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The Hamiltonian of the magic-angle twisted symmetric trilayer graphene (TSTG) can be decomposed into
a twisted-bilayer-graphene- (TBG-) like flat band Hamiltonian and a high-velocity Dirac fermion Hamiltonian.
We use Hartree-Fock mean field approach to study the projected Coulomb interacting Hamiltonian of TSTG
developed in Călugăru et al. [Phys. Rev. B 103, 195411 (2021)] at integer fillings ν = −3, −2, −1, and 0
measured from charge neutrality. We study the phase diagram with w0/w1, the ratio of AA and AB interlayer
hoppings, and the displacement field, which introduces an interlayer potential U and hybridizes the TBG-like
bands with the Dirac bands. At small U , we find the ground states at all fillings ν are in the same phases
as the tensor products of a Dirac semimetal with the filling ν TBG insulator ground states, which are spin-
valley polarized at ν = −3, and fully (partially) intervalley coherent at ν = −2, 0 (ν = −1) in the flat bands.
An exception is ν = −3 with w0/w1 � 0.7, which possibly becomes a metal with competing orders at smallU
due to charge transfers between the Dirac and flat bands. At strongU where the bandwidths exceed interactions,
all the fillings ν enter a metal phase with small or zero valley polarization and intervalley coherence. Lastly, at
intermediate U , semimetal or insulator phases with zero intervalley coherence may arise for ν = −2, −1, 0.
Our results provide a simple picture for the electron interactions in TSTG systems, and reveal the connection
between the TSTG and TBG ground states.
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I. INTRODUCTION

The rich physics discovered in twisted bilayer graphene
(TBG), including the correlated insulating phase at integer
fillings and the superconducting phase with finite doping, have
attracted the attention of both experimental and theoretical
communities [1–111]. The progress on TBG systems has also
inspired interest in other twisted moiré materials. Among
the twisted multilayer graphene systems and motivated by
theoretical proposals in Refs. [112–121], the twisted sym-
metric trilayer graphene (TSTG) has recently been realized
in experiments [122–124]. Correlated insulating states and
superconducting states are also observed in TSTG. Similar to
the twisted bilayer graphene, the electron density in TSTG is
tunable via gate voltages. Moreover, an external displacement
field perpendicular to the graphene sheets can be applied to
the system, which makes the band structure also tunable by
gate voltages. The experimental discoveries also triggered a
deeper theoretical look at this system [125–130].

TSTG is made of three graphene sheets in AAA stacking,
with the middle layer twisted by a small angle θ relative to
the top and bottom sheets. This lattice structure is shown to
be energetically stable [117]. In the absence of the external
displacement field, the system has mirror symmetry, by reflec-
tion around the graphene middle layer. Therefore, we are able
to use the eigenstates of this mirror symmetry as the basis:

the TSTG decouples into two sectors with +1 and −1 mirror
eigenvalues, which correspond to a TBG-like Hamiltonian
with the effective interlayer hopping enhanced by a

√
2 factor,

and a Dirac cone Hamiltonian with a large unrenormalized
Fermi velocity, respectively [113]. Similar to the pure TBG
system, the TBG-like sector in TSTG exhibits flat bands at the
TSTG magic angle θM ≈ 1.5◦, which is

√
2 times of the TBG

magic angle. The band dispersion also depends on the pa-
rameter w0/w1 ∈ [0, 1], which is the ratio between interlayer
in AA and AB hoppings. When an out-of-plane displacement
field is turned on, these two mirror sectors will hybridize with
each other. Equivalently, the out-of-plane displacement field
can be captured by a interlayer potential U . This paper is
a sequel to Ref. [125], where we provided the perturbation
schemes of the low-energy bands in TSTG with and without
the displacement field, derived the projected Hamiltonian for
TSTG with a screened Coulomb interaction, and carefully
analyzed the discrete symmetries and continuous symmetries
of the TSTG Hamiltonian. These provide the foundation of
the TSTG projected Hamiltonian we study in this paper.

In this paper, we employ the Hartree-Fock (HF) mean field
theory to study numerically the ground states of the pro-
jected interacting Hamiltonian of magic-angle TSTG with a
screened Coulomb repulsive interaction derived in Ref. [125].
We focus on integer fillings ν = −3, −2, −1, 0, defined as
the number of electrons per moiré unit cell relative to the
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charge neutrality, where insulating or semimetallic behaviors
are observed experimentally [122–124]. Our numerical results
show that at smallU , the TSTG phases at all integer fillings ν

are states that can adiabatically connect to the tensor product
of a semimetal in the Dirac sector with the TBG sector ground
states at flat band fillings ν: the TBG sector flat bands are fully
spin-valley polarized at ν = −3, fully intervalley coherent at
ν = −2 and 0, and partially intervalley coherent at ν = −1.
The only exception is the case of ν = −3 with w0/w1 > 0.7,
where the TSTG may enter a large Fermi-surface metal phase
with competing orders, including a potential translation sym-
metry breaking, due to the charge transfers between the Dirac
and TBG sectors. At fillings ν = −2, −1, 0, as U increases
(at w0/w1 > 0), we find a universal first-order transition into
a phase with zero intervalley coherence, which either remains
a semimetal (ν = −2,−1) or may even become an insulator
(ν = −1, 0). Lastly, at stronger U for which the TSTG free
bandwidth exceeds the Coulomb interaction energy scale, all
the integer fillings enter a metallic phase with large Fermi
surfaces and small or zero valley polarization and intervalley
coherence.

The rest of the paper is organized as follows. In Sec. II,
we review the single-body Hamiltonian of TSTG and its
mirror-symmetric basis. The projected Hamiltonian into the
low-energy bands being studied is also discussed. Section III
presents the Hartree-Fock mean field approximation to the
TSTG projected Hamiltonian, the self-consistent conditions,
and the HF order parameters which characterize the physical
properties of the mean field ground state. In Sec. IV, we pro-
vide the HF numerical results at integer filling factor ν = −3.
The phase diagram and ground-state properties are discussed.
We have also calculated the HF band structure in different
phases. Similarly, the discussion of the HF numerical results at
filling factors ν = −2, −1, and 0 are also presented in Secs.
V, VI, and VII, respectively.

II. INTERACTING MODEL FOR TSTG

We first briefly review the noninteracting Bistritzer-
MacDonald Hamiltonian for mirror-symmetric twisted tri-
layer graphene, which can be written as the sum of a TBG
Hamiltonian [3] with renormalized interlayer hopping and an
independent Dirac fermion Hamiltonian [113,125]. We also
introduce a displacement field perpendicular to the graphene
sheets that can couple the Dirac fermion and TBG fermion
together. The interacting Hamiltonian projected into the low-
energy bands is also discussed in this section [125].

A. Single-particle Hamiltonian

The twisted trilayer graphene geometry with mirror sym-
metry was introduced in Refs. [113,114]. In this paper we will
use the notations of Refs. [37–39,70,86,87,100,125] where the
noninteracting model and its symmetries are discussed in de-
tail. We use â†p,α,s,l to represent the electron creation operator
with momentum p measured from the � point of single-layer
graphene Brillouin zone, sublattice α = A,B, spin s =↑, ↓,
and layer l = 1, 2, 3. Similar to the derivation of Bistritzer-
MacDonald model for twisted bilayer graphene, the Dirac
equation can be used to describe the low-energy physics of
each individual layer. We define K+ = K1 = K3 as the K

point of the bottom and the top layers, and K− = K2 for
the middle layer. Here |K±| = 1.073 Å−1. For convenience,
we also define vectors q j = C j−1

3z (K+ − K−). The reciprocal
lattice of the moiré lattice Q0 is spanned by the basis vectors
bM1 = q3 − q1 and bM2 = q3 − q2. Adding the vectors qi
iteratively gives us momentum lattices Q± = Q0 ± q1, and
they form the hexagon lattice in the momentum space. In
order to describe the low-energy physics, we introduce the
electron operators âk,Q,η,α,s,l = âηKl+k−Q,α,s,l , where Q ∈ Qη

if l = 1, 3 or Q ∈ Q−η if l = 2. Without the displacement
field along the ẑ direction, the system is invariant under mirror
symmetry mz which switches the first layer with the third
layer, and leaves the middle layer invariant. Therefore, the
Bistritzer-MacDonald model for TSTG can be simplified us-
ing the following basis transformation:

ĉ†k,Q,η,α,s =
{

1√
2
(â†k,Q,η,α,s,1 + â†k,Q,η,α,s,3), Q ∈ Qη

â†k,Q,η,α,s,2, Q ∈ Q−η

(1)

where k belongs to the moiré Brillouin zone (MBZ). These
operators (dubbed as TBG fermions) have even eigenvalue
under mz transformation. Fermion operators with odd mz

eigenvalue (dubbed as Dirac fermions) are given by

b̂†k,Q,η,α,s = 1√
2
(â†k,Q,η,α,s,1 − â†k,Q,η,α,3), Q ∈ Qη. (2)

Since the single-body Hamiltonian commutes with mz trans-
formation in the absence of the external displacement field, it
can be written as a block-diagonal form

Ĥ0 = ĤTBG + ĤD. (3)

It can be shown that the Hamiltonian in the mirror-symmetric
sector ĤTBG contains ĉ, ĉ† operators and is identical to the
ordinary TBGHamiltonian [3,86], with the interlayer hopping
parameter multiplied by a factor of

√
2. It reads as

ĤTBG =
∑

k ∈ MBZ
QQ′ ∈ Q±
η, s, α, η

[
h(η)Q,Q′ (k)

]
αβ
ĉ†k,Q,η,α,sĉk,Q′,η,β,s, (4)

in which the “first quantized Hamiltonian” of the η = + val-
ley is given by

h(+)
Q,Q′ (k) = vFσ · (k − Q)δQ,Q′ +

∑
j=1,2,3

√
2TjδQ−Q′,±q j ,

(5)

where vF = 6104.5 meVÅ is the Fermi velocity of single-
layer graphene, and interlayer hopping matrices Tj are given
by

Tj = w0σ0 + w1

[
cos

2π ( j − 1)

3
σx + sin

2π ( j − 1)

3
σy

]
.

(6)

Similar to the TBG Hamiltonian, w0 and w1 stand for the
interlayer hopping strength around the AA and AB stacking
regions, respectively. In this paper we use w0 as a tunable pa-
rameter, and keep the value of w1 = 110 meV fixed. Similar
to ordinary TBG, we define w0 = 0 as the chiral limit. In the
realistic case we have 0 � w0 < w1 due to lattice relaxation
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effects [59,66,90,93]. The
√
2 factor in Eq. (5) comes from

the transformation in Eq. (1). Due to the fact that the effective
interlayer hopping is stronger, the magic angle of TSTGwhere
the bands around charge-neutral point are flat will be around
θ ≈ 1.5◦, which is bigger than the magic angle in TBG [113].
The Hamiltonian in valley η = − can be obtained by applying
C2z transformation to Eq. (5).

On the other hand, ĤD only includes the contribution
from mirror-antisymmetric sector. It is given by the following
expression:

ĤD =
∑

k ∈ MBZ
η, s, α, β

∑
Q∈Qη

[
hD,η

Q (k)
]
αβ
b̂†k,Q,η,α,sb̂k,Q,η,β,s (7)

in which the first quantized Hamiltonian for Dirac cone reads
as

hD,+
Q (k) = vFσ · (k − Q), (8)

hD,−
Q (k) = σxh

D,+
−Q (−k)σx. (9)

We can introduce an external displacement field perpendic-
ular to the graphene sheets. When this external field is turned
on, the mirror symmetry mz is broken, which will lead to mix-
ing terms between the TBG fermions in the mirror-symmetric
sector and the Dirac fermions in the mirror-antisymmetric
sector. We denote the potential difference between the top and
bottom layers byU , and the Hamiltonian which describes the
electric field can be written as

ĤU = U

2

∑
k,η,sα

∑
Q∈Qη

∑
l=1,3

(l − 2)â†k,Q,η,α,s,l âk,Q,η,α,s,l . (10)

This Hamiltonian can be rewritten using the Dirac and TBG
fermions:

ĤU = U

2

∑
k,η,sα

∑
Q∈Qη

(b̂†k,Q,η,α,sĉk,Q,η,α,s + H.c.), (11)

which couples the mirror-symmetric and -antisymmetric sec-
tors. In conclusion, the noninteracting Hamiltonian can be
written as the summation of these three terms:

Ĥ0 = ĤTBG + ĤD + ĤU . (12)

B. Interaction and projected Hamiltonian

In this paper we will assume that the interaction between
electrons in TSTG system is given by the Coulomb potential
screened by a top and bottom gate. The interaction Fourier
transformation reads as

V (q) = πξ 2Uξ

tanh(ξq/2)

ξq/2
, (13)

where ξ ≈ 10 nm is the distance between the top and bot-
tom gates, and Uξ = e2/εξ ≈ 24 meV is the strength of the
Coulomb interaction with dielectric constant ε ∼ 6 [4,5,61].
The interacting Hamiltonian can be written as [27,38,125]

ĤI = 1

2NM
c

∑
q∈MBZ

∑
G∈Q0

V (q + G)δρq+Gδρ−q−G, (14)

where 
c is the area of moiré unit cell, and NM is the number
of moiré unit cells. δρ is the electron density at momentum

q + G relative to the charge-neutral point and can be written
as

δρq+G = δρ ĉ
q+G + δρ b̂

q+G, (15)

δρ ĉ
q+G =

∑
k, η, α, s
Q ∈ Q±

(
ĉ†k+q,Q−G,η,α,sĉk,Q,η,α,s − 1

2
δq,0δG,0

)
,

(16)

δρ b̂
q+G =

∑
k, η, α, s
Q ∈ Qη

(
b̂†k+q,Q−G,η,α,sb̂k,Q,η,α,s − 1

2
δq,0δG,0

)
.

(17)

By projecting the system into the low-energy bands, the
dimension of Hamiltonian matrix in Hartree-Fock calcu-
lation will be reduced dramatically, and therefore greatly
improving the numerical calculations. By diagonalizing the
single-particle TBGHamiltonian h(η)(k) and the Dirac Hamil-

tonian hD,η(k), we obtain the dispersion relation ε
f̂
m,η(k)

and the single-body wave functions u f̂
Qα,mη(k) for the TBG

and Dirac fermions ( f̂ = ĉ, b̂). For each spin and valley, we
project the kinetic Hamiltonian into the two bands which are
closest to the charge-neutral point for both ĤTBG and ĤD.
Therefore, the kinetic part of the projected Hamiltonian can
be written in the following form whenU = 0:

HTBG + HD =
∑
f̂=ĉ,b̂

∑
k,m=±1,η,s

ε f̂
m,η(k) f̂

†
k,m,η,s f̂k,m,η,s, (18)

where the creation operators in band indices are defined as

f̂ †k,m,η,s = ∑
Qα u

f̂
Qα,mη

f̂ †k,Q,η,α,s. The Dirac fermions in the an-

tisymmetric sector b̂ are degenerate on certain high-symmetry
lines between the projected bands and the bands above and
below when folding over the MBZ, therefore, there is an am-
biguity of choosing its single-body wave function. We provide
a careful discussion of this issue and how we solve it in the
Supplemental Material [131].

As shown in Refs. [29,30,38,70], by fixing the sewing
matrix ofC2zT symmetry to identity (whereC2z is the twofold
rotation about the z axis, and T is the time reversal), one can
recombine the TBG flat energy band basis ĉ†k,m,η,s into a Chern
band basis

d̂†
k,eY ,η,s = ĉ†k,+1,η,s + ieY ĉ

†
k,−1,η,s√

2
, (19)

where eY = ±1 gives the Chern number of the Chern band
basis (which is also the eigenvalue of the Pauli matrix ζy in
the space of TBG energy band index m = ±1).

The displacement field term ĤU in Eq. (11) can also be
written using band basis and projected into the lowest bands:

HU = U

2

∑
k,η,s

∑
m=±1

∑
n=±1

Nη
mn(k)(b̂

†
k,m,η,sĉk,n,η,s + H.c.), (20)

where the displacement field overlap matrices are given by

Nη
mn(k) =

∑
Q∈Qη,α

ub̂∗Qα,mη(k)u
ĉ
Qα,nη. (21)
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Thus, the projected noninteracting Hamiltonian can be written
as the following quadratic form:

H0 = HTBG + HD + HU

=
∑

k, f̂ f̂ ′,ηη′,ss′

H(0)
f̂ mηs, f̂ ′nη′s′

(k) f̂ †k,m,η,s f̂
′
k,n,η′,s′ , (22)

in which the matrix H(0)(k) is given by

H(0)
f̂ mηs, f̂ ′nη′s′

(k) = ε f̂
m,η(k)δ f̂ f̂ ′δmnδηη′δss′ + U

2

[
Nη
mn(k)δ f̂ b̂δ f̂ ′ ĉ

+ Nη∗
mn(k)δ f̂ ĉδ f̂ ′b̂

]
δηη′δss′ . (23)

Here ε
f̂
m,η(k) is the dispersion of TBG( f̂ = ĉ) and Dirac( f̂ =

b̂) fermions without displacement field. The eigenvalues of
H(0)(k) can give us the approximate dispersion of the nonin-
teracting TSTG at nonzero displacement field. The projected
Hamiltonian can capture the bandwidth of the bands around
charge neutrality accurately [125]. We also provide plots com-
paring the dispersion of the projected Hamiltonian H(0)(k)
and the band structure obtained from the unprojected BM
Hamiltonian in Fig. S2 [125].

Similarly, the interacting Hamiltonian can also be pro-
jected into these bands:

HI = 1

2NM
c

∑
q,G∈Q0

V (q + G)δρq+Gδρ−q−G, (24)

in which the density operators after being projected are
defined as

δρq+G =
∑
f̂=ĉ,b̂

δρ
f̂
q+G, (25)

δρ
f̂
q+G =

∑
k,m,n,η,s

M f̂ ,η
mn (k,q + G)

×
(
f̂ †k+q,m,η,s f̂k,n,η,s − 1

2
δq,0δmn

)
, (26)

M f̂ ,η
mn (k,q + G) =

∑
Qα

u f̂ ∗
Q−Gα,mη

(k + q)u f̂
Qα,nη(k). (27)

The components of these form factorsM f̂ ,η
mn (k,q + G) depend

on the gauge choice of the single-body wave functions. As
mentioned in Eq. (19), we fix the gauge choice of the single-
body wave function of the TBG fermions uĉQα,mη(k) such that
the sewing matrix of C2zT is the identity.

For convenience, we can rewrite the interacting Hamilto-
nian as the following form:

HI = 1

2
tot

∑
k,k′,q

∑
ηη′ss′

∑
f̂ , f̂ ′=ĉ,b̂

∑
mnm′n′

Ṽ ( f̂ η; f̂ ′η′ )
mn;m′n′ (q; k,k′)

×
(
f̂ †k+q,m,η,s f̂k,n,η,s − 1

2
δq,0δmn

)

×
(
f̂ ′†
k′−q,m′,η′,s′ f̂

′
k′,n′,η′,s′ − 1

2
δq,0δm′n′

)
, (28)

in which the matrix elements Ṽ ( f̂ η;ĥη′ )
mn;m′n′ (q; k,k′) are given by

Ṽ ( f̂ η;ĥη′ )
mn;m′n′ (q; k,k′)

=
∑
G

V (q + G)M f̂ ,η
mn (k,q + G)Mĥ,η′

m′n′ (k′,−q − G).

(29)

The mean field Hamiltonian will have a simpler form using
this notation, as we will discuss in Sec. III.

In this paper, we fix the twist angle to θ = 1.51◦, which
is near the magic angle of TSTG and gives rise to flat bands
in the mirror-symmetric sector. Since both the band structure
and the wave functions of the mirror-symmetric sector depend
on the parameter w0, the projected Hamiltonian also depends
on w0. And by adding all the terms in kinetic energy and
potential energy, we obtain the tunable Hamiltonian with pa-
rameters w0 andU :

H (w0,U ) = HTBG(w0) + HD + HU (w0,U ) + HI (w0).

(30)

Similar to that in TBG, we define w0 = 0 as the chiral limit,
and HTBG(w0) = 0 (zero TBG bandwidth) as the flat (TBG
band) limit. In these limits or their combinations, the sym-
metry of the TSTG is enhanced to a U(4) symmetry in the
combined spin and valley space [125]. In this paper, we will
not tune the bandwidth in the mirror-symmetric (TBG) sector,
therefore, the noninteracting band structure will only depend
on w0 and U (at the fixed twist angle θ = 1.51◦ and AB/BA
interlayer hopping strength w1 = 110 meV).

III. HARTREE-FOCK THEORY

We perform Hartree-Fock (HF) mean field calculations for
the projected Hamiltonian we obtained in Eq. (30), which is at
fixed twist angle θ = 1.51◦. In Supplemental Material [131],
we provide a more detailed discussion of the HF calculations.
In this section, we focus on the assumption and the quantities
that we will rely on in the rest of our paper.

In Refs. [29,61,70,100,107], it has been shown that the
ground states of TBG at integer fillings (integer number of
electrons per moiré unit cell, relative to the charge neutral
point) around the chiral flat band limit (i.e., the value of
w0/w1 is small and disregarding the flat band dispersion)
are correlated insulator states (sometimes with nonzero Chern
number) without translation symmetry breaking. This picture
is expected to be valid until reasonably large physical w0/w1

values (depending on electron fillings) [62,85,100]. Mean-
while, the high Fermi velocity and vanishing Fermi surfaces
of the Dirac fermions make them unlikely to contribute to
translation symmetry breaking (which requires certain low-
energy Fermi-surface nestings).

Therefore, we assume there is no translation symmetry
breaking in our HF calculation for TSTG (with a notable ex-
ception in the Supplemental Material [131] where we discuss
the possible CDW order at MM point at ν = −3 filling). This
assumption simplifies our numerical calculation by reducing
the number of HF mean field order parameters. For this rea-
son, within the assumption, the HF mean field order parameter
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can be defined as the following 16 × 16 matrix at each k:

� f̂ mηs; f̂ ′nη′s′ (k) = 〈
f̂ †k,m,η,s f̂

′
k,n,η′,s′ − 1

2δ f̂ f̂ ′δmnδηη′δss′
〉
, (31)

where f̂ , f̂ ′ stand for the TBG and Dirac fermion operators.
The matrix �(k) is the single-body density matrix at each
momentum k. As we explained, this assumption of no trans-
lation breaking is reasonable when w0/w1 is small (typically
w0/w1 � 0.7), and it is possible that our assumption will be
violated for large w0/w1 [61,100]. Therefore, the Hartree-
Fock result is less trustable when w0/w1 gets bigger.

For an arbitrary momentum k, the Hartree and Fock mean
field Hamiltonians are given by the following:

H(H )
f̂ mηs, f̂ ′nη′s′

(k) = 1


tot

∑
k′, f̂ ′,m′n′,η′′,s′′

Ṽ ( f̂ η; f̂ ′η′′ )
mn;m′n′ (0;k,k′)

× � f̂ ′m′η′′s′′; f̂ ′n′η′′s′′ (k
′)δηη′δss′ , (32)

H(F )
f̂ mηs, f̂ ′nη′s′

(k) = − 1


tot

∑
k′,m′n′

Ṽ ( f̂ ′η′; f̂ η)
m′n;mn′ (k′ − k; k,k′)

× � f̂ ′m′η′s′; f̂ n′ηs(k
′). (33)

Together with the noninteracting term H(0)(k) defined in
Eqs. (22) and (23), we obtain the Hartree-Fock Hamiltonian
HHF(k) = H(0)(k) + H(H )(k) + H(F )(k). By diagonalizing
the Hartree-Fock Hamiltonian, we obtain the HF band struc-
ture Ei(k), which is related to the dispersion of the charge
excitations, and the corresponding wave function φ f̂ mηs,i(k):∑

f̂ ′,n,η′,s′

HHF
f̂ mηs, f̂ ′nη′s′ (k)φ f̂ ′nη′s′,i(k) = Ei(k)φ f̂ mηs,i(k). (34)

For a filling factor ν, which is defined as the number of elec-
trons per moiré unit cell relative to charge neutrality, the HF
ground state is given by occupying the single-particle states
Ei(k) (where i = 1, . . . , 16 at each k) from low to high up to
filling ν. For each single-body state Ei(k), valley polarization
vi(k) can be defined as

vi(k) =
∑
f̂ msηη′

φ∗
f̂ mηs,i

(k)(τz )ηη′φ f̂ mη′s,i(k), (35)

and the valley physics of the system can be captured by vi(k)
of each individual occupied state at every k.

The self-consistent condition also gives a relation between
these wave functions and the order parameter:

� f̂ mηs; f̂ ′nη′s′ (k) =
∑

i∈occupied

(
φ∗
f̂ mηs,i

(k)φ f̂ ′nη′s′,i(k)

− 1

2
δ f̂ f̂ ′δmnδηη′δss′

)
. (36)

For each integer filling factor ν, we use various initial con-
ditions in our HF calculation, and we choose the result with
the lowest energy. Detailed discussion about the choices of
initial conditions at different filling factors can be found in the
Supplemental Material [131]. In this paper, the filling factor ν

is measured from the charge neutrality, and it is related with

the order parameter in Eq. (36) by

ν = 1

NM

∑
k, f̂ ,m,η,s

� f̂ mηs; f̂ mηs(k). (37)

Moreover, since the particle numbers of Dirac fermion and
TBG fermion are conserved when the displacement field is
turned off, we can define the filling factors (measured from
the charge neutrality) for these fermion flavors separately:

νTBG = 1

NM

∑
k,m,η,s

�ĉmηs;ĉmηs(k), (38)

νD = 1

NM

∑
k,m,η,s

�b̂mηs;b̂mηs(k). (39)

The summation of these two quantities is the total filling
factor:

ν = νD + νTBG. (40)

For the projected bands we keep, the two filling factors’ range
within νD ∈ [−4, 4] and νTBG ∈ [−4, 4], respectively. We will
be focusing on total integer fillings ν = −3, −2, −1, 0 in
this paper. Since the physics at filling −ν is particle-hole
symmetric to that at filling ν [125], it is sufficient to study
fillings ν � 0.

Various physical quantities can be derived from
� f̂ mηs; f̂ ′nη′s′ (k), which can be used to describe the nature
of the ground state, such as the intervalley coherence and
valley polarization. As shown in Ref. [70], the ground state
at ν = ±2 filling in TBG has intervalley coherence when the
system is nonchiral nonflat. In order to measure the coherence
between the two valleys, we define the quantity C which is
based on the norm of the off-diagonal block in valley space:

C = 1

NM

∑
k∈MBZ

∑
f̂ f̂ ′,mn,ss′

|� f̂ m+s; f̂ ′n−s′ (k)|2, (41)

where NM is the number of moiré lattice sites. This quantity
includes both the contribution from the TBG flat bands and
the Dirac fermions. Its value is

C = n

4
(42)

if there are n filled TBG flat bands which are fully intervalley
coherent.

The expectation value of any single-body quantity can be
obtained from the Hartree-Fock order parameter �(k). In this
paper, we calculate three quantities that we will now define:
the valley polarization Nv , the spins in each valley Sη, and
the quantity Ch which provides information about the Chern
number of the occupied TBG fermions.

The valley polarization Nv is the electron-number differ-
ence between the two valleys. This can also be obtained from
the order parameter:

Nv =
∑
k

∑
f̂=ĉ,b̂

∑
ηη′ms

(τz )ηη′� f̂ mηs; f̂ mη′s(k), (43)

where τz is the Pauli z matrix in valley space.
Similarly, we can track the spin order. Due to the

U(2)×U(2) symmetry of the system, the total spin of the two
valleys is conserved independently. For each valley η, the
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FIG. 1. (a) The phase diagram at filling factor ν = −3 obtained on an 8 × 8 momentum lattice in the (w0,U ) plane. The color represents
the valley polarization Nv/NM of the ground state. (b) The displacement field dependence of other quantities C, Nv, S±, and Ch on an 8 × 8
lattice at w0/w1 = 0.2. (c) Similar to (b), the displacement field dependence of these quantities with w0/w1 = 0.8. (d) The filling factors for
Dirac fermions and TBG fermions as a function of w0. In this plot, the interlayer potential is fixed to beU = 0 meV.

semiclassical total spin per moiré unit cell �Sη can be obtained
by the following equation:

2�Sη(k) = 1

NM

∑
k

∑
f̂=ĉ,b̂

∑
mss′

(�s)ss′� f̂ mηs; f̂ mηs′ (k), (44)

where �s = (sx, sy, sz ) are the Pauli matrices in spin space.
Finally, we can define a quantity within the TBG band

sector:

Ch = 1

NM

∑
k

∑
ηsmn

(ζy)mn�ĉmηs;ĉnηs(k), (45)

where ζy is the Pauli y matrix in the space of the energy
band index m. If the Dirac bands and the TBG bands in the
HF Hamiltonian are decoupled (e.g., at U = 0 and without
mz breaking order parameters), Ch characterizes the Chern
number in the TBG sector when the TBG sector is insulat-
ing, which can be seen by transforming Ch into the Chern
band basis in Eq. (19). Generically (e.g., U > 0), Ch is not
necessarily an integer, but it is related with the Chern number
of the (partially or fully) occupied TBG flat band basis. For
example, this value is close to ±2 if the two occupied TBG
flat bands have the same Chern number. Similar to the filling
factor for Dirac and TBG fermion flavors, this quantity is
a useful characterization of the many-body state when U is
close to zero.

We perform the HF calculations on a C3z-preserving NL ×
NL momentum lattice in the MBZ (see Fig. S1 in the Sup-
plemental Material [131]), with NL up to 10. As discussed in
the Supplemental Material [131], we are also able to obtain
the band structure plot along high-symmetry lines by using the
HF order parameters we obtained on these NL × NL lattices.
In the band structure plots, we use subscript M to denote the
high-symmetry points in the moiré Brillouin zone. Our HF
calculations are restricted within the pamameter ranges 0.1 �
w0/w1 � 1 andU � 0. We do not discuss the HF calculation
in the chiral limit w0 = 0 in this paper, the convergence of
which is difficult due to the enhanced symmetry and enlarged
ground-state degeneracy manifold. We note that the realistic
TSTG is always away from the w0 = 0 chiral limit.

IV. NUMERICAL RESULTS AT FILLING FACTOR ν = −3

We start our discussion about HF calculations for TSTG
with filling factor ν = −3. As a comparison, the ground state
at ν = −3 filling in TBG at small w0 and small nonzero
bandwidth is a spin- and valley-polarized Chern insulator
state with Chern number ±1, and may enter translation or
rotation symmetry breaking phases at large w0, which has
been predicted in Refs. [29,70,100,107]. In this section, we
will explore the HF ground states in TSTG at ν = −3 in the
parameter space of w0/w1 andU [see Eq. (30) for definition].

Here we restrict the parameter ranges within 0.1 �
w0/w1 � 1 and 0 � U � 300 meV. The maximal value ofU
is motivated by the experimental results [123]. The valley po-
larization Nv as a function of w0 and U is shown in Fig. 1(a).
We find the HF ground states show different behaviors in three
different parameter regions, which are labeled by I, II, and III
in Fig. 1(a). We also calculate other physical quantities, in-
cluding C, Nv, S±, and Ch, the values of which along certain
line cuts in the parameter space are shown in Figs. 1(b) and
1(c). Based on these quantities, we describe the TSTG phases
in the three regions in details below.

Region I. We find C ≈ 0, Nv/NM ≈ 1, 2S+ ≈ 1, 2S− ≈ 0,
and Ch ≈ 1 throughout the whole region [Figs. 1(b) and 1(c)].
This indicates that the ground state is a spin-valley-polarized
state dominantly occupying one Chern band in the TBG sector
[defined in Eq. (19)] of a particular spin and valley. In partic-
ular, atU = 0, where the electron numbers in the Dirac sector
and the TBG sector are both conserved, we find νD = 0 and
νTBG = −3 within region I [see w0/w1 < 0.6 in Fig. 1(d)].
Therefore, in region I, the ν = −3 HF ground state at U = 0
is the tensor product of the νTBG = −3 TBG spin-valley-
polarized Chern insulator and the Dirac fermion semimetal
at charge neutrality νD = 0. The ground states at U > 0 in
region I are adiabatically in the same semimetal phase. As an
example, the band structure atw0/w1 = 0.2 andU = 50 meV
is shown in Fig. 2(a), which is almost a Dirac semimetal. At
U > 0, where the Dirac and TBG sectors are hybridized, the
gapless Dirac nodes are due to the C2zT symmetry within
the empty valley-spin flavors, as shown in the Supplemental
Material [131]. The color (from red to purple) indicates the
valley polarization of of each band, and an occupied flat band
can be seen clearly.

115167-6



TWISTED SYMMETRIC TRILAYER GRAPHENE. II. … PHYSICAL REVIEW B 104, 115167 (2021)

FIG. 2. Some typical HF band structures illustrating the three regions of the phase diagram at filling factor ν = −3 on a 10 × 10 momentum
lattice. (a) The band structure in region I with w0/w1 = 0.2 and U = 50 meV. (b) The band structure in region II with w0/w1 = 0.2 and
U = 180 meV. (c) The band structure in region III with w0/w1 = 1 andU = 0 meV. The color of each point represents the valley polarization
vi(k) of each single-body state, which is defined in Eq. (35).

Region II. We find the valley polarization Nv/NM drops
abruptly to small values near zero, and so do the other
quantities as shown in Fig. 1(b) in this region where the
displacement field is large. Accordingly, the HF ground state
can be understood as a metal with little spin or valley polar-
ization or intervalley coherence. A typical HF band structure
in region II is shown in Fig. 2(b), which has a large Fermi
surface around KM (K ′

M) point in valley η = + (η = −),
showing that the system is a metal. A sharp phase boundary
between regions I and II can be identified in Fig. 1(a), which
is atU ≈ 150 meV when w0/w1 = 0.2, and atU ≈ 250 meV
when w0/w1 = 0.8. The reason for such a metallic phase is
that a large U significantly hybridizes the Dirac sector and
the TBG sector, and turns the flat bands near KM (K ′

M) point
of valley + (−) into dispersive Dirac fermions with kinetic
energies comparable to the interaction energies. This leads
to a Fermi-surface reconstruction, where electrons prefer to
occupy the electron states near the KM and K ′

M points with
lower kinetic energies and form a metal. We provide the
noninteracting bandwidth as a function of w0/w1 and U in
Figs. S4(a) and S4(b) of the Supplemental Material [131]. The
phase boundary between regions I and II is close to an equal
value contour in these figures, which also implies that the
transition to the metallic phase happens as the noninteracting
bandwidth exceeds a critical value around the order of the
interaction energy scale.

Region III. We find that the HF ground state exhibits com-
peting orders in this region which is located in the weak
displacement field region with w0/w1 � 0.6. In Fig. 1(c) we
plot the HF mean field quantities, e.g., C, S±, and Ch, at
w0/w1 = 0.8 with respect to U . When U < 50 meV (region
III), we see all the quantities are strongly oscillating. More-
over, we also notice strong size effect in this region, which
can be seen by considering other system sizes atw0/w1 = 0.8,
as discussed in the Supplemental Material [131]. In previous
numerical studies in TBG systems [62,85,100] (which do not
have the U parameter), it has been shown that the translation
symmetry of the TBG at filling ν = −3 could be broken at
large w0/w1 (typically w0/w1 � 0.7). Therefore, we expect

the ground states in region III not to be accurately captured by
our HF calculation, which does not allow translation symme-
try breaking. In the Supplemental Material [131], we provide
numerical evidence for a translation symmetry breaking phase
via a modified HF calculation. Nevertheless, we provide some
universal observation of our HF results in region III. In
Fig. 1(d), we plot νD and νTBG = −3 − νD as a function of
w0/w1 at U = 0. We find the Dirac electron filling νD is 0
for w0/w1 < 0.6 (i.e., in region I), but begins to decrease as
w0/w1 increases beyond 0.6 (i.e., in region III). This indicates
that electrons are transferred from the Dirac valence bands
into the TBG flat bands in region III, making νD < 0 and
νTBG > −3. For instance, when w0 = w1 at U = 0, our HF
calculation shows that νD ≈ −1 and νTBG ≈ −2, the HF band
structure of which is shown in Fig. 2(c). The Fermi level of
this HF band structure in region III is far from the Dirac point
energy, giving rise to a metal with large Fermi surfaces. There-
fore, the ground states in region III are likely to be metals with
competing orders, such as translation symmetry breaking.

In summary, at ν = −3, we have identified three phases
in three regions of Fig. 1(a). In region I the ground state
is almost a spin-valley-polarized semimetal, in region II the
ground state is a metal with little spin or valley polarization
or intervalley coherence, while in region III the ground state
may be a metal with competing orders.

V. NUMERICAL RESULTS AT FILLING FACTOR ν = −2

In this section, we study the HF results for TSTG at integer
filling ν = −2. By comparison, in TBG systems, the ground
state at ν = −2 at small w0 and small bandwidth is given by
an intervalley coherent insulator with Chern number 0, which
has been predicted in Refs. [29,61,70,100,107]. At large w0,
the TBG ground state may become a metal [39]. However,
there is no evidence of translation symmetry breaking at
ν = −2 in TBG so far. Therefore, we also conjecture that
translation breaking is less likely in the TSTG at ν = −2, and
thus regard our HF results as more reliable than at ν = −3 in
the large w0/w1 region.
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FIG. 3. (a) The phase diagram at filling factor ν = −2 obtained on an 8 × 8 momentum lattice in the (w0,U ) plane, and the color represents
the intervalley coherence, which is defined in Eq. (41). (b), (c) The displacement field dependence of physical quantities C, Nv, Ch, and S±

on an 8 × 8 at fixed w0/w1 = 0.2 (b) and w0/w1 = 0.8 (c). By considering the different HF parameters and band structures, we can define
three different regions in the phase diagram, denoted I, II, and III in (a).

Our HF results for TSTG at ν = −2 identified three dis-
tinct regions I, II, III in the w0/w1 and U parameter space
as shown in Fig. 3(a). In Fig. 3(a), the color scale indicates
the ν = −2 ground-state intervalley coherence C, defined in
Eq. (41) [note that this is different from the ν = −3 phase
diagram Fig. 1(a), where valley polarization is shown by color,
while intervalley coherence is near zero]. Other HF quantities
along certain constant w0/w1 line cuts are shown in Figs. 3(b)
and 3(c). From these quantities, we can see clear phase transi-
tions between regions I and II, and between regions II and III.
We now describe the HF ground states in the three regions,
respectively.

Region I. This region contains the entire range of w0/w1 up
to some w0-dependentU value. There we find C ≈ 0.5, Ch ≈
0, Nv/NM ≈ 0, and 2S± ≈ 1. This implies that there are two
fully intervalley coherent flat bands occupied, which have the
same spin and have zero total Chern number. This is the same
as the TBG ground state at ν = −2 filling. When U = 0 in
region I, the electron numbers in the Dirac sector and the TBG
sector are conserved, respectively, and the HF ground state is
almost the tensor product of the νTBG = −2 intervalley coher-
ent TBG ground state predicted in Refs. [29,61,70,100,107]
and the Dirac band ground state at charge neutrality νD = 0. A
typical band structure in region I atw0/w1 = 0.8 andU = 0 is
given in Fig. 4(a), where the valley polarization values vi(k)
of the occupied single-body states [defined in Eq. (35)] are

represented by color. One can see the valley polarization of
the two occupied flat bands are approximately zero, consistent
with an intervalley coherent state. The ν = −2 ground state
in region I is thus almost an intervalley coherent semimetal,
in which the Dirac fermion is slightly doped away from the
Dirac nodes. In particular, atU > 0 where the Dirac and TBG
sectors are hybridized, the gapless Dirac nodes are protected
by a remaining antiunitary symmetry Gγ (G2

γ = 1), which is
a combination of the C2zT and a relative intervalley phase
rotation (see Supplemental Material [131]).

Region II. The interlayer potential U is intermediate,
and we find C ≈ 0, Nv/NM ≈ 2, Ch ≈ 0, and 2S± ≈ 0. This
indicates that the ground state becomes a valley-polarized
state, and the two occupied TBG flat bands approximately
have zero total Chern number. We plot two typical HF band
structures with different w0/w1 values in Figs. 4(b) and 4(c).
In both of the band structure plots, the valley polarization val-
ues of occupied single-body states in the flat bands are vi(k) ≈
1. The occupied flat bands with smaller (larger) w0/w1 value
has smaller (larger) bandwidth. The band structure plots also
show that there is a small electron pocket around K ′

M point,
and a small hole pocket around �M point, indicating the sys-
tem is almost a semimetal with a small Fermi surface.

Region III. The interlayer potential U is further increased
(e.g., U � 150 meV at w0/w1 = 0.2, and U � 280 meV
at w0/w1 = 0.8), the valley polarization Nv/NM drops

FIG. 4. The HF band structure at w0/w1 = 0.8 for U = 0 (a), at w0/w1 = 0.2 for U = 100 meV (b), at w0/w1 = 0.8 for U = 220 meV
(c), and at w0/w1 = 0.2 forU = 180 meV (d) on a 10 × 10 lattice at filling factor ν = −2. The color represents the valley polarization vi(k)
of each single-body state defined in Eq. (35).
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FIG. 5. (a) The phase diagram at filling factor ν = −1 obtained on an 8 × 8 momentum lattice in the (w0,U ) parameter space. The color
represents the intervalley coherence C. (b), (c) The displacement field dependence of physical quantities C, Nv, Ch, and S± on an 8 × 8 lattice
at fixed w0/w1 = 0.2 (b) and w0/w1 = 0.8 (c).

significantly, and the intervalley coherence slightly reenters,
as shown in Figs. 3(b) and 3(c). In this case, the ν = −2
TSTG enters a metallic phase with large Fermi surfaces. A
HF band structure in this region is shown in Fig. 4(c). Similar
to the region II phase at filling ν = −3, the region III phase
at ν = −2 here is due to the change of flat bands into high-
energy dispersive Dirac bands near KM (K ′

M) point of valley +
(−) at large U , yielding transitions into less valley-polarized
metal with large Fermi surfaces.

To summarize, the phase diagram at filling factor ν = −2
can be roughly separated into three regions, as shown in
Fig. 3(a). In the small-U region I, the ground state is nearly an
intervalley coherent semimetal and is adiabatically connected
with the tensor product of the TBG ground state and a high-
velocity Dirac fermion at charge neutrality. In region II with
intermediate U , the ground state is fully valley polarized and
almost a semimetal. Finally, in region III with large U , the
system enters a metal phase with partial valley polarization.

VI. NUMERICAL RESULTS AT FILLING FACTOR ν = −1

In this section, we discuss the HF calculation results for
TSTG at filling factor ν = −1. We first recall that the ground
state at ν = −1 in nonchiral-nonflat TBG systems carries
a Chern number νC = ±1 and has two intervalley coherent
bands and one valley-polarized band occupied, as shown in
Refs. [70,107]. Similar to filling ν = −3 and −2, we expect
the ν = −1 TSTG ground state at small w0/w1 andU = 0 to
be the tensor product of the TBG ground state at this filling
and the half-filled Dirac fermion bands.

The intervalley coherence C of the TSTG HF ground state
at ν = −1 as a function ofU and w0/w1 is represented by the
color code in Fig. 5(a). Other HF quantities at w0/w1 = 0.2
and 0.8 are shown in Figs. 5(b) and 5(c), respectively. Based
on these quantities and the HF band structures, we are able to
identify four different regions I, II, III, and IV in w0/w1 and
U parameter space as shown in Fig. 5(a). We now describe the
HF mean field results in these regions.

Region I. This region encompasses the entire range of
w0/w1, and up to certain (w0/w1)-dependent U value, and
we find that C ≈ 0.5, Ch ≈ 1, Nv/NM ≈ 1, 2S+ ≈ 1, and
2S− ≈ 0. The value of intervalley coherence indicates that
among the three occupied TBG flat bands, two of them are
intervalley coherent. These values also imply that the HF

ground state at U = 0 is approximately equal to the tensor
product of a νTBG = −1 intervalley coherent state [70,107]
and a half-filled Dirac semimetal. Figure 6(a) shows a typical
HF band structure in region I at w0/w1 = 0.8 and U = 0.
Among the three occupied flat bands in Fig. 6(a), two of
them have zero valley polarization, while the other one is
valley polarized, which agrees with the expected ground state
in the TBG sector. The U > 0 ground states of region I are
adiabatically connected to theU = 0 ground state. Therefore,
region I is a semimetal phase with partially intervalley coher-
ent flat bands. Similar to the ν = −3 case, the gapless Dirac
nodes at U > 0 are protected by the C2zT symmetry within
an empty valley-spin flavor, as shown in the Supplemental
Material [131].

Region II. The displacement field is intermediate in this
region (e.g., 80 meV � U � 150 meV at w0/w1 = 0.2, or
220 meV � U � 280 meV at w0/w1 = 0.8). We find that the
values of HF quantities Nv/NM , Ch, and S± are close to their
values in region I. However, the intervalley coherence C van-
ishes abruptly in this region. We present a HF band structure
at w0/w1 = 0.8 and U = 240 meV in Fig. 6(b). The valley
polarization of the three occupied flat bands is vi(k) ≈ ±1.
The band structure also shows small electron pocket around
K ′
M point, and hole pocket around �M point, which means

the system is also almost a semimetal without intervalley
coherence.

Region III. The displacement field in this region (which is
160 meV � U � 220 meV at w0/w1 = 0.2) is stronger than
that in the region II. We find the valley polarization Nv/NM

drops to zero, and the intervalley coherence slightly increases
to C ≈ 0.2, as shown in Fig. 5(b). The HF band structure in
this region, which can be found in Fig. 6(c), shows that there
is a direct band gap around the Fermi level. Therefore, we
identify an insulating state at ν = −1 filling with a nonzero
displacement field in region III. Such a phase does not occur
at ν = −3 or −2 fillings.

Region IV. The displacement field is further increased (e.g.,
U � 220 meV at w0/w1 = 0.2). Similar to the strong field
phase at ν = −3 and −2, the increased bandwidth of the non-
interacting dispersion becomes comparable to or larger than
the strength of the Coulomb interaction. Therefore, the elec-
trons will first occupy the low-energy states around KM and
K ′
M at E − EF ≈ −90 meV which can be seen in Fig. 6(d). A

large Fermi surface can also be observed in the band structure,
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FIG. 6. The HF band structure at w0/w1 = 0.8 forU = 0 in region I (a), w0/w1 = 0.8 forU = 240 meV in region II (b), w0/w1 = 0.2 for
U = 180 meV in region III (c), and w0/w1 = 0.2 for U = 280 meV in region IV (d) on a 10 × 10 lattice at filling factor ν = −1. The color
represents the valley polarization vi(k) of each single-body state.

which implies that region IV is a metallic phase. Both the
valley polarization Nv/NM and the intervalley coherence C are
nearly zero in this region.

In summary, there are four phases in the phase diagram at
filling factor ν = −1. When the displacement field is close
to zero, i.e., in region I, the ground state is an intervalley
coherent semimetal. As the displacement field increases into
region II, the ground state becomes a semimetal without inter-
valley coherence. When the field further increases into region
III, the HF band structure becomes gapped, and therefore the
ground state is an insulator. We note that this phase does not
occur at fillings ν = −3 and = −2. Finally, in region IV with
the strongest displacement field, the system becomes a metal,
similar to the filling factors ν = −3 and −2.

VII. NUMERICAL RESULTS AT FILLING FACTOR ν = 0

Lastly, we present our HF calculation results for TSTG
at filling factor ν = 0. In comparison, in the TBG system
the ground state at ν = 0 is an insulator state with four
occupied intervalley coherent bands and zero total Chern
number [70,107]. Similar to other integer fillings, we expect
the ground state of TSTG at ν = 0 andU = 0 to be the tensor
product of a TBG intervalley coherent insulator ground state
and half-filled Dirac semimetal.

In Fig. 7(a), we show the intervalley coherence C in the
w0/w1 and U parameter space at ν = 0. By using the same
method as the HF band structure along the high-symmetry
lines, which is discussed in the Supplemental Material [131],
we can estimate the HF Hamiltonian HHF(k) at any momenta
not included in the momentum lattice employed in our HF
iterations. Thus, the energy gap around the Fermi level along
the high-symmetry lines as a function of w0/w1 and U can
be calculated, which is shown in Fig. 7(b). We are able to
identify three different regions I, II, and III in the w0/w1 and
U parameter space, based on the valley coherence C and the
energy gap. Other HF quantities at fixed w0/w1 = 0.2 and
0.8 are also shown in Figs. 7(c) and 7(d). We now use these
quantities to describe the HF ground states in these regions.

Region I. This region is in the low displacement field
regime, and we find the values of the HF quantities are C ≈ 1,
Nv/NM ≈ 0, Ch ≈ 0, and S± ≈ 0. The value of the inter-
valley coherence C ≈ 1 shows that there are four occupied
intervalley coherent bands and have zero total Chern number.
Therefore, these values indicate that the HF ground state at
U = 0 can be well approximated by the tensor product of the
insulating intervalley coherent TBG ground state at νTBG = 0
predicted in Refs. [70,107], and the ground state at U > 0 in
region I is adiabatically connected to this tensor product state.
A typical HF band structure can be found in Fig. 8(a). The

FIG. 7. Phase diagrams at filling factor ν = 0. (a) The two-dimensional phase diagram on an 8 × 8 momentum lattice in (w0,U ) parameter
space. It can be seen that in the weakU phase, the intervalley coherence C ≈ 1 shows that there are four occupied intervalley coherent bands.
(b) The energy gap along the high-symmetry lines as a function of w0/w1 and U . Here we use the method discussed in the Supplemental
Material [131] to obtain the Hartree-Fock Hamiltonian along the high-symmetry lines, therefore, we are able to estimate the energy gap from
the 8 × 8 lattice. (c), (d) The displacement field dependence of several quantities C, Nv, S±, and Ch on an 8 × 8 lattice with w0/w1 = 0.2
(c) and w0/w1 = 0.8 (d).
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FIG. 8. (a)–(c) The HF band structure on a 10 × 10 lattice at filling factor ν = 0 at w0/w1 = 0.8 for U = 50 meV in region I (a), at
w0/w1 = 0.8 forU = 200 meV in region II (b), and at w0/w1 = 0.2 forU = 250 meV in region III (c), respectively. The color stands for the
valley polarization vi(k) of each single-body state. The zoom-in band structures around KM , K ′

M , and �M points in the dashed boxes in (c) are
also shown. It is visible that the HF band structure is discontinuous at these points, and it is also gapless at KM and K ′

M points.

occupied flat bands have zero valley polarization, which agree
with the intervalley coherent ground state. Therefore, the ν =
0 TSTG ground state is an intervalley coherent semimetal.
As we show in the Supplemental Material [131], the gap-
less Dirac nodes of this phase at U > 0 are protected by
a remaining antiunitary symmetry Gγ (G2

γ = 1), which is a
combination of theC2zT and a relative phase rotation between
the two valleys.

Region II. The displacement field is intermediate, and as
seen in both Figs. 7(b) and 7(c), the intervalley coherence C
drops to zero in this region. Other HF parameters, including
Nv/NM , Ch, and S±, are equal to zero in region II. We also
notice that there is another state with nonzero Ch values in re-
gion II, whose energy increment from the state with Ch = 0 is
within the machine precision when the parameters are around
the boundary between regions II and III, showing a possible
competing order. A typical HF ground-state band structure
in region II is shown in Fig. 8(b). The occupied flat bands
have valley-polarization values vi(k) ≈ ±1, and there is a
large direct gap around the Fermi level. This result indicates
that region II is an insulating phase, akin to the region III at
ν = −1 filling.

Region III. Here the interlayer potential U is stronger, and
the HF quantities C, Nv/NM , Ch, and S± in this large-U region
are the same as in region II. However, the band structures un-
dergo an abrupt transition. As discussed in previous sections,
the bandwidth of the low-energy bands becomes large when
U is large, and therefore the effect of the interaction will be
suppressed by the kinetic energy. A HF band structure in this
region is shown in Fig. 8(c). The HF mean field band structure
is similar to the noninteracting band dispersion, which has
gapless Dirac points at KM and K ′

M points. The discontinuous
dispersions in Fig. 8(c) at KM and K ′

M [see the zoom-in plots
in Fig. 8(c)] are due to neglecting of the higher bands in the
TSTG projected Hamiltonian, as explained in the Supplemen-
tal Material [131]. From the HF band structure, we conclude
that the large displacement field phase in region III at filling
ν = 0 becomes a semimetal.

To summarize, there are three phases at filling factor ν = 0,
as shown in Fig. 7(b). Within the small-U region I, the HF
ground state is an intervalley coherent semimetal. In region
II with an intermediate U , the ground state is an insulator

without intervalley coherence or valley polarization. Finally,
in region III with a large U , the system becomes a semimetal
with no valley polarization or intervalley coherence.

VIII. CONCLUSION

Through projected Hartree-Fock mean field calculations,
our work unveiled the close relationship between TSTG at
weak displacement field and TBG systems at integer fillings
ν = −3, −2, −1, and 0. We show that at weak displace-
ment fields, the TSTG ground states at integer fillings are
almost semimetal states which are in the same phase as
the tensor product of the TBG ground states at the same
filling and a Dirac semimetal. Beyond the phases inherited
from the TBG physics, the TSTG undergoes transitions into
large Fermi-surface metals or insulators as the displacement
field increases. Besides, we generically find that the displace-
ment field destabilizes the intervalley coherence of the flat
bands.

For filling factor ν = −3, we found three regions of dif-
ferent phases. At small displacement field, the TSTG ground
state is a semimetal with an occupied spin-valley-polarized
flat band when w0/w1 � 0.6. At large displacement fields, the
TSTG undergoes a first-order phase transition into a metallic
phase with large Fermi surfaces and zero valley polarization,
due to the enlarged bandwidth. When w0/w1 � 0.7 and U =
0, we observed that the electrons transfer from the Dirac cones
into the TBG flat bands, which yields a metallic phase with
competing orders. Moreover, similar to pure TBG systems at
ν = −3, it is possible to have translation symmetry breaking,
some evidence of which is shown in the Supplemental Mate-
rial [131]. We leave the study of translation breaking TSTG
phases in the future.

For filling factors ν = −2, −1, and 0, our HF numerical
results show that the TSTG ground states at weak displace-
ment fields are semimetals with intervalley coherent flat bands
occupied. At intermediate displacement fields, the interval-
ley coherence drops abruptly to zero, signaling a transition
into phases without intervalley coherence, which are either
semimetals (at ν = −2 and −1) or insulators (at ν = −1 and
0). With a stronger displacement field, the dispersive energy
bands will have bandwidths exceeding the energy scale of
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Coulomb interactions, which leads the system into a metallic
state with little valley polarization or intervalley coherence.

Our work reveals two roles of the displacement field in
TSTG with Coulomb interaction: destabilizing the intervalley
coherence (if any), and increasing the flat band width and
thus weakening the correlations due to interactions. Our re-
sults may provide guidance to the analytical studies of TSTG
ground states in the future.

Note added. Recently, a paper [132] appeared, with numer-
ical results consistent with ours at even integer fillings.
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Lian, N. Regnault, and B. A. Bernevig, Phys. Rev. B 103,
195411 (2021).

[126] J. Shin, B. Lingam Chittari, and J. Jung, Phys. Rev. B 104,
045413 (2021).

[127] A. Fischer, Z. A. H. Goodwin, A. A. Mostofi, J. Lischner,
D. M. Kennes, and L. Klebl, arXiv:2104.10176.

[128] E. Lake and T. Senthil, arXiv:2104.13920.
[129] W. Qin and A. H. MacDonald, Phys. Rev. Lett. 127, 097001

(2021).
[130] Y.-Z. Chou, F. Wu, J. D. Sau, and S. Das Sarma,

arXiv:2105.00561.
[131] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.115167 for the projected Hamilto-
nian, the Hartree-Fock mean field Hamiltonian, additional
numerical results, and an understanding of the gaplessness of
Dirac semimetal phases at integer fillings at smallU .

[132] M. Christos, S. Sachdev, and M. S. Scheurer,
arXiv:2106.02063.

Correction: The omission of Ref. [111] cited in the Intro-
duction has been fixed and subsequent references have been
renumbered.

115167-14

https://doi.org/10.1103/PhysRevB.99.161405
https://doi.org/10.1103/PhysRevB.99.165112
https://doi.org/10.1103/PhysRevLett.124.046403
https://doi.org/10.1103/PhysRevLett.124.167002
https://doi.org/10.1103/PhysRevB.103.205416
https://doi.org/10.1103/PhysRevLett.124.097601
http://arxiv.org/abs/arXiv:2010.07928
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevB.98.121406
https://doi.org/10.1038/s41535-019-0153-4
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevB.102.035136
https://doi.org/10.1103/PhysRevB.98.085435
http://arxiv.org/abs/arXiv:2105.05857
https://doi.org/10.1088/0256-307X/38/7/077305
http://arxiv.org/abs/arXiv:2105.12112
https://doi.org/10.1103/PhysRevB.87.125414
https://doi.org/10.1103/PhysRevB.100.085109
https://doi.org/10.1103/PhysRevLett.123.026402
http://arxiv.org/abs/arXiv:1907.12338
https://doi.org/10.1103/PhysRevResearch.2.033357
https://doi.org/10.1021/acs.nanolett.9b04979
https://doi.org/10.1103/PhysRevB.102.035411
https://doi.org/10.1103/PhysRevLett.125.116404
https://doi.org/10.1103/PhysRevB.104.035139
https://doi.org/10.1007/s11433-020-1690-4
https://doi.org/10.1126/science.abg0399
https://doi.org/10.1038/s41586-021-03192-0
http://arxiv.org/abs/arXiv:2103.12083
https://doi.org/10.1103/PhysRevB.103.195411
https://doi.org/10.1103/PhysRevB.104.045413
http://arxiv.org/abs/arXiv:2104.10176
http://arxiv.org/abs/arXiv:2104.13920
https://doi.org/10.1103/PhysRevLett.127.097001
http://arxiv.org/abs/arXiv:2105.00561
http://link.aps.org/supplemental/10.1103/PhysRevB.104.115167
http://arxiv.org/abs/arXiv:2106.02063

