

1 Where did the Arizona-plano go? Protracted thinning via upper-
2 to lower-crustal processes

3 **Gilby Jepson**¹, Barbara Carrapa¹, Sarah W. M. George¹, Lauren J. Reeher¹, Paul A. Kapp¹,
4 George H. Davis¹, Stuart N. Thomson¹, Chiara Amadori^{1, 2}, Chris Clinkscales¹, Sean Jones³,
5 Andrew J. W. Gleadow³, and Barry P. Kohn³

6 ¹*Department of Geosciences, University of Arizona, Tucson, Arizona, USA*

7 ²*University of Pavia, Department of Earth and Environmental Sciences, Pavia, Italy*

8 ³*School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, Victoria, 3010,
9 Australia*

10 March 24, 2022

11 **Abstract**

12 Mesozoic-Cenozoic subduction of the Farallon slab beneath North America generated a regionally
13 extensive orogenic plateau in the southwestern US during the latest Cretaceous, similar to the modern
14 Central Andean Plateau. In Nevada and southern Arizona, estimates from whole-rock geochemistry
15 suggest crustal thicknesses reached ~60-55 km by the Late Cretaceous. Modern crustal thickness is
16 ~28 km, requiring significant Cenozoic crustal thinning. Here, we compare detailed low-temperature
17 thermochronology from the Catalina metamorphic core complex (MCC) to whole rock Sr/Y crustal
18 thickness estimates across southern Arizona. We identify three periods of cooling. A limited cooling
19 phase occurred prior to ~40 Ma with limited evidence of denudation and ~10 km of crustal thinning.
20 Major cooling occurred during detachment faulting and MCC formation at 26-19 Ma, corresponding to
21 ~8 km of denudation and ~8 km of crustal thinning. Finally, we document a cooling phase at 17-11
22 Ma related to Basin and Range extension that corresponds with ~5 km of denudation and ~9 km of
23 crustal thinning. During the MCC and Basin and Range extension events, the amount of denudation
24 recorded by low-temperature thermochronology can be explained by corresponding decreases in the
25 crustal thickness. However, the relatively limited exhumation prior to detachment faulting at ~26 Ma

*corresponding author (gjepson@arizona.edu)

26 recorded by thermochronology is insufficient to explain the magnitude of crustal thinning (~10 km)
27 observed in the whole rock crustal thickness record. Therefore, we suggest that crustal thinning of the
28 Arizona-plano was facilitated via ductile mid- to lower-crustal flow, and limited upper-crustal extension
29 at 50-30 Ma prior to detachment faulting and Basin and Range extension.

30 **1 Introduction**

31 Regions of high-elevation and thick crust define many of the Earth's active contractional tectonic settings.
32 Shortening thickens the crust and, if a landscape is in isostatic equilibrium, creates high elevation (e.g.
33 England & McKenzie 1982, Zhong 1997). Modern orogenic plateaus are found in Tibet, South America,
34 and Anatolia, and can influence plate motions and the Earth's climate (e.g. Ruddiman & Kutzbach 1991,
35 Molnar et al. 2010, Schildgen et al. 2012, Wu et al. 2014, Botsyun et al. 2016). The height and relief of
36 such plateaus are controlled by both upper-crustal structures and lower-crustal processes (e.g. Chengfa
37 et al. 1986, Wernicke 1990, Bird 1991, Royden et al. 1997), thus, we consider both when interrogating
38 the formation and ultimate demise of orogenic plateaus. In the western USA, protracted Late Jurassic
39 - Early Cretaceous subduction of the Farallon plate generated shortening related structures in the Se-
40 vier fold-thrust belt and Laramide basement-block uplifts with extreme crustal thickening concentrated
41 in the hinterland, leading to the development of an orogenic plateau (Figure 1, e.g., Saleeby 2003, De-
42 Celles 2004, Dickinson 2004, Yonkee & Weil 2015). The regionally extensive plateau likely extended from
43 northern Nevada to southern Arizona and even northern Mexico (DeCelles 2004, Chapman et al. 2015,
44 Bahadori et al. 2018, Chapman et al. 2020). Presently, the western US is defined by relatively thin crust
45 (e.g. Gilbert 2012), thus presenting an opportunity to investigate the processes behind orogenic plateau
46 demise.

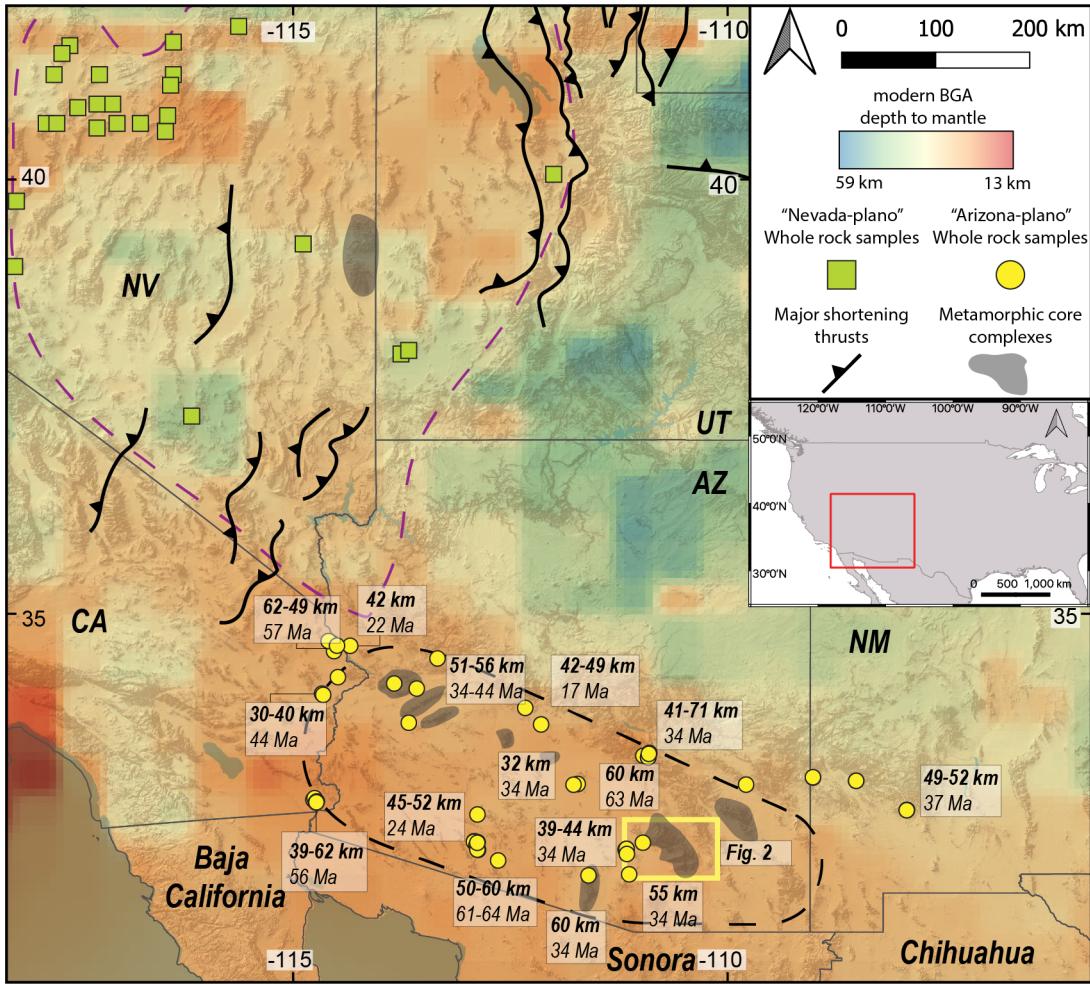


Figure 1: Map of the south-western USA and north-western Mexico highlighting the "Nevada-plano" (purple dashed outline), "Arizona-plano" (black dashed outline), whole rock crustal thickness estimates and associated ages, and major shortening structures from Yonkee & Weil (2015). Modified after (Chapman et al. 2015, 2020). Estimated depth to mantle is from the Bouguer Gravity Anomaly (BGA, Gilbert 2012).

47 Crustal thinning is required for orogenic plateau demise. In regions where extension is concentrated
 48 along discrete, corrugated low-angle normal faults (also known as detachment faults), ductile rocks may
 49 be exhumed to the surface and define a metamorphic core complex (MCC, e.g. Coney & Harms 1984,
 50 Lister & Davis 1989, Rey et al. 2009, Whitney et al. 2013, Platt et al. 2015). A discontinuous north-
 51 south trending belt of MCCs in the western North American Cordillera has been related to extension
 52 and collapse of overthickened crust (e.g. Davis 1987). In the south-western North American Cordillera,
 53 the belt of these MCCs trend NW-SE from southeastern California into Sonora, Mexico. In southeastern
 54 Arizona, the Catalina-Rincon MCC (Catalina MCC, e.g. Davis 1987) is presently underlain by crust that
 55 is ~28 km thick (Figure 1, Frassetto et al. 2006, Gilbert 2012). Geochemical data from ca. 70-50 Ma
 56 plutons in the Catalina MCC, however, suggest that the crust at this locality reached thicknesses of

57 ~60 km during the Late Cretaceous (Chapman et al. 2020), suggesting a ~50 % reduction in crustal
 58 thickness. Thus, the Catalina MCC provides an opportunity to investigate the processes at play during
 59 crustal thinning/redistribution associated with orogenic collapse.

60 A shift from fast and perpendicular convergence in the Cretaceous-Paleogene to slower and more
 61 oblique convergence in the Eocene allowed gravitational collapse of the thickened orogenic crust (e.g.
 62 Livaccari 1991, Copeland et al. 2017). Three dominant mechanisms have been proposed for thinning
 63 the crust in this type of setting: 1) upper-crustal horizontal extension; this would predict significant rock
 64 cooling as a result of tectonic exhumation, 2) erosion denudation of near surface rocks, which would also
 65 result in rock cooling, and 3), ductile flow of mid- to lower- crust with limited or localized upper-crustal
 66 extension or erosion and hence only limited rock cooling recorded by low-temperature thermochronome-
 67 ters (e.g. Braun et al. 2006). In this study, we integrate apatite and zircon fission-track (AFT and ZFT)
 68 and apatite and zircon (U-Th-Sm)/He (AHe and ZHe) thermochronology data from the Catalina MCC
 69 with published whole rock Sr/Y ratios to document periods of crustal thinning and denudation (Table 1
 70 and Figure 2) and evaluate the underlying driver(s).

Table 1: Samples collected from the Catalina-Rincon metamorphic core complex. Age is the reported crystallization age of the rock, "Lat" is the north latitude and "Long" is the east longitude using coordination system WSM 84, elevation (Elev) in meters above sea level. AFT is apatite fission-track, ZFT is zircon fission-track, AHe is apatite (U-Th-Sm)/He, and ZHe is zircon (U-Th-Sm)/He. Samples in italics are from Jepson et al. (2021).

Sample	Method	Lithology	Age	Lat	Long	Elev. (m)
PR-01	ZFT	Wilderness Granite Suite	Eocene	32.372	-110.939	1660
PR-02	ZFT	Wilderness Granite Suite	Eocene	32.370	-110.944	1357
PR-03	ZFT	Wilderness Granite Suite	Eocene	32.373	-110.948	1062
Tort-01	AFT	Catalina Granite	Oligocene	32.477	-111.127	779
Tort-02	AFT	Catalina Granite	Oligocene	32.493	-111.096	1032
Tort-03	AFT	Pinal Schist	Proterozoic	32.512	-111.076	1024
SP-01	AFT/AHe/ZHe	Oracle Granite	Proterozoic	32.399	-110.689	2258
WP-01	AFT/AHe/ZHe	Wilderness Granite Suite	Eocene	32.367	-110.718	2004
LM-02	AFT/ZHe	Wilderness Granite Suite	Eocene	32.359	-110.726	1470
SC-01	AFT/AHe/ZHe	Wilderness Granite Suite	Eocene	32.332	-110.718	1642
GM-02	AFT	Diabase	Cretaceous	32.344	-110.327	1152
UoM0522-01	AFT/AHe	Wilderness Granite Suite	Eocene	32.353	-110.722	1642
UoM0522-02	AFT/AHe	Wilderness Granite Suite	Eocene	32.339	-110.715	1491

UoM0522-03	AFT/AHe	Wilderness Granite Suite	Eocene	32.338	-110.690	1336
UoM0522-04	AFT/AHe	Oracle Granite	Proterozoic	32.321	-110.707	1164
UoM0522-05	AFT/AHe	Wilderness Granite Suite	Eocene	32.257	-110.721	933
UoM0522-06	AFT/AHe	Wilderness Granite Suite	Eocene	32.322	-110.851	888
UoM0422-02	AFT/AHe	Wilderness Granite Suite	Eocene	32.372	-110.948	1003
UoM0422-03	AFT/AHe	Wilderness Granite Suite	Eocene	32.405	-110.910	921
UoM0422-04	AFT/AHe	Catalina Granite	Oligocene	32.437	-110.879	983
UoM0422-05	AFT/AHe	Oracle Granite	Proterozoic	32.310	-110.741	932
UoM0422-06	AFT/AHe	Oracle Granite	Proterozoic	32.307	-110.719	1085
UoM0422-07	AFT/AHe	Wilderness Granite Suite	Eocene	32.330	-110.693	1292
UoM0422-09	AFT/AHe	Wilderness Granite Suite	Eocene	32.377	-110.696	2071
UoM0422-10	AFT/AHe	Wilderness Granite Suite	Eocene	32.444	-110.761	2392
UoM0422-12	AFT/AHe	Wilderness Granite Suite	Eocene	32.401	-110.699	2291
UoM0422-13	AFT/AHe	Oracle Granite	Proterozoic	32.342	-110.907	1060
UoM0422-14	AHe	Oracle Granite	Proterozoic	32.351	-110.942	969
UoM0422-15	AFT/AHe	Johnny Lyon granodiorite	Proterozoic	32.060	-110.663	1094
UoM0422-17	AFT/AHe	Wilderness Granite Suite	Eocene	32.140	-110.616	1049
KJJ09-03	AFT	Wilderness Granite Suite	Eocene	32.354	-110.723	1608
KJJ09-07	AFT	Leatherwood Granodiorite	Cretaceous	32.452	-110.752 2337	
KJJ09-08	AFT	Rice Creek Porphyry	Cretaceous	32.479	-110.697	1049

71

72 2 Tectonic setting

73 The North American Cordillera extends from Alaska to Mexico and formed in response to Mesozoic-
 74 Cenozoic subduction of the Farallon plate underneath the North American continent (e.g. Oldow et al.
 75 1989, DeCelles 2004). Subduction of the Farallon plate generated two major phases of shortening and
 76 deformation which overlapped spatially and temporally (Burchfiel et al. 1992, Dickinson 2004, Yonkee
 77 & Weil 2015): 1) The Sevier fold-thrust belt, characterized by thin-skinned deformation of Proterozoic
 78 through Mesozoic sedimentary sequences (DeCelles 2004, Yonkee & Weil 2015), and 2) the Laramide
 79 province, characterized by high-angle, basement-involved reverse faults mostly reactivating pre-existing
 80 basement structures (e.g. Dickinson & Snyder 1978, Dickinson 2004). Both events occurred due to sub-

81 duction of the Farallon Slab and its switch from high-angle subduction (Sevier) to low-angle subduction
82 (Laramide) due to either subduction of a buoyant plateau or ridge (e.g. Saleeby 2003, Humphreys 2009,
83 Liu et al. 2010) or to basal traction (Bird 1998). These tectonic events resulted in widespread deforma-
84 tion, magmatism, and crustal thickening across western North America (e.g. Snyder et al. 1976, Sonder
85 & Jones 1999, Yonkee & Weil 2015).

86 The Laramide tectonic event is associated with a phase of crustal thickening in the North Ameri-
87 can Cordillera hinterland (Bird 1998, Yonkee & Weil 2015). Thermochronometric ages from basement
88 exposed within Wyoming and the Colorado Plateau suggest that Laramide shortening in the SW North
89 American Cordillera initiated at *ca.* 80 Ma and intensified at *ca.* 60 Ma (e.g. Flowers et al. 2007, Pey-
90 ton & Carrapa 2013, Fan & Carrapa 2014, Winn et al. 2017, Copeland et al. 2017, Rønnevik et al. 2017,
91 Scoggin et al. 2021). In Arizona, Laramide shortening is suggested to have caused crustal thicknesses to
92 reach ~50-60 km (Chapman et al. 2015, 2020). In the northern portions of the North American Cordillera,
93 shortening was followed by the onset of slab-roll back at *ca.* 50-40 Ma, recorded by the creation of meta-
94 morphic core complexes, extensional basin development and felsic magmatism (e.g. Barton 1990, Wells
95 & Hoisch 2008, Best et al. 2009, Yonkee & Weil 2015, Best et al. 2016, and references therein) which
96 swept southward from southern Canada, causing an increase in rock cooling and exhumation (Fan &
97 Carrapa 2014, Copeland et al. 2017). However, in Arizona and New Mexico it has been proposed that
98 the slab-roll back did not occur until \leq 40 Ma (e.g. Coney & Reynolds 1977, Thacker et al. 2021).

99 Following foundering and subsequent rollback of the Farallon slab, the thickened North American
100 crust of the SW North American Cordillera then underwent two major phases of Paleogene-Neogene
101 extension (e.g. Lerch et al. 2007). Initially, there was a period of low-angle detachment faulting which
102 exposed lower-plate igneous and metamorphic rocks, followed by a second period of high-angle block
103 faulting forming the Basin and Range (Dickinson 1991). The major phase of extension associated with
104 slab-roll back in southern Arizona was accommodated by large-scale detachment faulting and exhu-
105 mation of MCCs. In southern Arizona, the onset of MCC detachment faulting varies between *ca.* 30 and
106 20 Ma (e.g. Gottardi et al. 2020). The onset of detachment faulting gets younger northward from north-
107 ern Mexico (from 35 to 20 Ma) central Arizona and southward from south-eastern California (from 24
108 to 20 Ma) to central Arizona (Gottardi et al. 2020, and references therein). The Catalina MCC is con-
109 trolled by the Catalina detachment fault (Figure 2; Dickinson 1991), with fault initiation dated at *ca.* 26
110 Ma from fault-tilted ash-flow tuffs (Peters et al. 2003) and had ceased by *ca.* 20 Ma (Fayon et al. 2000).
111 The Catalina detachment fault cuts late Proterozoic and Paleozoic sedimentary, metasedimentary, and

112 igneous rocks, exposing the igneous and metamorphic rocks which comprise the footwall of the de-
113 tachment (e.g. Fornash et al. 2013). The footwall forms the Catalina MCC edifice and is predominately
114 comprised of Paleoproterozoic Pinal Schist, Mesoproterozoic Oracle Granite, the Paleocene-Eocene
115 Wilderness Suite Granite (Arca & Johnson 2010), as well as Cretaceous and Paleogene intrusions (e.g.
116 Fornash et al. 2013, Spencer et al. 2019, Ducea et al. 2020). Exposed basement closest to the Catalina
117 detachment hosts pervasive deformation indicative of greenschist to amphibolite metamorphism forming
118 the Oracle and Wilderness mylonite (Davis 1987, Spencer & Reynolds 1989, Spencer et al. 2019).

119 Oligocene thinning via low-angle detachment faults transitioned into high-angle normal faulting through-
120 out the Basin and Range extension, when the relative motions between the North American and Pacific
121 plates led to widespread block faulting via extension throughout western North America (Dickinson 1991).
122 In southern Arizona, Basin and Range extension initiated at *ca.* 18 Ma and continued into the Pliocene,
123 the bulk of Basin and Range extension occurred between 15 and 12 Ma (Dickinson 1991). The Basin
124 and Range extension dissected the ductile MCC detachment faulting, and generated high-relief cliffs
125 which are observed in the range today (e.g. Fayon et al. 2000, Davis et al. 2004). The most prominent
126 local Basin and Range structure in the study area is the Pirate Fault, which cross-cuts the core complex
127 detachment fault on the northwestern extent of the Catalina MCC (Figure 2).

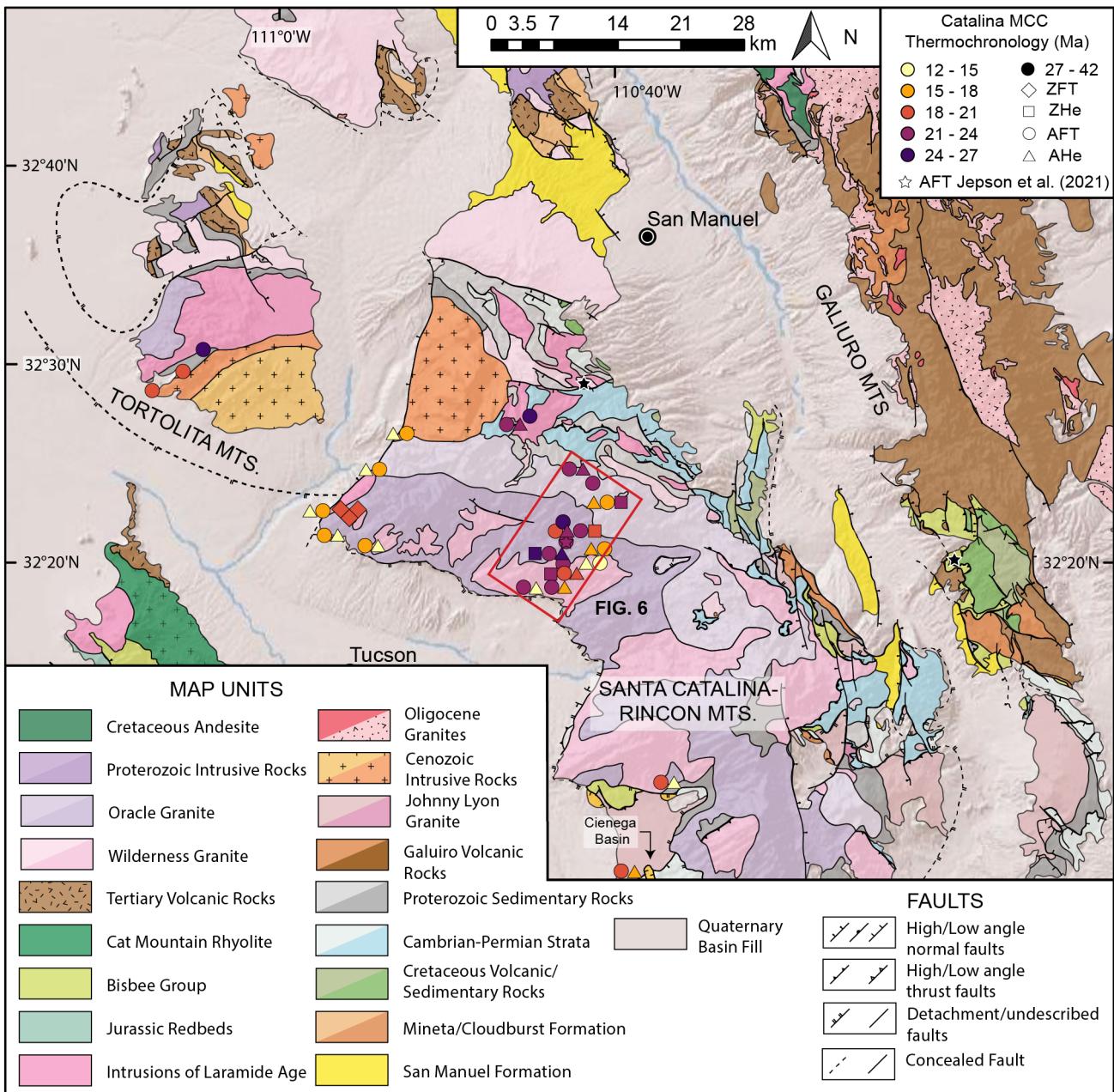


Figure 2: Geological map of the Catalina-Rincon metamorphic core complex (MCC) indicating major structures and units after (Arca & Johnson 2010), apatite fission-track (AFT), zircon fission-track (ZFT), apatite (U-Th-Sm)/He (AHe), and zircon (U-Th-Sm)/He (ZHe) ages from this study and (Jepson et al. 2021).

128 3 Methods

129 Thirty-one samples were obtained from exposed crystalline basement comprising the footwall of the
 130 Catalina detachment (Figure 2). Samples were collected in an elevation profile perpendicular to the
 131 trace of the Catalina detachment, along high-angle normal faults which cut the Catalina detachment, as

132 well as within the complex network of faults which lie to the east of the main Catalina MCC edifice (Figure
133 2).

134 **3.1 Zircon and Apatite fission-track**

135 The fission-track thermochronometer relies on the spontaneous fission decay of ^{238}U (Hurford & Green
136 1983). Spontaneous fission within zircon is annealed above $\sim 280 - 200$ °C and above $\sim 120 - 60$ °C
137 within apatite, making these systems useful for constraining upper-crustal cooling (e.g. Braun et al. 2006,
138 and references within). Zircon crystals were mounted in Teflon and etched in a NaOH-KOH eutectic
139 melt at 220 °C for 32-62 hours (Gleadow et al. 1976). The optimum etch time for zircon is calculated
140 based on age and radiation damage and was checked by several etching and observation steps at 3-10
141 hour time intervals. Apatite crystals are mounted in epoxy and polished, with spontaneous fission-tracks
142 revealed through etching with 5.5M nitric acid for 20 s at 21 °C before irradiation (after Donelick et al.
143 2005). Samples were analyzed via external detector method (Gleadow et al. 1976) which utilizes low
144 uranium muscovite mica detectors, and were irradiated at the Oregon State University Triga Reactor,
145 Corvallis, USA and the Hifar Reactor at Lucas Heights, Australia. The total neutron fluence was checked
146 using CN5 U-doped glass for the apatite samples, and European Institute for Reference Materials and
147 Measurements (IRMM) uranium-doped glass 541 for zircon samples.

148 Following irradiation, the mica sheets were etched in 40% hydrofluoric acid for 45 min at 21 °C
149 (after Donelick et al. 2005). Zircon and apatite fission-tracks were counted by using an Olympus BX51
150 microscope with an associated digitizing tablet and computercontrolled stage (Kinetek) in Tucson and a
151 Zeiss AxioTron microscope with Zeiss Scanning Stage under FT Stage control in Melbourne. The fission-
152 track analyses were performed at the University of Arizona Fission Track Laboratory and the Melbourne
153 Thermochronology Laboratory (Table 2 and Supplementary Table 1-2). Confined fission track length
154 distributions were obtained to determine cooling rates, mean track lengths (MTLs) of $> 13.5 \mu\text{m}$ can be
155 considered reflective of rapid cooling (Ketcham et al. 2007). The central ages were calculated by using
156 the ζ -method after Hurford & Green (1983) (Tables 2).

157 **3.2 Zircon and Apatite (U-Th-[Sm])/He**

158 The (U-Th-Sm)/He thermochronometer relies on the accumulation and thermally activated diffusion of
159 radiogenic ^4He . The closure temperature for AHe is typically between $\sim 80 - 40$ °C and for ZHe below ~ 180

160 °C, thus it is valuable for determining middle- to upper-crustal cooling (Reiners 2005). The apatite helium
161 analyses were performed under two different conditions, samples labelled UoM were obtained from the
162 University of Melbourne following the protocols described in Spiegel et al. (2009). Whereas apatite and
163 zircon analyses without this label were undertaken at the Arizona Radiogenic Helium Dating Laboratory
164 at the University of Arizona and followed the protocols described in Reiners (2005).

165 For samples labelled "UoM", apatite crystals were picked using the guideline of Farley (2002) at
166 the University of Melbourne. Helium (^4He) was extracted in a furnace under vacuum at 870 °C and
167 measured through isotope dilution using a quadrupole ICP-MS (Spiegel et al. 2009). The U-Th-Sm data
168 which was used in age calculation was acquired through total dissolution in HNO_3 of degassed apatite
169 and analyzed by a quadrupole ICP-MS. Replicate analyses of Durango apatite was used as an internal
170 standard ($n = 10$) measured throughout this study, yielded mean (U-Th-Sm)/He ages of 30.5 ± 1.4 Ma
171 (1σ), in agreement with the reference Durango (U-Th-Sm)/He age of 31.02 ± 1.01 Ma (McDowell et al.
172 2005).

173 Helium (^4He) was extracted at 900-1300 °C, under ultra-high vacuum with a diode laser and mea-
174 sured via isotope dilution on an Element 2 mass spectrometer at the University of Arizona. Following ^4He
175 extraction, tubes which contained apatite and zircon were retrieved from the laser cell, then spiked with
176 ^{235}U and ^{230}Th and dissolved. Blank, Sample, as well as spiked standard solutions were subsequently
177 analyzed via isotope dilution for ^{238}U and ^{232}Th , and then with an external calibration for ^{147}Sm via ICP-
178 MS (Reiners 2005). Replicate analyses of Durango apatite were performed as an internal standard ($n =$
179 7) yielded a mean (U-Th-Sm)/He age of 31.5 ± 0.5 Ma (1σ), consistent with the Durango (U-Th-Sm)/He
180 reference age of 31.02 ± 1.01 Ma (McDowell et al. 2005). Replicate analyses Fish Canyon Tuff zircon
181 were used as an internal standard ($n = 2$) yielded a mean (U-Th-Sm)/He age of 28.4 ± 0.8 Ma (1σ),
182 consistent with the Fish Canyon Tuff (U-Th-Sm)/He reference age of 28.3 ± 0.8 Ma (Gleadow et al.
183 2015).

184 3.3 Whole rock crustal thickness estimates

185 We employed an empirical relationship between igneous whole-rock Sr/Y and Moho depth to estimate
186 crustal thickness through time, as outlined in Chapman et al. (2015). The application of geochemical data
187 to estimate crustal thickness is based on the observation that the trace element signature of subduction
188 related magmas is correlated with certain crustal proxies (e.g. crustal thickness). Specifically, Sr/Y ratios

189 have been found to correlate with crustal thicknesses at global scales (Best et al. 2009, Lee & Morton
190 2015). This geochemical discrimination is possible as Sr is preferentially sequestered by plagioclase at
191 low pressures, whereas at high pressures, plagioclase crystallization is suppressed, and Sr enters the
192 liquid phase (Mantle & Collins 2008). In comparison, Y enters the liquid phase at low pressures and
193 partitions into garnet at high-pressure (Chapman et al. 2015). Thus, increasing ratios of whole rock Sr/Y
194 correlate with magmas which form at greater depth, and thus in thicker crust. However, these empirical
195 relationships break down in rocks with >68 wt % and < 55 wt % SiO₂, MgO content of < 4 wt %, and Rb/Sr
196 ratios of between 0.05 and 0.25 (Chiaradia 2015, Chapman et al. 2015, 2020, and references therein).
197 These constraints require filtering of rocks that are either too mafic or too felsic (S-type granitoids), as
198 well as rocks that are altered. Samples ($n = 71$) analyzed in this study were queried from the NAVDAT
199 database, are located in southern Arizona-western New Mexico and range in age from 68-16 Ma (Figure
200 1). Sample information, geochemical data for compiled analyses, and crustal thickness estimates are
201 presented in Supplementary File 4.

202 3.4 Thermal History Modelling

203 Thermal history modelling was performed utilizing AHe and AFT ages, and associated MTL distributions,
204 with D_{par} (e.g. Donelick et al. 2005) used as a kinetic parameter. Here, we used the QTQt software
205 (version 5.7.0) to determine the thermal history. The QTQt software applies a Bayesian trans-dimensional
206 approach to Markov Chain Monte Carlo statistics (Gallagher 2012) to produce a cooling evolution of the
207 sample that predicts the measured data by applying the AFT annealing model after Ketcham et al. (2007)
208 and the AHe diffusion model after Flowers et al. (2009). In our approach we used an initial unconstrained
209 run to explore the statistical space, that was then followed by adjustments to the search parameters as
210 well as the addition of geological constraints. A large number of iterations ($>> 100,000$) were run as to
211 generate a range of models that can constrain a probability distribution. From the obtained probability
212 distribution an individual thermal history can be selected, such as the maximum likelihood as well as an
213 "expected" (weighted mean) paths. The general prior was set as $t = 26 \pm 1$ Ma after a $^{40}\text{Ar}/^{39}\text{Ar}$ age
214 from a basal tuff in the Cienega basin (Figure 2, Peters et al. 2003) and temperature = $450 \pm 50^\circ\text{C}$ after
215 an assessment of natural mylonitazation temperatures from Stipp et al. (2002). We followed acceptance
216 rates for models were between 0.1 and 0.6 and birth-death ratio was ~1.

217 **4 Results**

218 **4.1 Zircon and apatite fission-track**

219 Three samples were collected from a vertical elevation profile along the western-most extent of the
 220 Catalina MCC where the high-angle Pirate Fault cross-cuts the Catalina detachment fault (Figure 2 and
 221 Table 2). Sample PR-01 (1660 m), PR-02 (1357 m), and PR-03 (1062 m) yielded consistent zircon
 222 fission-track ages of 18.8 ± 1.4 Ma, 19.9 ± 0.8 Ma, and 19.9 ± 0.9 Ma, respectively.

223 Twenty-five samples were selected for apatite fission-track analysis in the Catalina-Rincon MCC
 224 (Figure 2 and Table 2) and are presented with published AFT data from Jepson et al. (2021). These
 225 samples yielded three subdivisions of apatite fission-track ages; group 1 (two samples) yielded ages
 226 > 26 Ma, group-2 (15 samples) yielded ages between ~ 26 and ~ 19 Ma, and group-3 (eight samples)
 227 yielded ages $< \sim 19$ Ma. Group-1 is comprised of samples KJJ09-08 and GM-02. Group-2 is comprised
 228 of samples Tort-01, Tort-02, and Tort-03, SP-01, WP-01, LM-02, SC-01, KJJ09-03, KJJ09-07, UoM0422-
 229 05, UoM0422-06, UoM0422-10, UoM0422-12, UoM0422-13, UoM0422-15, UoM0422-17, UoM0522-03,
 230 and UoM0522-06, and yielded MTLs between 12.9 and $14.1 \mu\text{m}$. Group-3 is comprised of samples
 231 UoM0422-02, UoM0422-03, UoM0422-04, UoM0422-07, UoM0422-09, UoM0522-02, UoM0522-04, and
 232 UoM0522-05, and yielded MTLs of between 13.1 and $14.0 \mu\text{m}$. For detailed samples and ages, refer to
 233 Table 2 and Supplementary Files 1 and 6.

Table 2: Apatite and zircon fission-track data from the Catalina metamorphic core complex. Samples in italics are from Jepson et al. (2021).

Sample	n^a	$\rho_s \times^b$ 10^5cm^{-2}	$\rho_D \times^c$ 10^5cm^{-2}	$\rho_i \times^d$ 10^5cm^{-2}	$U \pm 1\sigma^e$	D_{par}^f	$\chi^2 g$	$\text{Age} \pm 1\sigma^{h,i}$ $\pm 1\sigma^j$	MTL (μm)	n^j
--------	-------	--	--	--	-------------------	--------------------	------------	---	-----------------------	-------

Group 1

GM-02*	20	1.1	12.3	5.5	5.6 ± 1.2	2.4	0.91	39.6 ± 5.7	-	-
<i>KJJ09-08</i>	20	1.1	12.1	5.2	5.4 ± 0.9	2.0	0.66	40.6 ± 5.7	-	-

Group 2

Tort-01*	20	2.0	13.1	22.7	3.8 ± 0.3	2.1	0.72	20.0 ± 1.9	-	-
Tort-02*	20	3.5	12.9	40.0	6.8 ± 1.0	2.1	0.89	19.0 ± 1.6	-	-
Tort-03*	20	3.2	12.8	32.0	4.8 ± 0.7	2.0	0.95	25.0 ± 2.6	-	-
SP-01*	20	1.4	11.2	11.7	2.3 ± 0.6	1.8	0.89	23.3 ± 3.0	-	-

WP-01*	20	1.1	11.1	8.7	1.7 ± 0.1	2.1	1.00	24.3 ± 3.0	-	-
LM-02*	20	1.0	10.9	9.1	1.8 ± 0.3	1.9	0.92	19.8 ± 2.6	-	-
SC-01*	20	1.0	11.4	8.3	1.6 ± 0.2	2.1	1.00	22.2 ± 3.2	-	-
KJJ09-03	20	1.0	12.1	10.0	10.4 ± 1.7	2.0	0.47	21.4 ± 2.6	-	-
KJJ09-07	20	2.1	12.3	18.1	18.4 ± 2.1	2.0	0.50	24.1 ± 2.2	13.7 ± 1.2	50
UoM0422-05	30	0.5	10.3	4.1	5.0 ± 1.0	-	1.00	22.4 ± 2.4	13.1 ± 1.6	11
UoM0422-06	23	3.7	10.4	33.7	40.3 ± 5.2	-	1.00	21.2 ± 1.3	13.7 ± 1.3	42
UoM0422-10	27	2.0	10.9	18.8	21.5 ± 3.5	-	1.00	21.3 ± 1.6	14.1 ± 0.9	64
UoM0422-12	25	1.3	11.1	12.2	13.7 ± 1.3	-	0.79	22.3 ± 1.5	-	-
UoM0422-13	27	1.6	11.2	18.3	18.3 ± 2.1	-	1.00	20.1 ± 1.3	12.9 ± 2.2	54
UoM0422-15	12	1.5	11.7	15.5	16.5 ± 3.2	-	1.00	20.8 ± 2.4	13.8 ± 1.7	32
UoM0422-17	22	2.7	11.9	26.8	28.2 ± 4.6	-	1.00	21.3 ± 1.5	13.7 ± 1.5	101
UoM0522-03	20	0.5	9.3	4.0	5.4 ± 1.4	-	0.06	20.4 ± 1.9	13.3 ± 4.5	5
UoM0522-06	22	1.5	9.9	10.0	12.5 ± 4.2	-	0.00	26.0 ± 7.5	13.6 ± 1.9	6
PR-01 zr	10	37.0	57.5	6.6	$565.0 \pm$	-	0.97	18.8 ± 1.4	-	-
					50					
PR-02 zr	20	21.0	57.3	3.5	$301.0 \pm$	-	1.00	19.9 ± 0.8	-	-
					25					
PR-03 zr	15	84.0	57.1	13.9	$1205.0 \pm$	-	1.00	19.9 ± 0.9	-	-
					110					

Group 3

UoM0422-02	27	1.6	9.8	19.2	24.4 ± 5.0	-	1.00	15.5 ± 1.3	14.0 ± 1.6	86
UoM0422-03	25	3.6	10.0	42.2	53.1 ± 6.0	-	1.00	15.7 ± 0.9	13.8 ± 1.9	100
UoM0422-04	24	1.6	10.2	18.3	22.5 ± 4.0	-	1.00	16.7 ± 0.9	13.9 ± 1.4	100
UoM0422-07	25	1.0	10.6	13.6	16.0 ± 3.1	-	1.00	14.1 ± 1.2	13.5 ± 2.0	24
UoM0422-09	26	1.3	10.8	14.1	16.4 ± 2.2	-	1.00	17.6 ± 1.3	13.7 ± 1.2	31
UoM0522-02	20	0.7	9.1	6.7	9.0 ± 1.1	-	0.65	18.8 ± 1.9	13.4 ± 3.3	8
UoM0522-04	22	2.1	9.5	22.7	29.9 ± 3.6	-	0.25	17.2 ± 1.2	13.3 ± 1.8	21
UoM0522-05	42	0.8	9.7	9.2	11.9 ± 2.2	-	0.10	15.8 ± 1.9	13.2 ± 1.3	11

^anumber of grains analyzed per sample

^bdensity of spontaneous tracks counted

^cdensity of dosimeter tracks counted

^ddensity of induced tracks counted

^eaverage concentration of ²³⁸U

^faverage length of the etch pits in μm

^gprobability that single grain ages belong to the same population

^hcentral age (Ma) for apatite fission-track using ζ -value of 341.6 (8.5, GJ with asterisk) and 368.0 (13.0, TC)

ⁱcentral age (Ma) for zircon fission-track using ζ -value of 116.0 (1.3, SNT with zr)

^jmean track length and number of confined fission-tracks

234

235 **Zircon and apatite (U-Th-[Sm])/He**

236 Four samples were selected for ZHe analysis in the Catalina-Rincon MCC (Figure 2 and Table 3). Sam-
237 ples LM-02, SC-01, WP-01, and SP-01 yielded ZHe ages of 20.8 ± 0.4 Ma, 22.3 ± 0.5 Ma, 25.8 ± 0.8 ,
238 and 24.0 ± 0.5 Ma, respectively.

239 Twenty-three samples were selected for AHe analysis in the Catalina-Rincon MCC (Figure 2 and
240 Table 3). Using the same subdivisions for AHe ages as outlined in the apatite fission-track results; group
241 1 (no samples) yielded ages > 26 Ma, group-2 (nine samples) yielded ages between 26 and 19 Ma, and
242 group-3 (15 samples) yielded ages < 19 Ma. Group-2 comprises of samples WP-01, SP-01, UoM0422-
243 09, UoM0422-10, UoM0422-12, UoM0522-01, UoM0522-02, UoM0522-05, and UoM0522-06. Group-3
244 comprises samples LM-02, SC-01, UoM0422-02, UoM0422-03, UoM0422-04, UoM0422-05, UoM0422-
245 06, UoM0422-07, UoM0422-09, UoM0422-13, UoM0422-14, UoM0422-15, UoM0422-17, UoM0522-03,
246 and UoM0522-04). A number of factors have been invoked to explain single grain AHe age dispersion
247 such as radiation damage, spherical equivalent grain radius, grain fragmentation, U-Th zonation, U- and
248 Th-bearing inclusions, He implantation, chemical composition and crystal imperfections (e.g. Shuster
249 et al. 2006, Fitzgerald et al. 2006, Brown et al. 2013, Wildman et al. 2016, Gerin et al. 2017, Zeitler et al.
250 2017). However, many of our analyses were obtained via multiple grain dissolution (denoted by #, Table
251 3, e.g. Spiegel et al. 2009). Thus, spurious ages may stem from averaging across multiple grains. For
252 detailed samples and ages the reader is referred to Table 3 and Supplementary File 3.

Table 3: Apatite and zircon (U-Th-[Sm])/He data from the Catalina metamorphic core complex. Text in bold is the weighted mean age \pm 2 standard error. Samples in italics were excluded from age calculation. Standard data and unique lab ID for each sample can be found in Supplementary File 3.

Sample	# ^a	U (ppm)	Th (ppm)	Sm (ppm)	eU ^b	F _T ^c	⁴ He (ncc)	Mass (mg)	Raw Age	Corr. Age \pm 1 σ	MWAR (μ) ^d	SD ^e
Group 2												
WP-01	1	7.8	1.7	274.2	8.2	0.834	0.330	16.3	19.7	23.7 \pm 0.5	93.0	-
	1	9.0	1.9	315.0	9.5	0.883	0.876	34.9	21.0	23.8 \pm 0.4	114.0	-
23.8 \pm 0.6 Ma												
SP-01	1	6.9	6.6	280.5	3.8	0.729	0.063	2.8	21.0	28.8 \pm 1.7	51.0	-
	1	3.2	2.2	255.7	7.7	0.804	0.056	6.7	17.2	21.4 \pm 1.5	68.5	-
24.6 \pm 2.2 Ma												
UoM0422-09	1	13.7	1.7	438.6	14.1	0.89	1.002	0.0261	21.5	24.2 \pm 3.0	^f 224.9	^g 330.7
	2	4.0	1.6	81.5	4.4	0.76	0.068	0.0094	13.3	17.5 \pm 2.2	63.5	6.2
	4	2.9	3.0	110	3.6	0.82	0.608	0.0629	21.0	25.5 \pm 1.6	79.6	8.4
	2	-	-	-	1.27	1.00	0.424	-	40.0	40.0 \pm 2.5	-	-
	3	-	-	-	0.52	1.00	0.560	-	23.1	23.1 \pm 1.4	-	-
23.0 \pm 1.8 Ma												
UoM0422-10	4	5.1	11.4	30.8	7.8	0.73	0.323	0.0209	16.2	22.1 \pm 2.7	54.9	2.6
	5	8.0	13.1	25.9	11.1	0.70	0.327	0.0149	16.2	23.3 \pm 2.9	43.9	4.8
	2	-	-	-	2.99	1.00	1.331	-	18.4	18.4 \pm 1.1	-	-
	4	-	-	-	1.90	1.00	0.978	-	20.7	20.7 \pm 1.3	-	-
19.9 \pm 1.6 Ma												
UoM0522-06	5	6.4	2.5	89.8	7.0	0.75	0.381	0.0255	17.4	23.1 \pm 1.4	61.5	18.9
23.1 \pm 2.8 Ma												
UoM0422-12	7	3.6	7.4	245.0	5.3	0.69	0.223	0.0204	15.8	22.8 \pm 2.8	47.0	5.2
	6	2.7	4.6	191.2	3.8	0.70	0.151	0.0156	19.8	28.1 \pm 3.5	52.2	9.1
	1	-	-	-	1.39	1.00	0.905	-	27.3	27.3 \pm 1.7	-	-
	2	-	-	-	0.50	1.00	2.380	-	25.9	25.9 \pm 1.6	-	-
26.2 \pm 2.0 Ma												
UoM0522-01	1	7.6	4.4	225.6	8.6	0.81	0.193	0.0105	17.0	21.0 \pm 1.3	^f 170.5	^g 156.8

	1	6.2	5.0	247.1	7.4	0.85	0.368	0.0234	16.7	19.7 ± 1.2	^f 250.5	^g 192.8
	1	3.2	3.2	79.4	4.0	0.82	0.148	0.0135	22.3	27.2 ± 1.7	^f 195.9	^g 165.8
	1	19.8	9.4	457.8	22.0	0.82	0.362	0.0087	15.1	18.4 ± 1.1	^f 204.9	^g 167.8
											20.6 ± 1.2 Ma	
UoM0522-02	4	6.4	3.5	104.1	7.2	0.81	0.790	0.0396	22.2	27.3 ± 1.7	73.2	11.2
	4	7.7	11.7	109.8	10.5	0.79	0.393	0.0295	10.4	13.0 ± 0.8	56.8	22.8
	5	8.8	3.2	164.1	10.0	0.76	0.553	0.0248	18.8	24.7 ± 1.5	56.4	5.4
											25.8 ± 2.2 Ma	
UoM0522-05	5	5.5	21.4	170.1	10.5	0.69	0.332	0.0127	19.9	28.9 ± 1.8	47.8	6.8
	5	4.9	10.1	88.1	7.3	0.70	0.121	0.0147	9.2	13.1 ± 0.8	49.2	5.8
	5	12.8	30.7	233.9	20.0	0.63	0.221	0.0074	12.2	19.1 ± 1.2	37.7	6.9
											22.1 ± 2.0 Ma	
LM-02 zr ^h	1	454.9	106.4	-	479.9	0.77	6.4	6.9	20.0	20.8 ± 0.4	-	-
											20.8 ± 0.4 Ma	
SC-01 zr	1	782.7	213.0	-	832.8	0.78	20.5	11.7	17.3	22.3 ± 0.5	--	
											22.3 ± 0.5 Ma	
WP-01 zr	1	301.2	141.1	-	334.4	0.84	18.9	21.5	21.7	25.8 ± 0.8	-	-
											25.8 ± 0.8 Ma	
SP-01 zr	1	4627.6	434.6	-	4729.7	0.81	101.9	9.1	20.6	24.0 ± 0.5	-	-
											24.0 ± 0.5 Ma	

Group 3

LM-02	1	6.2	2.6	57.0	6.9	0.827	0.081	10.4	9.4	11.3 ± 0.6	76.5	-
	1	3.6	0.9	28.8	3.8	0.823	0.060	14.0	9.3	11.3 ± 0.8	73.0	-
											11.3 ± 1.0 Ma	
SC-01	1	8.1	3.8	83.8	9.0	0.744	0.061	4.7	11.7	15.8 ± 1.0	54.0	-
	1	2.0	0.7	77.3	2.2	0.887	0.076	32.4	8.6	9.7 ± 0.5	126.0	-
											10.9 ± 1.0 Ma	
UoM0422-02	7	16.3	7.8	36.2	18.1	0.70	0.438	0.0220	9.0	12.9 ± 1.6	47.4	5.0
	6	10.0	4.0	25.3	10.9	0.69	0.206	0.0160	9.7	14.0 ± 1.7	50.4	8.8
	9	8.2	4.6	18.3	9.3	0.73	0.727	0.321	19.9	27.5 ± 3.4	54.0	4.8
	4	13.5	8.0	34.5	15.4	0.84	1.533	0.0830	9.8	11.7 ± 0.7	92.3	18.1

	4	12.2	6.1	25.9	13.6	0.88	2.626	0.1570	10.1	11.5 ± 0.7	108.5	16.3	
	4	10.1	5.1	24.8	11.3	0.82	0.921	0.0522	12.8	15.6 ± 1.0	79.1	12.2	
12.6 ± 0.8 Ma													
UoM0422-03	8	32.8	13.2	52.9	35.9	0.73	1.575	0.0300	12.0	16.4 ± 2.0	52.2	4.5	
	5	35.3	15.3	54.5	38.9	0.76	1.110	0.0246	9.5	12.6 ± 1.6	57.1	6.8	
	5	27.5	12.6	51.3	30.5	0.80	1.835	0.0450	10.9	13.7 ± 1.7	66.6	9.6	
	8	0.7	0.2	1.7	0.8	0.8	2.100	0.0386	547.0	726.6	±	58.8	9.7
90.1													
14.0 ± 2.0 Ma													
UoM0422-04	5	18.7	48.1	55.8	30.0	0.74	0.714	0.0205	9.5	12.9 ± 1.6	56.8	2.3	
	7	14.8	43.2	53.9	25.0	0.68	0.406	0.0164	8.1	11.9 ± 1.5	47.8	2.2	
	4	7.8	25.5	47.0	13.8	0.83	1.404	0.8210	10.2	12.2 ± 0.8	79.2	14.9	
12.3 ± 1.4 Ma													
UoM0422-05	6	3.4	1.1	64.0	3.7	0.74	0.124	0.0270	10.1	13.6 ± 1.7	56.2	4.6	
	4	3.1	0.9	66.4	3.3	0.80	0.173	0.0375	11.2	14.0 ± 1.7	72.6	7.5	
13.8 ± 2.4 Ma													
UoM0422-06	6	18.1	2.8	2.6	18.8	0.72	0.563	0.0204	12.1	16.7 ± 2.1	54.3	5.0	
	5	21.0	4.4	2.8	22.0	0.73	0.571	0.0017	12.3	16.7 ± 2.1	54.6	8.8	
	6	12.4	3.8	5.7	13.3	0.71	0.486	0.0152	19.8	27.9 ± 3.5	43.8	3.5	
	4	17.1	3.7	4.9	18.0	0.84	2.208	0.0756	13.4	16.0 ± 1.0	79.7	14.1	
	4	19.0	5.1	6.5	20.2	0.84	1.851	0.0754	10.0	12.0 ± 0.7	74.3	8.5	
13.8 ± 1.0 Ma													
UoM0422-07	6	4.3	3.7	40.0	5.2	0.79	0.306	0.0455	10.7	13.6 ± 1.7	73.3	6.8	
	7	5.2	3.9	37.4	6.1	0.74	0.278	0.0341	10.9	14.7 ± 1.8	57.2	4.4	
14.1 ± 2.4 Ma													
UoM0422-13	3	7.5	1.8	178.4	7.9	0.85	0.708	0.0568	12.5	14.8 ± 1.8	98.2	9.4	
	4	9.2	1.9	121.4	9.7	0.75	0.262	0.0179	12.3	16.3 ± 2.0	61.9	2.8	
	4	6.2	1.8	225.7	6.6	0.70	0.089	0.0113	9.4	13.4 ± 1.7	59.7	3.3	
	4	6.2	2.9	150.9	6.9	0.83	1.129	0.0589	22.2	26.6 ± 1.7	77.1	16.4	
	4	4.1	2.0	113.1	4.6	0.82	0.458	0.0613	13.2	16.0 ± 1.0	72.3	14.5	

													15.4 ± 3.2 Ma
UoM0422-14	5	8.9	5.0	131.5	10.1	0.69	0.141	0.0121	9.4	13.7 ± 1.7	48.2	2.4	
	4	1.2	1.0	110.1	1.4	0.70	0.101	0.0104	51.4	73.3 ± 9.1	54.4	4.3	
	2	16.1	19.1	130.7	20.6	0.74	0.111	0.0075	5.8	7.9 ± 1.0	52.6	21.7	
													9.4 ± 1.8 Ma
UoM0422-15	5	6.5	15.1	45.3	10.1	0.70	0.173	0.0126	11.2	15.9 ± 2.0	50.1	6.0	
	4	10.3	24.1	71.5	16.0	0.71	0.253	0.0114	11.4	16.0 ± 2.0	55.4	8.7	
	4	6.3	16	36.3	10.1	0.81	0.647	0.0476	11.0	13.6 ± 0.8	75.1	12.6	
	4	7.7	16.1	43.0	11.5	0.78	0.428	0.0326	9.3	11.9 ± 0.7	65.8	4.5	
													13.0 ± 1.0 Ma
UoM0422-17	5	13.1	0.7	178.2	13.3	0.80	0.714	0.0390	11.2	14.0 ± 1.7	61.4	7.4	
	4	18.0	0.9	227.6	18.2	0.77	0.565	0.0232	10.8	14.1 ± 1.8	62.8	5.0	
	5	18.9	1.4	201.5	19.2	0.74	0.108	0.0202	2.3	3.1 ± 0.4	55.7	4.8	
													14.1 ± 2.4 Ma
UoM0522-03	3	2.7	2.9	69.9	3.4	0.86	0.592	0.0861	16.5	19.2 ± 1.2	95.3	14.9	
	5	2.6	2.3	49.1	3.1	0.84	0.349	0.0825	10.8	12.8 ± 0.8	85.7	14.8	
	5	2.3	1.6	54.7	2.7	0.82	0.355	0.0697	15.3	18.6 ± 1.2	91.0	27.7	
													15.7 ± 1.2 Ma
UoM0522-04	5	9.0	2.1	38.9	9.5	0.79	0.586	0.0378	13.4	16.9 ± 1.0	66.5	14.7	
	5	1.8	1.2	9.6	2.1	0.72	0.041	0.0177	9.2	12.7 ± 0.8	49.2	5.4	
													14.3 ± 1.2 Ma

^anumber of single grains used in bulk degassing (Spiegel et al. 2009)

^beffective uranium scaled for relative alpha production rate ($U(ppm) + 0.235 \times Th(ppm)$)

^calpha-ejection correction after (Farley 2002)

^dmass weighted average radius of apatite crystals measured in the aliquot analyzed

^eStandard deviation of the MWAR is used as a guide for the 'tightness of the range of single crystal radii picked within a sample.'

^f, ^gSingle grain length and width are indicated by ^f and ^g, respectively

^g, samples denoted with "zr" are zircon.

254 **4.2 Crustal thickness estimates**

255 Crustal thickness estimates from compiled whole rock data range from 72 to 18 km. An individual crustal
256 thickness estimate can have uncertainties as high as 10 km (e.g. Chapman et al. 2015, 2020). Thus,
257 to improve the resolution, crustal thickness estimates were binned into 10 Ma intervals, with a median
258 crustal thickness calculated for each interval. The 10 myr intervals were selected through an iterative
259 process to balance reasonable estimates on the crustal thickness at a given time period with resolution of
260 documented thinning episodes. Intervals 70-60 Ma, 60-50 Ma, 50-40 Ma, 40-30 Ma, 30-20 Ma, and 20-10
261 Ma yielded a weighted mean crustal thickness estimate and associated error was calculated (assuming
262 \pm 10 km uncertainty for an individual estimate) of 59.6 ± 2.7 km, 51.8 ± 3.0 km, 36.3 ± 5.0 km, $44.0 \pm$
263 2.0 km, 45.1 ± 2.4 km and 35.9 ± 5.0 km, respectively. These data show elevated crustal thicknesses
264 estimates of ~60 km at 70-60 Ma decreasing to crustal thickness estimates of ~45-40 km between 40 and
265 20 Ma, before a slight decrease in crustal thicknesses to ~38 km at 20-10 Ma. Considering the paucity
266 and scatter of data-points at 50-40 Ma interval, we exclude this interval from further interpretation. In
267 summary, these data identify two distinct phases of crustal thinning; 1) a sharp decrease in crustal
268 thickness estimates between 70 and 40 Ma, and 2) a more modest period of thinning between ~30-20
269 Ma and ~20-10 Ma (Figure 3).

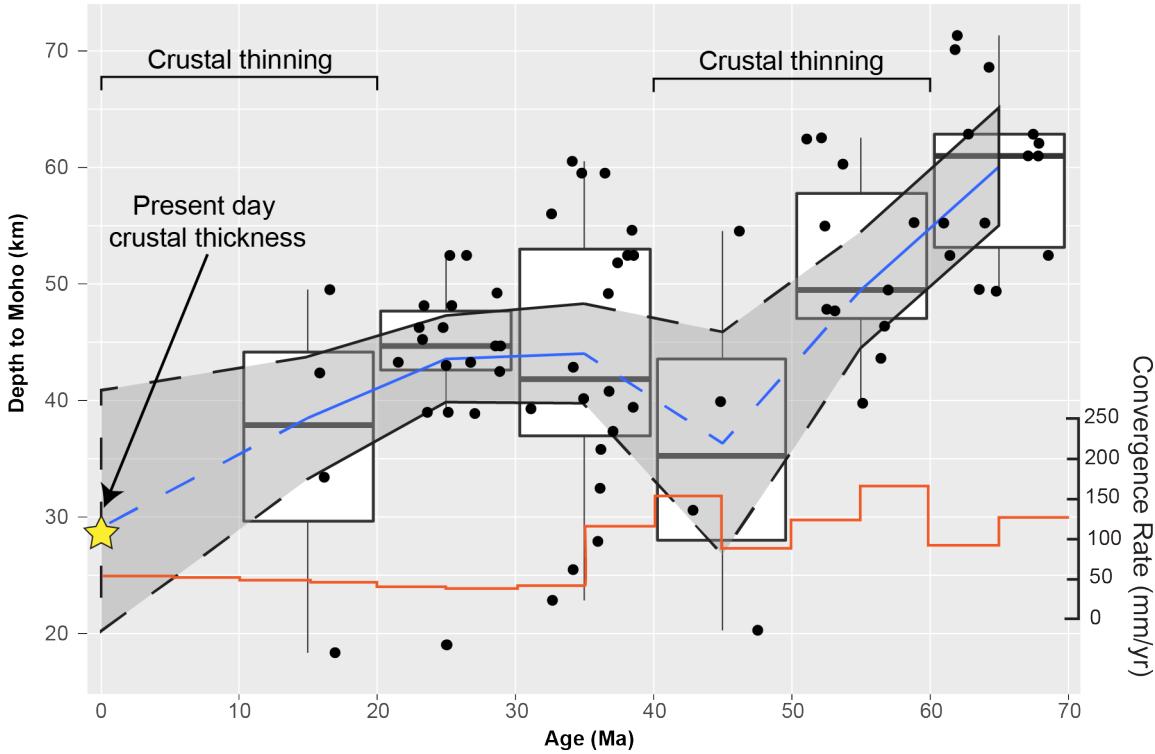


Figure 3: Sr/Y crustal thickness estimates from southern Arizona, eastern California, and western New Mexico through time. Box plots give the median crustal thickness estimate for each 10 myr interval and whiskers illustrate minimum and maximum constraints. Depth to Moho is analogous to crustal thickness. Blue line and grey envelope is mean spline and 1-standard error limit. Dashed line illustrates paucity of data constraining the 50-40 Ma time interval. Orange line is the convergence velocity between the Farallon and North American plates in mm per year from (Seton et al. 2012). Detailed sample information can be found in Supplementary File 4. Data points within each 10 myr bin have been separated to visualize crustal thickness estimate variation.

270 4.3 Thermal History Modelling

271 Four representative samples (UoM0422-12, WP-01, KJJ09-03, and UoM0422-06), were selected to-
 272 gether as an elevation profile (2291 m, 2004 m, 1608 m, and 1085 m, respectively) for thermal history
 273 modelling (Figure 2, e.g. Gallagher et al. 2005). These four samples comprise a vertical transect within
 274 lower-plate rocks from the base of the Catalina MCC to near its highest elevation at this locality. Samples
 275 which yielded Eocene cooling ages did not have sufficient confined track lengths for thermal history mod-
 276 elling. Confined track distributions, individual models, and modelling parameters are available in Table
 277 2 and 3, and Supplementary File 5. The AFT data for sample KJJ09-03 from Jepson et al. (2021) was
 278 combined with AHe data from sample UoM0522-01 from this study as they were collected from the same
 279 locality. The thermal history model indicates two periods of cooling following onset of detachment at ~26
 280 Ma (Peters et al. 2003). Initially, the elevation profile (samples UoM0422-12, WP-01, KJJ09-03, and

281 UoM0422-06) undergoes rapid cooling from $\sim 450 \pm 50$ °C at 26 Ma to ~ 80 °C at 21 Ma at a rate of ~ 74
282 °C per myr. After this phase of rapid cooling, the samples then transition to a period of more protracted
283 cooling from ~ 80 °C at ~ 21 Ma to ≤ 40 °C at ~ 9 Ma at a rate of ~ 4 °C per myr (Figure 4). As part of the
284 model formulation using an elevation profile, it is possible to obtain an estimate of the paleo-geothermal
285 temperature gradient through time (Gallagher et al. 2005, Gallagher 2012). This is based, in part, on the
286 assumption that the samples remain in constant vertical offset and thus temperature offset through time
287 (Gallagher et al. 2005). From our thermal history model we obtain a paleo-geothermal gradient of $\sim 45 \pm$
288 6 °C per km from 26 to 19 Ma, and a paleo-geothermal gradient of $\sim 41-29 \pm 5$ °C per km from 19 to 11
289 Ma (Figure 4).

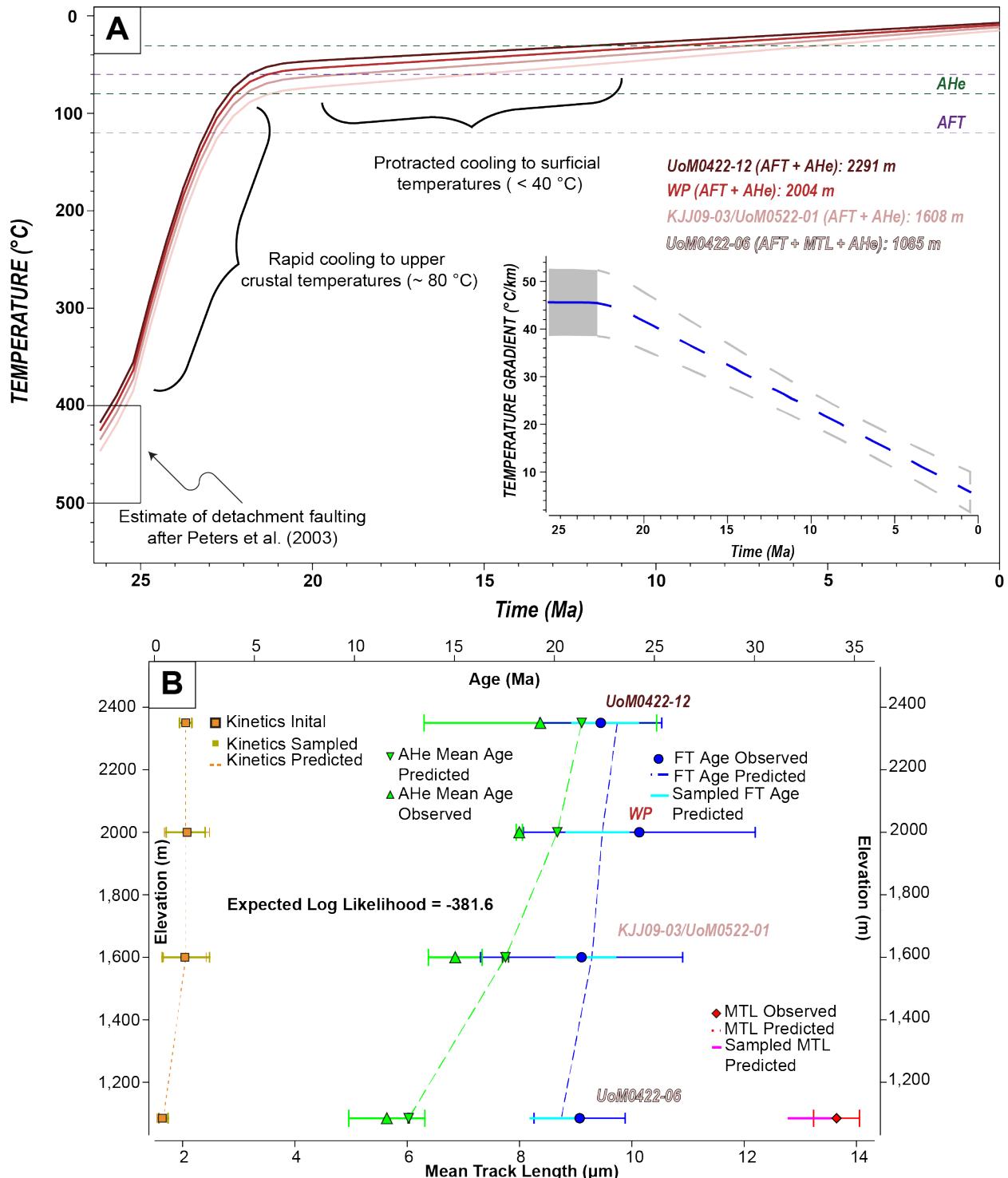


Figure 4: A) Representative thermal history model and paleo-geothermal gradient of the Catalina Metamorphic Core Complex indicating rapid cooling from temperatures of ~500-450 °C (e.g. Stipp et al. 2002) following the best estimate for the onset of detachment faulting (Peters et al. 2003) and transitioning to relatively slower cooling during the Basin and Range. Green and purple dashed lines indicate the apatite partial retention zone and partial annealing zone, respectively (e.g. Braun et al. 2006). Samples used were from an elevation profile indicated in Figure 2, using apatite fission-track (AFT), apatite (U-Th-Sm)/He (AHe), and mean track length (MTL) data from this study and Jepson et al. (2021). Uncertainty on the paleo-geothermal estimate is indicated by the grey shading. Paleo-geothermal gradient decreases towards present day indicated by dashed line and outline at atmospheric temperature lapse rate of ~5-6 °C/km (Gallagher et al. 2005) and is unlikely to be an accurate estimate of the geothermal gradient. Modelling was performed using QTQt 5.7.0 (Gallagher 2012). B) Observed versus predicted values for all data used in the thermal history model. FT is fission-track and MTL is mean track length.

290 **5 Discussion**

291 Here, we detail a polyphase Cenozoic cooling and exhumational history of the Catalina-Rincon MCC
292 in southern Arizona. Integrated with previously published data from the Catalina MCC, AHe ($n = 34$),
293 AFT ($n = 31$), ZHe, ($n = 4$), and ZFT ($n = 17$), our study constrains three main periods of cooling: 1)
294 an early phase of cooling prior to ~ 40 Ma (Figure 5); 2) a major phase of cooling between 26 and 19
295 Ma; and 3) a late period of cooling occurring between 17 and 11 Ma (Figure 5, this study, Fayon et al.
296 2000, Jepson et al. 2021). The three cooling phases were determined by integrating the thermal history
297 modelling (Figure 4) with the total distribution of low-temperature cooling ages across the Catalina MCC
298 (Figure 5). We compare the interpreted cooling phases with crustal thickness estimates for southern
299 Arizona (Figure 3) to resolve the tectonic processes behind thinning of the hypothesized Arizona-plano
300 crust. To convert cooling ages to crustal depth a geothermal gradient is required (e.g. Braun et al. 2006).
301 In the following discussion we use a paleo-geothermal gradient based on our thermal history modelling
302 of 45 $^{\circ}\text{C}/\text{km}$ from 26 to 19 Ma and a paleo-geothermal gradient of ~ 25 $^{\circ}\text{C}/\text{km}$ from 19 to 11 Ma (Figure
303 4). For the Eocene-Oligocene, this is in agreement with paleo-geothermal gradients which have been
304 suggested in southern Arizona (40 - 50 $^{\circ}\text{C}/\text{km}$, Ducea et al. 2020, and references therein). The modelled
305 Miocene paleo-geothermal gradient is likely not reflective of crustal thermal conditions, as the samples
306 have already cooled to the upper-crust by this time and provide no additional constraints (Gallagher
307 et al. 2005). Therefore, we select a relatively standard geothermal gradient of 25 $^{\circ}\text{C}/\text{km}$ after heat flow
308 modelling in Ketcham (1996). Despite the uncertainty, these estimates provide robust maximum depth
309 constraints for comparison between different tectonic events.

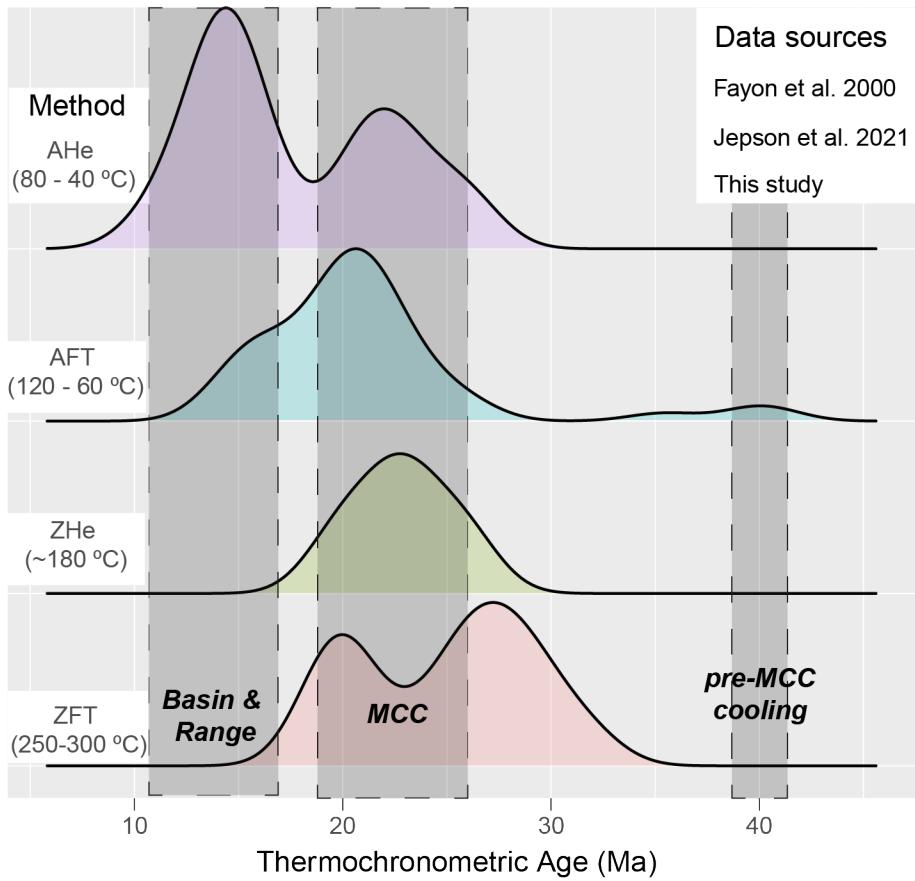


Figure 5: Kernel density estimates of combined zircon and apatite fission-track (ZFT, AFT) and zircon and apatite (U-Th-Sm)/He (ZHe and AHe) from this study, Fayon et al. (2000) and Jepson et al. (2021). The combined thermochronometers (temperatures from Braun et al. (2006)) constrain two major periods of cooling associated with the Basin and Range (11-17 Ma) and Metamorphic Core Complex (MCC, 19-26 Ma) events, and a minor, pre-MCC phase at ca. 40 Ma. Data-points are separated along the y-axis for visualization.

310 **Pre-metamorphic core complex exhumation (~40 Ma): Middle- to lower-crustal processes?**

311 In this study, we note ca. 40 Ma AFT ages on the eastern flank of the Catalina MCC and the western
 312 margin of the Galiauro Mountains (Figure 2, Jepson et al. 2021). This is anomalous, as the bulk of the
 313 thermochronometric data from the Catalina MCC records cooling that is \leq 26 Ma (Figure 6, see also;
 314 Creasey et al. 1976, Fayon et al. 2000, Jepson et al. 2021). Given the occurrence of Eocene AFT ages
 315 on the NE side of the Catalina MCC, spatially disparate localities, and absence of confined fission-track
 316 lengths, we consider these samples as structurally closer to the Eocene paleo-surface and thus, were
 317 likely residing in the apatite PAZ. Therefore, these ~40 Ma cooling ages likely represent mixed ages
 318 between an older \geq 26 Ma pre-MCC cooling event and the younger \leq 26 Ma MCC cooling event (e.g.
 319 Wildman et al. 2016). However, these cooling ages are notably consistent with other studies in southern

320 Arizona which have observed upper-crustal cooling at this time (Riley 2004, Caylor et al. 2021), which
321 suggests that this episode of minor cooling was regionally widespread.

322 In southern Arizona, the crustal thickness estimates show a period of thinning of ~10 km, from thick-
323 nesses of ~50 km at 60-50 Ma to thicknesses of ~40 km at 40-30 Ma (Figure 7). No upper-crustal
324 extension has been recognized during this time interval. Further, the resolution of the Eocene upper-
325 crustal cooling period is also poor, as they resolve a mixed age between the pre-MCC and MCC events.
326 However, pre-MCC thermochronometric cooling ages are observed in Walker Lane, Nevada (Say & Zuza
327 2021) and higher temperature cooling has been documented within the Catalina MCC (Ducea et al. 2020,
328 Jepson et al. 2021), suggesting that this pre-MCC cooling may be more widespread than previously con-
329 sidered (Singleton et al. 2018). Despite the opaqueness surrounding this pre-MCC tectonic event, the
330 presence of mixed thermochronometric ages and the lack of normal faulting structures, discussed be-
331 low, cannot explain the ~10 km record of crustal thinning based on regional crustal thickness estimates
332 (Figure 3). Thus, an additional mechanism is required to thin the thickened Laramide crust prior to the
333 onset of MCC detachment faulting.

334 There are several factors that could explain the discrepancy between the cryptic upper-crustal cooling
335 and a rapid period of crustal thinning. Firstly, the older, mixed thermochronometric ages may represent
336 thermal relaxation following Paleogene intrusions (Terrien 2012, Fornash et al. 2013). However, this
337 would likely correspond to either stability or thickening in crustal thickness estimates, not thinning which
338 is observed (Figure 3). Secondly, the cooling could be explained by extension or late-stage Laramide
339 thrust faulting. Laramide tectonic activity which has been dated to *ca.* 76-50 Ma within southern Arizona
340 and western New Mexico (e.g. Copeland et al. 2017), which could provide a mechanism for a pre-MCC
341 cooling. However, reverse faulting and thrusting thicken the crust, inconsistent with the thinning observed
342 and Paleocene-Eocene upper-crustal extensional structures are absent across southern Arizona (Davis
343 et al. 2004). Further, although Farallon slab roll-back initiated in the Paleocene-Eocene (e.g. Saleeby
344 2003), the Farallon slab was still in-place under southern Arizona-New Mexico by the middle-Eocene
345 (Coney & Reynolds 1977, Copeland et al. 2017, Bahadori et al. 2018), likely preventing whole-scale ex-
346 tension. An alternative lower-crustal mechanism could be the localized foundering of an eclogitic crustal
347 root, which generated crustal thinning and upper-crustal uplift (e.g. DeCelles et al. 2009). However, this
348 hypothesis may be hindered by the presence of the Farallon slab at this time.

349 Ductile flow of the middle- to lower-crust can thin the crust and generate limited upper-crustal cool-

350 ing without major upper-crustal extension (Figure 7, Lavier & Manatschal 2006). Lateral extrusion of the
351 lower-crust is hypothesized to occur beneath high plateaus, in which the hot, weak lower-crust is eva-
352 cuated, smoothing the topography (Bird 1991), particularly near extensional MCCs (McKenzie & Jackson
353 2002). In modern day thickened crusts of Tibet and the Altiplano, lower-crustal flow has been inferred,
354 moving material from thickened plateau interiors toward the thinner margins and cooling the crust (e.g.
355 Royden et al. 1997, Gerbault et al. 2005, Enkelmann et al. 2006). Lower-crustal flow has also been pro-
356 posed for the Laramide, which decoupled lower-crustal and upper-mantle traction (Royden et al. 1997,
357 Hyndman 2017, Schutt et al. 2018). Further, the convergence velocity of the Farallon plate is modelled to
358 have slowed sharply during the Eocene (e.g. Seton et al. 2012, Yonkee & Weil 2015, Wright et al. 2016),
359 which could have diminished the compressive stress acting on Laramide crust and allowed for ductile
360 middle- to lower-crustal processes to thin the crust (Figure 7). Eocene ductile middle- to lower-crustal
361 processes are supported by observations by Ducea et al. (2020) who suggested that much of the ductile
362 fabric in the Catalina MCC formed during the Eocene based on the dating of syn-kinematic felsic dikes.
363 Further, ϵ Hf and ϵ Nd signatures from the 57-45 Ma Wilderness Suite suggest that melts crystallized at
364 this time were relatively evolved (Fornash et al. 2013) supporting the hypothesis of a hot, melt rich crust,
365 conditions favorable to lower-crustal flow. Finally, we suggest that ductile crust likely flowed either to the
366 south or south-west, as the Colorado Plateau remains to the north (Figure 7). It is likely that the ~40 Ma
367 cooling event was regionally more widespread, however subsequent erosion would have removed more
368 extensive evidence leaving a fragmented basement record. The basin record of this Eocene cooling
369 would be stored in proximal basins.

370 **Metamorphic core complex exhumation (26-19 Ma): Detachment faulting**

371 The modern morphology of the Catalina MCC is reflective of the SW dipping low-angle detachment-
372 fault system (e.g. Davis & Coney 1979, Davis 1987). The earliest onset of detachment faulting is at ca.
373 26 Ma (Peters et al. 2003), which rapidly exposed the deformed ductile middle-crust (~10-15 km) to
374 the surface (Lister & Davis 1989). This process of crystal plastic deformation, detachment faulting and
375 subsequent exhumation is traditionally thought to have generated much of the widespread mylonitic fabric
376 exposed throughout the Catalina MCC (Davis 2013, Spencer et al. 2019, and references therein). Fayon
377 et al. (2000) identify early Oligocene cooling through ZFT thermochronology and suggest extension as
378 initiating at ~30 Ma. However, these data may also reflect a mixed age between pre-MCC and MCC
379 cooling events as discussed above. Peters et al. (2003) constrained detachment to be active at ~26

380 Ma consistent with all thermochronometric data presented in this study, which suggests detachment
381 was ongoing at this time. As a result of the extensive and rapid exhumation, the majority of cooling ages
382 (~60%) identified through low-temperature thermochronology in this and previous studies are Oligocene-
383 Miocene (Creasey et al. 1976, Fayon et al. 2000, Jepson et al. 2021). Given the presence of ductile
384 strain mechanisms in quartz and brittle strain mechanisms in feldspar within the mylonitic fabric, workers
385 have assessed that the mylonitic fabric formed at ~500-300 °C (e.g. Stipp et al. 2002). Therefore, given
386 the abundance of low-temperature thermochronometric ages between *ca.* 26 and 19 Ma coupled with
387 cooling estimates from the thermal history model, we infer that the Catalina MCC cooled from ~500-450
388 °C to ~80 °C rapidly during the late Oligocene-early Miocene (within ~1 to 7 myr, Figure 4). The Catalina
389 MCC displays a clear trend of younger thermochronometric ages with lower elevation indicating a rapid
390 apparent exhumation rate from *ca.* 26-19 Ma (apparent exhumation rate of 0.24 mm/yr, Figure 6).

391 The onset of detachment faulting and subsequent MCC exhumation has been identified as a major
392 contributor to thinning of previously thickened crust (e.g. Lister & Davis 1989). In southern Arizona, the
393 crustal thickness record demonstrates thinning from crustal thicknesses of ~45 km at 30-20 Ma to ~37
394 km at 20-10 Ma (Figure 3). This followed a period of relative stability from 40-30 Ma to 30-20 Ma, where
395 crustal thickness was $\sim 45.1 \pm 2.4$ km. Based on rapid cooling from 450 °C to ~80 °C (Figure 4) and a
396 paleo-geothermal gradient of ~45 °C/km, we assess an upper limit of ~8 km of material denuded from
397 the Catalina MCC (Figure 5), within uncertainty of the ~8 km identified via crustal thickness estimates
398 (Figure 3). Therefore, we suggest that at least twice as much crustal material was removed from the
399 Catalina MCC during detachment faulting in comparison with Basin and Range extension (Figure 6).

400 Regionally, the occurrence of rapid Oligocene-Miocene exhumation from the brittle-to-ductile transi-
401 tion to the uppermost crust has been observed in both the Pinaleño (*ca.* 31 to 25 Ma) and Coyote Moun-
402 tains MCCs (*ca.* 29 to 21 Ma; Long et al. 1995, Gottardi et al. 2020, Jepson et al. 2021) which are situated
403 to the NE and SW of the Catalina MCC, respectively. Farther afield, the California-Arizona MCCs such
404 as the Buckskin-Rawhide and Whipple Mountain MCCs demonstrate a similar magnitude of Oligocene-
405 Miocene exhumation, with initiation occurring more recently at *ca.* 24 Ma (e.g. Davis 1988, Lister & Davis
406 1989, Foster et al. 1993). Mylonitization associated with the Sonoran Anochi and Magdalena-Madea
407 MCCs to the south also occurred slightly earlier (~34-25 Ma Wong & Gans 2008, Gottardi et al. 2020,
408 and references therein). The hypothesized timing of California-Arizona-Sonora MCC extension (*ca.* 26-
409 21 Ma) is coeval with the timing of slip along the Orocopia Mountains Detachment Fault in southwestern
410 California (Jacobson et al. 2007, Moser et al. 2021). The synchronous timing of rapid cooling throughout

411 southwestern US and northern Mexico underscores the large-scale, regional attenuation of the crust at
 412 this time (Coney 1980, Davis & Hardy Jr. 1981, Whitney et al. 2013, Platt et al. 2015).

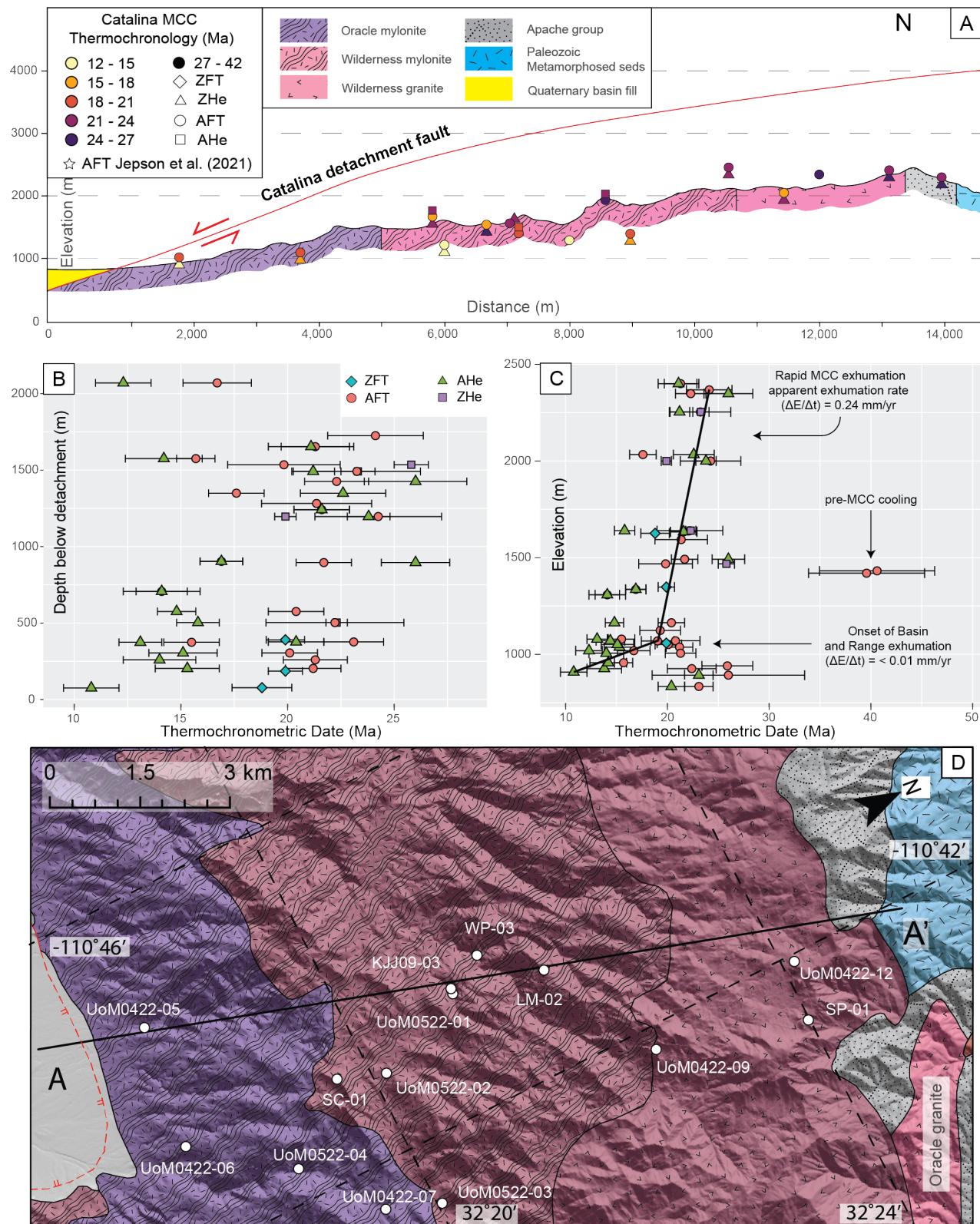


Figure 6: Caption continued on next page.

Figure 6: A) Cross-section of the Catalina Metamorphic Core Complex (MCC) indicating thermochronometric age versus elevation, with the projected Catalina detachment fault, ZFT = zircon fission-track, AFT = apatite fission-track, ZHe = zircon (U-Th)/He, and AHe = apatite (U-Th-Sm)/He. Cross-section shows no vertical exaggeration. Units are colored following Arca & Johnson (2010, and references therein). B) Plot displaying thermochronometric age against depth below the detachment. Depth to detachment was calculated by closest distance between sample locations and a 3D interpolation of the detachment surface constrained by surface exposure of the corrugated detachment surface. C) Plot displaying thermochronometric age against elevation. Break-in-slope at ~19 Ma identifies transition between rapid apparent exhumation (change in elevation/change in age) during MCC detachment faulting to slower exhumation during Basin and Range faulting. D) Geological map of the cross-sectioned area after Arca & Johnson (2010) showing locations of samples.

413 **Basin and Range exhumation (17-11 Ma): High-angle normal faulting**

414 The most recent phase of exhumation was in response to high-angle normal-faulting related to Basin
415 and Range extension (e.g. Dickinson 1991, Singleton et al. 2019). Within the Catalina MCC the Basin
416 and Range extension is manifested by brittle NE-SW striking faults (the Pirate Fault, Figure 2 Davis
417 et al. 2004). Although structures related to E-W Basin and Range extension are prevalent throughout the
418 Catalina MCC (Figure 2, Arca & Johnson 2010), the exhumation response recorded by thermochronom-
419 etry is relatively subdued. Apatite FT and AHe ages from the base of the Pirate Fault which offsets the
420 Catalina detachment by ~2.6 km of vertical displacement (Davis et al. 2004), yield middle Miocene ages
421 (17-11 Ma, Figure 2), consistent with the timing of Basin and Range extension in southern Arizona (~15-
422 12 Ma, Dickinson 1991, Foster et al. 1993). Middle Miocene cooling ages are constrained to the lower
423 temperature thermochronometers (AFT and AHe, Figure 5) and structurally deepest samples (Figure
424 6). Based on cooling through the AFT ($T_C = 110 \pm 10$ °C) thermochronometer and a calculated paleo-
425 geothermal gradient of 25 °C/km, we assess that an upper limit of ~5 km of material was denuded by
426 this latest phase of extension (Figure 4 and 5).

427 Basin and Range extension is attributed to oblique shear between the Pacific and American plates
428 (e.g. Atwater 1970, Lerch et al. 2007, McQuarrie & Wernicke 2005). This allowed for the broadly syn-
429 chronous onset of Basin and Range faulting and crustal thinning in the North American Cordillera (Dick-
430 inson 1991). In southern Arizona, the crustal thickness record suggests ~9 km of thinning between 20-10
431 Ma (~37 km) and present day (~28 km, Frassetto et al. 2006, Gilbert 2012) in contrast with the maximum
432 of ~5 km of exhumation recorded by thermochronometers in the Catalina MCC (Figure 3). This record of
433 thinning is consistent with geophysical evidence from Nevada, which estimated ~10 km of thinning be-
434 tween pre-Basin and Range (~40 km) and present day (~30 km Lerch et al. 2007, Gilbert 2012). Based

435 upon seismic imaging, upper- and lower-crustal Basin and Range deformation has been suggested to
 436 have been decoupled with no significant viscous transport of material via lower-crustal processes (Klem-
 437 perer et al. 1986, Lerch et al. 2007). Thus, we suggest that Basin and Range crustal thinning was limited
 438 to upper-crustal processes (i.e. erosion or tectonic denudation) and higher temperature thermochrono-
 439 metric evidence is likely preserved at depth, beneath the current surface expression of the Catalina MCC
 440 (Figure 6C).

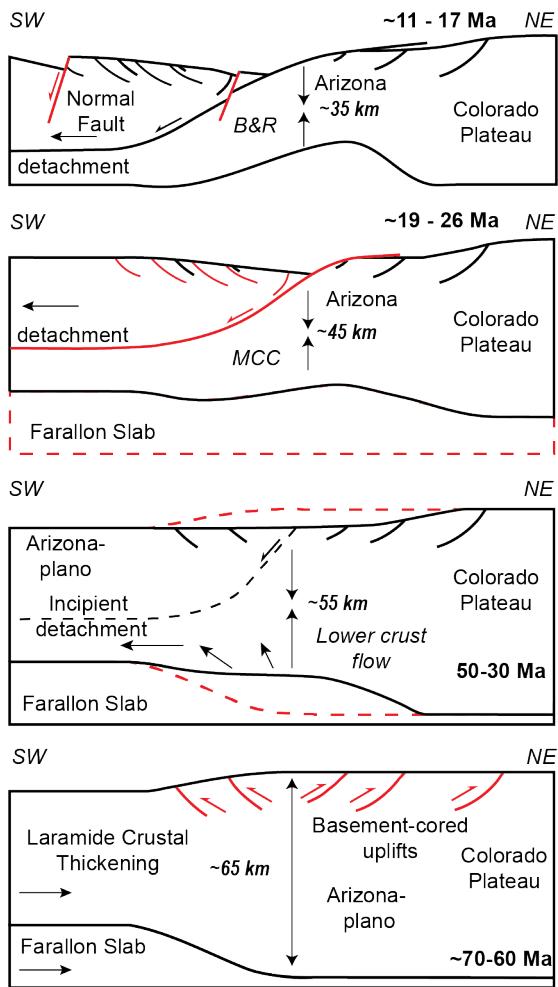


Figure 7: Schematic diagram illustrating the process of crustal thinning prior to detachment faulting and Basin and Range extension. Modified after Hyndman (2017).

441 5.1 Conclusions

442 In this study, we compare the exhumation history of the Catalina MCC as constrained by low-temperature
 443 thermochronometric data to the crustal thickness record as proxied by whole rock geochemistry to track
 444 thinning of an orogenic plateau. Thermochronometric data documents three discrete phases of cooling:
 445 a minor phase of upper-crustal cooling prior to ca. 40 Ma, associated with significant crustal thinning; a

446 major phase of cooling and crustal thinning between *ca.* 26-19 Ma related to detachment faulting and
447 MCC exhumation, and a final phase of cooling and thinning at *ca.* 17-11 Ma related to Basin and Range
448 extension. Using our thermochronological data-set as a proxy for denudation, we assess that \leq 20 km
449 of overburden was removed from the Catalina MCC via erosion or tectonic denudation associated with
450 pre-MCC cooling, MCC detachment faulting, and Basin and Range extension. Geochemical evidence
451 from plutonic rocks across southern Arizona support crustal thicknesses of \sim 60 \pm 5 km at *ca.* 70-60 Ma
452 which must have thinned by \sim 30 km to the present day thickness of \sim 28 km (e.g. Frassetto et al. 2006).
453 Geochemical crustal thickness estimates from Sr/Y ratios of thinning are in broad agreement with de-
454 nudation estimates from low-temperature thermochronology for the MCC and Basin and Range events.
455 However, the amount of cooling during the Eocene from thermochronometric and structural evidence is
456 insufficient to match thinning estimates obtained from geochemical evidence (\sim 10km). Eocene cooling
457 and crustal thinning corresponds spatially and temporally with ductile fabrics in the Catalina MCC, as
458 well as with slower convergence between the Farallon and North American plates. Furthermore, Eocene
459 extensional structures are not recognized in this locality. Since the Farallon slab was still in place below
460 southern Arizona, we suggest that a phase of Eocene-Oligocene (*ca.* 50-30 Ma), middle- to lower-crustal
461 ductile flow began to thin the Arizona-plano crust prior to Oligocene-Miocene extensional unroofing.

462 6 Acknowledgements

463 Tim Carter is thanked for the contribution of AFT data for the UoM samples obtained under Australian
464 Research Council Grant DP0345931. Barbara Carrapa would like to acknowledge US National Science
465 Foundation grant EAR Tectonics 1919179. Paul Kapp would like to acknowledge US National Science
466 Foundation grant EAR 2048656. Jon Spencer is thanked for his invaluable support and guidance about
467 the geology during fieldwork and valuable insights on an early draft. Asaf Raza provided assistance
468 with sample preparation. The University of Melbourne Thermochronology Laboratory receives operation
469 support through the AuScope program of the National Collaborative Research Infrastructure Strategy
470 (NCRIS). We thank editor Isabelle Manighetti, the associate editor, reviewer M. Odium, and an anonym-
471 ous reviewer for their thoughtful comments which improved this manuscript.

472 **Open Research**

473 Data and figures supporting the conclusions presented here is available on the University of Arizona's
474 Research Data Repository (<https://doi.org/10.25422/azu.data.17227538.v1>).

475 **Figure Captions**

476 **Figure 1**

477 Map of the south-western USA and north-western Mexico highlighting the "Nevada-plano" (purple dashed
478 outline), "Arizona-plano" (black dashed outline), whole rock crustal thickness estimates and associated
479 ages, and major shortening structures from Yonkee & Weil (2015). Modified after (Chapman et al. 2015,
480 2020). Estimated depth to mantle is from the Bouguer Gravity Anomaly (BGA, Gilbert 2012).

481 **Figure 2**

482 Geological map of the Catalina-Rincon metamorphic core complex (MCC) indicating major structures
483 and units after (Arca & Johnson 2010), apatite fission-track (AFT), zircon fission-track (ZFT), apatite
484 (U-Th-Sm)/He (AHe), and zircon (U-Th-Sm)/He (ZHe) ages from this study and (Jepson et al. 2021).

485 **Figure 3**

486 Sr/Y crustal thickness estimates from southern Arizona, eastern California, and western New Mexico
487 through time. Box plots give the median crustal thickness estimate for each 10 myr interval and whiskers
488 illustrate minimum and maximum constraints. Depth to Moho is analogous to crustal thickness. Blue
489 line and grey envelope is mean spline and 1-standard error limit. Dashed line illustrates paucity of data
490 constraining the 50-40 Ma time interval. Orange line is the convergence velocity between the Farallon
491 and North American plates in mm per year from (Seton et al. 2012). Detailed sample information can
492 be found in Supplementary File 4. Data points within each 10 myr bin have been separated to visualize
493 crustal thickness estimate variation.

494 **Figure 4**

495 A) Representative thermal history model and paleo-geothermal gradient of the Catalina Metamorphic
496 Core Complex indicating rapid cooling from temperatures of ~500-450 °C (e.g. Stipp et al. 2002) following

497 the best estimate for the onset of detachment faulting (Peters et al. 2003) and transitioning to relatively
498 slower cooling during the Basin and Range. Green and purple dashed lines indicate the apatite partial
499 retention zone and partial annealing zone, respectively (e.g. Braun et al. 2006). Samples used were from
500 an elevation profile indicated in Figure 1, using apatite fission-track (AFT), apatite (U-Th-Sm)/He (AHe),
501 and mean track length (MTL) data from this study and Jepson et al. (2021). Uncertainty on the paleo-
502 geothermal estimate is indicated by the grey shading. Paleo-geothermal gradient decreases towards
503 present day indicated by dashed line and outline at atmospheric temperature lapse rate of ~5-6 °C/km
504 (Gallagher et al. 2005) and is unlikely to be an accurate estimate of the geothermal gradient. Modelling
505 was performed using QTQt 5.7.0 (Gallagher 2012). B) Observed versus predicted values for all data
506 used in the thermal history model. FT is fission-track and MTL is mean track length.

507 **Figure 5**

508 Kernel density estimates of combined zircon and apatite fission-track (ZFT, AFT) and zircon and ap-
509 atite (U-Th-Sm)/He (ZHe and AHe) from this study, Fayon et al. (2000) and Jepson et al. (2021). The
510 combined thermochronometers (temperatures from Braun et al. (2006)) constrain two major periods of
511 cooling associated with the Basin and Range (11-17 Ma) and Metamorphic Core Complex (MCC, 19-26
512 Ma) events, and a minor, pre-MCC phase at ca. 40 Ma. Data-points are separated along the y-axis for
513 visualization.

514 **Figure 6**

515 A) Cross-section of the Catalina Metamorphic Core Complex (MCC) indicating thermochronometric age
516 versus elevation, with the projected Catalina detachment fault, ZFT = zircon fission-track, AFT = apatite
517 fission-track, ZHe = zircon (U-Th)/He, and AHe = apatite (U-Th-Sm)/He. Cross-section shows no ver-
518 tical exaggeration. Units are colored following Arca & Johnson (2010, and references therein). B) Plot
519 displaying thermochronometric age against depth below the detachment. Depth to detachment was cal-
520 culated by closest distance between sample locations and a 3D interpolation of the detachment surface
521 constrained by surface exposure of the corrugated detachment surface. C) Plot displaying thermochrono-
522 metric age against elevation. Break-in-slope at ~19 Ma identifies transition between rapid apparent ex-
523 humation (change in elevation/change in age) during MCC detachment faulting to slower exhumation
524 during Basin and Range faulting. D) Geological map of the cross-sectioned area after Arca & Johnson
525 (2010) showing locations of samples.

526 **Figure 7**

527 Schematic diagram illustrating the process of crustal thinning prior to detachment faulting and Basin and
528 Range extension. Modified after Hyndman (2017).

529 **Table Captions**

530 **Table 1**

531 Samples collected from the Catalina-Rincon metamorphic core complex. Age is the reported crystal-
532 lization age of the rock, "Lat" is the north latitude and "Long" is the east longitude using coordination
533 system WSM 84, elevation (Elev) in meters above sea level. AFT is apatite fission-track, ZFT is zircon
534 fission-track, AHe is apatite (U-Th-Sm)/He, and ZHe is zircon (U-Th-Sm)/He. Samples in italics are from
535 Jepson et al. (2021).

536 **Table 2**

537 Apatite and zircon fission-track data from the Catalina metamorphic core complex. Samples in italics are
538 from Jepson et al. (2021).

539 **Table 3**

540 Zircon (U-Th)/Helium data from the Catalina metamorphic core complex.

541 **References**

542 Arca, M. S. & Johnson, R. A. (2010), 'Compilation Geologic Map from the Baboquivari Mountains to the
543 Transition Zone of the Colorado Plateau'.

544 **URL:** <http://repository.azgs.az.gov/uri-gin/azgs/dlio/1377>

545 Atwater, T. (1970), 'Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North
546 America', *GSA Bulletin* **81**(12), 3513–3536.

547 **URL:** [https://doi.org/10.1130/0016-7606\(1970\)81\[3513:IOPTFT\]2.0.CO;2](https://doi.org/10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO;2)

548 Bahadori, A., Holt, W. E. & Rasbury, E. T. (2018), 'Reconstruction modeling of crustal thickness and
549 paleotopography of western North America since 36 Ma', *Geosphere* **14**(3), 1207–1231.
550 **URL:** <https://doi.org/10.1130/GES01604.1>

551 Barton, M. D. (1990), Chapter 16: Cretaceous magmatism, metamorphism, and metallogeny in the east-
552 central Great Basin, in 'The Nature and Origin of Cordilleran Magmatism', Geological Society of Amer-
553 ica.
554 **URL:** <https://doi.org/10.1130/MEM174-p283>

555 Best, M. G., Barr, D. L., Christiansen, E. H., Gromme, S., Deino, A. L. & Tingey, D. G. (2009), 'The
556 Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: insights from volcanic rocks',
557 *International Geology Review* **51**(7-8), 589–633.
558 **URL:** <https://doi.org/10.1080/00206810902867690>

559 Best, M. G., Christiansen, E. H., de Silva, S. & Lipman, P. W. (2016), 'Slab-rollback ignimbrite flareups
560 in the southern Great Basin and other Cenozoic American arcs: A distinct style of arc volcanism',
561 *Geosphere* **12**(4), 1097–1135.
562 **URL:** <https://doi.org/10.1130/GES01285.1>

563 Bird, P. (1991), 'Lateral extrusion of lower crust from under high topography in the isostatic limit', *Journal
564 of Geophysical Research: Solid Earth* **96**(B6), 10275–10286.
565 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/91JB00370>

566 Bird, P. (1998), 'Kinematic history of the Laramide orogeny in latitudes 35–49° N, western United States',
567 *Tectonics* **17**(5), 780–801.
568 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98TC02698>

569 Botsyun, S., Sepulchre, P., Risi, C. & Donnadieu, Y. (2016), 'Impacts of Tibetan Plateau uplift on atmo-
570 spheric dynamics and associated precipitation $\delta^{18}\text{O}$ ', *Climate of the Past* **12**(6), 1401–1420.
571 **URL:** <https://cp.copernicus.org/articles/12/1401/2016/>

572 Braun, J., van der Beek, P. & Batt, G. (2006), *Quantitative thermochronology: numerical methods for the
573 interpretation of thermochronological data*, Cambridge University Press.

574 Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F. & Fitzgerald, P. (2013), 'Natural age dis-
575 persions arising from the analysis of broken crystals. part i: Theoretical basis and implications for the

576 apatite (uth)/he thermochronometer', *Geochimica et Cosmochimica Acta* **122**, 478–497.

577 **URL:** <https://www.sciencedirect.com/science/article/pii/S0016703713003281>

578 Burchfiel, B. C., Cowan, D. S. & Davis, G. A. (1992), Tectonic overview of the Cordilleran orogen in the
579 western United States, in 'The Cordilleran Orogen', Geological Society of America, pp. 407 – 480.

580 **URL:** <https://doi.org/10.1130/DNAG-GNA-G3.407>

581 Caylor, E. A., Carrapa, B., Sundell, K., DeCelles, P. G. & Smith, J. M. (2021), 'Age and deposition of
582 the Fort Crittenden Formation: A window into Late Cretaceous Laramide and Cenozoic tectonics in
583 southeastern Arizona', *GSA Bulletin* **133**(9-10), 1996–2016.

584 **URL:** <https://doi.org/10.1130/B35808.1>

585 Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. (2015), 'Tracking changes in crustal thick-
586 ness during orogenic evolution with Sr/Y: An example from the North American Cordillera', *Geology*
587 **43**(10), 919–922.

588 **URL:** <https://doi.org/10.1130/G36996.1>

589 Chapman, J. B., Greig, R. & Haxel, G. B. (2020), 'Geochemical evidence for an orogenic plateau in the
590 southern us and northern mexican cordillera during the laramide orogeny', *Geology* **48**(2), 164–168.

591 Chengfa, C., Nansheng, C., Coward, M. P., Wanming, D., Dewey, J. F., Gansser, A., Harris, N. B. W.,
592 Chengwei, J., Kidd, W. S. F., Leeder, M. R. et al. (1986), 'Preliminary conclusions of the Royal Society
593 and Academia Sinica 1985 geotraverse of Tibet', *Nature* **323**(6088), 501–507.

594 Chiaradia, M. (2015), 'Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale
595 perspective', *Scientific reports* **5**, 8115.

596 Coney, P. J. (1980), Cordilleran metamorphic core complexes: An overview, in 'Cordilleran Metamorphic
597 Core Complexes', Geological Society of America.

598 **URL:** <https://doi.org/10.1130/MEM153-p7>

599 Coney, P. J. & Harms, T. A. (1984), 'Cordilleran metamorphic core complexes: Cenozoic extensional
600 relics of mesozoic compression', *Geology* **12**(9), 550–554.

601 Coney, P. J. & Reynolds, S. J. (1977), 'Cordilleran benioff zones', *Nature* **270**(5636), 403–406.

602 Copeland, P., Currie, C. A., Lawton, T. F. & Murphy, M. A. (2017), 'Location, location, location: The
603 variable lifespan of the Laramide orogeny', *Geology* **45**(3), 223–226.

604 Creasey, S. C., Banks, N. G., Ashley, R. P. & Theodore, T. G. (1976), Middle Tertiary plutonism in the
605 Santa Catalina and Tortolita Mountains, Arizona, Technical report, U.S. Geological Survey. Report.
606 **URL:** <https://doi.org/10.3133/ofr76262>

607 Davis, G. A. (1988), 'Rapid upward transport of mid-crustal mylonitic gneisses in the footwall of a miocene
608 detachment fault, whipple mountains, southeastern california', *Geologische Rundschau* **77**(1), 191–
609 209.
610 **URL:** <https://doi.org/10.1007/BF01848684>

611 Davis, G. H. (1987), 'A shear-zone model for the structural evolution of metamorphic core complexes in
612 southeastern arizona', *Geological Society, London, Special Publications* **28**(1), 247–266.
613 **URL:** <https://sp.lyellcollection.org/content/28/1/247>

614 Davis, G. H. (2013), 'Localization control for chlorite breccia deformation beneath Catalina detachment
615 fault, Rincon Mountains, Tucson, Arizona', *Journal of Structural Geology* **50**, 237–253. Deformation
616 localization in rocks.
617 **URL:** <https://www.sciencedirect.com/science/article/pii/S0191814112002726>

618 Davis, G. H. & Coney, P. J. (1979), 'Geologic development of the cordilleran metamorphic core com-
619 plexes', *Geology* **7**(3), 120–124.

620 Davis, G. H., Constenius, K. N., Dickinson, W. R., Rodriguez, E. P. & Cox, L. J. (2004), 'Fault and fault-
621 rock characteristics associated with Cenozoic extension and core-complex evolution in the Catalina-
622 Rincon region, southeastern Arizona', *Geological Society of America Bulletin* **116**(1-2), 128–141.

623 Davis, G. H. & Hardy Jr., J. J. (1981), 'The Eagle Pass detachment, southeastern Arizona: Product of mid-
624 Miocene listric (?) normal faulting in the southern Basin and Range', *Geological Society of America
625 Bulletin* **92**(10), 749–762.

626 DeCelles, P. G. (2004), 'Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland
627 basin system, western USA', *American Journal of Science* **304**(2), 105–168.

628 DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. (2009), 'Cyclicity in Cordilleran orogenic systems',
629 *Nature Geoscience* **2**(4), 251–257.

630 Dickinson, W. R. (1991), Tectonic setting of faulted Tertiary strata associated with the Catalina core
631 complex in southern Arizona, in 'Tectonic setting of faulted Tertiary strata associated with the Catalina

632 core complex in southern Arizona', Geological Society of America.

633 **URL:** <https://doi.org/10.1130/SPE264-p1>

634 Dickinson, W. R. (2004), 'Evolution of the North American Cordillera', *Annual Review of Earth and Plan-*
635 *etary Sciences* **32**(1), 13–45.

636 **URL:** <https://doi.org/10.1146/annurev.earth.32.101802.120257>

637 Dickinson, W. R. & Snyder, W. S. (1978), Plate tectonics of the Laramide orogeny, in 'Laramide Folding
638 Associated with Basement Block Faulting in the Western United States', Geological Society of Amer-
639 ica.

640 **URL:** <https://doi.org/10.1130/MEM151-p355>

641 Donelick, R. A., OSullivan, P. B. & Ketcham, R. A. (2005), 'Apatite Fission-Track Analysis', *Reviews in*
642 *Mineralogy and Geochemistry* **58**(1), 49.

643 **URL:** <http://dx.doi.org/10.2138/rmg.2005.58.3>

644 Ducea, M. N., Triantafyllou, A. & Krcmaric, J. (2020), 'New Timing and Depth Constraints for the Catalina
645 Metamorphic Core Complex, Southeast Arizona', *Tectonics* **39**(8), e2020TC006383. e2020TC006383
646 2020TC006383.

647 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020TC006383>

648 England, P. & McKenzie, D. (1982), 'A thin viscous sheet model for continental deformation', *Geophysical*
649 *Journal International* **70**(2), 295–321.

650 **URL:** <https://doi.org/10.1111/j.1365-246X.1982.tb04969.x>

651 Enkelmann, E., Ratschbacher, L., Jonckheere, R., Nestler, R., Fleischer, M., Gloaguen, R., Hacker, B. R.,
652 Zhang, Y. Q. & Ma, Y.-S. (2006), 'Cenozoic exhumation and deformation of northeastern Tibet and
653 the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?', *GSA Bulletin* **118**(5-
654 6), 651–671.

655 **URL:** <https://doi.org/10.1130/B25805.1>

656 Fan, M. & Carrapa, B. (2014), 'Late Cretaceous/early Eocene Laramide uplift, exhumation, and basin
657 subsidence in Wyoming: Crustal responses to flat slab subduction', *Tectonics* **33**(4), 509–529.

658 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2012TC003221>

659 Farley, K. A. (2002), '(U-Th)/He Dating: Techniques, Calibrations, and Applications', *Reviews in Mineral-
660ogy and Geochemistry* **47**(1), 819.
661 **URL:** <http://dx.doi.org/10.2138/rmg.2002.47.18>

662 Fayon, A. K., Peacock, S. M., Stump, E. & Reynolds, S. J. (2000), 'Fission track analysis of the footwall
663 of the Catalina detachment fault, Arizona: Tectonic denudation, magmatism, and erosion', *Journal of
664 Geophysical Research: Solid Earth* **105**(B5), 11047–11062.
665 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999JB900421>

666 Fitzgerald, P. G., Baldwin, S. L., Webb, L. E. & O'Sullivan, P. B. (2006), 'Interpretation of (UTh)/He single
667 grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of
668 southern Victoria Land', *Chemical Geology* **225**(1), 91–120.
669 **URL:** <https://www.sciencedirect.com/science/article/pii/S0009254105003864>

670 Flowers, R. M., Ketcham, R. A., Shuster, D. L. & Farley, K. A. (2009), 'Apatite (UTh)/He thermochronom-
671 etry using a radiation damage accumulation and annealing model', *Geochimica et Cosmochimica Acta*
672 **73**(8), 2347–2365.
673 **URL:** <http://www.sciencedirect.com/science/article/pii/S001670370900043X>

674 Flowers, R., Shuster, D., Wernicke, B. & Farley, K. (2007), 'Radiation damage control on apatite (u-th)/he
675 dates from the grand canyon region, colorado plateau', *Geology* **35**(5), 447–450.

676 Fornash, K. F., Patchett, P. J., Gehrels, G. E. & Spencer, J. E. (2013), 'Evolution of granitoids in the
677 Catalina metamorphic core complex, southeastern Arizona: U–Pb, Nd, and Hf isotopic constraints',
678 *Contributions to Mineralogy and Petrology* **165**(6), 1295–1310.

679 Foster, D. A., Gleadow, A. J. W., Reynolds, S. J. & Fitzgerald, P. G. (1993), 'Denudation of metamorphic
680 core complexes and the reconstruction of the transition zone, west central arizona: Constraints from
681 apatite fission track thermochronology', *Journal of Geophysical Research: Solid Earth* **98**(B2), 2167–
682 2185.
683 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JB02407>

684 Frassetto, A., Gilbert, H., Zandt, G., Beck, S. & Fouch, M. J. (2006), 'Support of high elevation in the
685 southern basin and range based on the composition and architecture of the crust in the basin and
686 range and colorado plateau', *Earth and Planetary Science Letters* **249**(1), 62–73.
687 **URL:** <https://www.sciencedirect.com/science/article/pii/S0012821X06004833>

688 Gallagher, K. (2012), 'Transdimensional inverse thermal history modeling for quantitative thermochronology', *Journal of Geophysical Research: Solid Earth* **117**(B2).

689

690 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JB008825>

691 Gallagher, K., Stephenson, J., Brown, R., Holmes, C. & Fitzgerald, P. (2005), 'Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles', *Earth and Planetary Science Letters* **237**(1), 193–208.

692

693

694 **URL:** <https://www.sciencedirect.com/science/article/pii/S0012821X05004085>

695 Gerbault, M., Martinod, J. & Héral, G. (2005), 'Possible orogeny-parallel lower crustal flow and thickening in the Central Andes', *Tectonophysics* **399**(1), 59–72. Andean Geodynamics::

696

697 **URL:** <https://www.sciencedirect.com/science/article/pii/S0040195105000168>

698 Gerin, C., Gautheron, C., Oliviero, E., Bachelet, C., Mbongo Djimbi, D., Seydoux-Guillaume, A.-M., Tassan-Got, L., Sarda, P., Roques, J. & Garrido, F. (2017), 'Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales', *Geochimica et Cosmochimica Acta* **197**, 87–103.

699

700

701

702 **URL:** <https://www.sciencedirect.com/science/article/pii/S0016703716305956>

703 Gilbert, H. (2012), 'Crustal structure and signatures of recent tectonism as influenced by ancient terranes in the western United States', *Geosphere* **8**(1), 141–157.

704

705 **URL:** <https://doi.org/10.1130/GES00720.1>

706 Gleadow, A. J. W., , A. J. H. & Quaife, R. D. (1976), 'Fission track dating of zircon: Improved etching techniques', *Earth and Planetary Science Letters* **33**(2), 273–276.

707

708 **URL:** <https://www.sciencedirect.com/science/article/pii/0012821X76902351>

709 Gleadow, A. J. W., Harrison, M., Kohn, B. P., Lugo-Zazueta, R. & Phillips, D. (2015), 'The Fish Canyon Tuff: A new look at an old low-temperature thermochronology standard', *Earth and Planetary Science Letters* **424**, 95 – 108.

710

711

712 **URL:** <http://www.sciencedirect.com/science/article/pii/S0012821X15002927>

713 Gottardi, R., McAleer, R., Casale, G., Borel, M., Iriondo, A. & Jepson, G. (2020), 'Exhumation of the coyote mountains metamorphic core complex (arizona): Implications for orogenic collapse of the southern north american cordillera', *Tectonics* **39**(8), e2019TC006050. e2019TC006050 2019TC006050.

714

715

716 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019TC006050>

717 Humphreys, E. (2009), 'Relation of flat subduction to magmatism and deformation in the western United
718 States', *Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision*
719 **204**, 85.

720 Hurford, A. J. & Green, P. F. (1983), 'The zeta age calibration of fission-track dating', *Chemical Geology*
721 **41**, 285 – 317.

722 **URL:** <http://www.sciencedirect.com/science/article/pii/S0009254183800266>

723 Hyndman, R. (2017), 'Lower-crustal flow and detachment in the North American Cordillera: a conse-
724 quence of Cordillera-wide high temperatures', *Geophysical Journal International* **209**(3), 1779–1799.
725 **URL:** <https://doi.org/10.1093/gji/ggx138>

726 Jacobson, C. E., Grove, M., Vucic, A., Pedrick, J. N. & Ebert, K. A. (2007), Exhumation of the Orocopia
727 Schist and associated rocks of southeastern California: Relative roles of erosion, synsubduction tec-
728 tonic denudation, and middle Cenozoic extension, in 'Convergent Margin Terranes and Associated
729 Regions: A Tribute to W.G. Ernst', Geological Society of America.
730 **URL:** [https://doi.org/10.1130/2007.2419\(01\)](https://doi.org/10.1130/2007.2419(01))

731 Jepson, G., Carrapa, B., George, S., Triantafyllou, A., Egan, S., Constenius, K., Gehrels, G. & Ducea,
732 M. (2021), 'Resolving mid- to upper-crustal exhumation through apatite petrochronology and ther-
733 mochronology', *Chemical Geology* **565**, 120071.
734 **URL:** <https://www.sciencedirect.com/science/article/pii/S0009254121000152>

735 Ketcham, R. A. (1996), 'Distribution of heat-producing elements in the upper and middle crust of southern
736 and west central Arizona: Evidence from the core complexes', *Journal of Geophysical Research: Solid*
737 *Earth* **101**(B6), 13611–13632.
738 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JB00664>

739 Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J. & Hurford, A. J. (2007), 'Improved modeling of
740 fission-track annealing in apatite', *American Mineralogist* **92**(5-6), 799.
741 **URL:** <http://dx.doi.org/10.2138/am.2007.2281>

742 Klemperer, S. L., Hauge, T. A., Hauser, E. C., Oliver, J. E. & Potter, C. J. (1986), 'The Moho in the
743 northern Basin and Range province, Nevada, along the COCORP 40 N seismic-reflection transect',
744 *GSA Bulletin* **97**(5), 603–618.
745 **URL:** [https://doi.org/10.1130/0016-7606\(1986\)97<603:TMITNB>2.0.CO;2](https://doi.org/10.1130/0016-7606(1986)97<603:TMITNB>2.0.CO;2)

746 Lavier, L. L. & Manatschal, G. (2006), 'A mechanism to thin the continental lithosphere at magma-poor
747 margins', *Nature* **440**(7082), 324–328.

748 **URL:** <https://doi.org/10.1038/nature04608>

749 Lee, C.-T. A. & Morton, D. M. (2015), 'High silica granites: Terminal porosity and crystal settling in shallow
750 magma chambers', *Earth and Planetary Science Letters* **409**, 23–31.

751 **URL:** <https://www.sciencedirect.com/science/article/pii/S0012821X14006670>

752 Lerch, D. W., Klemperer, S. L., Glen, J. M. G., Ponce, D. A., Miller, E. L. & Colgan, J. P. (2007), 'Crustal
753 structure of the northwestern Basin and Range Province and its transition to unextended volcanic
754 plateaus', *Geochemistry, Geophysics, Geosystems* **8**(2).

755 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GC001429>

756 Lister, G. S. & Davis, G. A. (1989), 'The origin of metamorphic core complexes and detachment faults
757 formed during Tertiary continental extension in the northern Colorado River region, U.S.A.', *Journal of
758 Structural Geology* **11**(1), 65 – 94.

759 **URL:** <http://www.sciencedirect.com/science/article/pii/0191814189900369>

760 Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, D. R. & Jackson, J. M. (2010), 'The role of oceanic
761 plateau subduction in the Laramide orogeny', *Nature Geoscience* **3**(5), 353–357.

762 Livaccari, R. F. (1991), 'Role of crustal thickening and extensional collapse in the tectonic evolution of
763 the Sevier-Laramide orogeny, western United States', *Geology* **19**(11), 1104–1107.

764 **URL:** [https://doi.org/10.1130/0091-7613\(1991\)019<1104:ROCTAE>2.3.CO;2](https://doi.org/10.1130/0091-7613(1991)019<1104:ROCTAE>2.3.CO;2)

765 Long, K. B., Gehrels, G. E. & Baldwin, S. L. (1995), 'Tectonothermal evolution of the Pinaleno-Jackson
766 Mountain core complex, southeast Arizona', *GSA Bulletin* **107**(10), 1231–1240.

767 **URL:** [https://doi.org/10.1130/0016-7606\(1995\)107<1231:TEOTPO>2.3.CO;2](https://doi.org/10.1130/0016-7606(1995)107<1231:TEOTPO>2.3.CO;2)

768 Mantle, G. W. & Collins, W. J. (2008), 'Quantifying crustal thickness variations in evolving orogens: Cor-
769 relation between arc basalt composition and Moho depth', *Geology* **36**(1), 87–90.

770 **URL:** <https://doi.org/10.1130/G24095A.1>

771 McDowell, F. W., McIntosh, W. C. & Farley, K. A. (2005), 'A precise 40Ar/39Ar reference age for the
772 Durango apatite (UTh)/He and fission-track dating standard', *Chemical Geology* **214**(3), 249 – 263.

773 **URL:** <http://www.sciencedirect.com/science/article/pii/S0009254104004218>

774 McKenzie, D. & Jackson, J. (2002), 'Conditions for flow in the continental crust', *Tectonics* **21**(6), 51–57.

775 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002TC001394>

776 McQuarrie, N. & Wernicke, B. P. (2005), 'An animated tectonic reconstruction of southwestern North

777 America since 36 Ma', *Geosphere* **1**(3), 147–172.

778 **URL:** <https://doi.org/10.1130/GES00016.1>

779 Molnar, P., Boos, W. R. & Battisti, D. S. (2010), 'Orographic controls on climate and paleoclimate of asia:

780 Thermal and mechanical roles for the tibetan plateau', *Annual Review of Earth and Planetary Sciences*

781 **38**(1), 77–102.

782 **URL:** <https://doi.org/10.1146/annurev-earth-040809-152456>

783 Moser, A. C., Ault, A. K., Stearns, M. A., Evans, J. P. & Guenthner, W. R. (2021), 'Late Oligocene

784 Early Miocene Detachment Faulting in Crystalline Basement, Mecca Hills, CA, Documented With

785 Zircon (UTh)/He Date-eU-Visual Radiation Damage Patterns', *Tectonics* **40**(9), e2021TC006809.

786 e2021TC006809 2021TC006809.

787 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021TC006809>

788 Oldow, J. S., Bally, A. W., Lallemand, H. G. A. & Leeman, W. P. (1989), Phanerozoic evolution of the

789 North American Cordillera; United States and Canada, *in* 'The Geology of North AmericaAn Overview',

790 Geological Society of America.

791 **URL:** <https://doi.org/10.1130/DNAG-GNA-A.139>

792 Peters, L., Ferguson, C. A., Spencer, J. E., Orr, T. R. & Dickinson, W. R. (2003), 'Sixteen $^{40}\text{Ar}/^{39}\text{Ar}$

793 geochronology analyses from southeastern Arizona', *Arizona Geological Survey Open File Report*

794 p. 46.

795 Peyton, L. S. & Carrapa, B. (2013), An overview of low-temperature thermochronology in the Rocky

796 Mountains and its application to petroleum system analysis, *in* C. Knight & J. Cuzella, eds, 'Application

797 of structural methods to Rocky Mountain hydrocarbon exploration and development, AAPG Studies in

798 Geology', Vol. 65, AAPG Special Volumes, pp. 37–70.

799 Platt, J. P., Behr, W. M. & Cooper, F. J. (2015), 'Metamorphic core complexes: windows into the mechanics

800 and rheology of the crust', *Journal of the Geological Society* **172**(1), 9–27.

801 **URL:** <https://jgs.lyellcollection.org/content/172/1/9>

802 Reiners, P. W. (2005), 'Zircon (U-Th)/He Thermochronometry', *Reviews in Mineralogy and Geochemistry*
803 **58**(1), 151–179.
804 **URL:** <https://doi.org/10.2138/rmg.2005.58.6>

805 Rey, P., Teyssier, C. & Whitney, D. (2009), 'The role of partial melting and extensional strain rates in the
806 development of metamorphic core complexes', *Tectonophysics* **477**(3), 135 – 144. Hot orogens.
807 **URL:** <http://www.sciencedirect.com/science/article/pii/S0040195109001619>

808 Riley, B. C. D. (2004), *Laramide exhumation and heating in southeastern Arizona: low-temperature ther-
809 mal history and implications for zircon fission-track systematics*, The University of Texas at Austin.

810 Rønnevik, C., Ksienzyk, A. K., Fossen, H. & Jacobs, J. (2017), 'Thermal evolution and exhumation history
811 of the Uncompahgre Plateau (northeastern Colorado Plateau), based on apatite fission track and (U-
812 Th)-He thermochronology and zircon U-Pb dating', *Geosphere* **13**(2), 518–537.

813 Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F. & Liu, Y. (1997), 'Surface
814 Deformation and Lower Crustal Flow in Eastern Tibet', *Science* **276**(5313), 788–790.
815 **URL:** <https://science.sciencemag.org/content/276/5313/788>

816 Ruddiman, W. F. & Kutzbach, J. E. (1991), 'Plateau uplift and climatic change', *Scientific American*
817 **264**(3), 66–75.
818 **URL:** <http://www.jstor.org/stable/24936829>

819 Saleeby, J. (2003), 'Segmentation of the Laramide Slab evidence from the southern Sierra Nevada re-
820 gion', *GSA Bulletin* **115**(6), 655–668.
821 **URL:** [https://doi.org/10.1130/0016-7606\(2003\)115<0655:SOTLSF>2.0.CO;2](https://doi.org/10.1130/0016-7606(2003)115<0655:SOTLSF>2.0.CO;2)

822 Say, M. C. & Zuza, A. V. (2021), 'Heterogenous late Miocene extension in the northern Walker Lane
823 (California-Nevada, USA) demonstrates vertically decoupled crustal extension', *Geosphere* .
824 **URL:** <https://doi.org/10.1130/GES02409.1>

825 Schildgen, T. F., Cosentino, D., Bookhagen, B., Niedermann, S., Yldrm, C., Echtler, H., Wittmann, H. &
826 Strecker, M. R. (2012), 'Multi-phased uplift of the southern margin of the central anatolian plateau,
827 turkey: A record of tectonic and upper mantle processes', *Earth and Planetary Science Letters* **317-**
828 **318**, 85–95.
829 **URL:** <http://www.sciencedirect.com/science/article/pii/S0012821X11007175>

830 Schutt, D. L., Lowry, A. R. & Buehler, J. S. (2018), 'Moho temperature and mobility of lower crust in the
831 western United States', *Geology* **46**(3), 219–222.

832 **URL:** <https://doi.org/10.1130/G39507.1>

833 Scoggin, S. H., Chapman, J. B., Shields, J. E., Trzinski, A. E. & Ducea, M. N. (2021), 'Early Paleogene
834 Magmatism in the Pinaleño Mountains, Arizona: Evidence for Crustal Melting of Diverse Basement
835 Assemblages during the Laramide Orogeny', *Journal of Petrology* **62**(12). egab095.

836 **URL:** <https://doi.org/10.1093/petrology/egab095>

837 Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner,
838 M., Maus, S. & Chandler, M. (2012), 'Global continental and ocean basin reconstructions since 200
839 Ma', *Earth-Science Reviews* **113**(3), 212–270.

840 **URL:** <https://www.sciencedirect.com/science/article/pii/S0012825212000311>

841 Shuster, D. L., Flowers, R. M. & Farley, K. A. (2006), 'The influence of natural radiation damage on helium
842 diffusion kinetics in apatite', *Earth and Planetary Science Letters* **249**(3), 148–161.

843 **URL:** <https://www.sciencedirect.com/science/article/pii/S0012821X0600519X>

844 Singleton, J. S., Seymour, N. M., Reynolds, S. J., Vomocil, T. & Wong, M. S. (2019), 'Distributed Neo-
845 gene faulting across the western to central Arizona metamorphic core complex belt: Synextensional
846 constriction and superposition of the PacificNorth America plate boundary on the southern Basin and
847 Range', *Geosphere* **15**(4), 1409–1435.

848 **URL:** <https://doi.org/10.1130/GES02036.1>

849 Singleton, J. S., Wong, M. S. & Johnston, S. M. (2018), 'The role of calcite-rich metasedimentary my-
850 ionites in localizing detachment fault strain and influencing the structural evolution of the Buckskin-
851 Rawhide metamorphic core complex, west-central Arizona', *Lithosphere* **10**(2), 172–193.

852 **URL:** <https://doi.org/10.1130/L699.1>

853 Snyder, W., Dickinson, W. & Silberman, M. (1976), 'Tectonic implications of space-time patterns of Ceno-
854 zoic magmatism in the western United States', *Earth and Planetary Science Letters* **32**(1), 91–106.

855 **URL:** <https://www.sciencedirect.com/science/article/pii/0012821X76901898>

856 Sonder, L. J. & Jones, C. H. (1999), 'Western United States Extension: How the West was Widened',
857 *Annual Review of Earth and Planetary Sciences* **27**(1), 417–462.

858 **URL:** <https://doi.org/10.1146/annurev.earth.27.1.417>

859 Spencer, J. E. & Reynolds, S. J. (1989), 'Middle Tertiary tectonics of Arizona and adjacent areas', *Geo-*
860 *logic evolution of Arizona: Arizona Geological Society Digest* **17**, 539–574.

861 Spencer, J. E., Richard, S. M., Lingrey, S. H., Johnson, B. J., Johnson, R. A. & Gehrels, G. E. (2019), 'Re-
862 construction of Mid-Cenozoic Extension in the Rincon Mountains Area, Southeastern Arizona, USA,
863 and Geodynamic Implications', *Tectonics* **38**(7), 2338–2357.

864 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019TC005565>

865 Spiegel, C., Kohn, B. P., Belton, D., Berner, Z. & Gleadow, A. J. W. (2009), 'Apatite (UThSm)/He ther-
866 mochronology of rapidly cooled samples: The effect of He implantation', *Earth and Planetary Science
867 Letters* **285**(1), 105–114.

868 **URL:** <https://www.sciencedirect.com/science/article/pii/S0012821X0900332X>

869 Stipp, M., Stünitz, H., Heilbronner, R. & Schmid, S. M. (2002), 'The eastern Tonale fault zone: a natural
870 laboratory for crystal plastic deformation of quartz over a temperature range from 250 to 700°C', *Journal
871 of Structural Geology* **24**(12), 1861–1884.

872 **URL:** <https://www.sciencedirect.com/science/article/pii/S0191814102000354>

873 Terrien, J. J. (2012), The role of magmatism in the Catalina metamorphic core complex, Arizona: insights
874 from integrated thermochronology, gravity and aeromagnetic data, PhD thesis, Syracuse University.

875 Thacker, J. O., Kelley, S. A. & Karlstrom, K. E. (2021), 'Late CretaceousRecent Low-Temperature
876 Cooling History and Tectonic Analysis of the Zuni Mountains, West-Central New Mexico', *Tectonics*
877 **40**(4), e2020TC006643. e2020TC006643 2020TC006643.

878 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020TC006643>

879 Wells, M. L. & Hoisch, T. D. (2008), 'The role of mantle delamination in widespread Late Cretaceous
880 extension and magmatism in the Cordilleran orogen, western United States', *GSA Bulletin* **120**(5-
881 6), 515–530.

882 **URL:** <https://doi.org/10.1130/B26006.1>

883 Wernicke, B. (1990), The Fluid Crustal Layer and Its Implications for Continental Dynamics, *in* M. H.
884 Salisbury & D. M. Fountain, eds, 'Exposed Cross-Sections of the Continental Crust', Springer Nether-
885 lands, Dordrecht, pp. 509–544.

886 **URL:** <https://doi.org/10.1007/978-94-009-0675-4-21>

887 Whitney, D. L., Teyssier, C., Rey, P. & Buck, W. R. (2013), 'Continental and oceanic core complexes',
888 *GSA Bulletin* **125**(3-4), 273–298.
889 **URL:** <https://doi.org/10.1130/B30754.1>

890 Wildman, M., Brown, R., Beucher, R., Persano, C., Stuart, F., Gallagher, K., Schwanethal, J. & Carter, A.
891 (2016), 'The chronology and tectonic style of landscape evolution along the elevated Atlantic continen-
892 tal margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology',
893 *Tectonics* **35**(3), 511–545.
894 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015TC004042>

895 Winn, C., Karlstrom, K. E., Shuster, D. L., Kelley, S. & Fox, M. (2017), '6 Ma age of carving Westernmost
896 Grand Canyon: Reconciling geologic data with combined AFT, (UTh)/He, and 4He/3He thermochrono-
897 logic data', *Earth and Planetary Science Letters* **474**, 257–271.
898 **URL:** <https://www.sciencedirect.com/science/article/pii/S0012821X17303758>

899 Wong, M. S. & Gans, P. B. (2008), 'Geologic, structural, and thermochronologic constraints on the tec-
900-tonic evolution of the Sierra Mazatán core complex, Sonora, Mexico: New insights into metamorphic
901 core complex formation', *Tectonics* **27**(4).
902 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007TC002173>

903 Wright, N. M., Seton, M., Williams, S. E. & Müller, D. R. (2016), 'The Late Cretaceous to recent tectonic
904 history of the Pacific Ocean basin', *Earth-Science Reviews* **154**, 138–173.
905 **URL:** <https://www.sciencedirect.com/science/article/pii/S001282521530074X>

906 Wu, G., Duan, A., Liu, Y., Mao, J., Ren, R., Bao, Q., He, B., Liu, B. & Hu, W. (2014), 'Tibetan Plateau
907 climate dynamics: recent research progress and outlook', *National Science Review* **2**(1), 100–116.
908 **URL:** <https://doi.org/10.1093/nsr/nwu045>

909 Yonkee, W. A. & Weil, A. B. (2015), 'Tectonic evolution of the Sevier and Laramide belts within the North
910 American Cordillera orogenic system', *Earth-Science Reviews* **150**, 531 – 593.
911 **URL:** <http://www.sciencedirect.com/science/article/pii/S0012825215300258>

912 Zeitler, P. K., Enkelmann, E., Thomas, J. B., Watson, E. B., Ancuta, L. D. & Idleman, B. D. (2017),
913 'Solubility and trapping of helium in apatite', *Geochimica et Cosmochimica Acta* **209**, 1–8.
914 **URL:** <https://www.sciencedirect.com/science/article/pii/S0016703717302028>

915 Zhong, S. (1997), 'Dynamics of crustal compensation and its influences on crustal isostasy', *Journal of*
916 *Geophysical Research: Solid Earth* **102**(B7), 15287–15299.
917 **URL:** <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JB00956>