
PHYSICAL REVIEW B 103, 235108 (2021)

Universal signatures of Dirac fermions in entanglement and charge fluctuations
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We investigate the entanglement entropy (EE) and charge fluctuations in models where the low-energy physics
is governed by massless Dirac fermions. We focus on the response to flux insertion which, for the EE, is widely
assumed to be universal, i.e., independent of the microscopic details. We provide an analytical derivation of
the EE and charge fluctuations for the seminal example of graphene, using the dimensional reduction of its
tight-binding model to the one-dimensional Su-Schrieffer-Heeger model. Our asymptotic expression for the
EE matches the conformal field theory prediction. We show that the charge variance has the same asymptotic
behavior, up to a constant prefactor. To check the validity of universality arguments, we numerically consider
several models, with different geometries and numbers of Dirac cones, and either for strictly two-dimensional
models or for a gapless surface mode of three-dimensional topological insulators. We also show that the flux
response does not depend on the entangling surface geometry as long as it encloses the flux. Finally we consider
the universal corner contributions to the EE. We show that in the presence of corners, the Kitaev-Preskill
subtraction scheme provides nonuniversal, geometry-dependent results.
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I. INTRODUCTION

Emergent Dirac fermions have become ubiquitous in mod-
ern condensed matter physics. Beyond the seminal case of
graphene, massless Dirac fermions can be found in more
exotic situations such as the surface of a three-dimensional
topological insulator [1,2], optical lattices [3], microwave ex-
periments [4], and even quasi-2D organic materials [5–7].
Dirac physics also appears in strongly correlated quantum
systems such as quantum spin liquids [8,9] where evidence
of gapless Dirac quantum spin liquids have been observed
[10,11]. By their inherent quantum many-body nature, the
study of these systems heavily relies on numerical sim-
ulations. There, entanglement measurements such as the
entanglement entropy (EE) and bipartite fluctuations have
emerged as fundamental and powerful techniques to probe
quantum phases.

The success of EE and bipartite fluctuations is widespread.
For one-dimensional systems, they can reliably detect quan-
tum phase transitions, measure the central charge of critical
points [12–14] as well as the Luttinger parameter [15–18].
Furthermore in the vicinity of a quantum critical point,
they provide a measure of the correlation length. For two-
dimensional gapped systems, EE is capable of detecting
intrinsic topological order and extracting the quantum di-
mension of the various anyonic excitations [19,20]. It can
also identify the presence and nature of massless edge modes
[21–25] and even massless hinge modes for three-dimensional
insulators [26].

In this paper, we aim to find universal signatures of Dirac
fermions in both the quantum EE and the bipartite charge
fluctuations. A promising idea to detect Dirac matter is to use
the entanglement response to flux insertions [10,27,28]. This
twist dependence of the EE however has been predicted using
conformal field theory. While it is generally believed that
this response is universal, that is insensitive to short-distance
physics, a strong argument is still lacking. Conversely, there
is a priori no guarantee that the flux response is not going
to be plagued by nonuniversal contributions in a given lattice
model. In order to further support the claim that the flux
response of the EE is robust, we investigate this response
for various tight-binding models whose universal low-energy
physics is described by Dirac fermions, such as graphene. For
the latter, we provide an analytical derivation of the EE and its
flux dependence from the tight-binding model and its relation
to the one-dimensional Su-Schrieffer-Heeger (SSH) model.
Furthermore for noninteracting fermions, the EE is tied to the
statistics of charge fluctuations [16,29–32]. Thus we propose
and test an even simpler signature for Dirac fermions than the
EE, namely, the flux dependence of the charge fluctuations.

This paper is organized as follows. In Sec. II, we pro-
vide a brief overview of the EE and particle fluctuations
for noninteracting models. We also recall the exact results
known for the one-dimensional SSH model and derive the
analytical expression of the charge variance for this model. In
Sec. III, we compute analytically the exact flux dependence
of both the EE and the particle fluctuations for graphene.
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The strategy underlying this computation is that of dimen-
sional reduction [33,34], which allows to reduce the problem
to a sum of one-dimensional SSH chains. We further argue
that the flux dependence is in fact exact for any noninteract-
ing tight-binding Hamiltonian in the same universality class.
In Sec. IV, we benchmark our analytical predictions against
numerical computations for several lattice models, including
for a model of massless surface modes for a three-dimensional
insulator. We also check the robustness of the flux response to
deformations of the region considered. In Sec. V, we analyze
the effect of corners to the EE and the consequences for a
potential Kitaev-Preskill subtraction scheme.

II. METHODOLOGY

In this section, we provide an overview of the correlation
matrix technique to compute the EE and charge fluctuations
in noninteracting fermionic systems. We then discuss in detail
the SSH model, including the asymptotic expression and finite
size effects for both aforementioned quantities.

A. Entropy and charge fluctuations in noninteracting
fermionic systems

We consider a free fermionic lattice model with translation
invariance, which is described by the generic Hamiltonian

H =
∑

r, r′ ∈ L
τ, τ ′ = 1, . . . , d

c†
τ (r)hττ ′ (r − r′)cτ ′ (r′) , (1)

where cτ (r) denotes the fermionic annihilation operator for
the state τ in the unit cell located at r in the lattice L,
and d is the number of inequivalent quantum states within
each unit cell. Exploiting translational symmetry, the Hamil-
tonian matrix h(r) is conveniently expressed by its Fourier
transform

h̃(k) =
∑
r∈L

h(r)e−ik·r , (2)

with k ∈ BZ in the first Brillouin zone.
At thermal equilibrium, the many-body system is described

by a Gaussian density matrix ρT = exp(−βH)/Z , with β

the inverse temperature and Z = Tr (e−βH). Note that in this
paper, we will always assume a zero temperature, meaning
that ρT becomes the projector onto the system’s ground state.
This Gaussian character is handed down to any subsystem of
the original lattice. In other words, the reduced density matrix
for a subregion A

ρA = Tr Ā(ρT ) , (3)

with Tr Ā the partial trace over Ā the complement of A, is
also Gaussian. As a consequence, Wick’s theorem applies and
all expectation values in A can be computed from the sole
knowledge of the correlation matrix [35]

[CA]ττ ′ (r, r′) = Tr A(ρA c†
τ (r)cτ ′ (r′)) . (4)

Indeed, the relation [36–40]

ρA = det(1 −CA) exp{c† log[CA(1 −CA)−1]c}, (5)

grants access to the entire eigen-decomposition of ρA from
that of CA. Here, the summation over the omitted indices r

and τ is assumed in the exponential. All observables of the
many-body problem can be evaluated from the diagonalization
of the one-body operator CA.

This expression is particularly useful when characterizing
the properties of the free-fermion system, as it provides an
efficient way to compute the EE of the region A, equation
defined as

SA = −Tr A[ρA ln(ρA)] . (6)

Indeed, using Eq. (5), we get

SA = −Tr [CA lnCA + (1 −CA) ln(1 −CA)] . (7)

Fluctuations of the total charge NA contained in the region
A, which are more easily accessible than SA in experiments
[29,41], can also serve to probe the system’s nature. As for
the entropy, the mean value, variance and all higher order
cumulants of NA can be obtained as a function of the correla-
tion matrix eigenvalues. To find compact expressions for those
quantities, it is useful to introduce the generating function

fA(t ) = ln〈etNA〉 = Tr ln [1 + (et − 1)CA] . (8)

For instance, the mean and variance of NA are obtained as

〈NA〉 = (∂t fA)t=0 = Tr (CA) ,

VA = 〈
N2
A

〉 − 〈NA〉2 = (∂2
t fA)t=0 = Tr

(
CA −C2

A
)
. (9)

In the rest of the paper, we rely on Eqs. (7) and (9) to compute
the EE and charge fluctuations of lattice models hosting Dirac
cones, either analytically or numerically.

B. Illustrative example: the SSH model

We illustrate the method outlined above on the SSH model
[42], which describes spinless fermions with staggered hop-
ping on a one-dimensional chain [see Fig. 1(a)]. Its Fourier
Hamiltonian is

h̃SSH(q) =
[

0 fSSH(q, δ)
f ∗
SSH(q, δ) 0

]
,

(10)
fSSH(q, δ) = (1 − δ) + (1 + δ)eiq ,

with −π < q � π a momentum label and −1 � δ � 1 the
dimensionless staggering amplitude. At half-filling, the lowest
excitation above the ground state has energy 2|δ|. The corre-
sponding correlation length is given by

ξSSH(δ) = |ln |ε||−1 , with: ε = 1 − δ

1 + δ
. (11)

It diverges when δ → 0, where the model describes a half-
filled and gapless system of spinless fermions with nearest-
neighbor hopping.

Let us consider a region A(w) of w consecutive unit cells,
i.e., of 2w consecutive sites. Its correlation matrix reads (see
Appendix A)

CA(r, r′) =
∫ π

−π

dq

4π
e−iq(r−r′ )

[
1 − h̃SSH(q)

| fSSH(q)|
]

. (12)

The spectrum of the correlation matrix is known exactly
in the limit of a very large interval w → ∞. It has been
obtained in Refs. [43,44] exploiting the fact that CA is a
block Toeplitz matrix, and using the Szegö-Widom theorem.
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(a) (b) (c) (d)

FIG. 1. (a) Schematic representation of the SSH chain with staggered hopping 1 ± δ. (b) Charge variance V SSH
A of the SSH model (blue)as

a function of δ numerically evaluated for a segment of width w = 100 in a finite but long chain (Nx = 1024 	 w), compared to the asymptotic
result Eq. (15) (dotted). The inset zooms in the region |δ| � 0.02. (c) Same as b for the EE SSSH

A . (d) EE as a function of the number of
unit cells w in A at fixed δ. For δ = 0.01 (red), i.e., slightly above the critical value, increasing the width w above the correlation length
yields converged results that match the asymptotic prediction. At the critical point δ = 0 (or when w < ξSSH–see text), the EE follows the
Cardy-Calabrese relation SSSH

A = ln(w)/3 (green).

An alternative derivation based on the corner transfer matrix
can be found in Refs. [39,45]. This spectrum is particularly
simple:

λm = 1

1 + emπ I (k′ )
I (k)

,

{
m even if δ > 0
m odd if δ < 0 , (13)

with each eigenvalue λm appearing twice, k = min(ε, 1/ε),
k′ = √

1 − k2, and I (k) = ∫ π/2
0 [1 − k2 sin2 θ ]−1/2dθ the

complete elliptic integral of the first kind. This remarkable
formula leads to the following asymptotic limits of the EE
[45,46]

SSSH
A(w→∞)(δ) =

{
1
3

[
ln 4

kk′ + (k2 − k′2) 2I (k)I (k′ )
π

]
if δ < 0

1
3

[
ln k2

16k′ + (2 − k2) 2I (k)I (k′ )
π

] + 2 ln 2 if δ > 0
. (14)

Similarly, we can obtain the charge variance (see Appendix B
for the detailed derivation) for w → ∞

V SSH
A (δ) =

{
2I (k)E (k)

π2 − 2k′2I (k)2

π2 if δ < 0
2I (k)E (k)

π2 if δ > 0
, (15)

where E (k) is the complete integral of the second kind E (k) =∫ π/2
0 [1 − k2 sin2 θ ]1/2dθ .

These asymptotic limits are plotted in Figs. 1(b) and 1(c)
as a dotted line. Their characteristic behavior near the three
particular points δ = −1, 0, 1 can be intuitively understood.
Let us first focus on δ = ±1, for which one of the staggered
tunneling coefficients is zero, and the system forms local
independent dimers. The boundary ∂A either cuts two of these
dimers into halves, leading to SSSH

A = 2 ln(2) andV SSH
A = 1/2

for δ = 1, or does not divide any bound pairs, giving SSSH
A = 0

and V SSH
A = 0 for δ = −1. These are the two limits observed

in Figs. 1(b) and 1(c). Turning to δ close to zero, the sys-
tem approaches its gapless point and the correlation length
diverges as ξSSH ∼ 1/2|δ|. When the latter is much larger
than the lattice spacing, the universal properties of the model
can be captured by a massive quantum field theory. For 1d
systems, this yields the characteristic relation [14,15]

3SSSH
A ∼ π2V SSH

A ∼ ln(ξSSH) ∼ − ln(2|δ|), (16)

which correctly captures the logarithmic divergence of
Eqs. (14) and (15) near δ = 0.

The explicit expression Eq. (12) also allows direct ac-
cess to the charge variance and the EE away from the
asymptotic regime w → ∞ by numerical diagonalization of
CA. In Figs. 1(b) and 1(c), this full-fledged numerical eval-
uation for a segment of length w = 100 in a finite chain
containing Nx = 1024 	 w unit cells is compared to the
asymptotic result Eq. (14). A perfect agreement is observed,
except for |δ| < 0.01 (inset), where we notice that the correla-
tion length ξSSH(δ) > w exceeds the size of A. In that region,
the single-particle gap is smaller than the finite-size energy
resolution ∼1/w. Thus the system restricted to A effectively
behaves as a critical chain, and the EE should follow the
Cardy-Calabrese relation with a central charge equal to one,
i.e., SSSH

A = ln(w)/3 [14]. This is indeed what is observed
at small w in Fig. 1(d). If w is increased above the ξSSH,
the thermodynamic limit is reached within region A and the
asymptotic result Eq. (14) holds. This materializes in Fig. 1(d)
as a departure from the Cardy-Calabrese formula and a sat-
uration of the EE towards a constant. As explained above,
the value of this constant approaches ln(ξSSH)/3 close to the
critical point. In this saturated region, the EE does not depend
on w but rather scales with the size of the boundary ∂A, which
is a constant for a 1d chain, an example of the area law that
highlights the short-ranged correlations in gapped phases.

The SSH example provides an important insight, which
will prove useful thereafter to understand our results: asymp-
totic results on the charge variance and the EE only apply
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when the typical size of A is greater than all other length
scales of the problem. In particular, the points where the
system approaches criticality should be treated with great
care. The SSH chain also offers the closed-form expression
Eqs. (14) and (15) that we will use to quantitatively examine
the properties of graphene in Sec. III.

III. ENTANGLEMENT RESPONSE TO FLUX

Entanglement properties are known to be a powerful probe
to analyze the nature of quantum states. A promising idea to
detect Dirac matter is to use the entanglement response to
flux insertions [10,27,28]. In this section, we review the field
theory prediction to the scaling of the EE for a Dirac fermion,
before presenting an exact calculation for the graphene lattice
model.

A. Field theory prediction

To put things in a broader context, let us first recall the be-
havior of EE for gapped phases. We focus on two-dimensional
systems, and in this section we assume that the spatial region
A has a smooth boundary, which we denote by ∂A (the
boundary is sometimes referred to as the entangling surface).
The leading correction to the ubiquitous area law for a gapped
two-dimensional system is a universal constant correction
γtopo dubbed topological entanglement entropy (TEE) [19,20]:

SA = αL − γtopo + O(L−1). (17)

In the above equation L is the length of the boundary ∂A.
The TEE is universal in the renormalization group sense: it is
insensitive to irrelevant perturbations, and thus only depends
on the infrared, universal properties of the quantum phase un-
der consideration. The infrared fixed point of a gapped phase
is described by a (possibly trivial) topological quantum field
theory. The TEE γtopo only depends on the related topological
data as well as the topology of the region A, e.g., the number
of connected components of ∂A: if the boundary ∂A has
two components, then γ is doubled. In particular, the TEE
vanishes for phases without intrinsic topological order.

In the case of critical Dirac matter, the infrared theory
capturing the low-energy universal properties is a 2 + 1 di-
mensional conformal field theory. Generically for gapless
systems with an emerging conformal invariance, the area law
is still expected to hold [27,47–50]:

SA = αL − α0 + O(L−1) . (18)

where α0 is a constant (i.e., scale-invariant) correction. Unlike
the TEE γtopo, which is insensitive to smooth deformations
of the spatial region A, the constant term α0 does depend
on the shape of A [28,51]. Furthermore, for theories with
a U(1) symmetry, α0 also depends on the magnetic flux
[10,27,28,50,52]. Namely working on an infinite cylinder of
perimeter L and taking for region A a semi-infinite half-
cylinder [see Fig. 2(a)], the EE for a single massless Dirac
fermion reads [28,52]

α0 = 1

6
ln

∣∣∣∣2 sin
φ

2

∣∣∣∣ , (19)

FIG. 2. (a) For the two-cylinder EE, A is half of the an infinite
cylinder threaded by a flux φ. Ā denotes the complement of A.
(b) Our lattice calculations are done on a cylinder with Nx × Ny unit
cells, assuming periodic boundary conditions along y, with A a slab
of length w unit cells in the x direction.

where φ is the flux going through the cylinder, as depicted
in Fig. 2(a).The EE in this geometry has been coined two-
cylinder entanglement entropy [28]. The presence of an exact
zero mode at φ = 0 yields a divergence in Eq. (19). When the
region A has a finite length w along the cylinder direction, α0

is rather bounded by an amount proportional to ln(w) when
φ approaches zero, as hinted in Fig. 1(d) and highlighted in
Ref. [28].

It is rather tempting to exploit the non trivial dependence
on shape and flux of α0 as a diagnostic tool to help identify the
universality of a given critical model. But this raises the ques-
tion of the robustness of this quantity. Being dimensionless,
α0 does not depend on the short-distance cutoff. Based on this
observation, it is generally assumed that α0 is a low-energy
property of the phase under consideration. In other words, α0

is typically believed to be universal in the renormalization
group sense, that is insensitive to irrelevant perturbations.
This question however is not fully resolved, and generally it
is not known whether α0 can be reliably compared between
field theories and lattice models. In the particular case of the
flux response, numerical evidence suggests that the behavior
Eq. (19) is indeed universal. In particular this signature has
been used successfully in Refs. [10,11] as a fingerprint for
Dirac fermions in spin liquids and in the π -flux model. In or-
der to further address this question, we consider the particular
example of a graphene cylinder, hosting two Dirac cones.

B. Exact lattice calculation for graphene

Focusing on graphene, we use dimensional reduction and
the asymptotic results Eq. (14) to derive an exact formula
for the corresponding EE of a segment of width w → ∞. It
exactly matches the continuum prediction Eq. (19), up to a
factor 2 accounting for the presence of two Dirac cones, and
quantitatively agrees with numerical simulations. Moreover,
our derivation can be easily generalized to any noninteracting
tight-binding model hosting Dirac cones, thus providing a
very strong argument in favor of the universality of the flux
response Eq. (19).
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FIG. 3. (a) Honeycomb lattice with basis vectors a1 and a2 with
periodic boundary condition along y. (b) Corresponding first Bril-
louin zone, obtained as the Wigner-Seitz unit cell in momentum
space. Translating the tips by a momentum lattice vector, as shown
with colors gives the rectangular Brillouin zone used in the main text
(c). In (c), the allowed values of the momentum qy are shown with
dashed lines, together with the two Dirac points K and K ′.

1. Graphene as a collection of SSH chains

Graphene can be modeled by a nearest-neighbor tight-
binding model on the honeycomb lattice with Bloch
Hamiltonian

h̃G(k) =
[

0 f ∗
f 0

]
, f = 1 + eik·a1 + eik·a2 , (20)

with

a1 =
(√

3

2
,

1

2

)
, a2 =

(√
3

2
,−1

2

)
, (21)

the two lattice basis vectors, and where the internal degree
of freedom τ = A,B distinguishes the two inequivalent sites
of the honeycomb unit cell [see Fig. 3(a)]. We assume that
the system has Ny unit cells and periodic boundary condition
along the y direction, i.e., we identify any lattice site r with its
translated r + Ny(a1 − a2), which requires to consider a total
perimeter of Ny. Along the perpendicular direction a1 + a2

pointing along the x direction, we either consider an infinitely
long cylinder for analytical purposes, or assumed periodic
boundary conditions with a number of unit cells Nx 	 Ny for
numerical calculations. The momenta k = (kx, ky ) satisfy

k · a j =
√

3kx
2

+ (−1)1+ j ky
2

, (22)

and can be restricted to a single Brillouin zone (BZ) that we
choose rectangular and parametrized by the reduced momenta
qx = √

3kx/2 ∈ (−π, π ] and qy ∈ (−π, π ] [see Figs. 3(b)
and 3(c)]. The periodic boundary conditions along y quantize
the transverse momenta as

qy = 2pπ + φ

Ny
, p = −

⌊
Ny − 1

2

⌋
, . . . ,

⌊Ny

2

⌋
(23)

where �x
 denotes the integer part of x. Here, φ denotes
the flux threading the graphene along the cylinder axis, as
sketched in Fig. 2(b). In terms of reduced momenta, the K and
K ′ points, where the Dirac cones are located, lie at (π,±Ky)
with Ky = 2π/3, respectively. They are only reached at zero
flux if Ny is divisible by 3, making the graphene cylinder (or
nanotube) metallic.

Having set up the necessary notations, we now recall that
the graphene cylinders can be viewed as a collection of SSH
chains, as schematically drawn in Fig. 4(a). We first rewrite

f = 1 + 2 cos(qy/2)eiqx = Q(qy) fSSH[qx, δ(qy)] , (24)

(a)

(c)

(b)

FIG. 4. (a) After Fourier transform along the y direction, a
graphene cylinder can be viewed as decoupled SSH chains with
parameter δ(qy ) [see Eq. (25)]. (b) Using this dimensional reduction,
the asymptotic EE of graphene can be evaluated exactly for a seg-
ment of length w → ∞ preserving translational symmetry along y.
We split the momentum-resolved EE into a singular and regular part.
(c) Comparison of the asymptotic results to the numerical evaluation
of the graphene EE as a function of the flux φ for a segment of width
w = 200 on a cylinder of total size Nx = 1024 and Ny = 60 with no
fitting parameters. For convenience, we show the EE shifted by its
value at φ = π , i.e., SA(φ) − SA(π ). In the inset, we probe the area
law at φ = π by tuning Ny up to 60.

with Q(qy) = 2[2 cos(qy/2) + 1]−1 and

δ(qy) = 2 cos(qy/2) − 1

2 cos(qy/2) + 1
. (25)

Hence, we assign for each value of qy an effective SSH chain
in the x direction with a staggering parameter δ(qy).

This representation as a collection of independent SSH
chains allows to evaluate EEs and charge fluctuations for
graphene tubes. Consider for region A a slab of the cylinder of
length w along x [see Fig. 2(b)]. At zero energy, all states with
negative energies are filled, and the positive prefactor Q(qy)
could be replaced by one when computing the correlation
matrix [see Eq. (4)]. The EE of the graphene cylinder thus
reads

SA =
∑
qy

SSSH
A [δ(qy)] . (26)

2. Asymptotic flux dependence

Using the asymptotic result for the SSH chain [Eq. (14)],
we now infer the expression of the graphene EE in the w →
∞ limit. Because the SSH EE diverges at the Dirac closing
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points, where δ(±Ky) = 0, we decompose it into a regular and
singular part

SSSH
A [δ(qy)] = Ssin

A (qy) + Sreg
A (qy) . (27)

From the known behavior of the elliptic integral I (k) [53] and
the definition of δ(ky) given by Eq. (25), we obtain the singular
part

Ssin
A (qy) = −1

3
ln

∣∣∣sin
(qy − Ky

2

)
sin

(qy + Ky

2

)∣∣∣. (28)

The regular part Sreg
A = SSSH

A − Ssin
A follows from Eq. (14).

These two contributions are shown in Fig. 4(b), where the di-
vergence of the momentum-resolved EE clearly appears near
the K and K ′ points.

Using twice the identity

Ny−1∏
p=0

sin

(
pπ

Ny
+ x

)
= sin(Nyx)

2Ny−1
(29)

for x = φ−2π�(Ny−1)/2

2Ny

± Ky

2 , we find the following contribu-

tion of Ssin
A to the graphene EE:

∑
qy

Ssin
A (qy) = 2Ny

3
ln(2) − 1

3

∑
K∈{±Ky}

ln

∣∣∣∣2 sin

[
φ − NyK

2

]∣∣∣∣.
(30)

The first term of the right hand side contributes as an area
law term, while the second one is exactly the expected flux
dependence for two Dirac cones located at ±Ky [see Eq. (19)].
Because Sreg

A is periodic in qy and sufficiently smooth, we
can replace the sum by an integral up to exponentially small
correction in Ny through [54]

∑
qy

Sreg
A (qy) = Ny

2π

∫ π

−π

Sreg
A (q)dq + O(e−κNy ) , (31)

with κ > 0.

3. Summary and numerical checks

Altogether, we find that

SA(w→∞) = αNy − 1

3
ln

∣∣∣∣∣∣
∏

K=±Ky

2 sin

[
φ − NyK

2

]∣∣∣∣∣∣, (32)

with α = 2 ln 2
3 + ∫ π

−π
Sreg
A (q) dq2π

. This proves that, for w suffi-
ciently large, the EE of a graphene tube quantitatively matches
the continuum prediction Eq. (19). We compare this asymp-
totic prediction to the numerical results obtained for a region
A of width w = 200 in Fig. 4, where we stress that no fitting
parameters are used since the integral in α is evaluated numer-
ically. A perfect agreement is found between the numerical
and the asymptotic results, except near the gap closing points
φ = 0, 2π . This is expected since the correlation length of
the SSH chain with δ(±Ky) = 0 diverges, which forbids the
use of the asymptotic results for a finite w as considered in a
numerical calculation (see discussion in Sec. II B).

C. Charge fluctuations

Although our discussion has been so far focused on the EE,
it naturally extends to the charge fluctuations. Indeed, the re-
duction of the graphene cylinder to a collection of SSH chains
allows us to express the variance VA as a sum of variances
of the form Eq. (15). More precisely, we introduce nA(qy)
the number of particles localized in region A with transverse
momentum qy and find that

fA(t ) = ln〈et
∑

qy nA(qy )〉 =
∑
qy

ln〈etnA(qy )〉 . (33)

All cumulants of NA inherit the additivity of the generating
function fA, and the charge variance of the graphene slab
becomes

VA =
∑
qy

V SSH
A [δ(qy)]. (34)

Following Sec. III B 2, we then split the asymptotic ex-
pression of the variance given in Eq. (15) into a singular and
a regular part V SSH

A = V reg
A +V sin

A , with V sin
A = (π2/3)Ssin

A as
shown in Appendix B. Summations over qy are performed
identically to the EE. We thus obtain for the charge variance

VA = βNy − 1

π2
ln

∣∣∣∣∣∣
∏

K=±Ky

2 sin

[
φ − NyK

2

]∣∣∣∣∣∣, (35)

with β = 2 ln 2/π2 + ∫ π

−π
V reg
A

dqy
2π

analogous to α in Eq. (32).
We will show in Sec. IV C, how this expression accu-
rately captures the direct numerical evaluation of the charge
variance.

We can repeat a similar argument to express higher order
cumulants

κn = ∂n
t fA(t )

∣∣
t=0, n > 2, (36)

as a function of their counterparts in the SSH model

κn =
∑
qy

κSSH
n [δ(qy)]. (37)

As shown in Appendix B, the latter are regular at δ = 0:
charge fluctuations of 1d critical systems are Gaussian [55].
More precisely, only the variance increases proportionally
to ln w when the length of the interval w increases, while
all higher order cumulants eventually saturates to constant
values. Because the singular part vanishes, we find that

κn = Ny

2π

∫ π

−π

κSSH
n [δ(q)] dq, (38)

up to exponentially small corrections, as in Eq. (31) for the
regular part of the entropy. Therefore, higher order cumulants
only exhibit exponentially small flux-dependent corrections
to the area law. For this reason, we will only consider the
variance in the rest of this paper.

IV. EXTENSION AND NUMERICAL RESULTS

In this section, we show that the exact results derived
for graphene can be easily generalized to any noninteracting
tight-binding model hosting Dirac cones, thus providing a
very strong argument in favor of the universality of the flux
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response Eq. (19). Furthermore, we highlight that the typical
flux-dependence of Dirac cones does not come from the par-
ticular choice of the region A used in our derivation. Indeed, it
is observed as long as the region A winds around the cylinder.
We provide similar evidence for the charge variance.

A. Other models

The separation of the momentum-resolved entropy into
a singular and regular part offers simple generalizations to
other models and lattices. Indeed, the regular part only con-
tributes to the nonuniversal area law coefficient α, while all
the flux dependence stems from the singular part. The lat-
ter is free from any microscopic details. Indeed, it models
the logarithmic divergence of the EE ln(ξ )/3 near each of
the Dirac points, where the correlation length is given by
ξ (qy) ∼ |qy − K|−1 due to the characteristic linear dispersion
relation of the Dirac cone. The formula Eq. (28) can be
straightforwardly extended to any model with ND Dirac cones
located at Ky,1, . . . ,Ky,ND along qy, and yields the following
flux dependence for the EE

SA = αNy − 1

3
ln

∣∣∣∣∣
ND∏
i=1

2 sin

[
φ − φi

2

]∣∣∣∣∣ . (39)

Here, φi = NyKy,i is the flux at which one of the finite size
momenta qy = (2π p+ φ)/Ny reaches Ky,i. This flux depen-
dence of the EE appeared as an ansatz in Ref. [10]. The above
argument ascertains that this formula is indeed valid for any
(noninteracting) lattice model hosting Dirac cones.

We check this statement numerically by considering six
different 2d models hosting either ND = 1 or 2 Dirac cones
(see Appendix C) and the surface Dirac mode of a 3d
model (see Appendix D). As suggested by our derivation in
Sec. III B, the results presented in Fig. 5 hint that the lattice
regularization has little effect on the flux dependence of the
EE, which always follows the prediction Eq. (19). We also
observe the same behavior in a 3d model labeled “hinge” in
Fig. 5, which holds one surface Dirac mode on its top and
bottom surface (see Appendix D). In Fig. 5, we choose 3d
bulk of dimension (Nx,Ny,Nz ) = (100, 20, 60) and a region
A of size (30,20,20) starting from the top surface, in order to
only enclose the Dirac mode from the upper surface.

As in the graphene case, we observe substantial corrections
to Eq. (19) when φ is tuned such that one of the momenta qy
hits (or getting close to) the center of a Dirac cone, which
occurs for φ = 0, 2π in Fig. 5. In the illustrative example of
Sec. II B, we observed that asymptotic results for the EE only
hold when w is greater than the largest correlation length of
the system. This largest correlation length is of order ∼Ny/φ

originating from the finite size gap close to the Dirac cone
band closing. Hence, finite-size numerical simulation neces-
sarily fail to capture the thermodynamic behavior Eq. (19)
when φ is too close to 0 or 2π , where we instead anticipate
nonuniversal lattice-dominated physics.

B. Topology of the subregion A
While we have heavily relied on the translational symmetry

of the region A along the cylinder perimeter to verify the flux
dependence (19) in lattice models, the slab geometry is not

FIG. 5. Flux dependence of the EE (shifted by its value at φ = π ,
and per Dirac cone) for six distinct 2d models hosting ND = 1 or 2
Dirac modes (see Appendix C), with A a slab of length w = 100
on a cylinder with total dimensions Nx = 512 and Ny = 60. They all
follow the expected flux dependence given by Eq. (19) (black lines).
We also observe the same behavior for the surface mode of a 3d
model labeled “hinge,” which holds one surface Dirac mode on its
top and bottom surface (see text and Appendix D for more details).
For convenience, models with a square Bravais lattice are shown for
φ � π , whereas those defined on the honeycomb lattice are depicted
for φ > π (the results being symmetric around φ = π ). The grey
areas close to φ = 0, 2π correspond to the cases where one of the
momenta is getting close to (at least) one Dirac singularity. There,
the finite value of w leads to deviation to the asymptotic expression
of Eq. (19).

the only one where the characteristic flux response of Dirac
cones appears. We now present numerical evidence showing
that the same behavior arises if and only if the region A
wraps around the cylinder. We perform all our simulations
on the 1/2-BHZ model [56], which describes tunneling of
spin-polarized fermions on a square lattice with two orbitals
per unit cells. The tunneling phases between the orbitals and
the on-site potential difference are tuned such that the system
hosts a single Dirac cone at the center of the Brillouin zone
(see Appendix C).

We first consider a region A winding around a cylinder of
perimeter Ny = 80, with boundary surfaces that break transla-
tional symmetry along the y direction, as shown in the inset
of Fig. 6(a). We numerically generated A with two random
walks along the cylinder perimeter and returning to the origin
that we separated by a mean distance w. The EE extracted as a
function of the flux φ is shown in Fig. 6(a). It follows the con-
tinuum expectation Eq. (19), up to small corrections that we
attribute to finite size effects. Indeed, they decrease with larger
w, in agreement with the discussion of Sec. III. Moreover,
these discrepancies are similar in magnitude for the rough
surface A and for a slab with flat edges shown in Fig. 6(b) for
comparison. This indicates that, up to finite-size corrections,
the typical flux dependence of Dirac cones appears when
the region A wraps around the cylinder, irrespective of the
boundary translational symmetry or its smoothness.

On the contrary, the flux response is not observed if A
does not wind around the cylinder, irrespective of the shape
of the boundary. This can be seen in Fig. 6(c), where the
flux-dependence of the EE is presented for a rectangular patch
of size w × (Ny/2), which only covers half of the cylinder
perimeter. The variation upon inserting the flux φ is drastically
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(a)

(c)

(b)

FIG. 6. Flux dependence of the EE in the 12-BHZ model for
different geometry of A. For convenience, we show the EE shifted by
its value at φ = π , i.e., SA(φ) − SA(π ). In (a) and (), the entangling
region fully wraps around the cylinder with perimeter Ny = 80 and
total length Nx = 1024. It either has rough (a) or flat (b) bound-
aries. In (), the region A only cover half of the cylinder perimeter
Ny = 120, as shown in the left panel. The right panel of (c) gives
the flux dependence of the EE With a larger w that mitigates finite-
size effects, (a) and (b) converge toward the continuum prediction
Eq. (19) (black line), while the (c) decreases to zero. This suggests
that the typical flux dependence of Dirac cones is observed if and
only if the region A wraps around the cylinder, i.e., it depends on its
topology.

reduced in this geometry compared to the previous case, by
a factor of about 10 (see Fig. 6). While we see that the
EE further reduces with larger w, we cannot reliably affirm
that it converges to zero from our numerical data, especially
when the flux φ is close to 0 or 2π , where one of the fi-
nite size momenta reaches the Dirac cone. Nevertheless, our
numerical results show a clear departure from Eq. (19) when
the region A does not wrap around the cylinder. This numer-
ical evidence points out that the flux response of the Dirac
cones only emerges when the entangling region winds around
the cylinder.

C. Charge fluctuations

The asymptotic expression for the charge fluctuations VA
of a long (w → ∞) slab of graphene was derived in Sec. III C.
Similar to the EE in Secs. IV A and IV B, we consider the
generalization to other models hosting Dirac cones or changes
in the topology of the entangling region. The arguments put
forward for the EE also apply to the charge variance. We thus
expect a similar universality of the flux dependence to hold
true in that context.

We numerically test the predicted flux dependence of the
charge variance Eq. (35) derived in Sec. III C. For pedagog-

FIG. 7. Charge variance measured with respect to its value at
φ = π for the 12-BHZ model tuned with a single Dirac cone. We
use the same geometries as Fig. 6(a) (for the rough entanglement
surface) and Fig. 6(b) (for the flat entanglement surface), including
the two values of w, namely w = 80 (in blue) and w = 160 (in red).
The solid black line is the asymptotic prediction of Eq. (35).

ical purposes, we solely focus on the 12-BHZ model. The
conclusions hold true for all the models, including the surface
of the 3d model considered in Sec. IV A (see Appendix D).
We consider for the entangling region A a slab of cylinder
with either flat or rough edges, as described in Sec. IV B. Our
numerical results shown in Fig. 7 very well agree with the
asymptotic predictions given by Eq. (35) for φ not too close
to 0 or 2π , as expected from previous discussion on finite size
effects.

V. KITAEV-PRESKILL SUBTRACTION SCHEME

Up to here, we have mainly focused on spatial regions A
with smooth boundaries. Avoiding sharp angles in ∂A has re-
quired us to only consider entangling regions that wind around
the entire system. The area of such regions unfortunately
grows extensively with one of the total system’s dimension,
making it hard to obtain reliable numerical results for analyti-
cally intractable models. In most case, one must therefore deal
with the presence of sharp angles on the boundary ∂A in order
to perform calculations on the lattice.

While corners add extra terms to the EE even for gapped
phases, subtraction schemes have been designed to eliminate
their effects for gapped phases of matter and to yield universal
results characterizing the system. In this section, we briefly
review the corner contributions to the EE, and the most-used
subtraction scheme. Then, we show that, in the presence of
Dirac cones, subtractions schemes provide nonuniversal re-
sults that depend both on the lattice model and the specific
cuts chosen to perform the subtractions.

A. Corner contributions

Corrections to the leading behavior of the EE are sensitive
to the geometry of the region A, and in particular to the
presence of corners in the boundary ∂A. Before moving on
to the case of quantum critical points, let us first recall how
corners affect the EE of gapped phases, and how this can be
remedied via a subtraction scheme.

In the absence of corners (i.e., for a smooth entangling
surface ∂A), the correction to the ubiquitous area law for
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a gapped two-dimensional system is the universal topologi-
cal EE. For a nonsmooth entangling surface ∂A, additional
nonuniversal constant terms coming from each corner spoil
the above behavior [19,57]:

SA = αL − γ −
∑

corners i

γ (θi ) + O(L−1) . (40)

These corner contributions are encoded in a function γ (θ )
of the corner opening angle θ . Naively one might expect the
corner contribution to be universal, as it does not depend on
the short-distance cutoff. However this is not so clear, since
angle contributions are of ultraviolet origin. An argument
against the universality of the corner terms is that they are
not captured by the infrared topological quantum field theory,
since the lack of a metric rules out the possibility to have any
angle-dependent quantity. To put things short, angles are not
topological invariant. In the case of the charge variance, the
same scaling holds and the corner contributions are known
explicitly [58].

These corner terms are potentially an issue for numerical
calculations: on the lattice sharp corners are commonplace,
making the direct extraction of the TEE γ from a single EE
computation hazardous. A workaround is to use a subtraction
scheme [19,20], namely a certain linear combination of entan-
glement entropies for some well chosen regions sharing part
of their boundaries, in which both the linear area law term and
the corner contributions cancel out, leaving out the TEE γ .
Key to this cancellation is the following relation obeyed by
the corner functions:

γ (θ ) = γ (2π − θ ), (41)

which simply stems from the fact that SA = SĀ.
For quantum critical points such as graphene at half-filling,

the corner corrections exhibit a different scaling. These have
been discussed in the context of (2 + 1)-dimensional con-
formal field theories in Refs. [50,59–71] and in particular
for Dirac fermions in Refs. [62,72,73]. Trihedral corners for
three-dimensional Dirac fermsions have also been consider in
Ref. [74]. For a conformal field theory, the EE behaves as

SA = αL −
∑

corners i

a(θi ) ln L + O(L0) . (42)

As opposed to the gapped case, the critical corner function
a(θ ) is universal. This is rather reasonable given that angles
are conformal invariants.

As for the gapped case, these corner contributions spoil
the constant term. Indeed upon changing the short-distance
cutoff, or equivalently changing the unit in which lengths
are measured, the logarithmic terms yield additional constant
terms. But the situation here is even more muddled: subtrac-
tion schemes fail to eliminate corner contributions and it is
no longer possible to extract the universal contribution α0 of
Eq. (18).

B. Numerical results

We first present evidence of the logarithmic corrections
to the EE due to corners in ∂A. Let us denote as Aθ (NA)
a parallelogram with base and height NA, and angles θ and
π − θ , as shown in Fig. 8. According to Eq. (42), corner

FIG. 8. Subtraction scheme to isolate corner contributions of
Dirac cones in the 12-BHZ model (see Appendix C) for θ = π/4 and
π/2, on a 1024 × 1024 finite-size lattice. The numerical data per-
fectly agree with the expectation of a dominant logarithmic scaling
(solid lines show fits to Eq. (43) with u and v as fitting parameters).

contributions in the presence of a Dirac cone can be extracted
through

SAθ (2NA ) − 2SAθ (NA ) = u lnNA + v , (43)

with u = 2[a(θ ) + a(π − θ )] and v a nonuniversal constant.
Numerical extractions of SAθ (2NA ) − 2SAθ (NA ) for the 12-BHZ
model hosting one Dirac cone (see Appendix C) are very well
captured by this logarithmic behavior, as shown in Fig. 8. We
have observed the same logarithmic scaling in all the models
and shapes considered.

Furthermore, least-square fitting allows to extract values
such as [a(π/4) + a(3π/4)] � 0.0831, which agree with the
expectation 0.0826 for continuum theories [73]. This numer-
ical check confirms the corner contribution of Dirac cones to
the EE, which has already been observed in Refs. [73,75].

The universality of the critical corner function a(θ ) sug-
gests that we could hope for its extraction as a numerical
signature of the Dirac physics, using for instance a Kitaev-
Preskill subtraction scheme. Unfortunately, the logarithmic
factor of a(θ ) in Eq. (42) spoils such a scheme with nonuni-
versal contributions. We illustrate this fact with the numerical
evaluation of

SKP = SAB + SBC + SCA − SA − SB − SC − SABC , (44)

for two lattice models hosting a single Dirac, respectively
on the honeycomb and square lattice—see Appendix C. The
regions A, B and C are defined in Figs. 9(a) and 9(b). In both
cases, A and B are shifted and adjacent copies of Aθ (NA) and
C = Aθ (2NA)\(A ∪ B). Figs. 9(a) and 9(b) only differ by the
value of θ , either equal to π/2 for the first partition or to π/4
for the second one. The numerical results of Fig. 9(c) show
that SKP converges to a constant as NA increases. However,
this constant is not the same for both models, nor for the
different choice of regions A-B-C for the same model. Hence,
this lattice, model and geometry-dependent constant cannot
be used as a universal probe of the presence of Dirac cone.
The universality breakdown of SKP comes from the constant
corrections to the area law and logarithmic corner contribution
in Eq. (42), which are both model and geometry-dependent.
The ratio and other simple functions of the asymptotic values
for a given model also appear to be nonuniversal.
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FIG. 9. SKP for two lattice models hosting a single Dirac,
respectively on the honeycomb (Haldane) and square lattice (1/2-
BHZ)—see Appendix C—with total dimensions Nx = Ny = 512.
Two different choices of regions A-B-C are considered (top), see
text for more details. SKP converges to a constant as NA increases, but
this constant depends both on lattice details and the specific partition
chosen. SKP does not provide a universal characterization of models
with Dirac cones.

VI. CONCLUSION

In this paper, we discussed the universal signature of
Dirac physics in the EE and the charge fluctuations. For
that purpose, we studied several tight-binding models whose
low-energy physics is captured by Dirac fermions. In addi-
tion to the numerical investigation, we provided an analytical
derivation of the EE and the charge fluctuations for graphene
using its dimensional reduction to the one-dimensional SSH
model. Our study shows that for models where the low-energy
properties are described by Dirac fermions, the flux response
of the EE is indeed exactly the one predicted from CFT. This
response does not depend on the geometry of the entangling
surface as long as it encloses the flux. We also considered
the corner contributions to the EE. A standard way to extract
universal quantities from the EE for gapped two-dimensional
systems is via subtraction schemes. We showed that the usual
subtraction schemes such as the Kitaev-Preskill cut, are not
suitable for quantum critical points such as massless Dirac
fermions. Whereas corner contributions are suppressed for
gapped systems in such schemes, here they yield nonuni-
versal, geometry-dependent results. However, we provide
another subtraction scheme capable of canceling out the area
law and providing a direct access to the universal corner
contributions.

More saliently, we proved that the flux dependence of
the charge variance exhibits the same universal robustness.
Despite its experimental relevance, this quantity has not been
computed, to our knowledge, in the CFT framework. The
dependence of the charge variance is exactly the same as
that of the EE, up to a different constant prefactor. This
work solely considered noninteracting fermions. It would be
interesting to investigate if the features of charge fluctua-
tions would convey to strongly interacting Dirac quantum

system such as gapless Dirac quantum spin liquids. Be-
ing both simple to evaluate numerically and experimentally
relevant, charge fluctuations could be an efficient probe
for these systems. Another open question is whether the
flux-dependence of the particle fluctuations requires particle
conservation.
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APPENDIX A: CORRELATION MATRIX

In this Appendix, we consider translational invariant lattice
models, and give efficient ways to evaluate their correlation
matrix CA. Let us first express the lattice Hamiltonian as

H =
∫
BZ

dk
VBZ

c†(k)h̃(k)c(k) , (A1)

in terms of Fourier transformed fermionic operators

cτ (r) =
∫
BZ

dk
VBZ

eik·rcτ (k) , (A2)

and with VBZ the volume of the Brillouin zone BZ . Because k
is a good quantum number, the correlation matrix is block-
diagonal in momentum space �ττ ′ (k) = Tr [ρT c†

τ (k)cτ ′ (k)].
Its explicit expression

�(k) = [1 + eβh̃(k)]−1 , (A3)

is straightforwardly derived from the Fermi-Dirac distribution
of h̃(k) eigenstates.

The real-space correlation matrix is obtained as

Cαβ (r, r′) = Tr (ρT c†
α (r)cβ (r′))

=
∫
BZ

dk
VBZ

e−ik·(r−r′ )�αβ (k) , (A4)

and its restriction to r, r′ in A yields CA. From the model-
dependent h̃, Eq. (A4) can either be evaluated analytically as
in Secs. II B and III B, or numerically with fast Fourier trans-
form algorithms. In both cases, obtainingCA is fast compared
to its diagonalization.
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More generically, �(k) can be obtained analytically for
any two-band models (d = 2). The hermitian Hamiltonian
matrix can be written as a Pauli vector

h(k) = d0(k) + d(k) · σ , (A5)

with σ = (σx, σy, σz ) the set of Pauli matrices. We can take its
exponential and find

�(k) = 1

2

[
1 − u

d
|d|

]
, u = cosh(β|d|) − e−βd0

sinh(β|d|) . (A6)

It is worth noting the particularly simple form u =
tanh(β|d|/2) when d0 = 0, or u = 1 if we furthermore work
at zero temperature.

APPENDIX B: CHARGE VARIANCE IN THE SSH CHAIN

In this Appendix, we derive the expression Eq. (15) for
the charge variance in the SSH chain. As mentioned in the
main text the eigenvalues of the correlation matrixCA in ]0,1[
converge as w → ∞ to

λm = 1

1 + qm
with

{
m odd if δ < 0
m even if δ > 0 (B1)

with each value being doubly degenerate and where

q = e−π
I (k′ )
I (k) . (B2)

The variance is given by

V SSH
A = 2

∑
m

λm(1 − λm) =
∑
m

1

2 cosh2
(mπ I (k′ )

2I (k)

) (B3)

with m is even or odd depending on the sign of δ. Using
the sn2(z, k′) Jacobi elliptic function, we get the following
relation [76]:

k′2sn2(z, k′) = E (k)

I (k)
−

(
π

I (k)

)2

×
∞∑

m=−∞

1

4 cosh2
(

π
2I (k) (2mI (k′) − z)

) , (B4)

where E (k) is the elliptic integral of the second kind

E (k) =
∫ π

2

0

√
1 + k2 sin2 θdθ. (B5)

Taking z = 0 (for δ > 0) and z = I (k′) (for δ < 0) yields
Eq. (15), namely,

V SSH
A = 2

E (k)I (k)

π2
+ 2(k2 − 1)

I (k)2

π2
(δ < 0) (B6)

and

V SSH
A = 2

E (k)I (k)

π2
(δ > 0) . (B7)

In both regimes, the variance diverges as δ → 0 as

V SSH
A ∼ 1

π2
ln ξSSH ∼ − 1

π2
ln |δ| (B8)

and therefore

SSSH
A ∼ π2

3
V SSH
A (δ → 0) . (B9)

Such a behavior is expected as soon as charge fluctuations
become gaussian, in the sense that the higher cumulants are
suppressed relatively to the charge variance [29,32,41]. This
is indeed what happens in the SSH chain when the correlation
length ξSSH becomes large, i.e., in the critical regime. To see
this, we can exploit the fact that the full counting statistics is
known exactly for the SSH chain, via the cumulant generating
function

fA(t ) = ln〈etNA〉. (B10)

This generating function has been evaluated in Ref. [44],
yielding

fA(t ) = tw + 4 ln
θ j

(
t

2π i |τ
)

θ j (0|τ )
+ O(w−∞), (B11)

where τ = iI (k′)/I (k), j = 2 for δ < 0, and j = 3 for δ > 0.
In order to analyze the behavior close to criticality (δ → 0,
thus τ → 0), it is more convenient to write (using the modular

TABLE I. List of two dimensional tight-binding models studied in the main text in Sec. IV A. The first column is the model name, the
second column is the Bravais lattice. The third column gives the Bloch Hamiltonian. The fourth column provides the number and location of
the Dirac points. The last column gives additional information about the Bloch Hamiltonian parameters.

Name Lattice Bloch Hamiltonian Dirac cones Additional information

Graphene Honeycomb
[0 f ∗
f 0

] 2π

3
√

3
(±√

3, 1) f = 1 + eik·a1 + eik·a2 , see text

Haldane Honeycomb
[g f ∗
f −g

] 2π

3
√

3
(−√

3, 1) On the critical line: g = 3
√

3 + 2[sin(k · a1) − sin(k · a2) + sin (k · (a2 − a1))]

Kagome Kagome 1 − [ 0 c2 c3

c2 0 c1

c3 c1 0

] 2π

3
√

3
(±√

3, 1) The energy shift 1 brings the two Dirac cones at zero energy

12-BHZ Square
[M − cx − cy sx − isy

sx + isy −M + cx + cy

]
(0,0) cx/y = cos(kx/y ), sx/y = sin(kx/y ) and M = 2 [56]

QWZ Square
[M − cx − cy sx − isy

sx + isy −M + cx + cy

]
(0, π ), (π, 0) cx/y = cos(kx/y ), sx/y = sin(kx/y ) and M = 0 [78]

π -flux Square
[cy cx
cx −cy

] ( ± π
2 , ± π

2

)
—
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FIG. 10. Tight-binding model for the three-dimensional chiral
hinge model. The model is defined on a cubic lattice with a unit
cell of four sites lying in the (x, y) plane, labeled τ = 1, 2, 3,

and 4. In this plane, sites in the same unit cell are connected by
a nearest-neighbour hopping M marked by black lines (−M for
dashed black lines). In the (x, y) plane, sites in adjacent unit cells
are connected by a nearest-neighbour hopping �1 marked by violet
lines (−�1 for dashed violet lines). In the z direction, adjacent unit
cells are connected by a real next-nearest-neighbor hopping −�2/2
marked by light blue lines (�2/2 for dashed light blue lines). In
addition, there is a purely imaginary nearest neighbor hopping be-
tween adjacent unit cells in the z direction with value −i�2/2 in
the direction of the green arrows. We study the model for parameter
values M = �1 = �2 = 1.

properties of theta functions)

fA(t ) = tw + 1

−iτ

t2

π
+ 4 ln

θ j
(

t
2π iτ

∣∣ − 1
τ

)
θ j

(
0
∣∣ − 1

τ

) + O(w−∞)

(B12)

with j = 3 for δ < 0 and j = 4 for δ > 0. From the above
expression, it appears that only the term in t2, that is the
charge variance, blows up as δ → 0, while the other (even)
cumulants remain finite. Note that the odd cumulants vanish
identically, as expected for a semi-infinite interval, due to the
relation κn(A) = (−1)nκn(B) for the nth cumulant.

APPENDIX C: FREE FERMION MODELS WITH DIRAC
MODES IN 2D

In this Appendix, we review the definitions and the main
properties of the two dimensional tight-binding Hamiltonians
hosting Dirac cones used in Sec. IV A. Their Bravais lattice,
Bloch Hamiltonian, parameters and their number of Dirac
cones are summarized in Table I.

The three first lines of Table I describe model with a
hexagonal Bravais lattice. We use the conventions and no-
tations introduced in Sec. III B. The first line represents the
tight-binding model of graphene studied in the main text (see
Sec. III B). It has two Dirac cones at the K and K ′ points of the
BZ . Carefully introducing and tuning next-nearest neighbor
hopping and staggered potential, it is possible to open a gap at
K ′ while keeping a Dirac cone at K . This corresponds to the
Haldane model on the critical line [77], which appears on the
second line of Table I. The third line depicts nearest neighbor
hopping model on the Kagome lattice, where we have added
an energy shift equal to the tunneling amplitude in order to
bring the two Dirac cones (also at the K and K ′ points) to zero
energy.

FIG. 11. Exponential localization of the Dirac cones at the hor-
izontal surfaces of the 3D chiral hinge insulator with 40 × 10 × 40
unit cells. Shown is the weight |ψτ,kx ,ky (z)|2 of one out of the four
single particle modes at surface momentum (kx, ky ) = K and zero
energy as a function of the depth z in the 3D bulk, resolved according
to the four sublattices τ = 1, . . . , 4. We picked a linear superposition
such that the weight on the site τ = 2 vanishes at the top surface
z = 0. Due to symmetry, this yields two states whose weight is
zero for all even values of z. From these two, we chose a linear
superposition such that the weight on the site τ = 4 vanishes at the
bottom surface z = 39, which results in a state whose weight is zero
on all sites with τ = 4. The weight of the remaining three sublattices
decays exponentially with a correlation length ξ = 0.57.

The fourth and fifth lines of Table I show models defined
on a square Bravais lattice, each having two orbitals per unit
cell. We choose the following basis vectors:

a1 = (1, 0) , a2 = (0, 1) , (C1)

and the periodic boundary conditions along x and y allows
to identify any point of the lattice r with both r + Nxa1 and
r + Nya2. We use the first BZ associated with this lattice,
i.e., k = (kx, ky) with kx, ky ∈ (−π, π ]. Only the mass M dif-
fers between the 12-BHZ [56] and QWZ models [78], but it
changes both the number and position of the Dirac cones in
the problem, as described in Table I.

FIG. 12. Sketch of the geometry used for the EE computation in
the 3D chiral hinge insulator with PBC in the x and y directions. The
subsystem A includes a part of the top surface of width Nx,A in the
x direction, preserves translational symmetry in the y direction and
extends to a depth Nz,A into the three-dimensional bulk.
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Lastly, we consider the π -flux model. It is defined on
the square lattice and has two orbitals per unit cell labeled
τ = A and B. Tunneling amplitudes are equal in magnitude
but their signs differ and define as below. (1) Along horizontal
links, all nearest neighbor A-B links have a positive tunneling
amplitudes. (2) Along vertical links, nearest neighbor A-A
(respectively B-B) links have positive (respectively negative)
tunneling coefficients. (3) There is no tunneling on horizontal
A-A and B-B links, nor on vertical A-B ones. This pattern leads
to the Bloch Hamiltonian given in the last line of Table I.

APPENDIX D: THREE-DIMENSIONAL CHIRAL
HINGE MODEL

In Sec. IV A, we have also considered the three-
dimensional chiral hinge model of Ref. [79] defined on a
cubic lattice with four sites in the (x, y) plane per unit cell.
We denote these four sites τ = 1, 2, 3, and 4 (see Fig. 10).
At half filling, it realizes a second-order topological insulator
[80]. With open boundaries in the x and y directions, the
vertical surfaces are gapped, but the hinges parallel to the z
direction host one-dimensional gapless chiral modes. More-
over, the system hosts a single massless Dirac mode on each
horizontal surface, that is on its top and bottom surfaces [79],
which are located at the momentum K = (π, π ) in the surface
Brillouin zone. The Dirac cones are exponentially localized
at the surfaces, as shown in Fig. 11. We want to study if
the EE and charge variance for the Dirac cone on one of
these surfaces, say the top surface, satisfies the same flux
dependence as a strictly two-dimensional system, Eqs. (19)
and (35).

To that end, we consider the geometry sketched in Fig. 12
with periodic boundary conditions in the x and y directions.
The subsystem A includes a part of the top surface of width
Nx,A in the x direction, preserves translational symmetry in
the y direction and extends to a depth Nz,A into the three-
dimensional bulk. We are interested in the dependence of the
entropy SA on the twist angle φ ∈ [0, 2π ) of the boundary
conditions in the y direction. As in the two-dimensional case,
the difference SA(φ) − SA(π ) cancels all area law contri-
butions originating from the two surfaces of A normal to
the x direction and the bottom surface of A. Moreover, any
potential hinge or corner contributions are also canceled out.
As shown in Fig. 5 of the main text, SA(φ) − SA(π ) obeys
the same scaling as in the two-dimensional case for open

FIG. 13. Charge variance measured with respect to its value
at φ = π for the surface Dirac cone of the chiral hinge insula-
tor model. We use the geometry shown in Fig. 12 with a total
system size (Nx,Ny,Nz ) = (100, 20, 60) and an entangling region
of (Nx,A,Ny,A,Nz,A) = (30, 20, 20). The solid orange line is the
asymptotic prediction of Eq. (35).

boundaries in the z direction, provided that the relevant cor-
relation length Ny/φ is small compared to Nx,A and Nz,A. We
have confirmed that this characteristic scaling is due entirely
to the surface Dirac mode. Indeed, with periodic boundary
conditions in the z direction, for which no surface Dirac cone
is present, the variation in SA(φ) − SA(π ) is less than 1% of
the open boundary result for the same system and subsystem
sizes.

We now consider the charge fluctuations and their flux
dependence for this model like we did in Sec. IV C for the
two-dimensional 1/2-BHZ model. For that purpose we use
the same entangling region A than previously and shown in
Fig. 12. We use the same system and subsystem size as in
Sec. IV A for the EE, namely (Nx,Ny,Nz ) = (100, 20, 60)
and (Nx,A,Ny,A,Nz,A) = (30, 20, 20). Like for the EE, the
contributions coming for the parts of A located in the bulk of
the system are canceled out by the subtraction of the variance
at φ = π . As shown in Fig. 13, we once again see good
agreement with the asymptotic expression of Eq. (35). Finally,
we stress that the current results and techniques for this chiral
hinge insulator hold true for other Dirac states at the surface
of insulators such as time-reversal invariant three-dimensional
topological insulators.
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