(Qi−Pi)(x) +

∑
i1≤i2

νi1νi2

∫
g̃ci1i2(x, y)d(Qi1 −Pi1)(x)d(Qi2 −Pi2)(y)

+
∑

i1≤i2≤i3

νi1νi2νi3

∫
g̃ci1i2i3(x, y, z)d(Qi1 −Pi1)(x)d(Qi2 −Pi2)(y)d(Qi3 −Pi3)(z)

+
T∑
d=4

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi−Pi)(xi,t). (EC.4)

Note that now all the integrands above have zero marginal means due to centering, e.g.∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)dPi(xi,t) = 0 for all i and t∈ Ti. (EC.5)

However, the functions g̃ci , g̃
c
i1i2

, g̃ci1i2i3 are not necessarily symmetric under permutations as required

in Assumption 10, so we perform the following symmetrization to find the influence functions

gi(x) := g̃ci (x)

gii(x1, x2) := g̃cii(x1, x2) + g̃cii(x2, x1)

gi1i2(x1, x2) = gi2i1(x2, x1) := g̃ci1i2(x1, x2) for i1 < i2

giii(x1, x2, x3) :=
∑
π

g̃ciii(xπ(1), xπ(2), xπ(3))

gi1i1i2(x1, x2, x3) = gi1i2i1(x1, x3, x2) = gi2i1i1(x3, x1, x2) := g̃ci1i1i2(x1, x2, x3) + g̃ci1i1i2(x2, x1, x3) for i1 < i2

gi1i2i2(x1, x2, x3) = gi2i1i2(x2, x1, x3) = gi2i2i1(x2, x3, x1) := g̃ci1i2i2(x1, x2, x3) + g̃ci1i2i2(x1, x3, x2) for i1 < i2

for all π let giπ(1)iπ(2)iπ(3)(xπ(1), xπ(2), xπ(3)) := g̃ci1i2i3(x1, x2, x3) for i1 < i2 < i3
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where the dependence on P1, . . . , Pm is suppressed and π denotes any permutation of (1,2,3). Then

one can check that gi1i2 and gi1i2i3 not only retain the property of zero marginal means, but also

satisfy the symmetry condition in Assumption 10. Permutation symmetry implies that

ψ(P ν1
1 , . . . , P νm

m )

=ψ(P1, . . . , Pm) +
m∑
i=1

νi

∫
gi(x)d(Qi−Pi)(x) +

1

2

∑
i1,i2

νi1νi2

∫
gi1i2(x, y)d(Qi1 −Pi1)(x)d(Qi2 −Pi2)(y)

+
1

6

∑
i1,i2,i3

νi1νi2νi3

∫
gi1i2i3(x, y, z)d(Qi1 −Pi1)(x)d(Qi2 −Pi2)(y)d(Qi3 −Pi3)(z)

+
T∑
d=4

∑
∑m
i=1|Ti|=d

m∏
i=1

ν
|Ti|
i

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

d(Qi−Pi)(xi,t). (EC.6)

Since the integrals are all finite under Assumption 9, the first-order and third-order remainders of

the above expansion are respectively of order O
(∑m

i=1 ν
2
i

)
and O

((∑m

i=1 ν
2
i

)2)
, leading to Assump-

tions 2 and 10. �

We continue to verify other assumptions, for which we use the following lemma.

Lemma EC.1. Suppose Assumption 9 holds with positive and even k. For each i let F̃i ∈ {Fi, F̂i}

be either the i-th true or empirical input model. Then the following bounds hold uniformly for every

(F̃1, . . . , F̃m)∈
∏m

i=1{Fi, F̂i} and arbitrary input data size ni

max
I1,...,Im

EF̂1,...,F̂m [hk(X1,I1 , . . . ,Xm,Im)] =Op(1) (EC.7)

EF1,...,Fm
[(
ψ(F̃1, . . . , F̃m)−ψ(F1, . . . ,Fm)

)k]≤C1M
( m∑
i=1

1
√
ni

)k
(EC.8)

EF1,...,Fm
[(
ψ(F̃1, . . . , F̃m)−ψ(F1, . . . ,Fm)−

m∑
i=1

∫
gi(x)d(F̃i−Fi)(x)

)k]≤C2M
( m∑
i=1

1
√
ni

)2k
(EC.9)

where the influence functions gi’s are now under the true input models F1, . . . ,Fm. Each empirical

influence function ĝi satisfies

EF1,...,Fm [(gi(Xi,1)− ĝi(Xi,1))
k]≤C3M

( m∑
i=1

1
√
ni

)k
(EC.10)

EF1,...,Fm [(ĝi(Xi,1)− gi(Xi,1)−
m∑
i′=1

∫
gii′(Xi,1, x)d(F̂i′ −Fi′)(x) +

∫
gi(x)d(F̂i−Fi)(x))k]≤C4M

( m∑
i=1

1
√
ni

)2k
(EC.11)
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Here C1,C2,C3,C4 are constants that only depend on k,m and T :=
∑m

i=1 Ti, and

M := max
I1,...,Im

EF1,...,Fm [hk(X1,I1 , . . . ,Xm,Im)]<∞.

Proof. The first bound is the most straightforward. By rewriting the expectation EF̂1,...,F̂m [·] as a

sum, one can see that for a particular choice of I1, . . . , Im

EF1,...,Fm
[
EF̂1,...,F̂m [hk(X1,I1 , . . . ,Xm,Im)]

]
≤M.

Therefore EF̂1,...,F̂m [hk(X1,I1 , . . . ,Xm,Im)] =Op(1) for each I1, . . . , Im. Since there are finitely many

of them, the maximum is also bounded in probability. This proves the first bound.

To explain the other bounds, we put ψ(F̃1, . . . , F̃m) in the form of the expansion (EC.4) with

νi = 1, Pi = Fi,Qi = F̃i to get

ψ(F̃1, . . . , F̃m)

=ψ(F1, . . . ,Fm) +
T∑
d=1

∑
∑m
i=1|Ti|=d

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

dF̃i(xi,t)

=ψ(F1, . . . ,Fm) +
m∑
i=1

∫ ( Ti∑
t=1

EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) = x]−Tiψ(F1, . . . ,Fm)
)
d(F̃i−Fi)(x)

+
T∑
d=2

∑
∑m
i=1|Ti|=d

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

dF̃i(xi,t)

where
∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)dFi(xi,t) = 0 for all i and t∈ Ti, according to the property of zero

marginal means (EC.5). To obtain a moment bound for hcT1,...,Tm , observe that by Assumption

9 and Jensen’s inequality any conditional expectation of the performance function h has a k-th

moment at most M. Since hcT1,...,Tm is the sum of several conditional expectations of h, one can

apply Minkowski inequality to establish that for any Ii = (Ii(1), . . . , Ii(|Ti|)) ∈ {1,2, . . . , |Ti|}|Ti|,

i= 1, . . . ,m

EF1,...,Fm [(hcT1,...,Tm(X1,T1(I1), . . . ,Xm,Tm(Im)))
k]≤ 2k

∑m
i=1|Ti|M. (EC.12)

Again by Minkowski inequality

EF1,...,Fm
[(
ψ(F̃1, . . . , F̃m)−ψ(F1, . . . ,Fm)

)k]
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≤
( T∑
d=1

∑
∑m
i=1|Ti|=d

(
EF1,...,Fm

[(∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i=1

∏
t∈Ti

dF̃i(xi,t)
)k]) 1

k
)k

=
( T∑
d=1

∑
∑m
i=1|Ti|=d

m∏
i=1

∏
t∈Ti

1(F̃i,t = F̂i)
(
EF1,...,Fm

[( 1∏m

i=1 n
|Ti|
i

∑
J1,...,Jm

hcT1,...,Tm(X1,J1 , . . . ,Xm,Jm)
)k]) 1

k
)k

≤
( T∑
d=1

∑
∑m
i=1|Ti|=d

(
EF1,...,Fm

[( 1∏m

i=1 n
|Ti|
i

∑
J1,...,Jm

hcT1,...,Tm(X1,J1 , . . . ,Xm,Jm)
)k]) 1

k
)k

where each Ji = (Ji(1), . . . , Ji(|Ti|))∈ {1,2, . . . , ni}|Ti| and Xi,Ji = (Xi,Ji(1), . . . ,Xi,Ji(|Ti|)). Note that

EF1,...,Fm
[( 1∏m

i=1 n
|Ti|
i

∑
J1,...,Jm

hcT1,...,Tm(X1,J1 , . . . ,Xm,Jm)
)k]

=
1∏m

i=1 n
k|Ti|
i

∑
J1
1 ,...,J

1
m

· · ·
∑

Jk1 ,...,J
k
m

EF1,...,Fm [hcT1,...,Tm(X1,J1
1
, . . . ,Xm,J1

m
) · · ·hcT1,...,Tm(X1,Jk1

, . . . ,Xm,Jkm
)].

By (EC.5) the expectation on the right hand side is zero if some data point Xi,j appears only once.

Therefore the number of non-zero expectations is bounded above by C(k,m,
∑m

i=1|Ti|)
∏m

i=1 n
k|Ti|/2
i ,

where C(k,m,
∑m

i=1|Ti|) is some constant that only depends on k,m,
∑m

i=1|Ti|. Moreover, from

(EC.12) each expectation satisfies the following by generalized Hölder’s inequality

|EF1,...,Fm [hcT1,...,Tm(X1,J1
1
, . . . ,Xm,J1

m
) · · ·hcT1,...,Tm(X1,Jk1

, . . . ,Xm,Jkm
)]| ≤ 2k

∑m
i=1|Ti|M.

Hence

EF1,...,Fm
[(
ψ(F̂1, . . . , F̂m)−ψ(F1, . . . ,Fm)

)k]
≤
( T∑
d=1

∑
∑m
i=1|Ti|=d

(
C(k,m,

m∑
i=1

|Ti|)
m∏
i=1

n
−k|Ti|/2
i 2k

∑m
i=1|Ti|M

) 1
k
)k

=
( T∑
d=1

∑
∑m
i=1|Ti|=d

C ′(k,m,d)
m∏
i=1

n
−|Ti|/2
i M 1

k

)k
≤
( T∑
d=1

C ′(k,m,d)
( m∑
i=1

Ti√
ni

)d)kM≤C1(k,m,T )M
( m∑
i=1

1
√
ni

)k
.

This gives the second bound.

The third bound can be established by the same argument, but considering only the remainders

for which d≥ 2.
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We then prove the bounds on influence functions. According to the representation of

gi(P1, . . . , Pm; ·) in the proof of Assumptions 2 and 10, the empirical influence function ĝi is

ĝi(x) =

Ti∑
t=1

EF̂1,...,F̂m [h(X1, . . . ,Xm)|Xi(t) = x]−Tiψ(F̂1, . . . , F̂m).

First we derive the following Taylor expansion for each conditional expectation

EF̂1,...,F̂m [h(X1, . . . ,Xm)|Xi(t) =Xi,1]

=

∫
h(x1, . . . ,xm)

∏
t′ 6=t

dF̂i(xi,t′)
∏
i′ 6=i

Ti′∏
t′=1

dF̂i′(xi′,t′)
∣∣∣
xi,t=Xi,1

=EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) =Xi,1]+

+
T−1∑
d=1

∑
∑m
i′=1
|Ti′ |=d,t/∈Ti

∫
h(x1, . . . ,xm)

∏
t′ /∈Ti,t′ 6=t

dFi(xi,t′)
∏
i′ 6=i

∏
t′ /∈Ti′

dFi′(xi′,t′)
m∏
i′=1

∏
t′∈Ti′

d(F̂i′ −Fi′)(xi′,t′)
∣∣∣
xi,t=Xi,1

=EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) =Xi,1]

+
T−1∑
d=1

∑
∑m
i′=1
|Ti′ |=d,t/∈Ti

∫
h(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

d(F̂i′ −Fi′)(xi′,t′)
∣∣∣
xi,t=Xi,1

=EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) =Xi,1]

+

Ti∑
t′=1,t′ 6=t

∫
EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) =Xi,1,Xi(t

′) = xi,t′ ]d(F̂i−Fi)(xi,t′) (EC.13)

+
∑
i′ 6=i

Ti′∑
t′=1

∫
EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) =Xi,1,Xi′(t

′) = xi′,t′ ]d(F̂i′ −Fi′)(xi′,t′) (EC.14)

+
T−1∑
d=2

∑
∑m
i′=1
|Ti′ |=d,t/∈Ti

∫
h(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

d(F̂i′ −Fi′)(xi′,t′)
∣∣∣
xi,t=Xi,1

where each Ti′ = {Ti′(1), . . . ,Ti′(|Ti′ |)} is still an ordered subset of {1,2, . . . , Ti′} but t /∈ Ti, and the

function h(i,t),T1,...,Tm resembles (EC.1) except that the expectation is now further conditioned on

Xi(t) = xi,t. Introduce the counterpart of (EC.3)

hc(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

=h(i,t),T1,...,Tm −
∑

i′,t′∈Ti′

∫
h(i,t),T1,...,TmdFi′(xi′,t′) +

∑
(i′1,t

′
1)<(i′2,t

′
2),t
′
1∈Ti′1

,t′2∈Ti′2

∫
h(i,t),T1,...,TmdFi′1(xi′1,t′1)dFi′2(xi′2,t′2)

+ · · ·+ (−1)
∑m
i′=1
|Ti′ |
∫
h(i,t),T1,...,Tm

m∏
i′=1

∏
t′∈Ti′

dFi′(xi′,t′)



ec8 e-companion to Lam and Qian: Subsampling for Input Uncertainty Quantification

then we have the following parallel property of (EC.5)∫
hc(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)dFi′(xi′,t′) = 0 for all i′ and t′ ∈ Ti′

and by comparing the first order remainders (EC.13) and (EC.14) of ĝi with the second order

influence functions gi1i2 it is easy to establish that

ĝi(Xi,1)− gi(Xi,1)

=

Ti∑
t=1

(
EF̂1,...,F̂m [h(X1, . . . ,Xm)|Xi(t) =Xi,1]−EF1,...,Fm [h(X1, . . . ,Xm)|Xi(t) =Xi,1]

)
−Ti(ψ(F̂1, . . . , F̂m)−ψ(F1, . . . ,Fm))

=
m∑
i′=1

∫
gii′(Xi,1, x)d(F̂i′ −Fi′)(x)−

∫
gi(x)d(F̂i−Fi)(x) (EC.15)

+

Ti∑
t=1

T−1∑
d=2

∑
∑m
i′=1
|Ti′ |=d

∫
hc(i,t),T1,...,Tm(x1,T1 , . . . ,xi,Ti∪{t}, . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

dF̂i′(xi′,t′)
∣∣∣
xi,t=Xi,1

−Ti
T∑
d=2

∑
∑m
i′=1
|Ti′ |=d

∫
hcT1,...,Tm(x1,T1 , . . . ,xm,Tm)

m∏
i′=1

∏
t′∈Ti′

dF̂i′(xi′,t′) (EC.16)

By a similar technique used to bound the remainder of ψ(F̃1, . . . , F̃m), we can establish that the

remainder (EC.16) has a k-th moment of order O
(
M
(∑m

i=1
1√
ni

)2k)
, and the first order term

(EC.15) has a k-th moment of order O
(
M
(∑m

i=1
1√
ni

)k)
. This completes the proof. �

With Lemma EC.1 we now prove the other assumptions:

Proof of Assumption 3. The moment bound on the remainder, i.e. E[ε2] = o(n−1), comes from

the bound (EC.9) in Lemma EC.1 with F̃i = F̂i for all i and k= 2. The non-degeneracy condition

on the influence functions is exactly Assumption 8, whereas the finiteness of fourth order moments

of gi easily follows because gi is simply a sum of Ti conditional expectations of the performance

function h and each of the conditional expectations has finite fourth order moment by Assumption

9 and Jensen’s inequality. �

Proof of Assumption 4. The convergence of ĝi to gi in fourth order moment is a direct con-

sequence of the bound (EC.10) in Lemma EC.1 with k = 4. The moment condition on the

remainder ε∗ can be argued as follows. We treat the empirical distributions F̂1, . . . , F̂m as the
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truth, and the resampled distributions F̂ ∗s1,1, . . . , F̂
∗
sm,m

as the input data, then apply the third

bound (EC.9) in Lemma EC.1 with k = 4 to get E∗[(ε∗)4] ≤ C2M̂
(∑m

i=1
1√
si

)8
, where M̂ =

maxI1,...,Im EF̂1,...,F̂m [h4(X1,I1 , . . . ,Xm,Im)] is Op(1) by the first bound (EC.7) in Lemma EC.1 with

k= 4. Therefore E∗[(ε∗)4] =Op((
∑m

i=1
1
si

)4) = op(s
−2). �

Proof of Assumption 5. It suffices to show that EF̂1,...,F̂m [h2]
p→EF1,...,Fm [h2] and EF̂1,...,F̂m [h]

p→

EF1,...,Fm [h]. The latter convergence follows from the second bound (EC.8) of Lemma EC.1 with

k = 2 and F̃i = F̂i for all i. Since Assumption 9 holds with k = 4 for the function h, it also holds

with k = 2 for the squared function h2. One can apply the same bound from Lemma EC.1 with

k= 2 to h2 and then conclude the former convergence. �

Proof of Assumption 6. We write τ̄ 2 = τ 2(F 1, . . . , Fm) for short. First rewrite

(τ̄ 2− τ̂ 2)2 =
(
EF1,...,Fm

[h2]−EF̂1,...,F̂m [h2]−
(
(EF1,...,Fm

[h])2− (EF̂1,...,F̂m [h])2
))2

≤ 2
(
EF1,...,Fm

[h2]−EF̂1,...,F̂m [h2]
)2

+ 2
(
(EF1,...,Fm

[h])2− (EF̂1,...,F̂m [h])2
)2

≤ 2
(
EF1,...,Fm

[h2]−EF̂1,...,F̂m [h2]
)2

+ 4
(
EF1,...,Fm

[h]−EF̂1,...,F̂m [h]
)4

+ 16(EF̂1,...,F̂m [h])2
(
EF1,...,Fm

[h]−EF̂1,...,F̂m [h]
)2
.

Applying Lemma EC.1 to h2 (k= 2) with the true distributions being F̂1, . . . , F̂m we get

E∗[
(
EF1,...,Fm

[h2]−EF̂1,...,F̂m [h2]
)2

]≤C1M̂
( m∑
i=1

1
√
si

)2
=Op

( m∑
i=1

1

si

)
where M̂= maxI1,...,Im EF̂1,...,F̂m [h4(X1,I1 , . . . ,Xm,Im)] =Op(1). Another application of Lemma EC.1

to h with k= 4 gives

E∗[
(
EF1,...,Fm

[h]−EF̂1,...,F̂m [h]
)4

]≤C1M̂
( m∑
i=1

1
√
si

)4
=Op

( m∑
i=1

1

s2i

)
which implies that E∗[

(
EF1,...,Fm

[h] − EF̂1,...,F̂m [h]
)2

] = Op
(∑m

i=1
1
si

)
as a consequence of Cauchy

Schwartz inequality. Therefore in sum E∗[(τ̄ 2− τ̂ 2)2] =Op
(∑m

i=1
1
si

)
= op(1). �

Proof of Assumption 7. Note that µ4(F 1, . . . , Fm)≤CEF1,...,Fm
[h4] for some absolute constant

C > 0, therefore

E∗[µ4(F 1, . . . , Fm)]≤CE∗[EF1,...,Fm
[h4]]≤C max

I1,...,Im
EF̂1,...,F̂m [h4(X1,I1 , . . . ,Xm,Im)] =Op(1)

where the last equality is due to the first bound (EC.7) in Lemma EC.1. �
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Proof of Assumption 11. The third order remainder ε3, or equivalently the sum over d≥ 4 in

(EC.6) with each νi = 1, consists of integrals under the product of at least four signed measures

of the form F̂i −Fi. Therefore, by employing the technique used in proving the second and third

bounds (EC.8)(EC.9) in Lemma EC.1, one can show that E[ε23] =O(n−4). The details are omitted

since they highly resemble those of Lemma EC.1. The fourth moments of gi1i2 and gi1i2i3 are finite,

because each of them is a finite sum of conditional expectations of h which have finite fourth order

moments due to Assumption 9 with k= 4 and Jensen’s inequality. �

Proof of Assumption 12. For the third order remainder of the resampled performance measure,

one can derive the bound E∗[(ε∗3)2] = Op(s
−4) in a similar way as in showing the bound (EC.9)

in Lemma EC.1. The details are omitted to avoid repetition. Moreover, some straightforward

modifications of the proof for the bound (EC.10) in Lemma EC.1 lead to O(n−1) upper bounds

for the the mean squared errors of second and third order influence functions. The remainder in

the Taylor expansion of the first order empirical influence function satisfies E[ε2g] =O(n−2) due to

the bound (EC.11) in Lemma EC.1 with k= 2. �

EC.2. Proofs of Propositions 1 and 2

This section proves results concerning the validity of the additive decomposition 2 of the input

variance. We first prove Proposition 1, and then provide the key Lemma EC.2 that will be used in

the proof of Proposition 2 as well as many results in Section EC.4.

Proof of Proposition 1. Following the expansion (14) we can write

Var[ψ(F̂1, . . . , F̂m)] = Var[
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j)] + Var[ε] + 2Cov(
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j), ε)

=
m∑
i=1

σ2
i

ni
+ o(n−1) +O

(√√√√Var[
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j)]Var[ε]
)

=
m∑
i=1

σ2
i

ni
+ o(n−1).

This completes the proof. �

The following important lemma on variance decomposition plays a crucial role in our analysis.
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Lemma EC.2 (ANOVA decomposition, adapted from Efron and Stein (1981)). Let

Yi, i = 1, . . . , n be independent but not necessarily identically distributed random variables, and

φ(y1, . . . , yn) be a function such that E[φ2(Y1, . . . , Yn)]<∞, then there exist functions φi1,...,ik for

1≤ i1 < · · ·< ik ≤ n and k≤ n such that

φ(Y1, . . . , Yn)

=µ+
n∑
i=1

φi(Yi) +
∑
i1<i2

φi1,i2(Yi1 , Yi2) + · · ·+
∑

i1<···<ik

φi1,...,ik(Yi1 , . . . , Yik) + · · ·+φ1,...,n(Y1, . . . , Yn)

where

µ=E[φ(Y1, . . . , Yn)]

φi(y) =E[φ(Y1, . . . , Yn)|Yi = y]−µ

φi1,i2(y1, y2) =E[φ(Y1, . . . , Yn)|Yi1 = y1, Yi2 = y2]−φi1(y1)−φi2(y2)−µ

...

Moreover, the 2n − 1 random variables in the decomposition have mean zero and are mutually

uncorrelated.

With this lemma, we can prove Proposition 2:

Proof of Proposition 2. The proof of Proposition 1 derives the following expression for input

variance

Var[ψ(F̂1, . . . , F̂m)] = Var[
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j)] + Var[ε] + 2Cov(
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j), ε)

where the covariances can be simplified to

Cov(
m∑
i=1

1

ni

ni∑
j=1

gi(Xi,j), ε) =
m∑
i=1

1

ni

ni∑
k=1

E[gi(Xi,j)(ε−E[ε])]

=
m∑
i=1

1

ni

ni∑
j=1

E[gi(Xi,j)(E[ε|Xi,j]−E[ε])]

=
m∑
i=1

E[gi(Xi,1)(E[ε|Xi,1]−E[ε])].
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Using the cubic expansion in Assumption 11 and the vanishing marginal expectations of influence

functions we have

E[ε|Xi,1]−E[ε] =
1

2n2
i

(gii(Xi,1,Xi,1)−E[gii(Xi,Xi)]) +
1

6n3
i

(giii(Xi,1,Xi,1,Xi,1)−E[giii(Xi,Xi,Xi)])

+
ni− 1

2n3
i

EXi [giii(Xi,1,Xi,Xi)] +
∑
i′ 6=i

1

2nini′
EXi′ [gii′i′(Xi,1,Xi′ ,Xi′)]

+E[ε3|Xi,1]−E[ε3]. (EC.17)

Each term except the last in (EC.17) has a second moment of order O(n−4). To argue the last term

E[ε3|Xi,1]−E[ε3] also has a second moment of order at most O(n−4), note that ε3 is a symmetric

statistic hence by Lemma EC.2 Var[E[ε3|Xi,1]] ≤ Var[ε3]/ni and Var[ε3] = o(n−3) by assumption,

hence Var[E[ε3|Xi,1]] = o(n−4). This leads to

Var[E[ε|Xi,1]] =O(n−4).

Using Cauchy Schwartz inequality we conclude Cov(
∑m

i=1
1
ni

∑ni
j=1 gi(Xi,j), ε) = O(n−2). On the

other hand, one can easily show Var[ε] =O(n−2) by using the same technique in the proof of Lemma

EC.1 to bound each term in the cubic expansion. This leads to the desired conclusion. �

EC.3. Proofs for Results in Section 4.2 and Section 3.2

We now prove the consistency of our proportionate subsampled bootstrap variance σ2
SV B (Theorem

7), and derive the mean square error of the Monte Carlo estimate σ̂2
SV B relative to σ2

SV B (Lemma

1). These results will then be used to prove Theorems 2 and 8. Theorem 3, Corollaries 1-2 are

consequences of Theorem 2. Theorem 4 is a consequence of Theorem 8.

Recall that σ2
i = VarFi [gi(Xi)] is the variance of the i-th influence function. For its empirical

counterpart ĝi we denote by σ̂2
i := VarF̂i [ĝi(Xi)] its variance under the empirical input models.

Under the convergence condition E[(ĝi− gi)4(Xi,1)]→ 0 in Assumption 4, the convergence of σ̂2
i to

σ2
i follows from∣∣∣σ̂2

i −
1

ni

ni∑
j=1

g2i (Xi,j)
∣∣∣ =

∣∣∣ 1

ni

ni∑
j=1

ĝ2i (Xi,j)−
1

ni

ni∑
j=1

g2i (Xi,j)
∣∣∣

≤ 2

ni

√√√√ ni∑
j=1

g2i (Xi,j)

ni∑
j=1

(ĝi− gi)2(Xi,j) +
1

ni

ni∑
j=1

(ĝi− gi)2(Xi,j) = op(1)
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and that
∑ni

j=1 g
2
i (Xi,j)/ni

p→ σ2
i . For convenience we denote by

ψ∗ =ψ(F̂ ∗s1,1, . . . , F̂
∗
sm,m

), ψ̂∗ = ψ̂(F̂ ∗s1,1, . . . , F̂
∗
sm,m

)

the expected value and a single simulation replication, respectively, of the performance measure

under the resampled input models, and by

τ̂ 2∗ = τ 2(F̂ ∗s1,1, . . . , F̂
∗
sm,m

), µ̂∗4 = µ4(F̂
∗
s1,1

, . . . , F̂ ∗sm,m)

the variance and central fourth moment of a single Monte Carlo replication ψ̂∗ conditioned on the

resampled input models.

Proof of Theorem 7. Let si = bθnic. Following the expansion (15) with each F i = F̂ ∗si,i we have

Var∗[ψ
∗] = Var∗[

m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k) + ε∗]

= Var∗[
m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k)] + Var∗[ε

∗] + 2Cov∗(
m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k), ε

∗)

=
m∑
i=1

σ̂2
i

si
+ Var∗[ε

∗] +O
(√√√√ m∑

i=1

σ̂2
i

si
Var∗[ε∗]

)

=
m∑
i=1

σ̂2
i

dθnie
+ Var∗[ε

∗] +O
(√√√√ m∑

i=1

σ̂2
i

dθnie
Var∗[ε∗]

)
.

Hence

σ2
SV B = θVar∗[ψ

∗] =
m∑
i=1

σ̂2
i

dθnie/θ
+ θVar∗[ε

∗] +O
(√√√√ m∑

i=1

σ̂2
i

dθnie/θ
θVar∗[ε∗]

)

=
m∑
i=1

(
σ̂2
i

ni
+O(

σ̂2
i

n2
i θ

)) + θVar∗[ε
∗] +O

(√√√√ m∑
i=1

(
σ̂2
i

ni
+O(

σ̂2
i

n2
i θ

))θVar∗[ε∗]
)
. (EC.18)

The convergence σ̂2
i

p→ σ2
i and that θ= ω(1/n) allow us to conclude

1

θ

m∑
i=1

σ̂2
i

n2
i

= op(
m∑
i=1

σ2
i

ni
), θVar∗[ε

∗] = θop(
m∑
i=1

1

dθnie
) = op(

m∑
i=1

1

ni
)

therefore σ2
SV B =

∑m

i=1

σ2i
ni

+ op(
∑m

i=1

σ2i
ni

). �
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Proof of Lemma 1: Define w := ψ̂∗ − ψ∗ and δ := ψ∗ −E∗[ψ∗]. Unbiasedness is well known, see

e.g. Searle et al. (2009). The variance of σ̂2
SV B/θ has been derived in Sun et al. (2011) as

1

θ2
Var∗[σ̂

2
SV B] =

1

B
(E∗[δ4]− (E∗[δ2])2) +

2

B(B− 1)
(E∗[δ2])2 +

2

B2R2(B− 1)
(E∗[w2])2

+
2(B+ 1)

B2R(B− 1)
E∗[δ2]E∗[w2] +

2

B2R3
E∗[w4] +

4B+ 2

B2R
E∗[δ2w2]

+
2(BR2 +R2− 4R+ 3)

B2R3(R− 1)
E∗[(E[w2|F̂ ∗s1,1, . . . , F̂

∗
sm,m

])2] +
4

B2R2
E∗[δw3].

Applying Jensen’s inequality (or generalized Holder’s inequality) gives

E∗[(E[w2|F̂ ∗1 , . . . , F̂ ∗m])2]≤E∗[w4]

E∗[δ2w2]≤ (E∗[δ4]E∗[w4])1/2, |E∗[δw3]| ≤ (E∗[δ4](E∗[w4])3)1/4

The convergence condition E[(ĝi−gi)4(Xi,1)]→ 0 implies that 1
ni

∑ni
j=1 ĝ

4
i (Xi,j) = 1

ni

∑ni
j=1 g

4
i (Xi,j)+

op(1) =Op(1). Together with the moment condition E∗[(ε∗−E∗[ε∗])4] = op(s
−2), we get

E∗[δ4] = 3
( m∑
i=1

σ̂2
i

si

)2
+ op

(( m∑
i=1

1

si

)2)
,E∗[δ2] =

m∑
i=1

σ̂2
i

si
+ op

( m∑
i=1

1

si

)
,E∗[w4] =E∗[µ∗4] =Op(1).

Hence the leading terms of the mean squared error can be identified as

1

θ2
Var∗[σ̂

2
SV B]≈ 1

B
(E∗[δ4]− (E∗[δ2])2) +

4

BR
E∗[δ2w2] +

2

BR2
E∗[(E[w2|F̂ ∗s1,1, . . . , F̂

∗
sm,m

])2]

≈ 2

B

( m∑
i=1

σ̂2
i

si

)2
+

4τ̂ 2

BR

m∑
i=1

σ̂2
i

si
+

2τ̂ 4

BR2
=

2

B

( m∑
i=1

σ̂2
i

si
+
τ̂ 2

R

)2
.

Here a≈ b means a/b
p→ 1 as aforementioned. Therefore the variance can be expressed as

Var∗[σ̂
2
SV B] =

2

B

( m∑
i=1

σ̂2
i

ni
+
τ̂ 2θ

R

)2
(1 + op(1)) =

2

B

( m∑
i=1

σ2
i

ni
+
τ 2θ

R

)2
(1 + op(1))

where the second equality holds because of the convergence of σ̂2
i , τ̂

2 to σ2
i , τ

2. �

Proof of Theorem 2. Under the choice of B,R,θ stated in the theorem, we have Var∗[σ̂
2
SV B] =

op(1/n
2) hence σ̂2

SV B − σ2
SV B = op(1/n) on one hand. On the other hand we know the subsam-

pling bootstrap variance estimate σ2
SV B is consistent for σ2

I and σ2
I = Θ(1/n) hence σ2

SV B − σ2
I =

op(1/n). Now σ̂2
SV B−σ2

I = σ̂2
SV B−σ2

SV B +σ2
SV B−σ2

I = op(1/n) from which consistency immediately

follows. �
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Proof of Theorem 8. One can easily verify that such B∗ and R∗ minimize the mean squared

error (18) under the constraint that BR = N and B = ω(1). The mean square error (19) then

follows from evaluating (18) at B∗,R∗. �

Proof of Corollary 1. It is obvious that when B = ω(1) and R = Ω(θn) the configuration (7)

is satisfied hence the estimate σ̂2
SV B is relatively consistent under such allocation. To show that

a simulation budget N = ω(θn) is necessary for (7) to hold, note that multiplying the first two

requirements in (7) gives that B2R2 = ω((θn)2), hence BR= ω(θn) must hold true. �

Proof of Corollary 2. This follows from letting θ = ω(1/n) in Corollary 1 so that the required

simulation budget N = ω(θn) = ω(ω(1)) = ω(1). �

Proof of Theorem 3. The requirement ω(1/n)≤ θ is stipulated by (7). If θ ≤ o(N/n)∧ 1, then

we have θn = o(N), or equivalently N/(θn) = ω(1), so that we can afford a B = ω(1) when R =

Ω(θn) to satisfy the first two requirements of (7). Theorem 2 then guarantees consistent variance

estimation. �

Proof of Theorem 4. It follows from Theorem 8 by observing that τ 2 = Θ(1) and
∑m

i=1 σ
2
i /ni =

Θ(1/n). �

EC.4. Proofs for Results in Section 4.3 and Theorem 5

In this section we analyze the statistical error of σ2
SV B relative to the true input variance σ2

I ,

therefore, combined with the Monte Carlo error σ̂2
SV B−σ2

SV B given in Lemma 1, provide the overall

error of the estimate σ̂2
SV B, and then minimize the overall error to obtain the optimal choices for

the parameters θ,B,R. We first prove Lemma 2 using Lemma EC.1 and Proposition 2 which have

been presented in Section EC.2, then use Lemma 2 to conclude Theorem 10. Lastly, Theorem 5 is

derived from Theorem 10.

Proof of Lemma 2. The proof of Theorem 7 derives the following expression for the propor-

tionate subsampled bootstrap variance

σ2
SV B

θ
=

m∑
i=1

σ̂2
i

si
+ Var∗[ε

∗] + 2Cov∗(
m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k), ε

∗).
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As is the case in the proof of Proposition 2, the covariances can be simplified to

Cov∗(
m∑
i=1

1

si

si∑
k=1

ĝi(X
∗
i,k), ε

∗) =
m∑
i=1

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]−E∗[ε∗])].

This leads to

σ2
SV B =

m∑
i=1

θσ̂2
i

bθnic
+ θE∗[(ε∗−E∗[ε∗])2] + 2θ

m∑
i=1

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]−E∗[ε∗])].

From the above expression of the variance estimator one can verify that it suffices to show the

following three results

m∑
i=1

σ̂2
i

ni
= σ2

I +Z + op(
1

n3/2
) (EC.19)

E∗[(ε∗−E∗[ε∗])2] =
m∑

i,i′=1

1

4sisi′
Var[gii′(Xi,X

′
i′)] + op(

1

s2
) (EC.20)

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]−E∗[ε∗])] (EC.21)

=
1

2s2i
Cov(gi(Xi), gii(Xi,Xi)) +

m∑
i′=1

1

2sisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi,X

′
i′ ,X

′
i′)]) + op(

1

s2
).

To see this, if the three equations hold then

σ2
SV B =

m∑
i=1

θσ̂2
i

θni− frac(θni)
+

m∑
i,i′=1

1

4nisi′
Var[gii′(Xi,X

′
i′)] + op(

θ

s2
)

+
m∑
i=1

1

nisi
Cov(gi(Xi), gii(Xi,Xi)) +

m∑
i,i′=1

1

nisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi,X

′
i′ ,X

′
i′)]) + op(

θ

s2
)

=
m∑
i=1

σ̂2
i

ni
+

m∑
i=1

frac(θni)σ
2
i

nisi
+ op(

1

ns
) +

m∑
i,i′=1

1

4nisi′
Var[gii′(Xi,X

′
i′)]

+
m∑
i=1

1

nisi
Cov(gi(Xi), gii(Xi,Xi)) +

m∑
i,i′=1

1

nisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi,X

′
i′ ,X

′
i′)]) + op(

1

ns
)

=
m∑
i=1

σ̂2
i

ni
+R+ op(

1

ns
)

= σ2
I +Z +R+ op(

1

ns
) + op(

1

n3/2
)

where (EC.20) and (EC.21) are used in the first equality and (EC.19) used in the last equality.
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Now we prove the above three equations (EC.19)-(EC.21). By the expansion of ĝi from Assump-

tion 12 and the vanishing moment condition on the remainder εg, we write

σ̂2
i =

1

ni

ni∑
j=1

g2i (Xi,j) +
2

ni

ni∑
j=1

gi(Xi,j)
( m∑
i′=1

1

ni′

ni′∑
j′=1

gii′(Xi,j,Xi′,j′) +
1

ni

ni∑
j′=1

gi(Xi,j′)
)

+
1

ni

ni∑
j=1

( m∑
i′=1

1

ni′

ni′∑
j′=1

gii′(Xi,j,Xi′,j′) +
1

ni

ni∑
j′=1

gi(Xi,j′)
)2

+ op(
1√
n

) (EC.22)

=
1

ni

ni∑
j=1

g2i (Xi,j) +
2

ni

ni∑
j=1

gi(Xi,j)
m∑
i′=1

1

ni′

ni′∑
j′=1

gii′(Xi,j,Xi′,j′) + 2
( 1

ni

ni∑
j=1

gi(Xi,j)
)2

+ op(
1√
n

)

=
1

ni

ni∑
j=1

g2i (Xi,j) + 2
m∑
i′=1

1

nini′

ni∑
j=1

ni′∑
j′=1

gi(Xi,j)gii′(Xi,j,Xi′,j′) + op(
1√
n

). (EC.23)

Note that the first term in line (EC.22) has an expectation of order O(1/n) hence can be absorbed

into the op(1/
√
n) term. Similarly the fourth line (EC.23) holds because (

∑ni
j=1 gi(Xi,j)/ni)

2 has

an expectation of order O(1/n). The second term in (EC.23) is a sum of m V-statistics, each of

which by standard results is well approximated by the Hajek projection

1

nini′

ni∑
j=1

ni′∑
j′=1

gi(Xi,j)gii′(Xi,j,Xi′,j′) =
1

ni′

ni′∑
j′=1

EXi [gi(Xi)gii′(Xi,Xi′,j′)] +Op(
1

n
).

The finite fourth moment condition of gi and gi1i2 are used to ensure that the product

gi(Xi,j)gii′(Xi,j,Xi′,j′) has a finite second moment so that the above approximation holds. Denoting

µi1 =
1

ni

ni∑
j=1

g2i (Xi,j), µ
ii′

2 =
1

ni′

ni′∑
j′=1

EXi [gi(Xi)gii′(Xi,Xi′,j′)]

we have

m∑
i=1

σ̂2
i

ni
=

m∑
i=1

µi1
ni

+ 2
m∑
i=1

m∑
i′=1

µii
′

2

ni
+ op(

1

n3/2
).

Because of independence among input models the variance of the leading term takes the additive

form
∑m

i=1 λ
T
i Σiλi/ni as described in the theorem. By Proposition 2 σ2

I =
∑m

i=1 σ
2
i /ni + O(n−2)

hence equation (EC.19) follows. To show (EC.20), we note that in the cubic expansion of Assump-

tion 12 the cubic term and the remainder ε∗3 both have a second moment of order Op(s
−3). Therefore
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it suffices to consider the quadratic term. Since the second order influence function ĝi1i2 has van-

ishing marginal expected value, one can verify that

Var∗
[ m∑
i,i′=1

1

sisi′

si∑
j=1

si′∑
j′=1

ĝii′(X
∗
i,j,X

∗
i′,j′)

]
=

m∑
i,i′=1

1

sisi′nini′

ni∑
j=1

ni′∑
j′=1

ĝ2ii′(Xi,j,Xi′,j′) +Op(
1

s3
)

=
m∑

i,i′=1

1

sisi′nini′

ni∑
j=1

ni′∑
j′=1

g2ii′(Xi,j,Xi′,j′) + op(
1

s2
)

where the second equality follows from the convergence of ĝii′ to gii′ as imposed

in Assumption 12. Equation (EC.20) then follows from consistency of the V-statistic∑ni
j=1

∑ni′
j′=1 g

2
ii′(Xi,j,Xi′,j′)/(nini′).

Let’s continue to prove equation (EC.21). Denote by X∗i a generic resampled data point from

the i-th input data set. Then one can check that

E∗[ε∗|X∗i,1 =Xi,j]−E∗[ε∗]

=
1

2s2i
(ĝii(Xi,j,Xi,j)−E∗[ĝii(X∗i ,X∗i )]) +

1

6s3i
(ĝiii(Xi,j,Xi,j,Xi,j)−E∗[ĝiii(X∗i ,X∗i ,X∗i )])

+
si− 1

2s3i
E∗[ĝiii(Xi,j,X

∗
i ,X

∗
i )] +

∑
i′ 6=i

1

2sisi′
E∗[ĝii′i′(Xi,j,X

∗
i′ ,X

∗
i′)] +E∗[ε∗3|X∗i,1 =Xi,j]−E∗[ε∗3].

Note that Var∗[ε
∗
3|X∗i,1] = op(s

−4) because of Assumption 12 and Lemma EC.2. Hence

E∗[ĝi(X∗i,1)(E∗[ε∗|X∗i,1]−E∗[ε∗])]

=
1

ni

ni∑
j=1

ĝi(Xi,j)(
1

2s2i
(ĝii(Xi,j,Xi,j)−E∗[ĝii(X∗i ,X∗i )]) +

m∑
i′=1

1

2sisi′
E∗[ĝii′i′(Xi,j,X

∗
i′ ,X

∗
i′)]) + op(

1

s2
)

=
1

2s2i
Cov∗(ĝi(X

∗
i ), ĝii(X

∗
i ,X

∗
i )) +

m∑
i′=1

1

2sisi′
Cov∗(ĝi(X

∗
i ),EX∗′

i′
[ĝii′i′(X

∗
i ,X

∗′
i′ ,X

∗′
i′ )]) + op(

1

s2
)

=
1

2s2i
Cov(gi(Xi), gii(Xi,Xi)) +

m∑
i′=1

1

2sisi′
Cov(gi(Xi),EX′

i′
[gii′i′(Xi,X

′
i′ ,X

′
i′)]) + op(

1

s2
)

where the op(1/s
2) term in the first equality comes from applying Cauchy Schwartz inequality, and

the last equality holds since convergence of ĝi, ĝi1i2 , ĝi1i2i3 to gi, gi1i2 , gi1i2i3 in mean squared error

implies

Cov∗(ĝi(X
∗
i ), ĝii(X

∗
i ,X

∗
i ))

p→Cov(gi(Xi), gii(Xi,Xi))

Cov∗(ĝi(X
∗
i ),EX∗′

i′
[ĝii′i′(X

∗
i ,X

∗′
i′ ,X

∗′
i′ )])

p→Cov(gi(Xi),EX′
i′

[gii′i′(Xi,X
′
i′ ,X

′
i′)]).

This gives rise to the equation (EC.21). �
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Proof of Theorems 5 and 10. We first show Theorem 10. Under a given subsampling ratio θ, we

know from Lemma 2 and Theorem 4 that under the optimal allocation B∗ =N/R∗ and R∗ = Θ(θn)

σ̂2
SV B −σ2

SV B = E1 + op
(√ θ

Nn

)
σ2
SV B −σ2

I = E2 + op
( 1

n3/2
+

1

θn2

)
where the errors E1,E2 satisfy E∗[E1] = 0,E[E21 ] = Θ(θ/(Nn)) and E[E22 ] = R2 +

∑m

i=1 λ
T
i Σiλi/ni.

Letting E = E1 + E2, we have E[E2] =E[E21 ] +E[E22 ] because

E[E1E2] =Edata[E∗[E1E2]] =Edata[E2E∗[E1]] = 0.

This gives Theorem 10.

To prove Theorem 5, note that if R= Θ((ns)−1), and at least one of the Σi’s are positive definite,

then
∑m

i=1 λ
T
i Σiλi/ni = Θ(1/n3) hence E[E22 ] = Θ(1/n3 + 1/(θ2n4)). We have

σ̂2
SV B −σ2

I = E + op
(√ θ

Nn
+

1

n3/2
+

1

θn2

)
where E[E2] = Θ(θ/(Nn) + 1/n3 + 1/(θ2n4)). To minimize the leading term E , just note that

θ/(Nn)+1/(θ2n4) is minimized at θ∗ = (2N)1/3/n resulting in E[E2] = Θ(1/(N 2/3n2)+1/n3). When

N > n3/2, we have 1/(N 2/3n2) < 1/n3, hence as long as θ∗ is chosen such that θ∗/(Nn) ≤ 1/n3

and 1/(θ∗2n4) ≤ 1/n3, or equivalently 1/
√
n ≤ θ∗ ≤ N/n2 ∧ 1, then the error E[E2] = Θ(1/n3).

This leads to the optimal subsample size (10). If the depicted conditions do not hold, we have

E[E22 ]≤Θ(1/n3 + 1/(θ2n4)) in general, hence all upper bounds we just obtained for E[E2] could be

loose in order, leading to (12). �

EC.5. Computer Network Configuration Details
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channel capacity (bits) transmission speed (miles per second)

system #1 275000 200000

system #2 200000 125000

system #3 150000 100000

system #4 200000 125000

Table EC.1 Channel capacity and transmission speed configurations.

node i

node j
1 2 3 4

1 n.a. 50 40 45

2 60 n.a. 55 25

3 70 25 n.a. 30

4 35 40 50 n.a.

Table EC.2 True arrival rates λi,j for system #1.

node i

node j
1 2 3 4

1 n.a. 35 25 30

2 45 n.a. 40 10

3 55 10 n.a. 15

4 20 25 35 n.a.

Table EC.3 True arrival rates λi,j for system #2.

node i

node j
1 2 3 4

1 n.a. 20 50 15

2 30 n.a. 25 35

3 40 35 n.a. 40

4 45 50 20 n.a.

Table EC.4 True arrival rates λi,j for system #3.
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node i

node j
1 2 3 4

1 n.a. 70 60 20

2 25 n.a. 25 30

3 80 10 n.a. 10

4 50 60 20 n.a.

Table EC.5 True arrival rates λi,j for system #4.


