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ABSTRACT

While batching and sectioning have been widely used in simulation, it is open regarding their higher-order
coverage behaviors and whether one is better than the other in this regard. We develop techniques to obtain
higher-order coverage errors for sectioning and batching. We theoretically argue that none of batching or
sectioning is uniformly better than the other in terms of coverage, but sectioning usually has a smaller
coverage error when the number of batches is large. We also support our theoretical findings via numerical
experiments.

1 INTRODUCTION

Sectioning and batching are widely used methods in simulation analysis. The basic idea of these methods
is to divide the data into batches and quantify the variability of point estimates by suitably combining the
batch estimates. They are especially useful tools to construct confidence intervals (CI) when the variance
of the output is hard to compute, such as quantile (Nakayama 2014) whose variance estimation involves
density estimation, and in serially dependent problems and steady-state estimation (Asmussen and Glynn
2007; Nakayama 2007).

While widely used, the detailed coverage behaviors of sectioning and batching are not well understood.
To understand the statistical performances of these methods and to conduct comparisons, however, this
question seems imminent. To put things in perspective, note that a good CI should have a small half width
and coverage error. By construction, with the same choice of batch size, the CI half widths of sectioning
and batching are equal. Therefore, their difference lies in the coverage errors. Nonetheless, under regularity
conditions, both sectioning and batching lead to asymptotically exact CIs. Thus, both methods only have
higher order coverage errors, and it is these errors that can differ from each other.

There are very few studies on the higher-order coverage probabilities for sectioning and batching. The
challenge is that the statistics used in sectioning and batching have an asymptotic t-distribution rather than
a normal distribution, so Edgeworth expansion cannot be directly applied. The most relevant result is the
heuristic argument given in Nakayama (2014), which argued that since the estimator based on the whole
empirical distribution has smaller bias, sectioning appears to lead to better coverage. Nakayama (2014)
supported this claim with numerical results.

In this paper, we develop tools to study the higher-order expansion for the coverage probabilities of
sectioning and batching. Under regularity conditions, we show that the coverage errors of sectioning and
batching can be expanded as series of n−1/2 where n is the data size in each batch. For a symmetric
CI, we show that both methods have coverage errors of order O(n−1). The coefficients in the expansion
involve some integration which can not be explicitly calculated in general, but we provide examples
where explicit calculation is possible and sufficient to draw some conclusions. In terms of methodology,
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our analysis utilizes Edgeworth expansion and Taylor expansion techniques combined with oddness and
evenness arguments for functions. To the best of our knowledge, we are the first to study the higher-order
coverage of sectioning and batching using this type of analysis.

From our analyses, we conclude that whether sectioning or batching has smaller higher-order coverage
error depends on the problem parameters, so none of them is uniformly better. But for a fixed problem,
when the number of batches is large, batching suffers from a significant bias and sectioning has better
coverage.

We briefly review the literature on sectioning and batching techniques. Pope (1995) analyzes the
coverage error of sectioning using Edgeworth expansion, but it focuses on the case when the number of
batches goes to infinity so that the problem statistic can be approximated by normal. This is different
from our analysis for the t distribution approximation which is our key novelty and faced challenge in this
problem. For the CI half width, Schmeiser (1982) shows that if we assume the data size is large enough so
that the non-normality of the batch estimators is negligible, then the expected half width would decrease
as the number of batches increases, but the rate of decrease would become much slower when the number
of batches is large. Similar observations are also made in Glynn and Lam (2018). Jackknife can be used to
reduce small-sample bias within sections, but at the cost of greater computation time and uncertainty about
the variance inflation (Lewis and Orav 1989). Finally, as shown in Example 3.1 of Glynn and Iglehart
(1990), batching can also be seen as a special type of the more general umbrella technique of standardized
time series.

The rest of this paper is organized as follows: Section 2 gives the formulation for batching, sectioning
and modified sectioning. Section 3 studies the coverage error of batching, and Section 4 for sectioning and
modified sectioning. Section 5 considers a specific example to reveal comparisons on the coverage errors
for different methods. Section 6 provides numerical examples.

2 SECTIONING AND BATCHING

Consider the problem of constructing a CI for ψ(P) where P is an unknown distribution, ψ is a known
statistical functional and we have data drawn i.i.d. from P. Suppose the data size is N = nK. Divide the
data into K batches each with size n and denote P̂i as the empirical distribution for the i-th batch where
i = 1,2, . . . ,K. Denote P̂ as the whole empirical distribution using all of the nK data. Then the batching
CI is given by CIB :=

(
1
K ∑i ψ

(
P̂i
)
± tK−1,α/2

Sbatch√
K

)
where S2

batch =
1

K−1 ∑
K
i=1
(
ψ
(
P̂i
)
− 1

K ∑ j ψ
(
P̂j
))2 and

tK−1,α/2 is the upper α/2-quantile for the tK−1 distribution. This CI is asymptotically exact since

WB :=

√
nK
( 1

K ∑i ψ
(
P̂i
)
−ψ

)√
1

K−1 ∑
K
i=1
(√

nψ
(
P̂i
)
− 1

K ∑ j
√

nψ
(
P̂j
))2
⇒ tK−1.

Here ψ = ψ(P) is the target value and the limit is as n→ ∞ with K fixed. For sectioning, the CI is given
by CIS :=

(
ψ
(
P̂
)
± tK−1,α/2

Ssec√
K

)
where S2

sec =
1

K−1 ∑
K
i=1
(
ψ
(
P̂i
)
−ψ

(
P̂
))2. This CI is also asymptotically

exact since

WS :=

√
nK
(
ψ
(
P̂
)
−ψ

)√
1

K−1 ∑
K
i=1
(√

nψ
(
P̂i
)
−
√

nψ
(
P̂
))2

=WB +op(1)⇒ tK−1.

We also consider modified sectioning (Nakayama 2014) that is viewed as a middle ground between batching
and sectioning. This approach uses the same variance estimator as batching, but the center estimate as
sectioning. The resulting CI is CISB :=

(
ψ
(
P̂
)
± tK−1,α/2

Sbatch√
K

)
. We call this method sectioning-batching

(SB). This CI is also asymptotically exact since

WSB :=

√
nK
(
ψ
(
P̂
)
−ψ

)√
1

K−1 ∑
K
i=1
(√

nψ
(
P̂i
)
− 1

K ∑ j
√

nψ
(
P̂j
))2

=WB +op(1)⇒ tK−1.
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Note that−tK−1,α/2≤WB≤ tK−1,α/2⇔ψ ∈CIB and similar arguments hold for sectioning and SB. Therefore,
to study the higher order coverage errors, it suffices to study the distributions WB,WS and WSB, and how
much they deviate from tK−1.

3 ERROR ANALYSIS FOR BATCHING

The following theorem states that the coverage error for batching admits an expansion as a series of n−1/2,
and the coverage error is of order O(n−1) for a symmetric CI. For the one-sided CIs, since we cannot
cancel the first-order coverage error, the coverage error is typically of order O(n−1/2).
Theorem 1 Suppose that ψ

(
P̂1
)

has a valid Edgeworth expansion, in the sense that for some 0 < σ < ∞,

P

(√
n
(
ψ
(
P̂1
)
−ψ

)
σ

≤ q

)
= Φ(q)+

r

∑
j=1

n− j/2 p j(q)φ(q)+O
(

n−(r+1)/2
)

holds uniformly over q ∈ R, and p j is an even polynomial when j is odd and is an odd polynomial when
j is even. Here Φ and φ are the cdf and pdf of standard normal. Then P(WB ≤ q) can be expanded as a
series of n−1/2 with residual O

(
n−(r+1)/2

)
and we have P(−q≤WB ≤ q) = P(−q≤ tK−1 ≤ q)+O(n−1).

Proof. As long as we have a valid Edgeworth expansion for
√

n
(
ψ
(
P̂i
)
−ψ

)
, noting that WB is a

function of
(√

n
(
ψ
(
P̂i
)
−ψ

))K
i=1, we can evaluate the probability P(Ws ≤ q) based on integration. let

f (z) =
√

K 1
K ∑i zi√

1
K−1 ∑

K
i=1(zi− 1

K ∑ j z j)2
, then one can check that WB = f

((√
n
(
ψ
(
P̂i
)
−ψ

)
/σ
)K

i=1

)
. So we have

P(WB ≤ q) =
∫

f (z)≤q
Π

K
j=1d

(
Φ(z j)+

r

∑
j=1

n− j/2 p j(z j)φ(z j)

)
+O

(
n−(r+1)/2

)
.

For a symmetric confidence interval, we have that

P(−q≤WB ≤ q) =
∫
−q≤ f (z)≤q

Π
K
j=1d

(
Φ(z j)+n−1/2 p1(z j)φ(z j)

)
+O

(
n−1)

= P(−q≤ tK−1 ≤ q)+Kn−1/2
∫
−q≤ f (z)≤q

φ(z1)φ(z2) . . .φ(zK)
(
−z1 p1(z1)+ p′1(z1)

)
dz+O(n−1).

Here p′1 is the derivative of p1. Since p1 is an even polynomial, −z1 p1(z1)+ p′1(z1) is an odd polynomial.
In addition, note that the area {−q ≤ f (z) ≤ q} is symmetric around 0 since f (z) = − f (−z). Thus, the
integration in the RHS above is 0. As a result, we have that P(−q≤Ws ≤ q) can be expanded as a power
of n−1/2 and its leading term is of order n−1.

In the statement of Theorem 1, the reasonableness of the assumption on the evenness and oddness of
pi can be checked from Theorem 2.2 of Hall (1992). In general, the integrals in the expansion do not
have explicit expressions and we may need numerical methods to evaluate them. Nonetheless, we provide
explicit results for some simple models in Section 5 and use them to draw comparisons among different
methods.

4 ERROR ANALYSIS FOR SECTIONING

The analysis for sectioning is a bit harder, since WS cannot be expressed as merely a function of(√
n
(
ψ
(
P̂i
)
−ψ

))K
i=1, but also dependent on ψ(P̂). Moreover, it is difficult to study the joint distri-

bution of
Λ :=

(√
nK
(
ψ
(
P̂
)
−ψ

)
,
(√

n
(
ψ
(
P̂i
)
−ψ

))K
i=1

)
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via Edgeworth expansion, since its asymptotic joint distribution is degenerate. By this we mean that,
under regularity conditions,

√
nK
(
ψ
(
P̂
)
−ψ

)
−
√

K 1
K ∑

K
i=1
√

n
(
ψ
(
P̂i
)
−ψ

)
= op(1), which implies that

the limiting distribution of Λ ∈ RK+1 has only K degrees of freedom, hence is degenerate.
To handle this issue, we consider the smooth function model where ψ (P) = f (EPX) for some vector

X . This assumption is understandably restrictive, e.g., the quantile of X ∼ P does not belong to the smooth
function model. However, we also note that the smooth function model has been widely assumed to allow
tractable analyses in the bootstrap (Hall 1992) and empirical likelihood (DiCiccio, Hall, and Romano 1991).

For this model, we can express WS in terms of the sectioned averages denoted by X̄1, . . . , X̄K . It is also
known that ψ(P̂) admits a valid edgeworth expansion under regularity conditions (Bhattacharya and Ghosh
1978). For this model, we can show the following theorem that is similar to our batching result.
Theorem 2 Suppose that ψ (P) = f (EPX) for some vector X , the following Cramér’s condition holds for
the distribution of X (denoted by P0):

limsup
|t|→∞

|EP0(exp{i〈t,X〉})|< 1,

X has finite moments up to order r+2, and f is r times differentiable in a neighborhood of EP0X . Then
P(WS ≤ q) can be expanded as a series of n−1/2 with residual O(n−r/2). In the symmetric case, we have
P(−q≤WS ≤ q) = P(−q≤ tK−1 ≤ q)+O(n−1). The same result holds if WS is replaced by WSB.

Proof. We let A0 =
√

n
√

K X̄1+···+X̄K
K −EP0X ,A1 =

√
n
√

K
[
X̄1− X̄1+···+X̄K

K

]
, . . . ,AK =

√
n
√

K
[
X̄K− X̄1+···+X̄K

K

]
.

By scale invariance, WLOG, suppose that ∇ f T ·VarP0X ·∇ f = 1, and also suppose that EP0X = 0. Then
for the asymptotic distribution of (A0,A1, . . . ,AK), ∇ f T ·A0 is standard normal independent of A j, j ≥ 1.
Moreover,

ψ
(
P̂
)
= ψ

(
A0√
nK

)
,ψ
(
P̂i
)
= ψ

(
A0 +Ai√

nK

)
.

When r ≥ 2, with a Taylor expansion argument, we can show that

√
nK(ψ(P̂)−ψ(P0)) = ∇ f T ·A0 +

1
2
√

nK
AT

0
[
∇

2 f
]

A0 +Op
(
n−1) (1)

and for each k = 1,2, . . . ,K,

√
n(ψ(P̂k)−ψ(P0)) =

1√
K

∇ f T (A0 +Ak)+
n−1/2

2
√

K
(A0 +Ak)

T [
∇

2 f
]
(A0 +AK)+Op

(
n−1) . (2)

Then WS is given by

WS

=
∇ f T ·A0 +

1
2
√

nK
AT

0
[
∇2 f

]
A0√

1
K−1 ∑

K
k=1

((
∇ f T ·Ak√

K
+ n−1/2

2K (A0 +Ak)
T [∇2 f ] (A0 +AK)− n−1/2

2K AT
0 [∇

2 f ]A0

))2
+Op

(
n−1)

=
∇ f T ·A0 +

1
2
√

nK
AT

0
[
∇2 f

]
A0√

1
K−1 ∑

K
k=1

((
∇ f T ·Ak√

K
+ n−1/2

2K (Ak +2A0)
T [∇2 f ]Ak

))2
+Op

(
n−1)

=
∇ f T ·A0 +

1
2
√

nK
AT

0
[
∇2 f

]
A0√

1
K−1 ∑

K
k=1

((
∇ f T ·Ak√

K

)2
+ ∇ f T ·Ak

K
√

nK

(
AT

k [∇
2 f ]Ak +2AT

0 [∇
2 f ]Ak

)) +Op
(
n−1)
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Denote a =
∑k

∇ f T ·Ak
K AT

k [∇2 f ]Ak

∑
K
k=1

(
∇ f T ·Ak√

K

)2 ,b = 2 ∑k
∇ f T ·Ak

K [∇2 f ]Ak

∑
K
k=1

(
∇ f T ·Ak√

K

)2 (both of them are functions of A1, . . . ,AK). We have

that the RHS above

=
∇ f T ·A0 +

1
2
√

nK
AT

0
[
∇2 f

]
A0√

1
K−1 ∑

K
k=1

((
∇ f T ·Ak√

K

)2
+ 1√

nK

(
AT

0 b+a
)) +Op

(
n−1)

=
∇ f T ·A0 +

1
2
√

nK
AT

0
[
∇2 f

]
A0√

1
K−1 ∑

K
k=1

(
∇ f T ·Ak√

K

)2

(
1− 1

2
√

nK

(
AT

0 b+a
))

+Op
(
n−1) . (3)

Denote the above function as gn (A0,A1, . . . ,AK−1) (note that AK =−(A1 + · · ·+AK−1)). Since (A0, . . . ,AK−1)
is a linear transformation of the sectioned averages, and the sectioned averages have valid Edgeworth ex-
pansions (see e.g. Theorem 20.1 of Bhattacharya and Rao 2010), we have that the joint distribution of
A0, . . . ,AK−1 admits a valid multivariate Edgeworth expansion:

P((A0, . . . ,AK−1) ∈ B) =
∫

B
φΣ(z)(1+n−1/2 p(z))dz+O(n−1)

for all Borel sets B. Here φΣ(z) denotes the density of the limit distribution of (A0,A1, . . . ,AK−1), and p(z)
is an odd polynomial. For the probability that −q≤WB ≤ q, we have that

P(−q≤WB ≤ q)

=P(−q≤ gn (A0,A1, . . . ,AK−1)≤ q)+O(n−1)

=
∫
−q≤gn(z)≤q

(
φΣ(z)+n−1/2

φ(z)p(z)
)

dz+O(n−1)

=
∫
−q≤gn(z)≤q

φΣ(z)dz+n−1/2
∫
−q≤g∞(z)≤q

φ(z)p(z)+O(n−1).

Here g∞(z) = limn→∞ gn(z) = ∇ f T ·z0√
1

K−1 ∑
K
k=1

(
∇ f T ·zk√

K

)2
and in the last equality above, we used that g∞(z)−

g(z) = O(n−1/2). Also note that g∞ satisfies g∞(z) = g∞(−z) so
∫
−q≤g∞(z)≤q φ(z)p(z) = 0. Hence from the

above displayed equality,

P(−q≤WS ≤ q)

=
∫
−q≤gn(z)≤q

φΣ(z)dz+O(n−1)

=P(−q≤ tK−1 ≤ q)+
∫
−q≤gn(z)≤q

φΣ(z)dz−
∫
−q≤g∞(z)≤q

φΣ(z)dz+O(n−1). (4)

Here we used P(−q≤ tK−1 ≤ q) =
∫
−q≤g∞(z)≤q φΣ(z)dz since the limiting distribution of WS is tK−1. Now

it suffices to study the difference between P(−q≤ gn (Z0,Z1, . . . ,ZK−1)≤ q) and its counterpart as n→∞,
where Z0,Z1, . . . ,ZK−1 follows from the limiting normal distribution of (A0, . . . ,AK−1). In particular, we
have that ∇T f ·Z0 ∼ N(0,1) and Z0 is independent of Z1, . . . ,ZK−1. For this probability, we can do the
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following computation

P(−q≤ gn (Z0,Z1, . . . ,ZK−1)≤ q)

=P

−q≤
∇ f T ·Z0 +

1
2
√

nK
ZT

0
[
∇2 f

]
Z0√

1
K−1 ∑

K
k=1

(
∇ f T ·Zk√

K

)2

(
1− 1

2
√

nK

(
ZT

0 b+a
))
≤ q



=P

−q≤
∇ f T ·Z0 +

1
2
√

nK
ZT

0
[
∇2 f −b∇ f T

]
Z0√

1
K−1 ∑

K
k=1

(
∇ f T ·Zk√

K

)2

(
1− a

2
√

nK

)
≤ q



=P

−q

√
1

K−1 ∑
K
k=1

(
∇ f T ·Zk√

K

)2

1− a
2
√

nK

≤ ∇ f T ·Z0 +
1

2
√

nK
ZT

0
[
∇

2 f −b∇ f T ]Z0 ≤
q

√
1

K−1 ∑
K
k=1

(
∇ f T ·Zk√

K

)2

1− a
2
√

nK

 .

Conditional on Z1, . . . ,ZK−1, by normality of the distribution of Z0 and Edgeworth expansion, we know
that the conditional distribution function for ∇ f T ·Z0+

1
2
√

nK
ZT

0
[
∇2 f −b∇ f T

]
Z0 can be expanded as Φ(q)+

n−1/2 p̃1(q)φ(q)+O(n−1)where p̃1 is even (this evenness claim follows since ∇ f T ·Z0+
1

2
√

nK
ZT

0
[
∇2 f −b∇ f T

]
Z0

is a polynomial with the same form as Theorem 2.1 of Hall 1992). Thus, conditional on Z1, . . . ,ZK−1, the

above probability is given as (denote q′ = q

√
1

K−1 ∑
K
k=1

(
∇ f T ·Zk√

K

)2
)

Φ

(
q′
(

1+
a

2
√

nK

))
+n−1/2 p̃1(q′)φ(q′)−Φ

(
−q′

(
1+

a
2
√

nK

))
−n−1/2 p̃1(q′)φ(q′)+O(n−1)

which is (by the evenness of p̃1)

Φ
(
q′
)
−Φ

(
−q′
)
+φ(q′)q′

a√
nK

+O(n−1).

From this, we conclude that

P(−q≤ gn (Z0,Z1, . . . ,ZK−1)≤ q|Z1, . . .ZK−1)−P(−q≤ g∞ (Z0,Z1, . . . ,ZK−1)≤ q|Z1, . . .ZK−1)

=EZ1,...ZK−1

[
φ(q′)q′

a√
nK

]
+O(n−1)

Noting that a is odd (and q′ is even) in Z1, . . . ,Zk−1, we have that the expectation is 0, so the above difference
is indeed O(n−1). Then from (4), we have shown that P(−q≤WS ≤ q) = P(−q≤ tK−1 ≤ q)+O(n−1). To
see that WSB has the same property, notice that

nS2
sec = nS2

batch +
K

K−1

(
√

nψ(P̂)− 1
K

K

∑
i=1

√
nψ(P̂i)

)2

= nS2
batch +Op(1)

Here the second equality holds since
√

nψ(P̂)− 1
K ∑

K
i=1
√

nψ(P̂i) = O(n−1/2), which can be seen by
plugging in expansions (1), (2) and using the equation ∑

K
i=1 Ai = 0. This implies WSB = WS +Op(n−1).

Since we have shown P(−q≤WS ≤ q) = O(n−1), the same holds for WSB.
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In general, similar to (3), with a Taylor expansion argument, we can then give an expansion for WS
(and similarly for WSB) of the following form

WS =
∇ f T A0√

1
K−1 ∑

K
i=1

(
∇ f T AK√

K

)2
+

r

∑
j=1

(
n− j/2

j

∑
m=1

ai1i2...imA0,i1A0,i2 . . .A0,im

)
+op(n−r/2).

where A0,i is the i-th coordinate of A0 and ai1,i2,...,i j is a function of (A1, . . . ,AK−1) that does not depend on
n. Since A0,A1, . . .AK have Edgeworth expansions, we have that conditional on A1, . . . ,AK , the distribution
of A0 can also be expanded as a series of n−1/2. So we can expand P(WS ≤ q|A1, . . . ,AK−1) as a series of
n−1/2. Then by integrating over the domain of (A1, . . . ,AK−1), we have an expansion for P(WS ≤ q) as a
series of n−1/2.

5 COMPARISONS ON COVERAGE ERRORS

Whether batching or sectioning has a smaller higher-order coverage error depends on the problem specifics.
In Section 5.1, we illustrate this using a K = 2 example. Then in Section 5.2, we discuss how our conclusions
change when K increases.

5.1 Higher-Order Coverage Error When K = 2: An Example

Suppose that K = 2, ψ(P) = f (EPX) := EPX + λ (EPX)2 and P0 is standard normal. In this case, the

sectioned estimates are ψ(P̂i) = f (EP̂i
X)

d
= f ( 1√

nUi) where Ui ∼ N(0,1). For this model, the higher-order
coverage errors can be computed explicitly via the following lemma.
Lemma 1. With the model introduced above, the higher-order coverage errors for batching, sectioning,
and SB can be expressed as

P(−q≤WB ≤ q)−P(−q≤ t1 ≤ q) =
λ 2

n

(
−q
(
q2−1

)2
(

1
q2 +1

)3 4
π

)
+O(n−3/2), (5)

P(−q≤WS ≤ q)−P(−q≤ t1 ≤ q) =
λ 2

n

(
−q5

(
1

q2 +1

)3 4
π
+q
(

1
q2 +1

)2 1
π

)
+O(n−3/2), (6)

P(−q≤WSB ≤ q)−P(−q≤ t1 ≤ q) =
λ 2

n

(
−q5

(
1

q2 +1

)3 4
π

)
+O(n−3/2). (7)

Proof. The test statistic for batching can be expressed as

WB =

√
nK

(
f
(

1√
nU1

)
+ f
(

1√
nU2

)
2

)
√

n
2

(
f
(

1√
nU1

)
− f

(
1√
nU2

))2
=

√
2
(

U1+U2
2 + λ√

n
U2

1 +U2
2

2

)
√

1
2

(
U1−U2 +

λ√
n

(
U2

1 −U2
2

))2
=

√
2
(

U1+U2
2 + λ√

n
U2

1 +U2
2

2

)
√

2
2 |U1−U2|

√(
1+ λ√

n (U1 +U2)
)2

Denote A0 =
√

2U1+U2
2 and A1 =

√
2U1−U2

2 (note that they are independent and this notation is indeed
consistent with the notation used in the proof of Theorem 2). Then from the above,

WB =
A0 +

λ√
2
√

n

(
A2

0 +A2
1
)

|A1|
√(

1+
√

2λ√
n A0

)2
=

A0 +
λ√
2
√

n

(
A2

0 +A2
1
)

|A1|
(

1+
√

2λ√
n A0

)
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Here the second equality holds as long as 1+
√

2λ√
n A0 > 0 which happens with probability 1−O(e−n).

Based on this expression for WS, we study the event WB ≤ q:

WB ≤ q⇔ A0 +
λ√
2
√

n

(
A2

0 +A2
1
)
≤ q |A1|

(
1+

√
2λ√
n

A0

)
which is a quadratic function in A0. It can be equivalently written as

A0 +
λ√
2n

(
A2

0−2q |A1|A0
)
≤ q |A1|−

λ√
2
√

n
A2

1 (8)

We want to write the above as A0 < V +O(n−3/2) for some critical value V that is independent of A0.
From the above inequality, V satisfy

V = q |A1|+Op(n−1/2) =: q |A1|+V1

for some V1 = Op(n−1/2). Plugging this in (8) and solving for V1, we get

V1 =
(
q2−1

) λ√
2
√

n
A2

1 +O(n−1) =:
(
q2−1

) λ√
2
√

n
A2

1 +V2.

Again, by plugging this in (8) and solving for V2, we have that V2 satisfy

V2 = 0+Op(n−3/2).

So as a conclusion, with exponentially small error, WB≤ t⇔A0≤ q
∣∣Aq
∣∣+(q2−1

)
λ√
2
√

n
A2

1+Op(n−3/2).

Similarly, WB ≥−q⇔ A0 ≥−q |A1|+
(
q2−1

)
λ√
2
√

n
A2

1 +Op(n−3/2). Based on this, for the coverage error
we have

P(−q≤WB ≤ q)−P(−q≤ t1 ≤ q)

=P
(
−q |A1|+

(
q2−1

) λ√
2
√

n
A2

1 ≤ A0 ≤ q |A1|+
(
q2−1

) λ√
2
√

n
A2

1

)
−P(−q |A1| ≤ A0 ≤ q |A1|)+O(n−3/2)

=EA1

[
Φ

(
q |A1|+

(
q2−1

) λ√
2
√

n
A2

1

)
−Φ

(
−q |A1|+

(
q2−1

) λ√
2
√

n
A2

1

)
−Φ(q |A1|)+Φ(−q |A1|)

]
+O(n−3/2)

=EA1

[
−φ (q |A1|)

qλ 2
(
q2−1

)2 A5
1

2n

]
+O(n−3/2)

=
1√
2π

λ 2

n

(
−

q
(
q2−1

)2

2

(
1

q2 +1

)3

µ5

)
+O(n−3/2)

=
λ 2

n

(
−q
(
q2−1

)2
(

1
q2 +1

)3 4
π

)
+O(n−3/2).

Here in the second equality, we condition on A2 first and use that A0 and A1 are independent standard
normals. Also µi is the i-th absolute moment of the standard normal. So we have shown (5).

For sectioning, we can do a similar computation

WS =
A0 +

λ√
2
√

n
A2

0

|A1|
√(

1+
√

2λ√
n A0

)2
+

λ 2A2
1

2n

=
A0 +

λ√
2
√

n
A2

0

|A1|
(

1+
√

2λ√
n A0

)(
1+ λ 2A2

1
4n

) +Op(n−3/2).
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and

WS ≤ q⇔ A0 +
λ√
2n

(
A2

0−2q |A1|A0
)
≤ q |A1|+q |A1|

λ 2A2
1

4n
.

After some algebra, we get

WS ≤ q⇔ A0 ≤ q |A1|+
λ√
2n

q2A2
1 +q |A1|

λ 2A2
1

4n
+Op(n−3/2)

and

WS ≥−q⇔ A0 ≥−q |A1|+
λ√
2n

q2A2
1−q |A1|

λ 2A2
1

4n
+Op(n−3/2).

Then we have that

P(−q≤WS ≤ q)

=P
(
−q |A1|+q2 λ√

2
√

n
A2

1−q |A1|
λ 2A2

1
4n
≤ A0 ≤ q |A1|+q2 λ√

2
√

n
A2

1 +q |A1|
λ 2A2

1
4n

)
+O(n−3/2)

=EA1

[
Φ

(
q |A1|+q2 λ√

2
√

n
A2

1 +q |A1|
λ 2A2

1
4n

)
−Φ

(
−q |A1|+q2 λ√

2
√

n
A2

1−q |A1|
λ 2A2

1
4n

)]
+O(n−3/2)

=EA1

[
Φ(q |A1|)−Φ(−q |A1|)+

λ 2

n
φ (q |A1|)

(
−q5 |A1|5

2
+

1
2

q |A1|3
)]

+O(n−3/2)

Here the second equality follows by conditioning on A1. Thus, the coverage error of sectioning is given by

P(−q≤WS ≤ q)−P(−q≤ t1 ≤ q) = EA1

[
λ 2

n
φ (q |A1|)

(
−q5 |A1|5

2
+

1
2

q |A1|3
)]

+O(n−3/2)

=
λ 2

n

(
−q5

(
1

q2 +1

)3 4
π
+q
(

1
q2 +1

)2 1
π

)
+O(n−3/2)

so (6) is proved. The algebra for SB is quite similar to sectioning. Starting from the following expression
for the sectioning statistic:

WSB =
A0 +

λ√
2
√

n
A2

0

|A1|
√(

1+
√

2λ√
n A0

)2
,

We can do similar computations as above and get (7).

Lemma 1 indicates that these three methods have different higher-order coverage errors. More specifi-
cally, their leading term (n−1 order term) in the error expansion is different. When q≥ 1 (which is usually
the case; since 1 is the 75-percentile of the t1 distribution), the RHS of each of (5), (6) and (7) is negative,
which implies that the actual coverage probability is smaller than the nominal coverage probability. With
a litte algebra, we can show that RHS of (7) < RHS of (6) < RHS of (5) < 0. Thus, batching has the
smallest higher-order coverage error and SB has the largest higher-order coverage error.

However, if the underlying distribution is not normal, then we also need to consider the error induced
by that. The joint density of (

√
nX̄1,
√

nX̄2) admits an Edgeworth expansion where the coefficients are
determined by the cumulants of X . For simplicity, consider the case when EX3 = EX = 0 and VarX = 1.
Let κ4 = EX4− 3 be the 4-th cumulant. Then the density of

√
nXi has Edgeworth expansion pXi(x) =
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φ(x)(1+ 1
24n κ4He4(x))+O(n−3/2). Here He4 is the 4-th Hermit polynomial given by He4(x) = x4−6x2+3.

Noting that all of WB,WS and WSB can be expressed as X̄1+X̄2
|X̄1−X̄2|

+Op(n−1/2), we have that the contribution
of the error term in the Edgeworth expansion to the coverage error is given by (for both sectioning and
batching):

P
(
−q≤ X̄1 + X̄2

|X̄1− X̄2|
≤ q
)
−P
(
−q≤ U1 +U2

|U1−U2|
≤ q
)
= 2n−1

∫
−q≤ f (z)≤q

φ(z1)φ(z2)
1
24

κ4He4(z1)dz+O(n−3/2)

(9)
where f (z1,z2) =

z1+z2
|z1−z2| . Therefore, the coverage errors become the RHS of (6), (7) and (5) plus the above

term. Noting that κ4 can be positive or negative, we have that after adding the above term, it could be
the case that 0 < RHS of (7) + (9) < RHS of (6) + (9) < RHS of (5) + (9). If this is the case, then the
coverage error of SB is the smallest.

5.2 Analysis of Coverage Error When K Increases

For a general ψ(·) and distribution P, we have the following theorem regarding the asymptotic as K→∞:
Theorem 3 Suppose that Eψ(P̂1)−ψ 6= 0 (which happens when ψ is nonlinear), Var(ψ(P̂1)) < ∞, and√

nK
(
ψ(P̂)−ψ

)
⇒N(0,σ2) as K→∞ for some σ < ∞. Fix n and let K→∞. Then for any q > 0, P(−q≤

WB ≤ q)→ 0 and P(−q≤WS ≤ q)→Φ

(
q
√

nE(ψ(P̂1)−ψ)2/σ

)
−Φ

(
−q
√

nE(ψ(P̂1)−ψ)2/σ

)
.

Proof. As K→ ∞, Sbatch→
√

nVarψ(P̂1). But
√

nK
( 1

K ∑i ψ
(
P̂i
)
−ψ

)
→ sign(Eψ(P̂1)−ψ) ·∞. Thus

WB either converges to ∞ or −∞ which implies P(−q≤WB ≤ q)→ 0. Similarly, since∣∣∣∣∣S2
sec−

1
K−1

K

∑
i=1

(
ψ
(
P̂i
)
−ψ

)2

∣∣∣∣∣≤ K
K−1

(ψ(P̂)−ψ)2 = op(1),

by the strong law of large numbers and Slutsky’s theorem we have Ssec→
√

E(ψ(P̂1)−ψ)2 (as K→ ∞),

using the asymptotic result
√

nK
(
ψ(P̂)−ψ

)
⇒ N(0,σ2) we can prove the claim for P(−q≤WS ≤ q).

Theorem 3 implies that when K is large, batching has a significant bias which could lead to an extremely
small coverage, and sectioning performs better. This observation is also consistent with the numerical
findings in Nakayama (2014), which considers K = 10 and K = 20 and observes severe undercoverage for
batching when K = 20 in some examples.

We can also draw a similar conclusion by studying the coverage error in the specific example ψ(P) =
EPX +λ (EPX)2 and X ∼ N(0,1) under P. In this case, we have that (to simplify the computation, here
we focus on the one-sided CI, so the leading term for the coverage error is of order O(n−1/2) instead of
O(n−1))

P(WS ≤ q) = P

(
A0 ≤ q

√
1

K−1

K

∑
k=1

(
Ak√

K

)2

+
λq2
√

nK
1

K−1

K

∑
k=1

(
Ak√

K

)2
)
+O(n−1)

Here Ai is defined as in Section 3. Note that the same expansion holds for SB, since the difference between
the coverage of SB and sectioning is O(n−1) (as can be seen in the proof of Theorem 2). For batching, the
coverage error is given by

P(WB ≤ q) = P

(
A0 ≤ q

√
1

K−1

K

∑
k=1

(
Ak√

K

)2

+
λ√
nK

(
q2

K−1
−1
) K

∑
k=1

(
Ak√

K

)2
)
+O(n−1).
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So when q2

K−1 > 1
2 (so that

∣∣∣ q2

K−1 −1
∣∣∣< q2

K−1 ), batching has a smaller one-sided coverage error, otherwise
sectioning has a smaller error (similar to the K = 2 case, this is only true when the underlying distribution
is normal. If the underlying distribution deviates from the standard normal, this relation may not hold).
As K becomes larger, q2

K−1 > 1
2 becomes harder to be satisfied, so it is more likely that sectioning has a

smaller coverage error when K is large.

6 NUMERICAL EXPERIMENTS

We study the coverage probability using batching and sectioning. We consider the example ψ(P) =
EPX + λ (EPX)2 and K = 2 as in Section 5. We do experiments with different sample sizes and true
distribution.

Table 1: Coverage accuracy when P0 = N(0,1),λ = 5

Nominal Level 80% 90% 95%
Batching, n = 200 77.07%±0.08% 86.78%±0.07% 92.37%±0.05%

Sectioning, n = 200 77.68%±0.08% 87.65%±0.06% 93.30%±0.05%
SB, n = 200 75.68%±0.08% 86.10%±0.07% 92.05%±0.05%

Batching, n = 400 78.33%±0.08% 88.36%±0.06% 93.80%±0.05%
Sectioning, n = 400 78.16%±0.08% 88.51%±0.06% 94.00%±0.05%

SB, n = 400 77.74%±0.08% 88.16%±0.06% 93.73%±0.05%
Batching,n = 800 79.15%±0.08% 89.28%±0.06% 94.57%±0.04%

Sectioning, n = 800 79.02%±0.08% 89.26%±0.06% 94.58%±0.04%
SB, n = 800 78.90%±0.08% 89.22%±0.06% 94.56%±0.04%

For the first experiment, we set P = N(0,1) and λ = 5. We replicate the data generation and CI
construction 106 times to estimate the coverage probabilities. In Table 1, we report the the estimated

coverage probabilities with their 95% confidence intervals (the 95% CI is given as p̂±1.96
√

p̂(1−p̂)
N where

p̂ is the empirical coverage probability and N is the number of replications). We observe that 1) All of
batching, sectioning and SB have empirical coverage probabilities smaller than the nominal level. For
example, when the nominal level is 90% and n = 200, each empirical coverage probability is smaller than
88%. 2) When n is small (n = 200), sectioning has the smallest coverage error, but when n is larger
(n = 800), sectioning is comparable with or worse than batching. And in each case, SB has the largest
coverage error. For example, when the nominal level is 80% and n = 200, the coverage error of SB is about
4.3%, which is larger than batching (≈ 3.0%), and sectioning has the smallest coverage error (≈ 2.3%). But
when n = 800, the coverage error of batching (≈ 0.85%) is close to or slightly smaller than the coverage
error of sectioning (≈ 1.0%).

Table 2: Coverage accuracy when P0 = N(0,1)7,λ = 0.015

Nominal Level 80% 90% 95%
Batching, n = 100 82.97%±0.23% 91.19%±0.18% 95.34%±0.13%

Sectioning, n = 100 84.04%±0.23% 92.07%±0.17% 95.89%±0.12%
SB, n = 100 81.23%±0.24% 90.37%±0.18% 94.96%±0.14%

Batching, n = 200 81.88%±0.24% 90.72%±0.18% 95.06%±0.13%
Sectioning, n = 200 82.55%±0.24% 91.02%±0.18% 95.48%±0.13%

SB, n = 200 80.52%±0.25% 90.36%±0.18% 94.77%±0.14%
Batching, n = 400 81.47%±0.24% 90.61%±0.18% 95.12%±0.13%

Sectioning, n = 400 81.75%±0.24% 90.72%±0.18% 95.37%±0.13%
SB, n = 400 80.52%±0.25% 90.43%±0.18% 94.95%±0.14%
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For the second experiment, we set P = N(0,1)7 (i.e., X ∼ P has the same distribution as Z7 where
Z ∼ N(0,1)) and we again estimate the coverage probabilities for each method. This time, the required
computation is heavier and we only replicate 105 times. The result is reported in Table 2. Unlike the
previous example, we see that the empirical coverage probabilities are larger than the nominal levels. The
relation among the coverage errors is reversed compared to the previous example: This time SB has the
smallest coverage error, batching has a smaller coverage error than sectioning when n is small. When n is
large, the coverage errors of batching and sectioning are close. For example, in Table 2, when the nominal
level is 80% and n = 400, all of the methods have empirical coverage probabilities greater than 80%. SB
has the smallest coverage error (≈ 0.5%), and the coverage error of batching (≈ 1.5%) is slightly smaller
than the coverage error of sectioning (≈ 1.8%).

These simulation results are also consistent with our Lemma 1 and the discussion after that. For the
first experiment (normal case), the comparisons of the coverage errors among the different methods are
consistent with the comparisons among the RHS of (5), (6) and (7) as discussed after Lemma 1. For the
second experiment, since the underlying distribution has a large 4th cumulant, (9) is large and as a result,
the situation mentioned at the end of Section 5.1 unfolds, so the relation among the coverage errors is
reversed.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the National Science Foundation under grants CAREER CMMI-
1834710 and IIS-1849280.

REFERENCES
Asmussen, S., and P. W. Glynn. 2007. Steady-State Simulation, 96–125. New York, NY: Springer New York.
Bhattacharya, R. N., and J. K. Ghosh. 1978. “On the Validity of the Formal Edgeworth Expansion”. The Annals of Statistics 6(2):434

– 451.
Bhattacharya, R. N., and R. R. Rao. 2010. 4. Asymptotic Expansions—Nonlattice Distributions, 188–222.
DiCiccio, T., P. Hall, and J. Romano. 1991. “Empirical Likelihood Is Bartlett-correctable”. Annals of statistics 19(2):1053–1061.
Glynn, P. W., and D. L. Iglehart. 1990. “Simulation Output Analysis Using Standardized Time Series”. Mathematics of

Operations Research 15(1):1–16.
Glynn, P. W., and H. Lam. 2018. “Constructing Simulation Output Intervals Under Input Uncertainty via Data Sectioning”. In

Proceedings of the 2018 Winter Simulation Conference, edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain,
and B. Johansson, 1551–1562. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Hall, P. 1992. The Bootstrap and Edgeworth Expansion. Springer.
Lewis, P. A. W., and E. J. Orav. 1989. Simulation Methodology for Statisticians, Operations Analysts, and Engineers: Vol. 1.

USA: Wadsworth Publ. Co.
Nakayama, M. K. 2007. “Fixed-width Multiple-comparison Procedures Using Common Random Numbers for Steady-state

Simulations”. European Journal of Operational Research 182(3):1330–1349.
Nakayama, M. K. 2014, November. “Confidence Intervals for Quantiles Using Sectioning When Applying Variance-Reduction

Techniques”. ACM Trans. Model. Comput. Simul. 24(4):1–21.
Pope, A. 1995. “Improving Confidence Intervals Obtained by Sectioning in Monte Carlo Analysis”. In MODSIM 1995

International Congress on Modelling and Simulation. November 27th-30th, Newcastle, NSW, Australia, 150-154.
Schmeiser, B. 1982. “Batch Size Effects in the Analysis of Simulation Output”. Operations Research 30(3):556–568.

AUTHOR BIOGRAPHIES
SHENGYI HE is a PhD student in the Department of Industrial Engineering and Operations Research at Columbia University.
He received his B.S. degree in statistics from Peking University in 2019. His research interests include variance reduction and
uncertainty quantification via stochastic and robust optimization. His email address is sh3972@columbia.edu.

HENRY LAM is an associate professor in the Department of Industrial Engineering and Operations Research at Columbia
University. He received his Ph.D. degree in statistics from Harvard University in 2011. His research interests include efficient
methodologies and statistical uncertainty quantification for Monte Carlo computation, predictive modeling and data-driven
optimization. His email address is khl2114@columbia.edu. His website is http://www.columbia.edu/ khl2114/.

mailto://sh3972@columbia.edu
mailto://khl2114@columbia.edu
http://www.columbia.edu/~khl2114/

	INTRODUCTION
	SECTIONING AND BATCHING
	ERROR ANALYSIS FOR BATCHING
	ERROR ANALYSIS FOR SECTIONING
	COMPARISONS ON COVERAGE ERRORS
	Higher-Order Coverage Error When K=2: An Example
	Analysis of Coverage Error When K Increases

	NUMERICAL EXPERIMENTS

