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Under special conditions, translation-invariant systems 
harbour perfectly flat bands, that is, spectral bands 
with momentum-independent energy. This extensive 

single-particle degeneracy of electron states leads to a completely 
non-perturbative effect of arbitrary levels of interactions or dis-
order, making flat-band systems prime candidates for strongly 
correlated phases of matter. Perhaps the most exciting recent devel-
opments in this direction concern twisted bilayer graphene, where 
the almost flat bands1 have been linked to a plethora of magnetic 
and superconducting phases2,3.

Furthermore, consequent theoretical studies have also high-
lighted the importance of the non-trivial topology of the flat  
bands4–7. For example, Ginzburg–Landau theory predicts a van-
ishing superfluid weight for perfectly flat bands. However, a topo-
logically non-trivial flat band has additional band-geometric 
contributions to the superfluid weight and can thus show supercon-
ductive behaviour7.

Flat bands arising from wavefunction interference are a very rich 
playground for physical phenomena. In crystalline materials, the 
rich physics of interacting flat-band systems predates the advent of 
twisted bilayer graphene, with theoretical proposals of flat bands 
playing host to Hubbard ferromagnetism8,9, Wigner crystalliza-
tion10, supersolid formation11 or Anderson transition12,13. However, 
the well-known theoretical constructions of flat bands, such as the 
line-graph prescription8,9,14–16, are often restricted to toy models com-
prising s orbitals and non-spin–orbit-coupled Hamiltonians with 
various geometric constraints, such as nearest-neighbour hoppings 
with the same sign. These simplifications have hindered the discov-
ery of real-life crystalline materials with flat bands17–19, which are 
usually obtained in optical lattices20 or superconducting circuits21.

In this paper, we introduce a generic technique for constructing 
perfectly flat bands in bipartite crystalline lattices (BCLs), where a 

lattice is divided into two sublattices with unequal numbers of 
orbitals. The BCL construction can be applied to any type of orbit-
als, with or without spin–orbit coupling, and in any of the 1,651 
Shubnikov space groups, including the space groups with or without 
time-reversal symmetry and the magnetic space groups. Our pre-
scription also encapsulates and generalizes the line-graph8,9,14–16,21–24 
and split-graph23–25 formulations, as well as many of the models pre-
sented in literature5,10,22,23,26–33. Additionally, our formalism correctly 
explains the origin of flat bands in myriad real-life materials, as 
highlighted in an accompanying paper34. Applying magnetic topo-
logical quantum chemistry (MTQC)35,36 and related theories37–39 to 
our construction yields our main result: flat bands can be under-
stood as formal differences of band representations. This enables us 
to derive universal criteria for the existence of symmetry-protected 
band touching points between the flat and dispersive bands, which 
were previously only explained in an ad hoc manner22,40. Moreover, 
gapped flat bands can realize any commensurate difference of band 
representations, and thus are prime candidates for fragile topologi-
cal phases23,35,41–44. Finally, we show that the set of all perfectly flat 
bands is finitely generated and construct the corresponding bases in 
all Shubnikov space groups.

Model
We first outline the BCL construction (Supplementary Section IA). 
A BCL is a translation-invariant fermionic lattice partitioned into 
two different sublattices, L and L̃. We assume that each sublattice 
individually respects all the symmetries of the BCL’s Shubnikov 
space group. For each unit cell R, we define fermionic annihilation 
operators âR,i (b̂R,i) corresponding to each orbital i from sublattice 
L (L̃). For spinful fermions, different spin states have different indi-
ces i. Within each sublattice L and L̃, we place NL and NL̃ orbitals 
per unit cell, respectively, and introduce a unitary chiral operator 
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C acting differently on the two sublattices: Câ†R,iC−1
= â†R,i and 

Cb̂
†
R,iC−1

= −b̂
†
R,i. We first consider quadratic Hamiltonians H 

with anti-commuting chiral symmetry (that is, {C,H} = 0) and 
later relax this constraint. Defining momentum space operators 
ĉk,i = 1

√

N
∑

RĉR,ie
ik·(R+ri), where ri denotes the position of the ith 

orbital relative to the unit cell origin and ĉ = â, b̂ for the two sub-
lattices, the Hamiltonian (which includes only inter-sublattice hop-
ping) can be written as H =

∑
kΨ̂†

kHkΨ̂k, where the first-quantized 
Hamiltonian matrix is

Hk =

(
Sk

S†k

)

(1)

and Ψ̂T
k =

(
âk,1,…, âk,NL , b̂k,1,…, b̂k,NL̃

)
 is an (NL + NL̃)

-dimensional spinor. In equation (1), C forbids any intra-sublattice 
hopping terms, whilst Sk denotes the NL × NL̃ hopping matrix 
between different sublattices25. Its rank rk is bounded by its smaller 
dimension. Taking NL > NL̃, it follows (Supplementary Section 
IB) that Hk contains at least NL − NL̃ zero modes for all k, yielding 
NL − NL̃ perfectly flat bands, and 2NL̃ dispersive bands coming in 
pairs related by chiral symmetry. Generically, Sk has maximal rank 
rk for all k, except at band touching points between the flat and the 
dispersive bands.

The Hamiltonian Hk is diagonalized using the singular value 
decomposition Sk = WkΣkV†

k, where Wk (Vk) denotes an NL × NL 
(NL̃ × NL̃) unitary matrix, whilst Σk is a diagonal NL × NL̃ matrix of 
singular values (listed in descending order). We define ψk,α (ϕk,α) to 
be the vector formed by the αth column of Vk (Wk). For each α ≤ rk, 
the dispersive bands’ eigenvectors are

Ψ±

k,α =
1
√

2

(
±ϕk,α

ψk,α

)

, (2)

with energies ±ϵk,α, where ϵk,α is the αth singular value of Sk (that 
is, the αth nonzero diagonal entry of Σk). The zero modes of Hk 
are Ψ+T

k,α =
(
ϕT
k,α , 0

)
 for rk < α ≤ NL and Ψ−T

k,α =
(
0, ψT

k,α
)
 for 

rk < α ≤ NL̃, with Skψk,α = 0 and S†k,αϕk,α = 0, respectively. These 
include both the flat-band eigenstates (for which S†kϕk,α = 0 for all 
k) and the zero modes of the dispersive bands at the band touching 
points (where rk < NL̃).

It is instructive to consider ‘integrating’ out the degrees of free-
dom on the smaller sublattice L̃. This is equivalent to adding a large 
chemical potential term for the orbitals in sublattice L̃ and then 
including their effects on sublattice L using degenerate second-order 
perturbation theory (Supplementary Section IC). Up to multiplica-
tive factors and constant offsets, the resulting effective Hamiltonian 
is Tk = SkS†k. The eigenvectors of Tk are ϕk,α (1 ≤ α ≤ NL) and thus 
include the flat-band modes of the original BCL (being in the ker-
nel of S†k, they are also zero modes of Tk). Alternatively, one may 
integrate the other sublattice yielding the Hamiltonian T̃k = S†kSk, 
whose eigenstates ψk,α (1 ≤ α ≤ NL̃) do not include the flat-band 
modes, but that possesses the same nonzero eigenvalues as Tk: ϵ2k,α 
(1 ≤ α ≤ rk). There is also a direct mapping between the nonzero 
eigenstates of the two Hamiltonians: ϕk,α =

1
ϵk,α

Skψk,α. Because 
Hk and Tk possess identical flat-band wavefunctions and share the 
same Shubnikov space group, both yield the same flat-band topol-
ogy. Additionally, this formal integration procedure resembles the 
construction of a line-graph Hamiltonian (Tk) from a Hamiltonian 
defined on a ‘root’ Euclidean graph (T̃k) using the incidence matrix 
of the latter (Sk) (ref. 8). Unlike the line-graph construction, in the 
BCL construction, Sk can denote any type of inter-sublattice hopping 
matrix between any orbitals (with or without spin–orbit coupling) 
and is not restricted to binary incidence matrices in spinless systems 

of s orbitals. We present several examples, including an analysis of 
flat bands of the real material Ca2Ta2O7 (ref. 34), in Supplementary 
Section II.

The chiral BCL Hamiltonian H can be generalized by includ-
ing generic intra-sublattice hopping terms within the L̃ sublattice, 
which break the chiral symmetry without perturbing the flat bands. 
To see this, consider the Hamiltonian

Hk =

(
Ak Sk
S†k Bk

)

, (3)

where Ak (Bk) is an NL × NL (NL̃ × NL̃) Hermitian matrix denoting the 
intra-sublattice hopping inside the L (L̃) sublattice. We assume that 
Ak has a momentum-independent eigenvalue a with degeneracy na. 
If NL̃ < na ≤ NL, then the Hamiltonian in equation (3) has at least 
na − NL̃ flat bands of energy a irrespective of Bk (Supplementary 
Section ID). The simplest case is for Ak to be proportional to the 
identity matrix (that is,Ak = a ), with arbitrary Bk, a construc-
tion which we term a generalized BCL. A more general possibil-
ity occurs when Ak itself is a BCL Hamiltonian with na perfectly 
flat bands. Hence Ak is a generalized BCL Hamiltonian compris-
ing sublattices L′ and L̃′ with na = NL′ − NL̃′. However, redefining 
L̃ ← L̃′ and L ← L⊕ L′ brings the Hamiltonian back into the form 
of equation (3) with Ak proportional to identity (Supplementary 
Section ID). We henceforth consider Ak = a . Moreover, because 
they are in the kernel of S†k and have support only on the L sublat-
tice, the chiral BCL flat-band eigenstates Ψ+

k,α (and corresponding 
band touching points) for rk < α ≤ NL will remain eigenvectors of 
Hk, but with eigenvalue a. The corresponding flat-band and band 
touching point wavefunctions are unaffected by the introduction of 
the intra-sublattice hopping matrices. However, the band touching 
points corresponding to Ψ−

k,α for rk < α ≤ NL̃ will generically be 
gapped. This implies that the topological properties of the flat bands 
and their band touching points in a generalized BCL can be inferred 
from the zero modes of Tk = SkS†k. The zero modes of T̃k = S†kSk 
will not correspond to band touching points in the generalized BCL 
Hamiltonian from equation (3).

Symmetries in a BCL. MTQC diagnoses the topology of a band 
via its (co)irreps at high-symmetry momenta35,36,38,39. We assume 
that the BCL Hamiltonian from equation (1), as well as each of its 
two sublattices individually, are invariant under a certain Shubnikov 
space group G (in principle, each sublattice might be invariant under 
a supergroup of G, which will not be considered in this paper). At a 
high-symmetry momentum K, the inter-sublattice hopping matrix 
is invariant under any transformation belonging to GK, the little 
group of K (that is, the subgroup of G that leaves K invariant, up to 
reciprocal lattice vectors). The action of the symmetries in GK on the 
eigenstates of TK and T̃K gives rise to (co)irreps of GK. At the same 
time, the eigenvectors of TK and T̃K with identical nonzero energies 
are mapped to one another by the symmetry-invariant matrix SK, 
and thus furnish identical (co)irreps (Methods). Therefore, the dis-
persive bands of Tk and T̃k not only are identical in energies but also 
share identical (co)irreps at high-symmetry momenta. The only 
exceptions are the zero modes of the two effective Hamiltonians for 
which there is no direct mapping between the eigenstates. An indi-
rect mapping between their (co)irreps will be derived below.

Flat-band (co)irreps. Since Tk is defined on the L sublattice, the 
band representations corresponding to all the bands (including the 
flat bands) of Tk (BRL) are the sum of all elementary band repre-
sentations induced from the orbitals of the L sublattice. Similarly, 
the band representations of all the bands of T̃k (BRL̃) are the sum 
of all elementary band representations induced from the orbitals 
of L̃. Moreover, the dispersive bands of Tk and T̃k share the same 
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(co)irreps at high-symmetry momentum points, except for the zero 
modes in T̃k (or, equivalently, the band touching points with the flat 
bands in Tk). As such, the (co)irreps of the perfectly flat bands in Tk 
(denoted by BFB), which are identical to the flat bands of the gener-
alized BCL Hamiltonian from equation (3), are independent of the 
inter-sublattice hopping matrix Sk and must be given by those (co)
irreps of BRL which are not in BRL̃:

BFB = BRL ⊟ BRL̃. (4)

Formally, in equation (4), we introduced an identity element ∅ 
for the direct sum operation of (co)irreps (⊕) and an ‘inverse’ ⊟Ξ 
to each (co)irrep Ξ, such that Ξ ⊕ (⊟Ξ) = ∅. When evaluating dif-
ferences (⊟) of (co)irreps, we will encounter expressions such as 
(Γ2 ⊕ Γ3)⊟ (Γ1 ⊕ Γ3) = Γ2 ⊟ Γ1 that cannot be simplified further 
to (co)representation. These differences are instrumental in under-
standing the band touching points between the flat and the disper-
sive bands arising in a generalized BCL (Supplementary Section IF).

Band touching points. First, when BRL̃ is a subset of BRL at a 
given momentum point K, such that equation (4) produces a bona 
fide (co)representation at K, there can be no locally stable band 
touching points between the flat and dispersive bands of the BCL 
protected by crystalline symmetries (Methods). Here, we define a 
locally stable band touching point as a band touching point that can 
neither be gapped completely nor have its location in momentum 
space changed by any symmetry-preserving perturbation to the 
Sk matrix. As a result, if BRL̃ ⊂ BRL, the BCL flat band(s) satisfy 
the compatibility relations (as they must as linear combinations of 
band representations)35,36 and carry bona fide (co)representations at 
all momenta, being generically gapped. Moreover, as gapped BCL 
flat bands are differences of band representations, they form a per-
fect playground for realizing fragile topological phases, which also 
emerge as differences of band representations23,35,41–44.

On the other hand, if BRL̃ is not a subset of BRL at some momen-
tum point K, then the flat bands are assigned a formal difference of 
(co)representations (for example, Ξ ⊟ Θ) and must be degenerate 
with dispersive bands at K. The corresponding band touching point 
is locally stable and cannot be gapped by any symmetry-preserving 
perturbation to the inter-sublattice matrix (Methods). At K, the 
band touching point is faithfully described only by the representa-
tion Ξ, but the complete formal difference Ξ ⊟ Θ is required to fully 
characterize the flat bands. To see this, consider two band touching 
points given by Ξ ⊟ Θ1 and Ξ ⊟ Θ2. To produce gapped flat bands in 

the two BCLs, different orbitals will need to be added in the L lattice 
(that is, orbitals that induce the Θ1 and Θ2 (co)irreps, respectively). 
Moreover, in the vicinity of K, Θ1 and Θ2 will subduce to potentially 
different (co)irreps of the corresponding little group, effectively 
resulting in different (co)irreps being assigned to the flat bands.

To illustrate the band representation subtraction from equa-
tion (4), Fig. 1 presents two generalized BCL examples on the 
two-dimensional hexagonal lattice in the P6/mmm1′ group 
(Shubnikov space group 191.234 in the notation of the Bilbao 
Crystallographic Server)35,36,45–47. In both examples, the L sublattice 
contains s orbitals at the 3f Wyckoff position. In Fig. 1a, we place 
s orbitals at the 1a position in L̃, resulting in two degenerate flat 
bands with

BFB = (Ag)3f ↑ G ⊟
(
A1g

)
3f ↑ G =

(
Γ+

5
)
+ (K5) +

(
M−

3 ⊕M−

4
)
,

as shown in Fig. 1b. Because all (co)irreps of BRL̃ are included 
in BRL, the flat bands are gapped. On the other hand, if L̃ 
contains s orbitals at the 2c position (as shown in Fig. 1c), 
BFB = (Ag)3f ↑ G ⊟ (A′

1)2c ↑ G =
(
Γ+

5 ⊟ Γ−

4
)
+ (K1) +

(
M−

3
)
 

contains a formal (co)irrep difference at the Γ point, signalling the 
presence of a band touching point, as seen in Fig. 1d.

We conclude that BFB contains all the information about the 
locally stable band touching points protected by crystalline sym-
metries, some of which were only partially understood in terms 
of ad hoc counting rules of real-space eigenstates with finite 
support22,40. At a given momentum point K, there are locally 
stable band touching points if the band representation subtrac-
tion results in a formal (co)irrep difference. On the other hand, 
if the subtraction rule in equation (4) generates direct sums of 
(co)irreps, the flat bands can always be locally gapped at K. Note, 
however, that this does not preclude globally stable band touch-
ing points between the flat and dispersive bands (as shown in the 
example constructed in Supplementary Section IIE). A globally 
stable band touching point cannot be gapped completely by any 
symmetry-preserving perturbation to Sk, but its location in the 
Brillouin zone can be changed.

Classification. Equation (4) shows that the (co)irreps of the BCL 
flat band and corresponding band touching points depend exclu-
sively on the orbital content of the two sublattices. The flat-band 
(co)irreps (BFB) are linear combinations of elementary band repre-
sentations, with positive or negative integer coefficients (Methods), 
depending on whether the corresponding orbitals belong to L or L̃, 

a b c d

a2 a2

a1

4 3

2

1

0

–1

–2

2

0E E

–2

K

K1

K5

K1

M
–4

a1
L :

(Ag)3f

(A1g)1a

s

s
L
~

L :
(Ag)3f

(A1)2c

s

s
L
~

Γ Γ K MΓ Γ

Γ1
+

M1
+

M1
+

M3 ⊕ M4
– –

Γ1
+

Γ5
+ K1

K5

K5
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M1
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–
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–
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+
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–Γ1

+

Γ4
–

Γ5
+

′

Fig. 1 | Examples of flat-band constructions in generalized BCLs.  The structure of two BCLs defined on the hexagonal lattice is shown in a and c. In both 
cases, we place s orbitals at the 3f position within sublattice L (black dots), whilst L̃ contains s orbitals at the 1a (a) and 2c (c) position (red dots). Red and 
blue lines respectively denote intra-sublattice hopping with amplitude t2 within L̃ and inter-sublattice hopping with amplitude t1. There is a degenerate on-site 
energy term ϵ on sublattice L. Corresponding band structures at t1 = −1 (b) and t2 = −0.1 (d), together with corresponding (co)irreps35,36,45–47.
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respectively. This allows us to leverage MTQC for classifying flat 
bands35,36. In addition, equation (4) hints that, whilst the set of all 
possible perfectly flat bands for a given Shubnikov space group G 
(FG) is infinite, it is also finitely generated.

To obtain FG explicitly, we introduce a (dG + 1)-dimensional 
symmetry data vector B , where dG is the total number of (co)irreps 
of G for all high-symmetry momenta (Methods). The first compo-
nent of B  is a positive entry specifying the number of flat bands 
indexed by BFB, whilst the next dG components specify the multi-
plicities of the flat-band (co)irreps. Because BFB can contain formal 
differences of (co)irreps (corresponding to gapless flat bands), the 
last dG components of B  can be negative. In Supplementary Section 
IIIB, we show that

FG =

{

B ∈ Z
dG+1

|B =

r∑

i=1
piei, pi ∈ Z, p1 > 0

}

, (5)

where r is the number of linearly independent elementary band 
representations in the Shubnikov space group G, and ei (1 ≤ i ≤ r) 
is a set of integer (dG + 1)-dimensional vectors which we term 
the flat-band bases. In Supplementary Section IIIH, we tabulate 
the flat-band bases for all 1,651 Shubnikov space groups, with or 
without spin–orbit coupling. This result is comprehensive over all 
symmetry groups and will be an invaluable tool in the experimental 
search for topological flat bands34.

The space of gapped flat bands FG
G  is computed by restricting 

to those elements of FG with only non-negative entries, such that 
the flat bands carry a bona fide (co)representation at all momenta. 
Using techniques of polyhedral computation first introduced to 
band theory by ref. 43, we show explicitly that FG

G  is also finitely 
generated and derive an algorithm for computing the correspond-
ing bases in Supplementary Section IIIC. Moreover, as differences 
of band representations, we show in Supplementary Section IIIE 
that gapped BCL flat bands can also realize any topologically fragile 
bands23,35,41–44, making them an ideal playground for strongly cor-
related phases of matter. In Supplementary Section IIIF, we present 
a simple example illustrating the relation between gapped, gapless 
and topologically trivial bands.

Discussion
We have presented a general technique for designing crystalline 
systems with perfectly flat bands. Unlike previous flat-band mod-
els, our method can be applied to systems with any orbital content, 
spin–orbit coupling, and within any symmetry group. In particu-
lar, being less restrictive than the well-known line-graph construc-
tion, our procedure offers great hope for obtaining materials with 
flat bands near the Fermi energy, which realize exotic phases of 
matter. Reference 34 highlights six prototypical compounds host-
ing flat bands (among many others) which can be explained with  
our formalism.

Within the framework of MTQC, the BCL flat bands can be 
understood as formal differences of band representations. This con-
nection allow us to obtain criteria for identifying locally stable band 
touching points between the flat and dispersive bands. In addition, 
we have shown that gapped BCL flat bands can realize any topologi-
cally fragile phase. Moreover, using the recently tabulated elemen-
tary band representations for all 1,651 Shubnikov space groups, we 
have constructed all possible symmetry data vectors that can be 
realized in flat bands, showing that the set is infinite, but finitely 
generated, and tabulating the corresponding bases. Our work has 
great implications for the study of flat bands. For example, our band 
touching point construction yields a host of new semi-metallic 
flat-band systems which, when gapped, can lead to new exotic 
phases of matter24.
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Methods
The dispersive bands’ (co)irreps of Tk and T̃k. At a high-symmetry momentum 
point K, the first-quantized BCL Hamiltonian HK must be invariant under the 
symmetry operations of GK, the little group of K. Since the sublattices obey the 
symmetries of G (which is a supergroup of GK), every symmetry operation  
g ∈ GK is implemented individually in sublattice L ( L̃) by a unitary matrix U(g) 
[Ũ(g)] such that ĝâ†i,K ĝ

−1
=

∑NL
j=1 Uji(g)â†j,K [ ĝb̂†i,K ĝ−1

=
∑ÑL

j=1 Ũji(g)b̂
†
j,K]. 

Consequently (Supplementary Section IE), the inter-sublattice hopping 
matrix is invariant under the symmetry g, that is, U(g)S(∗)K Ũ†

(g) = SK, where 
(*) denotes complex conjugation when g is anti-unitary. Next, we consider two 
sets of eigenstates ϕK,β and ψK,β (labelled by β) corresponding to the two effective 
Hamiltonians TK and T̃K with identical eigenvalues ϵ2K,β = E

2 (with E > 0). Under 
the symmetry g, the eigenstates ψK,β will transform under a certain (co)irrep RE

K of 
the little group GK, that is,

Ũ(g)ψ
(∗)

K,β =

∑

α

[
R

E

K (g)
]

βα
ψK,α , (6)

where the sum runs over the states α for which ϵα,K = E. Left-multiplying equation 
(6) by 1

E
SK and employing the invariance of SK under the group GK as well as the 

mapping between the nonzero eigenstates of T̃K and TK, we find that

1
E
SKŨ(g)ψ

(∗)

K,β = U(g)ϕ(∗)

K,β =

∑

α

[
R

E

K (g)
]

βα
ϕK,α . (7)

Equation (7) implies that the set of eigenstates ϕK,β of the Hamiltonian TK 
will transform according to the same (co)irrep RE

K of the little group GK as ψK,β. 
As such, we find that the dispersive bands of Tk and T̃k are not only identical in 
energies but also share the same (co)irreps.

Symmetry-enforced band touching points. Equation (4) provides a means of 
diagnosing the symmetry-enforced band touching points between the BCL flat and 
dispersive bands. Here, we show this by leveraging the fact that a generalized BCL 
from equation (3) with Ak = a  and generic Bk shares the same flat-band (and 
corresponding band touching points) wavefunctions as Tk. For a proof that does 
not rely on the effective Hamiltonians, see Supplementary Section IF.

Consider first the case when BRL̃ is contained within BRL at a given 
momentum point K, such that equation (4) results in a bona fide representation 
at K. Now assume that the inter-sublattice hopping matrix is not full-rank at 
K (that is, rK < NL̃), and thus that the flat bands of Tk are not gapped at k = K. 
The nonzero-energy eigenstates of T̃K furnish the same (co)irreps of GK as the 
nonzero-energy eigenstates of TK. Because BRL̃ is a subset of BRL at K, it follows 
that, for any (co)irrep Ξ in the kernel of T̃K, there will be an identical (co)irrep 
Ξ in the kernel of TK. More precisely, let Ξ ∈ BRL̃ be a (co)irrep of GK, whose 
carrier space is given by the states ψK,β, for which T̃KψK,β = 0. The (co)irrep Ξ will 
also have a carrier space within the eigenstates belonging to the kernel of TK: ϕK,β, 
with TKϕK,β = 0. As ψK,β and ϕK,β form carrier spaces for the same (co)irrep Ξ, the 
inter-sublattice hopping matrix can be perturbed without breaking any crystalline 
symmetries

SK → SK + μ
∑

β

ϕK,β ψ
†
K,β , (8)

resulting in ϕK,β and ψK,β becoming eigenstates with eigenvalue ∣μ∣2 of TK and T̃K, 
respectively, and gapping the BCL flat bands at K. Therefore, there can be no locally 
stable band touching points between the flat and dispersive BCL bands at some 
momentum K, if BRL̃ is a subset of BRL at K.

On the other hand, if BRL̃ is not a subset of BRL at momentum K, the flat 
band is assigned the formal (co)irrep difference Ξ ⊟ Θ, which cannot be simplified 
to a direct sum of (co)irreps. This means that the multiplicity of Ξ (Θ) in BRL 
(BRL̃) is higher by one than in BRL̃ (BRL). Because of the one-to-one mapping 
of positive-energy eigenstates of the two effective Hamiltonians, it follows that the 
carrier space of Ξ (Θ) having dimension dΞ (dΘ) is the kernel of TK (T̃K), where 
dΞ − dΘ = NL − NL̃ (since TK and T̃K have the same rank). The kernel of TK having 
dimension dΞ includes the NL − NL̃ flat-band eigenstates. Hence, the flat bands 
in TK (and in the corresponding generalized BCL) will touch exactly dΘ dispersive 
bands at K. There is no symmetry-preserving perturbation that can be added to 
the inter-sublattice hopping matrix SK to gap this band touching point. We thus 
conclude that it is locally stable and protected by the crystalline symmetries of G.

Elementary band representations. The symmetry properties of an electronic band 
are completely described by its decomposition into (co)irreps at high-symmetry 
momenta in the Brillouin zone35–39. For a given gapped band or set of bands, the 
(co)irreps at two different momentum points are not independent, but instead 
have to satisfy certain compatibility relations35–39,45,46. The (co)irreps at the maximal 
momenta determine the (co)irreps across the entire Brillouin zone35,36.

For any set of bands, we define an augmented symmetry data vector B 35,36, 
which contains the multiplicities of all its (co)irreps at maximal momenta in the 
Brillouin zone (Supplementary Section IIIA,B)

B =





























n

m
(

ρ1
GK1

)

m
(

ρ2
GK1

)

...

m
(

ρ1
GK2

)

m
(

ρ2
GK2

)

...





























. (9)

In equation (9), m
(

ρi
GKj

)
 denotes the multiplicity of the (co)irrep ρi

GKj
 of 

the little group GKj of the maximal momentum Kj. Compared with an ordinary 
symmetry data vector35,36, B  contains one additional entry (n) at the beginning, 
specifying the number of bands encoded by B . To restrict to physical flat-band 
systems, we enforce n > 0, as a negative number of bands is unphysical.

A central role in MTQC is played by the elementary band representations. An 
elementary band representation is a special type of (atomic) (co)representation 
of the Shubnikov space group that is induced from a certain (co)irrep of the 
site-symmetry group of a maximal Wyckoff position35,36. The great power of 
MTQC stems from enumerating all possible elementary band representations 
within a given symmetry group. Since the (co)irreps of BRL and BRL̃ are induced 
from atomic limits, the band representations are just linear combinations of 
elementary band representations. As a result of this and equation (4), the flat-band 
augmented symmetry data vectors are just linear combinations of elementary band 
representations. This implies that the set of all augmented symmetry data vectors 
corresponding to BCL flat bands can be written as equation (5) (Supplementary 
Section IIIB).
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