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Abstract. The paper is devoted to coverings by translative homothets and illuminations of convex
bodies. For a given positive number α and a convex body B, gα(B) is the infimum of α-powers of
finitely many homothety coefficients less than 1 such that there is a covering of B by translative ho-
mothets with these coefficients. hα(B) is the minimal number of directions such that the boundary
of B can be illuminated by this number of directions except for a subset whose Hausdorff dimension
is less than α. In this paper, we prove that gα(B) ≤ hα(B), find upper and lower bounds for both
numbers, and discuss several general conjectures. In particular, we show that hα(B) > 2d−α for
almost all α and d when B is the d-dimensional cube, thus disproving the conjecture from [10].

1. Introduction

Let B ⊂ Rd be a convex compact body with a non-empty interior. The family of homothets
F = {λ1B, λ2B, . . .}, λi ∈ (0, 1), forms a translative covering of B if B ⊆ ∪i(λiB + xi), where xi
are translation vectors in Rd. The general question is to find necessary conditions on coefficients
λi for existence of a translative covering. We define gα(B) and gα(d) as follows.

gα(B) = inf

{
k∑
i=1

λαi : B ⊆
k⋃
i=1

(λiB + xi), λi ∈ (0, 1), xi ∈ Rd
}

gα(d) = inf
{
gα(B) : B ⊂ Rd, B is a convex body

}
Soltan in 1990 formulated the following conjecture which is also stated in [10, Conjecture 2 of

Section 3.2].

Conjecture 1 (Soltan).

g1(d) ≥ d.

In [30], Conjecture 1 was proven for the case d = 2. In [24], the asymptotic version of the

conjecture was proven for any α, namely, it was shown that lim
d→∞

gα(d)
d = 1 for a fixed α. In [13],

Conjecture 1 was proven for the case of d-dimensional Euclidean balls, i.e. it was shown that
g1(Bd) = d. The generalized version of the conjecture was also formulated in [13] and shown to be
tight for Euclidean balls in the case it is true.

Conjecture 2. For all natural d and all α such that 0 ≤ α ≤ d+ 1, gα(d) = d+ 1− dαe.

For each d-dimensional convex body B, g0(B), as defined above, stands for the minimal number
of smaller homothets sufficient to cover B. There is extensive literature devoted to finding and
bounding this number for various cases of convex bodies. The biggest open problem about this
number is the Hadwiger conjecture (also known as the Levi-Hadwiger conjecture or the Gohberg-
Marcus-Hadwiger conjecture, see [20, 15, 14] and surveys [10, Section 3.3], [23, 3]).

Conjecture 3 (Levi, Hadwiger, Gohberg-Marcus). For any convex d-dimensional body B, g0(B) ≤
2d.
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It is easy to check that g0(B) = 2d for a d-dimensional parallelepiped and it is also conjectured
that g0(B) < 2d for all other convex bodies. Conjecture 3 is known to be true for centrally
symmetric bodies in R3 [19, 29] and several special cases of convex bodies in higher dimensions
[28, 7, 8, 5, 2, 32].

The general upper bound
(

2d
d

)
d ln d(1+o(1)) for g0(B) and the upper bound 2dd ln d(1+o(1)) for

centrally symmetric convex bodies are direct consequences of Rogers’ lower bound on the density
of coverings of the Euclidean space by translates of a convex body [25] and the Rogers-Shephard
inequality [26] (see [6, 27, 9] for details and [21] for a different approach leading to the same bound).
For a long time, only very minor improvements of this bound were known [12]. Recently, the sub-

exponential asymptotic improvement of this bound was shown in [17]: g0(B) ≤
(

2d
d

)
e−c
√
d for some

universal positive constant c.
Boltyanski [4] and Hadwiger [16] found the connection between the problem of covering by smaller

homothets and illumination problems. Here we follow the approach of Boltyanski. For a convex d-
dimensional body B we say that its boundary point x is illuminated by an oriented direction l if the
ray from x along the direction l intersects the interior of B. The set of directions L = {l1, . . . , lk}
is said to illuminate B if each boundary point of B is illuminated by some direction from L. By
h(B) we denote the minimal cardinality of L illuminating B. Then, as shown by Boltyanski,
h(B) = g0(B).

We suggest an approach generalizing the illumination approach of Boltyanski. Denote by hα(B)
the minimal size of the set of directions L such that it illuminates all boundary points of B except
for a subset whose Hausdorff dimension is less than α. In this paper we establish the connection
between gα and hα and find new upper and lower bounds for these numbers in the spirit of classical
results on covering (illumination) numbers g0 (h0).

The paper is organized as follows. In Section 2 we show that gα(B) ≤ hα(B) and prove several
statements about illumination numbers hα. We prove that hα(B) ≥ d+1−dαe for a d-dimensional
convex body B and discuss the case of smooth B. Section 3 is devoted to the lower bounds on
covering numbers gα. In particular, we prove that, for d ≥ 3, gα(B) ≥ d− dαe ln2 d and find lower
bounds for direct products of convex bodies. In Section 4, we explain why d-dimensional cubes
provide a counterexample to the general version of the Hadwiger conjecture formulated for α > 1
in [10, Section 3.3]. In Section 5, we use the new covering bound [17] and the classical approach
of Rogers to find various upper bounds for covering numbers gα. It appears that for sufficiently
large α covering by smaller homothets leads to exponential improvements compared to the standard
covering number g0. On the other hand, as we show in this section, for some α it can be more
efficient to use homothets of two unequal sizes.

2. Illuminating convex bodies

In this section, we establish the connection between covering numbers gα and illumination num-
bers hα and discuss various bounds for hα in the spirit of classical results and conjectures.

Theorem 1. For any convex body B, gα(B) ≤ hα(B).

Proof. The general strategy of the proof is to cover most of the convex body B by large homothets
corresponding to illumination directions and use small homothets to cover the rest (see Figure 1
for the 2-dimensional example).

Choose an arbitrary point in the interior of B as the center 0. Fix δ1, δ2 ∈ (0, 1). We consider a
set of directions L with precisely hα(B) elements. For each unit vector v defined by an illumination
direction from L, take an open homothet (1−δ2) int (B) centered at −δ1v. What remains uncovered
in B by the homothets for all illumination vectors is a closed set Bδ1,δ2 . If a boundary point y
of B belongs to a homothet (1 − δ2) int (B) − δ1v, then y + δ1v ∈ (1 − δ2) int (B). This implies
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Figure 1. Large homothets correspond to illumination vectors u and v. The rest
is covered by small homothets.

y+δ1v ∈ int (B) and, subsequently, y must be illuminated by the direction v. Hence Bδ1,δ2 contains
all non-illuminated points on the boundary of B.

We want to show that
⋂

δ1,δ2∈(0,1)

Bδ1,δ2 , denoted by B0, is precisely the set of all non-illuminated

points on the boundary of B. Firstly, we can show that any interior point of B does not belong to
B0. For such a point x, there is an open ball with the center x and a radius ε contained in B. For
simplicity, in this part of the proof, we consider the sets with δ1 = δ2 = δ. Consider an arbitrary
direction v from L. Then the homothet of B with the center −δv will contain the ball with the
center (1− δ)x− δv and the radius (1− δ)ε.

‖(1− δ)x− δv − x‖ = δ‖x+ v‖ ≤ δ
(

sup
x∈B
‖x‖+ 1

)
,

which is less than (1− δ)ε for a sufficiently small δ so the ball from the homothet contains x.
Now we want to show that any boundary point y, illuminated by a direction v, also does not

belong to B0. If y is illuminated by v, then there is δ1 ∈ (0, 1) such that y + δ1v ∈ int (B). Then
one can find δ2 ∈ (0, 1) such that 1

1−δ2 (y + δ1v) ∈ int (B). Therefore, y does not belong to Bδ1,δ2
and, subsequently, does not belong to B0.

For the next part of the proof, we will show that, given δ1, δ2,∆1 ∈ (0, 1), ∆1 < δ1, there exists
∆2 ∈ (0, 1) such that the intersection of the homothet −δ1v+ (1− δ2) int (B) with B is a subset of
−∆1v + (1 −∆2) int (B). Consider x from this intersection, i.e. x ∈ B and x = −δ1v + (1 − δ2)y,
where y ∈ int (B). Then

x =
∆1

δ1
x+

(
1− ∆1

δ1

)
x =

∆1

δ1
(−δ1v + (1− δ2)y) +

(
1− ∆1

δ1

)
x =

= −∆1v +
∆1

δ1
(1− δ2)y +

(
1− ∆1

δ1

)
x

Taking ∆2 = ∆1δ2
δ1

and γ = ∆1(1−δ2)
δ1−∆1δ2

so that ∆2 and γ are both from (0, 1) and γy+(1−γ)x ∈ int (B),
we get

x = −∆1v + (1−∆2)(γy + (1− γ)x) ∈ −∆1v + (1−∆2) int (B).
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The statement above implies that, given δ1, δ2,∆1 ∈ (0, 1), ∆1 < δ1, there exists ∆2 ∈ (0, 1) such
that B∆1,∆2 ⊆ Bδ1,δ2 .

Now consider an arbitrary open set A containing B0. Then B \A is a closed subset of B \B0 =⋃
δ1,δ2∈(0,1)

B \ Bδ1,δ2 . Hence the sets B \ Bδ1,δ2 form an open covering of the compact set B \ A.

Due to compactness, this open covering must contain a finite subset covering B \ A too. Thus

there exists a finite intersection
N⋂
i=1

Bδ1i,δ2i ⊂ A. For ∆1 we choose an arbitrary positive number

less than min
1≤i≤N

{δ1i}. As ∆2 we take the minimal number that can be obtained by the method

described above for all triples δ1i, δ2i,∆1. This way we guarantee that B∆1,∆2 ⊆ Bδ1i,δ2i and,
therefore B∆1,∆2 ⊂ A.

For the last step of the proof, we consider a covering of B0 by open balls. Since the Hausdorff
α-content of B0 is 0, for any ε > 0 there exists such a covering with balls of radii r1, . . . , rM (the

number is finite due to compactness of B0) such that
M∑
j=1

rαj < ε. Assume an open ball of a radius r

with the center at 0 is a subset of B. Then we substitute each ball of radius rj by an open homothet
rj
r int (B). For the union of all these homothets, there exist, as was shown above, ∆1 and ∆2 such

that B∆1,∆2 is a subset of this union. If we add hα(B) homothets covering B \ B∆1,∆2 , we obtain
a covering of B. The sum of α-powers of the homothety coefficients for this covering is

hα(B)(1−∆2)α +

M∑
j=1

(rj
r

)α
< hα(B) +

ε

rα
.

This value can be made as close to hα(B) as desired and, therefore, gα(B) ≤ hα(B). �

Note that, for α = 0, h0(B) is just h(B) and, due to Hadwiger and Boltyanski, there is equality
in Theorem 1. One can conjecture that this is the case for any natural α ≤ d but we will show in
Section 4 that this is not true even for cubes.

The results from [4, 14] also imply that h(B) ≥ d+ 1 for any d-dimensional convex body B. We
generalize these results for hα(B).

Theorem 2. For any d-dimensional convex body B, hα(B) ≥ d+ 1− dαe.

For the proof of this theorem we will use the notion of shadow boundaries (see [22] for more
details on the subject). For a k-dimensional linear subspace L of Rd, where 1 ≤ k ≤ d−1, by πL we
mean an orthogonal projection along L onto the subspace L⊥. The shadow boundary Γ(B,L) of a
d-dimensional convex body B along L is the preimage of the relative boundary of πL(B) under π−1

L .
In terms of illumination, Γ(B,L) is the set of points on the boundary of B that are not illuminated
by any direction from L.

Proof of Theorem 2. Since hα(B) ≥ hdαe(B), it is sufficient to prove the theorem for integer α. We
consider an arbitrary illumination of B by d − α directions and we want to show that the set of
non-illuminated boundary points of B has a non-zero α-dimensional Hausdorff content.

Let L be a linear subspace generated by arbitrary d − α − 1 directions. Our goal is to show
that the set of points not illuminated by directions from L is at least α-dimensional and the last
direction cannot illuminate enough points to make the Hausdorff dimension smaller than α. For
the first part, we note that the dimension of L is no greater than d−α− 1. The shadow boundary
Γ(B,L) is not illuminated by either of these directions. The α-dimensional content of Γ(B,L) is
not 0 because the α-dimensional content of the boundary of πL(B) is not 0.

To finish the proof it is sufficient to show that the Hausdorff dimension of the points from Γ(B,L)
not illuminated by the last direction is at least α as well. Denote the unit vector of this direction
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by u. If v = πL(u) is 0, then u does not illuminate any points from Γ(B,L) so we assume v is
not 0. Denote by V the line {tv | t ∈ R}. We consider the projection πL+V = πV ◦ πL. The image
of B under πL+V has a non-zero α-dimensional content. Now we note that for each point of this
image its preimage under π−1

V contains a point from the boundary of πL(B) such that at least one
exterior normal to the relative boundary of πL(B) has a non-negative scalar product with v. Taking
a preimage of this point under π−1

L we find a point of Γ(B,L) that is not illuminated by u. Hence

for any point from πL+V (B), there is a point from Γ(B,L) in its preimage under π−1
L+V which is

not illuminated by u. Therefore, the set of all points not illuminated by u has the dimension of at
least α as required. �

For the next theorem, we will consider smooth convex bodies. By a smooth d-dimensional convex
body we mean a convex body such that there is a unique supporting hyperplane through each point
of its boundary. The key property of illuminations of smooth convex bodies is the following lemma.

Lemma 2.1. The set of boundary points of a smooth convex body illuminated by directions defined
by unit vectors u1, . . . , uM is the same as the set of boundary points of the body illuminated by
directions defined by all unit vectors from the non-negaitive cone {a1u1 + . . .+ aMuM | ai ≥ 0}.

Proof. One set is trivially a subset of the other one. Hence we only need to show that if a point
x on the boundary of a smooth convex body B is illuminated by the direction a1u1 + . . . + akuk,
k ≤M , all ai > 0, then it is illuminated by at least one of u1, . . . , uk.

For a boundary point x of B, there is a unique interior normal vector nx. We can show that x is
illuminated by a unit vector u if and only if u ·nx is positive. Indeed, x is definitely not illuminated
by the direction of −u because −u and B are separated by the supporting hyperplane at x. If x
is not illuminated by u as well, then the line defined by u is a supporting line and is contained in
some supporting hyperplane which is not orthogonal to nx. This would contradict the uniqueness
of the supporting hyperplane at x.

If x is illuminated by the unit vector u = a1u1+. . .+akuk, all ai > 0, then nx·(a1u1+. . .+akuk) >
0. Therefore, at least one of nx · ui is positive and x is illuminated by ui. �

The next result will be proven modulo a conjecture about shadow boundaries.

Conjecture 4. For a d-dimensional convex body B and k ≤ d − 1, there exists a k-dimensional
linear subspace L of Rd such that the shadow boundary Γ(B,L) has a finite (d−k− 1)-dimensional
Hausdorff measure.

A more general question was formulated by McMullen who asked whether, given a d-dimensional
convex body B and k ≤ d− 1, for almost all k-dimensional linear subspaces L shadow boundaries
Γ(B,L) have a finite (d − k − 1)-dimensional Hausdorff measure. This question was answered
positively by Steenaerts [31] for the cases k = 1 or d − 1. To the best of the author’s knowledge,
the conjecture and its general version are open for other values of k.

Levi [20] showed that the covering number g0(B) is precisely d + 1 for a smooth d-dimensional
convex body B (this is also true for B with a smooth belt [11]). We will show that Conjecture 4
implies the general result for all positive α.

Theorem 3. If Conjecture 4 is true, for any smooth d-dimensional convex body B, hα(B) =
d+ 1− dαe.

Proof. From Theorem 2, we already know that hα(B) ≥ d + 1 − dαe so, to complete the proof of
the theorem, it is sufficient to find a set of d+ 1− dαe illuminating B.

Denote M = d + 1 − dαe. We will consider sets of linearly dependent unit vectors u1, . . . , uM
such that the non-negative cone formed by these vectors generates a linear subspace L of dimension
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M − 1. For each L it is possible to find such a set of vectors. By Lemma 2.1, the set of points not
illuminated by u1, . . . , uM is precisely the shadow set Γ(B,L).

If Conjecture 4 is true, there exists an (M − 1)-dimensional linear subspace L such that Γ(B,L)
has a finite (d −M)-dimensional Hausdorff content. This means that the dimension of Γ(B,L) is
not greater than d−M = dαe − 1 < α. �

Together with Theorem 3, the results of Steenaerts mentioned above allow us to find h1(B) and
hd−1(B) for all smooth bodies.

Corollary 1. For any smooth d-dimensional convex body B, h1(B) = d and hd−1(B) = 2.

We also note that hα can be found for the case of Euclidean balls.

Corollary 2. For all natural d and all α such that 0 ≤ α ≤ d+ 1, hα(Bd) = d+ 1− dαe where Bd
is the d-dimensional unit Euclidean ball.

Proof. Due to Theorem 3, it is sufficient to show that the condition of Conjecture 4 is satisfied. A
point x on the unit sphere is illuminated by a direction u if and only if x · u is negative. Assume
x is not illuminated by a k-dimensional linear subspace L of Rd. Then for any u ∈ L, x · u ≥ 0.
On the other hand, −u ∈ L so x · (−u) ≥ 0. We conclude that x · u = 0 for all u ∈ L and
any x satisfying this condition belongs to the shadow boundary. Therefore, the shadow boundary
Γ(Bd, L) is the intersection of the (d− k) dimensional subspace L⊥ with the unit sphere. This set
has finite (d− k − 1)-dimensional Hausdorff measure. �

Concerning the upper bounds for illumination numbers hα, the following conjecture was posed
by Bezdek for α = 1 [1] (see also [10, Conjecture 3 of Section 3.3]) and generalized in [10, Section
3.3] for all natural α.

Conjecture 5. For all non-negative integer α and all d-dimensional convex polytopes B, hα(B) ≤
2d−α.

In Section 4, we will show that this conjecture is in fact false for all α ∈ [2, d−2] for d-dimensional
cubes when d ≥ 8. We also note here that Conjecture 5 is always true for α = d−1 even for general
convex bodies B. In order to prove this, it is sufficient to find two opposite directions, i.e. a linear
subspace of dimension 1, such that the shadow boundary of B with respect to this subspace has a
zero (d − 1)-dimensional Hausdorff measure. This result follows from the paper of Steenaerts [31]
mentioned above. The conjecture of Bezdek for α = 1 remains open.

3. Lower bounds on covering numbers gα

In this section we prove lower bounds on gα(d). Although we do not know how to prove Con-
jecture 2, we can still find out more about the sum of the powers of coefficients than the general
asymptotic proved by Naszódi [24].

Theorem 4. For d ≥ 3 and any α ∈ [0, d], gα(d) ≥ d− dαe ln2 d.

Proof. It is sufficient to consider only integer α. We will prove a slightly stronger statement. Instead
of coverings of a convex body B, we will consider families of its homothets covering the boundary
of B and we will prove this lower bound for the sum of α-powers of homothety coefficients for such
families.

The proof is done by induction in d. The base is for d = 3. For α = 0, at least 4 homothets are
needed to cover the boundary of B. For α = 1, we can project everything to an arbitrary plane
and, from the proof of Soltan’s conjecture for d = 2 [30], use g1(2) ≥ 2 > 3− ln2 3. We know that
the sum of surface areas of convex bodies is not smaller than the surface area of a convex body they
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cover. Using this with the inequality 1 > 3− 2 ln2 3 we get the statement for α = 2. For α = 3, the
right hand side of the inequality is negative. Altogether, the base of induction for d = 3 is true.

For α such that d − α ln2 d ≤ 1, the statement holds immediately so we assume that α < d−1
ln2 d

.
As mentioned earlier, the sum of surface areas of convex bodies is not smaller than the surface
area of a convex body they cover. Hence homothety coefficients of the covering λ1,. . ., λk satisfy
k∑
i=1

λd−1
i ≥ 1. Assume λ1 is the largest of these coefficients. Then

k∑
i=1

λαi ≥

k∑
i=1

λd−1
i

λd−α−1
1

≥ 1

λd−α−1
1

.

If λd−α−1
1 ≤ 1

d−α ln2 d
holds, the statement of the theorem is true. Hence it is sufficient to consider

the case when λd−α−1
1 > 1

d−α ln2 d
≥ 1

d .

Let l be the line connecting an arbitrary point in the interior of B with its homothetic image
in the largest homothet of the covering. We consider the orthogonal projection to l⊥. Projections
of homothets are homothets of the projection. Only those homothets which cover the boundary
of the projection are being considered. By the induction hypothesis, the sum of the α-powers of
the homothety coefficients should be at least (d − 1) − α ln2(d − 1). Note that the projection of
the largest homothet is strictly inside the projection of B so it does not participate in covering the
boundary of the projection of B. Hence we get

k∑
i=1

λαi ≥ λα1 + (d− 1)− α ln2(d− 1) >

(
1

d

) α
d−α−1

+ (d− 1)− α ln2(d− 1).

It remains to show that

(
1

d

) α
d−α−1

+ (d− 1)− α ln2(d− 1) ≥ d− α ln2 d;

(
1

d

) α
d−α−1

+ α(ln2 d− ln2(d− 1)) ≥ 1.

For d ≥ 4, ln2 d− ln2(d− 1) ≥ 2 ln d
d . Hence it is sufficient to prove

(
1

d

) α
d−α−1

≥ 1− 2α ln d

d
.

Using 1− 2α ln d
d ≤ e−

2α ln d
d = 1

d2α/d
, we are left with

(
1

d

) 1
d−α−1

≥
(

1

d

) 2
d

;

d− α− 1 ≥ d

2
,

which is true for any d ≥ 6 and any real α < d−1
ln2 d

. For d = 4, 5 we use that α must be integer

and only α = 0, 1 satisfy the inequality α < d−1
ln2 d

so the inequality above is true in these cases as
well. �

7



We note that this result generalizes the result of Naszódi [24] since, for a fixed α, lim
d→∞

d−α ln2 d
d =

1, and also covers certain cases when α depends on d, for instance, α ∼ dc for all c from (0, 1).
Due to Theorems 1 and 4 and Corollary 2, we know that gα(d) is always squeezed between

d− dαe ln2 d and d+ 1− dαe. Generally, we conjecture (see Conjecture 2 in the introduction) that
gα(d) is precisely d+ 1− dαe.

The following proposition, in some sense, confirms Conjecture 2 by showing that if the lower
bound works for some convex body P then it works for all direct products of P and any other
convex body for a certain range of values of α.

Proposition 1. For any α ∈ [0, d], a d-dimensional convex body P and an m-dimensional convex
body Q,

gα+m(P ×Q) ≥ gα(P ).

Proof. Let P×Q be covered by k smaller homothets Pi×Qi with respective coefficients λi, 1 ≤ i ≤ k.
Consider the indicator functions 1i : Q 7→ {0, 1}, 1 ≤ i ≤ k, such that 1i(x) = 1 if x ∈ Qi and
1i(x) = 0 otherwise. For a fixed x ∈ Q, the set of homothets such that x ∈ Qi forms a covering of

P × {x}. Therefore,
k∑
i=1

1i(x)λαi ≥ gα(P ) for any x ∈ Q. Integrating this inequality over all points

x ∈ Q we get

k∑
i=1

Vol(Qi)λ
α
i ≥

∫
x∈Q

(
k∑
i=1

1i(x)λαi

)
dx ≥

∫
x∈Q

gα(P )dx = gα(P ) Vol(Q).

Since Vol(Qi) = λmi Vol(Q), we conclude that

k∑
i=1

λα+m
i ≥ gα(P ).

�

From this proposition, if Conjecture 2 is true for a d-dimensional convex body P and α, i.e.
gα(P ) ≥ d+ 1− dαe, then gα+m(P ×Q) ≥ d+ 1− dαe = (d+m) + 1− dα+me so Conjecture 2 is
true for P ×Q and α+m.

4. Generalized Hadwiger conjecture and cubes

In this section we show that Conjecture 5 does not generally hold for cubes.

Theorem 5. For any d ≥ 8 and any positive integer α ∈ [2, d− 2], hα([0, 1]d) > 2d−α.

Proof. Consider an arbitrary unit vector a = (a1, . . . , ad). The set of points on the surface of
the cube illuminated by the direction of a is completely defined by the signs of coordinates of a.
Without loss of generality we assume a1, . . . , al > 0, al+1, . . . , am < 0, am+1 = . . . = ad = 0.
Then the interior points of the (d−m)-dimensional face Ta of the cube with coordinates (t1, . . . , td)
such that t1 = . . . = tl = 0, tl+1 = . . . = tm = 1, tm+1, . . . , td ∈ (0, 1) are illuminated and all
interior points of faces containing Ta are illuminated as well. No other points are illuminated by
the direction of a.

If, instead of the vector a, we use a unit vector a′ such that a′1, . . . , a
′
l > 0, a′l+1, . . . , a

′
d < 0, the

direction will illuminate at least as much on the surface of the cube as the direction of a so we
may assume that a has no 0 coordinates. In this case Ta is a vertex of the cube. Therefore, each
illumination direction corresponds to the vertex defined by the signs of the vector of illumination.
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We consider the set of h directions illuminating all interior points of α-dimensional faces and denote
their corresponding vertices by x1, . . . , xh. We assume h ≤ 2d−α to get a contradiction at the end.

We would like all interior points of α-dimensional faces to be illuminated so each α-dimensional
face contains at least one of xi, 1 ≤ i ≤ h. At this point we note that the number of α-faces of the
d-dimensional cube is

(
d

d−α
)
2d−α (the choice of d − α coordinates from d options times the choice

of 0 and 1 for each of these coordinates). The number of α-dimensional faces containing a given

vertex is
(
d

d−α
)

(the choice of d − α coordinates). Since h ≤ 2d−α, we get that there is no α-face

containing at least two of the points xi and h is precisely 2d−α. This means that for any two points
xi and xj , i 6= j, |xi − xj | ≥ α + 1 (in the Hamming metric) because otherwise they would both
belong to the same α-face defined by the d− α coordinates where they coincide.

The set of points x1, . . . , xh forms a binary code with h = 2d−α points and the minimal distance
≥ α+ 1. We can use any packing bounds for binary codes to check whether this is possible. One of
the standard bounds is the Hamming bound claiming that the size of a binary d-dimensional code

with the minimum Hamming distance l is no greater than 2d
t∑
i=0

(di)
, where t =

⌊
l−1
2

⌋
[18]. Using this

bound for our set of points we get

2d−α ≤ 2d

bα2 c∑
i=0

(
d
i

) ;

bα2 c∑
i=0

(
d

i

)
≤ 2α.

We want to get a contradiction and show that the inequality does not hold for d ≥ 8 and

2 ≤ α ≤ d− 2. Since
bα2 c∑
i=0

(
d
i

)
is an increasing function of d, it is sufficient to check that, for the five

cases: 1) α = 2 and d = 8, 2) α = 3 and d = 8, 3) α = 4 and d = 8, 4) α = 5 and d = 8, and 5)
α ≥ 6 and d = α+ 2,

bα2 c∑
i=0

(
d

i

)
> 2α.

In the first case,
1∑
i=0

(
8
i

)
= 9 > 4 = 22. In the second case,

1∑
i=0

(
8
i

)
= 9 > 8 = 23. In the third

case,
2∑
i=0

(
8
i

)
= 37 > 16 = 24. In the fourth case,

2∑
i=0

(
8
i

)
= 37 > 32 = 25.

In the fifth case, we prove the inequality separately for even and odd α. For the first part, assume

α is even so α = 2l and d = 2l+2, l ≥ 3. We want to prove
l∑

i=0

(
2l+2
i

)
> 22l. Due to the symmetry of

binomial coefficients,
l∑

i=0

(
2l+2
i

)
= 1

222l+2− 1
2

(
2l+2
l+1

)
. Hence it is sufficient to show that

(
2l+2
l+1

)
< 22l+1

for all l ≥ 3. This inequality is true for l = 3 and the inductive argument
(

2l+4
l+2

)
< 4
(

2l+2
l+1

)
implies

it is true for all larger l as well.
In the second part, we assume α is odd so α = 2l + 1, d = 2l + 3, l ≥ 3 and we want to prove

l∑
i=0

(
2l+3
i

)
> 22l+1. Here we use that

l∑
i=0

(
2l+3
i

)
= 1

222l+3 −
(

2l+3
l+1

)
so it is sufficient to prove that
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(
2l+3
l+1

)
< 22l+1 for all l ≥ 3. This inequality is true for l = 3 and, similarly to the previous case,(

2l+5
l+2

)
< 4
(

2l+3
l+1

)
implies it is true for all larger l too.

�

Apart from giving a counterexample to Conjecture 5, Theorem 5 also shows that hα is not
always equal to gα. Due to Proposition 1, we know that for any integer α ∈ [0, d], gα([0, 1]d) ≥
g0([0, 1]d−α) = 2d−α. On the other hand, we can always cover a unit d-dimensional cube by 2d

twice smaller cubes so gα([0, 1]d) ≤ 2d
(

1
2

)α
= 2d−α. From these two observations, we conclude that

gα([0, 1]d) = 2d−α. By Theorem 5, hα([0, 1]d) > 2d−α so hα([0, 1]d) is not equal to gα([0, 1]d) for
almost all values of α and d.

What appeared to be false for illuminating numbers hα still seems plausible for covering numbers
gα so we formulate the following generalized Hadwiger conjecture.

Conjecture 6. For all d-dimensional convex bodies B and all integer α ∈ [0, d], gα(B) ≤ 2d−α.

5. Upper bounds on covering numbers gα

In this section we prove upper bounds for gα(B) using various approaches to the Hadwiger
conjecture. As an easy application of the asymptotic bound for g0(B) [17] and the trivial inequality
gα(B) ≤ g0(B), we immediately get the following proposition.

Proposition 2. There exist universal constants c1, c2 > 0 such that

gα(B) ≤ c14de−c2
√
d

for any d-dimensional convex body B and any positive number α.

This trivial consequence of the covering bound may be improved when α is large enough with
respect to d.

Theorem 6. There exist universal constants c1, c2 > 0 such that

gα(B) ≤ c1
dd

αα(d− α)d−α
2de−c2

√
d

for any d-dimensional convex body B and any positive number α > d
2 .

Proof. In order to prove this theorem we use the statement following directly from [17, Proof of
Theorem 1.1, p. 9]: there is a universal constant c > 0 such that for any d-dimensional convex
body B, any λ ∈ (0, 1) and an arbitrary parameter β ∈ (0, 1), B can be covered by no more than(

1 + βλ

βλ

)d
2de−c

√
d

(
1 + d ln

(
8

(1− β)λ

))
parallel translates of λB.

This statement immediately implies that

gα(B) ≤ λα
(

1 + βλ

βλ

)d
2de−c

√
d

(
1 + d ln

(
8

(1− β)λ

))
for any λ, β ∈ (0, 1).

Choosing β = 1− 1
d and λ = d−α

α we get the required bound. �

A similar improvement is possible in the case of centrally symmetric convex bodies. For the
following theorem we use the smallest density θ(B) of a covering of the whole space Rd by translates
of B.
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Theorem 7.

gα(B) ≤ dd

αα(d− α)d−α
θ(B)

for any d-dimensional convex centrally symmetric body B and any positive number α > d
2 .

Proof. We use one of the main results of [27]: any convex d-dimensional body B can be covered

by no more than Vol(B−H)
Vol(H) θ(H) translates of a convex d-dimensional body H. Here we use this

statement for a centrally symmetric B and H = λB so θ(H) = θ(B). Therefore, for any λ ∈ (0, 1),

gα(B) ≤ λα (1 + λ)d

λd
θ(B).

Taking λ = d−α
α we prove the bound of the theorem. �

As a consequence of Theorem 7, Rogers’ bound for the covering density implies that gα(B) ≤
dd

αα(d−α)d−α
d ln d(1 + o(1)) for all α > d

2 (here o(1) is a function of d and does not depend on α).

For a standard covering number g0, it is not important how large the size of each translate is so
we may as well replace each homothet by the interior of B. When α > 0 this is not anymore the
case. In fact, it appears that if we use the strategy of Rogers from [25] but keep the small size of
some of the translates and adjust the covering parameters then we can improve the bound on gα,
even if α is not larger than d

2 .

Theorem 8. For all natural d and all α such that 0 ≤ α ≤ d− 1,

gα(B) ≤ 2d(d− α)(ln d+ ln ln d+ 2 + o(1))

for any centrally symmetric d-dimensional body B (o(1) is a function of d and does not depend on
α).

Proof. Without loss of generality we assume the volume of B is 1 and its center is 0. We will
construct a periodic covering of the space Rd by translates of B, i.e. there will be a full-dimensional
lattice Λ such that for any translate B′ of B and any vector x ∈ Λ, x + B′ also belongs to the
covering. We consider only such lattices Λ that 1) for any translate B′ of B and any two vectors
x, y ∈ Λ, x+B′ and y +B′ do not have common points and 2) for any translates B′ and B′′ of B
and any two vectors x, y ∈ Λ, x+B′ and y +B′ cannot both have common points with B′′. Both
conditions can be granted by having the minimal vector of Λ longer than 2 diameters of B. These
two conditions essentially allow us to solve the problem on the torus T = Rd/Λ. The preimage of a
covering of the torus defines a periodic covering of the space and a proper covering of any translate
of B. With a small abuse of notation, by B we mean both the initial convex body and its image
under the standard quotient mapping to T .

Our construction will depend on parameters λ ∈ (0, 1), δ ∈ (0, 1), M > 0, N ∈ N. These
parameters will be defined later. We consider a lattice Λ with determinant M satisfying the
conditions above. M can be taken arbitrarily large so such Λ definitely exists. Let x1, . . ., xN be
independent random variables uniformly distributed over the torus T . Using these random vectors,
we construct N random translates of λB: x1 + λB, . . ., xN + λB. For each individual translate,

the probability of each point of T to not be covered by this translate is precisely 1− λd

M . Since the
variables are independent, the expected value of the volume of the torus not covered by any of the

random translates is M
(

1− λd

M

)N
. Hence we can choose concrete N translates of λB in T such

that the total volume of T not covered by them is not greater than M
(

1− λd

M

)N
≤Me−

λdN
M .

In the empty part of the torus, we construct a saturated packing by translates of δB, i.e. interiors
of these translates do not intersect neither each other, nor interiors of already chosen translates of
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λB and it is impossible to add one more translate of δB to the set. Since it is a packing, the volume

calculation implies that the number of the translates of δB is not greater than M
δd
e−

λdN
M . On the

other hand, since the packing is saturated, when we substitute all translates of λB by translates
of (λ + δ)B and all translates of δB with translates of 2δB with the same centers, they form a
covering of T . Indeed, otherwise there is an uncovered point x ∈ T and x + δB can be added to
the packing so there is a contradiction to the saturation condition.

Overall, we constructed a covering of T by N translates of (λ+ δ)B and no more than M
δd
e−

λdN
M

translates of 2δB. For the next step we take a random translate x + B, where x is uniformly
distributed over T , and calculate the expected value of the sum of α-powers of the homothety
coefficients of those translates intersecting x + B. We note that x + B intersects y + βB for any
fixed y ∈ T and β ∈ (0, 1) if and only if x ∈ y+ (1 +β)B. Thus the probability of this happening is

not greater than (1+β)d

M . The expected value of the sum of α-powers in our case is then no greater
than

(1 + λ+ δ)d

M
N(λ+ δ)α +

(1 + 2δ)d

M

M

δd
e−

λdN
M (2δ)α =

=
(1 + λ+ δ)d

M
N(λ+ δ)α +

(1 + 2δ)d2α

δd−α
e−

λdN
M .

Since we want an upper bound for gα(B), all homothety coefficients should be less than 1, i.e.
λ + δ < 1 and 2δ < 1. Then there exists a concrete translate of B so that the sum of α-powers
of homothets covering it satisfies this inequality. What is left is to choose suitable parameters
N,M, λ, δ. We denote λd NM by θ. For any θ > 0 and any λ ∈ (0, 1), we can choose large enough M

and integer N satisfying θ = λd NM so that the required lattice properties hold. The inequality holds
for all λ < 1− δ so, taking the limit λ→ 1− δ, we get that the inequality is valid for λ = 1− δ as
well. Taking all this into account, we get

gα(B) ≤ 2d

(1− δ)d
θ +

(1 + 2δ)d2α

δd−α
e−θ.

Taking δ = 1
d ln d and θ = −(d− α) ln δ = (d− α)(ln d+ ln ln d), we conclude the proof:

gα(B) ≤ 2d(
1− 1

d ln d

)d (d− α)(ln d+ ln ln d) +

(
1 +

2

d ln d

)d
2α =

≤ 2d(d− α)(ln d+ ln ln d)

(
1 +

1

ln d
+ o

(
1

ln d

))
+ 2d(d− α)(1 + o(1)) =

= 2d(d− α)(ln d+ ln ln d+ 2 + o(1)).

�
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