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General construction and topological
classification of crystalline flat bands

Dumitru Calugaru®©'?, Aaron Chew'’, Luis Elcoro®?27, Yuanfeng Xu'3, Nicolas Regnault',

Zhi-Da Song ®' and B. Andrei Bernevig®156%

Exotic phases of matter can emerge from the interplay between strong electron interactions and non-trivial topology. Materials
that have non-dispersing bands in their electronic band structure, such as twisted bilayer graphene, are prime candidates for
strongly interacting physics. However, existing theoretical models for obtaining these ‘flat bands' in crystals are often too
restrictive for experimental realizations. Here we present a generic theoretical technique for constructing perfectly flat bands
from bipartite crystalline lattices. Our prescription encapsulates and generalizes the various flat-band models in the literature
and is applicable to systems with any orbital content, with or without spin-orbit coupling. Using topological quantum chemistry,
we build a complete topological classification in terms of symmetry eigenvalues of all the gapped and gapless flat bands. We
also derive criteria for the existence of symmetry-protected band touching points between the flat and dispersive bands, and
identify the gapped flat bands as prime candidates for fragile topological phases. Finally, we show that the set of all perfectly

flat bands is finitely generated and construct the corresponding bases for all 1,651 Shubnikov space groups.

nder special conditions, translation-invariant systems

harbour perfectly flat bands, that is, spectral bands

with momentum-independent energy. This extensive
single-particle degeneracy of electron states leads to a completely
non-perturbative effect of arbitrary levels of interactions or dis-
order, making flat-band systems prime candidates for strongly
correlated phases of matter. Perhaps the most exciting recent devel-
opments in this direction concern twisted bilayer graphene, where
the almost flat bands' have been linked to a plethora of magnetic
and superconducting phases®”.

Furthermore, consequent theoretical studies have also high-
lighted the importance of the non-trivial topology of the flat
bands'”. For example, Ginzburg-Landau theory predicts a van-
ishing superfluid weight for perfectly flat bands. However, a topo-
logically non-trivial flat band has additional band-geometric
contributions to the superfluid weight and can thus show supercon-
ductive behaviour’.

Flat bands arising from wavefunction interference are a very rich
playground for physical phenomena. In crystalline materials, the
rich physics of interacting flat-band systems predates the advent of
twisted bilayer graphene, with theoretical proposals of flat bands
playing host to Hubbard ferromagnetism®’, Wigner crystalliza-
tion'’, supersolid formation'' or Anderson transition'>"’. However,
the well-known theoretical constructions of flat bands, such as the
line-graph prescription®”'*'¢, are often restricted to toy models com-
prising s orbitals and non-spin-orbit-coupled Hamiltonians with
various geometric constraints, such as nearest-neighbour hoppings
with the same sign. These simplifications have hindered the discov-
ery of real-life crystalline materials with flat bands'-", which are
usually obtained in optical lattices® or superconducting circuits*.

In this paper, we introduce a generic technique for constructing
perfectly flat bands in bipartite crystalline lattices (BCLs), where a

lattice is divided into two sublattices with unequal numbers of
orbitals. The BCL construction can be applied to any type of orbit-
als, with or without spin-orbit coupling, and in any of the 1,651
Shubnikov space groups, including the space groups with or without
time-reversal symmetry and the magnetic space groups. Our pre-
scription also encapsulates and generalizes the line-graph®®!4-1621-2
and split-graph”-* formulations, as well as many of the models pre-
sented in literature>'**>?>-3_ Additionally, our formalism correctly
explains the origin of flat bands in myriad real-life materials, as
highlighted in an accompanying paper*. Applying magnetic topo-
logical quantum chemistry (MTQC)***¢ and related theories®”~** to
our construction yields our main result: flat bands can be under-
stood as formal differences of band representations. This enables us
to derive universal criteria for the existence of symmetry-protected
band touching points between the flat and dispersive bands, which
were previously only explained in an ad hoc manner”>*’. Moreover,
gapped flat bands can realize any commensurate difference of band
representations, and thus are prime candidates for fragile topologi-
cal phases”*>*'~**_ Finally, we show that the set of all perfectly flat
bands is finitely generated and construct the corresponding bases in
all Shubnikov space groups.

Model

We first outline the BCL construction (Supplementary Section IA).
A BCL is a translation-invariant fermionic lattice partitioned into
two different sublattices, L and L. We assume that each sublattice
individually respects all the symmetries of the BCLs Shubnikov
space group. For each unit cell R, we define fermionic annihilation
operators dg; (br,) corresponding to each orbital i from sublattice
L (L). For spinful fermions, different spin states have different indi-
ces i. Within each sublattice L and L, we place N, and Nj orbitals
per unit cell, respectively, and introduce a unitary chiral operator
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C actmg d1fferently on the two sublattices: Cah,C™' = a; and
CbRIC* = ,le We first consider quadratic Hamiltonians H
with anti-commuting chiral symmetry (that is, {C, H} = 0) and
later relax this constraint. Defining momentum space operators
Cki = ZRC e R4 where 1, denotes the position of the ith
orbital felative to the unit cell origin and ¢ = 4, b for the two sub-
lattices, the Hamiltonian (which 1qcludes only inter-sublattice hop-
ping) can be written as H = >, WxHiWx, where the first-quantized

Hamiltonian matrix is
< Sk)
Hye =
;
Sk

bk,Nz) is an

(1)

and ‘PE = (flkl, e dk,N,_: bk,l: e (NL + N]:)
-dimensional spinor. In equation (1), C forbids any intra-sublattice
hopping terms, whilst S, denotes the Ni x N; hopping matrix
between different sublattices®. Its rank r, is bounded by its smaller
dimension. Taking Np > Nj, it follows (Supplementary Section
IB) that H, contains at least N — N; zero modes for all k, yielding
Ni — Nj perfectly flat bands, and 2Nj dispersive bands coming in
pairs related by chiral symmetry. Generically, S, has maximal rank
1, for all k, except at band touching points between the flat and the
dispersive bands.

The Hamiltonian H, is diagonalized using the singular value
decomposition Sk = WiZi Vi, where W, (V,) denotes an N, XN,
(N; x Nj) unitary matrix, whilst X, is a diagonal N; x Nj matrix of
singular values (listed in descending order). We define y;, (¢y,) to
be the vector formed by the ath column of V; (W,). For each a <r,,
the dispersive bands’ eigenvectors are

1 < :td)k,a )
\/i l//k,a
with energies +¢,,, where ¢, is the ath singular value of §; (that
is, the ath nonzero diagonal entry of Z,). The zero modes of H,
are ‘P+T (q')ka, 0) for rk<a<NL and Y. T_ (O y/ka) for
n<a < Nj, with Sq,=0 and Sk aPra =0, respectlvely These
include both the flat-band eigenstates (for which S;r(gbka = 0 for all
k) and the zero modes of the dispersive bands at the band touching
points (where i, < Nj).

It is instructive to consider ‘integrating’ out the degrees of free-
dom on the smaller sublattice L. This is equivalent to adding a large
chemical potential term for the orbitals in sublattice L and then
including their effects on sublattice L using degenerate second-order
perturbation theory (Supplementary Section IC). Up to multiplica-
tive factors and constant offsets, the resulting effective Hamiltonian
is Tx = SkSIT(. The eigenvectors of T are ¢, (1<a<N,) and thus
include the flat-band modes of the original BCL (being in the ker-
nel of S, they are also zero modes of T,). Alternatively, one may
integrate the other sublattice yielding the Hamiltonian Ty = S] Sk,
whose eigenstates y;, (1 < a < Nj) do not include the flat- band
modes, but that possesses the same nonzero eigenvalues as Ty €} ,
(I1<a<rn). There is also a direct mapping between the nonzero
eigenstates of the two Hamiltonians: ¢y, = - Skyy,. Because
H, and T, possess identical flat-band wavefunctions and share the
same Shubnikov space group, both yield the same flat-band topol-
ogy. Additionally, this formal integration procedure resembles the
construction of a line-graph Hamiltonian (T,) from a Hamiltonian
defined on a ‘root’ Euclidean graph (T) using the incidence matrix
of the latter (S;) (ref. ¥). Unlike the line-graph construction, in the
BCL construction, S, can denote any type of inter-sublattice hopping
matrix between any orbitals (with or without spin-orbit coupling)
and is not restricted to binary incidence matrices in spinless systems

v, = )

186

of s orbitals. We present several examples, including an analysis of
flat bands of the real material Ca,Ta,O, (ref. **), in Supplementary
Section II.

The chiral BCL Hamiltonian # can be generalized by includ-
ing generic intra-sublattice hopping terms within the L sublattice,
which break the chiral symmetry without perturbing the flat bands.
To see this, consider the Hamiltonian

3)

where A, (B,)isan N; X N, (N; x N;) Hermitian matrix denoting the
intra-sublattice hopping inside the L (L) sublattice. We assume that
A, has a momentum-independent eigenvalue a with degeneracy #,.
If N; < na < Ni, then the Hamiltonian in equation (3) has at least

— Nj flat bands of energy a irrespective of B, (Supplementary
Section ID). The simplest case is for A, to be proportional to the
identity matrix (that is,Ax = al), with arbitrary B,, a construc-
tion which we term a generalized BCL. A more general possibil-
ity occurs when A, itself is a BCL Hamiltonian with n, perfectly
flat bands. Hence A, is a generalized BCL Hamiltonian compris-
ing sublattices L’ and L’ with n, = Ny — Ny,. However, redefining
L+ L'and L + L @ L’ brings the Hamiltonian back into the form
of equation (3) with A, proportional to identity (Supplementary
Section ID). We henceforth consider Ay = al. Moreover, because
they are in the kernel of S} and have support only on the L sublat-
tice, the chiral BCL flat- band eigenstates ‘I‘+ (and corresponding
band touching points) for r,<a <N, will remain eigenvectors of
H,, but with eigenvalue a. The corresponding flat-band and band
touching point wavefunctions are unaffected by the introduction of
the intra-sublattice hopping matrices. However, the band touching
points corresponding to ¥, for . < a < N; will generically be
gapped. This implies that the topologlcal propertles of the flat bands
and their band touching points in a generahzed BCL can be inferred
from the zero modes of Ty = SkS The zero modes of Ty, = S! Sk
will not correspond to band touchmg points in the generalized BCL
Hamiltonian from equation (3).

Symmetries in a BCL. MTQC diagnoses the topology of a band
via its (co)irreps at high-symmetry momenta®~****. We assume
that the BCL Hamiltonian from equation (1), as well as each of its
two sublattices individually, are invariant under a certain Shubnikov
space group G (in principle, each sublattice might be invariant under
a supergroup of G, which will not be considered in this paper). Ata
high-symmetry momentum K, the inter-sublattice hopping matrix
is invariant under any transformation belonging to Gk, the little
group of K (that is, the subgroup of G that leaves K invariant, up to
reciprocal lattice vectors). The action of the symmetries in Gk on the
eigenstates of Ty and Tx gives rise to (co)irreps of Gk. At the same
time, the eigenvectors of Ty and Tk with identical nonzero energies
are mapped to one another by the symmetry-invariant matrix Sy,
and thus furnish identical (co)irreps (Methods). Therefore, the dis-
persive bands of T} and Ty not only are identical in energies but also
share identical (co)irreps at high-symmetry momenta. The only
exceptions are the zero modes of the two effective Hamiltonians for
which there is no direct mapping between the eigenstates. An indi-
rect mapping between their (co)irreps will be derived below.

Flat-band (co)irreps. Since T, is defined on the L sublattice, the
band representations corresponding to all the bands (including the
flat bands) of T, (BRy) are the sum of all elementary band repre-
sentations induced from the orbitals of the L sublattice. Similarly,
the band representations of all the bands of Ty (BRj;) are the sum
of all elementary band representations induced from the orbitals
of L. Moreover, the dispersive bands of T, and Ty share the same
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Fig. 1| Examples of flat-band constructions in generalized BCLs. The structure of two BCLs defined on the hexagonal lattice is shown in a and ¢. In both

cases, we place s orbitals at the 3f position within sublattice L (black dots), whilst L contains s orbitals at the 1a (a) and 2c (¢) position (red dots). Red and
blue lines respectively denote intra-sublattice hopping with amplitude t, within [ and inter-sublattice hopping with amplitude t,. There is a degenerate on-site
energy term e on sublattice L. Corresponding band structures at t;=—1(b) and t,=—0.1 (d), together with corresponding (co)irreps®>3¢4>-4,

(co)irreps at high-symmetry momentum points, except for the zero
modes in Ty (or, equivalently, the band touching points with the flat
bands in T}). As such, the (co)irreps of the perfectly flat bands in T}
(denoted by Bgg), which are identical to the flat bands of the gener-
alized BCL Hamiltonian from equation (3), are independent of the
inter-sublattice hopping matrix S, and must be given by those (co)
irreps of BR which are not in BR;:

Brs = BR; B BR;. (4)

Formally, in equation (4), we introduced an identity element ()
for the direct sum operation of (co)irreps (@) and an ‘inverse’ H=
to each (co)irrep E, such that E @ (HE) = 0. When evaluating dif-
ferences (H) of (co)irreps, we will encounter expressions such as
(T, @ T3) 8 (' @ I's) = I', BT that cannot be simplified further
to (co)representation. These differences are instrumental in under-
standing the band touching points between the flat and the disper-
sive bands arising in a generalized BCL (Supplementary Section IF).

Band touching points. First, when BR; is a subset of BR; at a
given momentum point K, such that equation (4) produces a bona
fide (co)representation at K, there can be no locally stable band
touching points between the flat and dispersive bands of the BCL
protected by crystalline symmetries (Methods). Here, we define a
locally stable band touching point as a band touching point that can
neither be gapped completely nor have its location in momentum
space changed by any symmetry-preserving perturbation to the
S, matrix. As a result, if BR; C BRy, the BCL flat band(s) satisfy
the compatibility relations (as they must as linear combinations of
band representations)**® and carry bona fide (co)representations at
all momenta, being generically gapped. Moreover, as gapped BCL
flat bands are differences of band representations, they form a per-
fect playground for realizing fragile topological phases, which also
emerge as differences of band representations=>*=*,

On the other hand, if BR; is not a subset of BR at some momen-
tum point K, then the flat bands are assigned a formal difference of
(co)representations (for example, EH®) and must be degenerate
with dispersive bands at K. The corresponding band touching point
is locally stable and cannot be gapped by any symmetry-preserving
perturbation to the inter-sublattice matrix (Methods). At K, the
band touching point is faithfully described only by the representa-
tion &, but the complete formal difference ZH® is required to fully
characterize the flat bands. To see this, consider two band touching
points given by 2H®, and 2H,. To produce gapped flat bands in
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the two BCLs, different orbitals will need to be added in the L lattice
(that is, orbitals that induce the ®, and ©, (co)irreps, respectively).
Moreover, in the vicinity of K, ®, and ®, will subduce to potentially
different (co)irreps of the corresponding little group, effectively
resulting in different (co)irreps being assigned to the flat bands.

To illustrate the band representation subtraction from equa-
tion (4), Fig. 1 presents two generalized BCL examples on the
two-dimensional hexagonal lattice in the P6/mmml’ group
(Shubnikov space group 191.234 in the notation of the Bilbao
Crystallographic Server)*>*>*>~". In both examples, the L sublattice
contains s orbitals at the 3f Wyckoff position. In Fig. 1a, we place
s orbitals at the 1a position in L, resulting in two degenerate flat
bands with

Bes = (Ag)y 1 G B (Ay) 16 = (I7) + (Ks) + (My @My ),

as shown in Fig. 1b. Because all (co)irreps of BR; are included
in BRy, the flat bands are gapped. On the other hand, if L
contains s orbitals at the 2c position (as shown in Fig. 1c),
By = (Ag)y TG B (A, 16 = (TF BIY) + (K1) + (M)
contains a formal (co)irrep difference at the I" point, signalling the
presence of a band touching point, as seen in Fig. 1d.

We conclude that Brg contains all the information about the
locally stable band touching points protected by crystalline sym-
metries, some of which were only partially understood in terms
of ad hoc counting rules of real-space eigenstates with finite
support’>*. At a given momentum point K, there are locally
stable band touching points if the band representation subtrac-
tion results in a formal (co)irrep difference. On the other hand,
if the subtraction rule in equation (4) generates direct sums of
(co)irreps, the flat bands can always be locally gapped at K. Note,
however, that this does not preclude globally stable band touch-
ing points between the flat and dispersive bands (as shown in the
example constructed in Supplementary Section IIE). A globally
stable band touching point cannot be gapped completely by any
symmetry-preserving perturbation to S, but its location in the
Brillouin zone can be changed.

Classification. Equation (4) shows that the (co)irreps of the BCL
flat band and corresponding band touching points depend exclu-
sively on the orbital content of the two sublattices. The flat-band
(co)irreps (Bep) are linear combinations of elementary band repre-
sentations, with positive or negative integer coefficients (Methods),
depending on whether the corresponding orbitals belong to L or L,
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respectively. This allows us to leverage MTQC for classifying flat
bands™*. In addition, equation (4) hints that, whilst the set of all
possible perfectly flat bands for a given Shubnikov space group G
(Fg) is infinite, it is also finitely generated.

To obtain Fg explicitly, we introduce a (dg + 1)-dimensional
symmetry data vector B, where dg is the total number of (co)irreps
of G for all high-symmetry momenta (Methods). The first compo-
nent of B is a positive entry specifying the number of flat bands
indexed by Bgs, whilst the next dg components specify the multi-
plicities of the flat-band (co)irreps. Because B can contain formal
differences of (co)irreps (corresponding to gapless flat bands), the
last dg components of B can be negative. In Supplementary Section
IIIB, we show that

.
Fo={BeZ%B=> piespicZp >0y,

i=1

(5)

where 7 is the number of linearly independent elementary band
representations in the Shubnikov space group G, and ¢; (1<i<r)
is a set of integer (dg + 1)-dimensional vectors which we term
the flat-band bases. In Supplementary Section IIIH, we tabulate
the flat-band bases for all 1,651 Shubnikov space groups, with or
without spin-orbit coupling. This result is comprehensive over all
symmetry groups and will be an invaluable tool in the experimental
search for topological flat bands™.

The space of gapped flat bands Fg is computed by restricting
to those elements of Fg with only non-negative entries, such that
the flat bands carry a bona fide (co)representation at all momenta.
Using techniques of polyhedral computation first introduced to
band theory by ref.*, we show explicitly that F§ is also finitely
generated and derive an algorithm for computing the correspond-
ing bases in Supplementary Section IIIC. Moreover, as differences
of band representations, we show in Supplementary Section IIIE
that gapped BCL flat bands can also realize any topologically fragile
bands****-**, making them an ideal playground for strongly cor-
related phases of matter. In Supplementary Section IIIE, we present
a simple example illustrating the relation between gapped, gapless
and topologically trivial bands.

Discussion

We have presented a general technique for designing crystalline
systems with perfectly flat bands. Unlike previous flat-band mod-
els, our method can be applied to systems with any orbital content,
spin-orbit coupling, and within any symmetry group. In particu-
lar, being less restrictive than the well-known line-graph construc-
tion, our procedure offers great hope for obtaining materials with
flat bands near the Fermi energy, which realize exotic phases of
matter. Reference** highlights six prototypical compounds host-
ing flat bands (among many others) which can be explained with
our formalism.

Within the framework of MTQC, the BCL flat bands can be
understood as formal differences of band representations. This con-
nection allow us to obtain criteria for identifying locally stable band
touching points between the flat and dispersive bands. In addition,
we have shown that gapped BCL flat bands can realize any topologi-
cally fragile phase. Moreover, using the recently tabulated elemen-
tary band representations for all 1,651 Shubnikov space groups, we
have constructed all possible symmetry data vectors that can be
realized in flat bands, showing that the set is infinite, but finitely
generated, and tabulating the corresponding bases. Our work has
great implications for the study of flat bands. For example, our band
touching point construction yields a host of new semi-metallic
flat-band systems which, when gapped, can lead to new exotic
phases of matter*.
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Methods

The dispersive bands’ (co)irreps of T, and T. At a high-symmetry momentum

point K, the first-quantized BCL Hamiltonian H must be invariant under the

symmetry operations of G, the little group of K. Since the sublattices obey the

symmetries of G (which is a supergroup of Gx), every symmetry operation

g € Gk is implemented individually in sublattice L (L) by a unitary matrix U(g)
[U(g)] such that gal,g~' = Z]N'd Ui(g)alx XKg*I E]’,V"l Ui(g)b TK]

Consequently (Supplementary Section IE), the inter-sublattice hopping

matrix is invariant under the symmetry g, that is, U(g)Sg gt (g) = Sk, where

) denotes complex conjugation when g is anti-unitary. Next we consider two

sets of eigenstates ¢y ; and yy; (labelled by ) correspondlng to the two effective

Hamiltonians Ty and Tk with identical eigenvalues eK 5= = &% (with £ > 0). Under

the symmetry g, the eigenstates y; , will transform under a certain (co)irrep R of

the little group Gk, that is,

Ugwic) = > [RR @] o ®)

a

where the sum runs over the states a for which e, x = £. Left-multiplying equation
(6) by £ Sk and employing the invariance of Sy under the group Gx as well as the
mapping between the nonzero eigenstates of T and T, we find that

l51( f](g)

= = V@) = 3 [RR @) dxe @

a

Equation (7) implies that the set of eigenstates ¢ of the Hamiltonian Ty
will transform according to the same (co)irrep R of the little group Gx as yx.
As such, we find that the dispersive bands of Ty and T are not only identical in
energies but also share the same (co)irreps.

Symmetry-enforced band touching points. Equation (4) provides a means of
diagnosing the symmetry-enforced band touching points between the BCL flat and
dispersive bands. Here, we show this by leveraging the fact that a generalized BCL
from equation (3) with Ay = al and generic B, shares the same flat-band (and
corresponding band touching points) wavefunctions as T. For a proof that does
not rely on the effective Hamiltonians, see Supplementary Section IE

Consider first the case when BR; is contained within BR at a given
momentum point K, such that equation (4) results in a bona fide representation
at K. Now assume that the inter-sublattice hopping matrix is not full-rank at
K (that is, rk < Nj), and thus that the flat bands of T, are not gapped at k=K.
The nonzero-energy eigenstates of Tk furnish the same (co)irreps of G as the
nonzero-energy eigenstates of Ty. Because BR; is a subset of BR at K, it follows
that, for any (co)irrep E in the kernel of Tx there will be an identical (co)irrep
E in the kernel of T. More precisely, let £ € BR; be a (co)irrep of Gk, whose
carrier space is given by the states yy 5, for which Txyy ; = 0. The (co)irrep E will
also have a carrier space within the eigenstates belonging to the kernel of Ty: ¢,
with Ty s=0. As yy ; and ¢y, form carrier spaces for the same (co)irrep Z, the
inter-sublattice hopping matrix can be perturbed without breaking any crystalline
symmetries

Sk = Sk + 1 Y Wi p ®)
p

resulting in ¢y ; and yy ; becoming eigenstates with eigenvalue |u|* of Ty and Tk
respectively, and gapping the BCL flat bands at K. Therefore, there can be no locally
stable band touching points between the flat and dispersive BCL bands at some
momentum K, if BR; is a subset of BR at K.

On the other hand, if BR; is not a subset of BR; at momentum K, the flat
band is assigned the formal (co)irrep difference EH®, which cannot be simplified
to a direct sum of (co)irreps. This means that the multiplicity of 2 (®) in BR
(BR;) is higher by one than in BR; (BRL). Because of the one-to-one mapping
of positive-energy eigenstates of the two effective Hamiltonians, it follows that the
carrier space of E (®) having dimension dx (dg) is the kernel of Ty (Tx), where
dz — de = N — Nj (since T and Tk have the same rank). The kernel of T having
dimension dy includes the Ny — Nj flat-band eigenstates. Hence, the flat bands
in T (and in the corresponding generalized BCL) will touch exactly d, dispersive
bands at K. There is no symmetry-preserving perturbation that can be added to
the inter-sublattice hopping matrix S to gap this band touching point. We thus
conclude that it is locally stable and protected by the crystalline symmetries of G.

Elementary band representations. The symmetry properties of an electronic band
are completely described by its decomposition into (co)irreps at high-symmetry
momenta in the Brillouin zone*-*. For a given gapped band or set of bands, the
(co)irreps at two different momentum points are not independent, but instead
have to satisfy certain compatibility relations’***>*°. The (co)irreps at the maximal
momenta determine the (co)irreps across the entire Brillouin zone™*.

For any set of bands, we define an augmented symmetry data vector B,
which contains the multiplicities of all its (co)irreps at maximal momenta in the
Brillouin zone (Supplementary Section IIIA,B)

m (vb,)
m (ﬂék\ )

|
Il

9

1
m(v)
2
m (o)

In equation (9), m (p’g ) denotes the multiplicity of the (co)irrep pfg of

the little group Gy, of the maximal momentum K;. Compared with an ordmary
symmetry data vector™*, B contains one addltlonal entry (n) at the beginning,
specifying the number of bands encoded by B. To restrict to physical flat-band
systems, we enforce n> 0, as a negative number of bands is unphysical.

A central role in MTQC is played by the elementary band representations. An
elementary band representation is a special type of (atomic) (co)representation
of the Shubnikov space group that is induced from a certain (co)irrep of the
site-symmetry group of a maximal Wyckoff position***. The great power of
MTQC stems from enumerating all possible elementary band representations
within a given symmetry group. Since the (co)irreps of BRy and BR; are induced
from atomic limits, the band representations are just linear combinations of
elementary band representations. As a result of this and equation (4), the flat-band
augmented symmetry data vectors are just linear combinations of elementary band
representations. This implies that the set of all augmented symmetry data vectors
corresponding to BCL flat bands can be written as equation (5) (Supplementary
Section IIIB).

Data availability

All data related to this paper are available in the Supplementary Information.

Code availability
The code necessary to generate the flat-band bases can be made available upon
request from the authors.

Acknowledgements

We thank M.-R. Li and D.-S. Ma for fruitful discussions and collaboration on related
projects. This work is part of a project that has received funding from the European
Research Council under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 101020833). B.A.B. and N.R. were also supported by
the US Department of Energy (grant no. DE-SC0016239), and were partially supported
by the National Science Foundation (EAGER grant no. DMR 1643312), a Simons
Investigator grant (no. 404513), the Office of Naval Research (ONR grant no. N00014-
20-1-2303), the Packard Foundation, the Schmidt Fund for Innovative Research, the
BSF Israel US foundation (grant no. 2018226), the Gordon and Betty Moore Foundation
through grant no. GBMF8685 towards the Princeton theory programme and a
Guggenheim Fellowship from the John Simon Guggenheim Memorial Foundation.
B.A.B. and N.R. were supported by the NSF-MRSEC (grant bo. DMR-2011750).

B.A.B. and N.R. gratefully acknowledge financial support from the Schmidt DataX
Fund at Princeton University made possible through a major gift from the Schmidt
Futures Foundation. L.E. was supported by the Government of the Basque Country
(project IT1301-19) and the Spanish Ministry of Science and Innovation (PID2019-
106644GB-100). Further support was provided by the NSF-MRSEC no. DMR-1420541,
BSF Israel US Foundation no. 2018226 and the Princeton Global Network Funds.

Author contributions

D.C,, A.C,, L.E. and B.A.B. conceived the work and the main idea of band representation
subtraction. D.C., A.C,, Z.-D.S., L.E. and B.A.B. contributed to the theory of generalized
BCL construction, band representation subtraction and gapless point criteria. D.C.

and A.C. analysed the two-dimensional examples of flat-band constructions from
Supplementary Section II, with input from Z.-D.S. and L.E. Y.X. performed the
first-principles calculations from Supplementary Section IID, and analysed the flat-band
crystalline material Ca,Ta,O,. D.C., A.C,, L.E. and Z.-D.S. performed the flat-band
classification and compiled the tables. All authors discussed the results and wrote the
main text and Methods. D.C. and A.C. wrote the Supplementary Information, with input
and feedback from L.E., Z.-D.S., N.R,, B.A.B. and Y.X.

Competing interests

The authors declare no competing interests.

NATURE PHYSICS | www.nature.com/naturephysics


http://www.nature.com/naturephysics

NATURE PHYSICS ARTICLES

Additional information Peer review information Nature Physics thanks David Carpentier and
Supplementary information The online version contains supplementary material the other, anonymous, reviewer(s) for their contribution to the peer review
available at https://doi.org/10.1038/s41567-021-01445-3. of this work.

Correspondence and requests for materials should be addressed to B. Andrei Bernevig. Reprints and permissions information is available at www.nature.com/reprints.

NATURE PHYSICS | www.nature.com/naturephysics


https://doi.org/10.1038/s41567-021-01445-3
http://www.nature.com/reprints
http://www.nature.com/naturephysics

	General construction and topological classification of crystalline flat bands

	Model

	Symmetries in a BCL. 
	Flat-band (co)irreps. 
	Band touching points. 
	Classification. 

	Discussion

	Online content

	Fig. 1 Examples of flat-band constructions in generalized BCLs.




