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ABSTRACT: Predictability of seasonal sea ice advance in the Chukchi Sea has been investigated in the context of ocean
heat transport from the Bering Strait; however, the underlying physical processes have yet to be fully clarified. Using the
Pan-Arctic Ice–Ocean Modeling and Assimilation System (PIOMAS) reanalysis product (1979–2016), we examined sea-
sonal predictability of sea ice advance in early winter (November–December) and its source using canonical correlation
analysis. It was found that 2-month leading (September–October) surface heat flux and ocean heat advection is the major
predictor for interannual variability of sea ice advance. Surface heat flux is related to the atmospheric cooling process,
which has influenced sea ice area in the southeastern Chukchi Sea particularly in the 1980s and 1990s. Anomalous surface
heat flux is induced by strong northeasterly winds related to the east Pacific/North Pacific teleconnection pattern. Ocean
heat advection, which is related to fluctuation of volume transport in the Bering Strait, leads to decrease in the sea ice area
in the northwestern Chukchi Sea. Diagnostic analysis revealed that interannual variability of the Bering Strait volume
transport is governed by arrested topographic waves (ATWs) forced by southeasterly wind stress along the shelf of the
East Siberian Sea. The contribution of ocean heat flux to sea ice advance has increased since the 2000s; therefore, it is sug-
gested that the major factor influencing interannual variability of sea ice advance in early winter has shifted from atmo-
spheric cooling to ocean heat advection processes.

SIGNIFICANCE STATEMENT: Predictability of sea ice advance in the marginal Arctic seas in early winter is a cru-
cial issue regarding future projections of the midlatitude winter climate and marine ecosystem. This study examined
seasonal predictability of sea ice advance in the Chukchi Sea in early winter using a statistical technique and historical
model simulation data. We identified that atmospheric cooling and ocean heat transport are the two main predictors of
sea ice advance, and that the impact of the latter has become amplified since the 2000s. Our new finding suggests that
the precise information on wind-driven ocean currents and temperatures is crucial for the skillful prediction of interan-
nual variability of sea ice advance under present and future climatic regimes.

KEYWORDS: Arctic; Sea ice; Atmosphere-ocean interaction; Ocean dynamics; Statistical forecasting; Climate
variability

1. Introduction

The Chukchi Sea is a high-latitude seasonally ice-covered
shelf sea in the Pacific Arctic region and directly affected by
substantial heat (Woodgate et al. 2010) and freshwater (Ser-
reze et al. 2006) transport from the Bering Strait. In the west-
ern Chukchi Sea, large amounts of nutrients are carried by
northward-flowing water through the Anadyr Strait where
coastal upwelling occurs (Kawaguchi et al. 2020), sustaining
high phytoplankton productivity and a substantial amount of
biomass (Springer and McRoy 1993). The marine ecosystem
in this region is characterized by a large volume of benthic
biomass in the cold-water environment, whereby the high

primary production at the surface is not effectively consumed
by zooplanktons (Hunt et al. 2013). Recently, it was reported
that the period of sea ice coverage in the Chukchi Sea has
become shortened by 80 days since 1979 (Serreze et al. 2016).
A shortened period of sea ice coverage and the resultant
increase in ocean temperature reduces the habitat for marine
benthos; consequently, a northward shift of the pelagic–benthic
ecosystem is occurring (Grebmeier et al. 2006).

Sea ice coverage has an insulating effect regarding surface
heat flux from the ocean to the atmosphere, and the reduction
of wintertime sea ice area in the marginal sea ice zone of the
Arctic Ocean increases this surface heat flux (e.g., Smedsrud
et al. 2013), which in turn acts as a driving force of the atmo-
sphere. This anomalous surface heat flux is considered one of
the possible causes of the severe wintertime climate in the
midlatitudes (e.g., Overland 2020). On the basis of observa-
tional analyses and climate model simulations, Kug et al.
(2015) highlighted that occurrence of severe winters over
North America has increased since the 1990s because of
anomalous warming in the East Siberian–Chukchi Sea region.
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Ensemble experiments with an atmospheric general circula-
tion model prescribed with sea ice loss indicate that the anom-
alous atmospheric circulation responsible for severe winters
over the North America is induced by a low sea ice area
(SIA) in the Bering Sea (Lee et al. 2015; Screen 2017). A
recent study reported that a low sea ice anomaly north of the
Bering Strait in late autumn was responsible for the cold
winter in 2017/18 over eastern Eurasia, including the North
Pacific Ocean, via the large southward jet stream pathways
formed over Asia and America (Tachibana et al. 2019).
Kuroda et al. (2020) showed that SST in the western part of
the North Pacific subtropical gyre gradually decreased during
2000–10, and they discussed the linkage between severe win-
ters in Eurasia and the cold regime of ocean temperature,
which has potentially affected major commercial fishery
resources (e.g., Japanese sardines).

In contrast to these climatic consequences and problems for
the marine ecosystem, sea ice reduction in the Chukchi Sea
also has potential impact on the possibility of shorter shipping
routes for commercial vessels. Use of trans-Arctic shipping
routes is estimated to reduce the navigation distance between
Europe and Asia regions by approximately 40% in compari-
son with routes via the Suez Canal (Schøyen and Bråthen
2011). Automatic Identification System tracking data show
that the number of commercial vessels has already increased
in summertime in the Arctic Ocean (Eguı́luz et al. 2016).
The search for the optimal Northern Sea Route is conducted
using atmospheric and oceanic environmental information
(Koyama et al. 2021). According to future projections of cli-
mate model simulations under global warming scenarios, the
duration of the Arctic navigation season is expected to
increase by 4–8 months by the mid–late twenty-first century
and also the possibility of open water vessel navigation (Melia
et al. 2016; Chen et al. 2020). Thus, predictability of sea ice
conditions in the Chukchi Sea is important both for planning
economic and safe navigation and for future projections of
the marine ecosystem and fishery resources in the North
Pacific.

Wintertime SIA variability in the Bering Sea has been stud-
ied by many researchers in terms of large-scale atmospheric
wind conditions (e.g., Sasaki and Minobe 2005), cyclone activ-
ity (Overland and Pease 1982), local winds and ice influx from
the Arctic Ocean (Zhang et al. 2010), and ocean heat
advected from the Pacific Ocean (Nakanowatari et al. 2015),
but few studies have specifically investigated the Chukchi Sea
in early winter. Serreze et al. (2016) examined the interannual
variability of sea ice retreat and advance in the Chukchi Sea
on the basis of long-term (30 yr) observations. They found
that the starting date of sea ice advance is correlated signifi-
cantly with summertime Bering Strait heat inflow. Following
analysis of mooring observations, Serreze et al. (2019)
reported that the largest heat transport through the Bering
Strait was recorded in October 2016, and they discussed the
importance of warm water temperature and the wind condi-
tions driving the Bering Strait volume transport. A medium-
range sea ice forecast experiment demonstrated that having
reliable initial conditions of water temperature in the Bering

Sea improves forecasts of wintertime sea ice in the Chukchi
Sea (De Silva et al. 2020).

Although the importance of ocean heat conditions regard-
ing sea ice variability in the Chukchi Sea has been examined
by several researchers (e.g., Serreze et al. 2019; Lenetsky and
Serreze 2021; Lenetsky et al. 2021), the major factors control-
ling sea ice advance in the Chukchi Sea in early winter and its
predictability have yet to be fully assessed. Summertime Arc-
tic SIA has decreased drastically over the past several decades
(Cavalieri and Parkinson 2012); therefore, the recent delay in
freezing-up in the Chukchi Sea in early winter might be
related to the initial condition of reduced summertime sea ice
cover and/or other factors. In this study, we examined the sea-
sonal predictability of sea ice in the Chukchi Sea in early
winter using model simulations, and we explored the possible
mechanisms responsible for the skillful prediction over the
past several decades (1979–2016), including the abnormally
low SIA in 2016, with special emphasis on year-to-year vari-
ability. To achieve our objective, canonical correlation analy-
sis was used as a forecasting and diagnostic tool to explore the
physical mechanism between the predictors (atmosphere–
ocean variables) and the predictand (sea ice concentration).

2. Data and methods

a. PIOMAS

In this study, we used the Pan-Arctic Ice–Ocean Modeling
and Assimilation System (PIOMAS) dataset from 1979 to
2016 (Zhang and Rothrock 2003) for the canonical correlation
analysis (CCA) predictand (sea ice) and predictors. PIOMAS
is an ice–ocean coupled model based on the POP ocean
model (Smith et al. 1992) and a 12-category thickness and
enthalpy distribution sea ice model (Zhang and Rothrock
2001) in a generalized orthogonal curvilinear coordinate sys-
tem for the Arctic Ocean. The spatial coverage is ∼498–908N
and lateral boundary conditions are input from a global model
governed by the same configuration as PIOMAS (Zhang and
Rothrock 2003). The mean horizontal resolution of PIOMAS
for the Arctic Ocean is approximately 22 km with 30 vertical
ocean levels of different thickness. The model is driven
by daily mean NCEP–NCAR atmospheric reanalysis data
(Kalnay et al. 1996), which comprise 10-m surface winds, 2-m
surface air temperature, specific humidity, precipitation, evap-
oration, downward longwave radiation, sea level pressure
(SLP), and cloud cover. Surface heat and momentum fluxes
are calculated using the bulk formula with these meteorologi-
cal variables. Downward shortwave radiation is calculated
from the cloud cover in accordance with Parkinson and
Washington (1979). After performing a 30-yr spinup of the
model based on atmospheric reanalysis data for 1948, the
model was driven from 1948 to 1978 without data assimilation
to generate the initial conditions of PIOMAS. From 1979,
the PIOMAS hindcast was driven using the daily mean
NCEP–NCAR atmospheric reanalysis data and assimilation
of daily mean sea ice concentration (SIC) from the NSIDC
near-real time products (Brodzik and Stewart 2016) and daily
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mean SST (Reynolds et al. 2007; also see Schweiger et al.
2011).

As for the CCA predictand, we adopted the 2-month aver-
aged SIC in the Chukchi Sea (658–758N, 1808–1608W) in early
winter (November–December) to examine the predictability
of sea ice advance in early winter. Any grid cell at which SIC
was zero during the entire analysis period was not used. We
used 2-month averaged ice–ocean heat variables as the pre-
dictors of the SIC. The SIC predictors adopted comprised sea
ice production (Qice), sea ice advection (ADVice �2vi ·=hi)
that was calculated from sea ice velocity (vi) and sea ice thick-
ness (hi), and total surface heat flux at the ocean–atmosphere
or sea–ice interface (Qsfc), which consists of turbulent and
radiative heat fluxes. Additional predictors included ocean

heat content (HC �
�55

sfc
roCpTdz) and lateral ocean heat

advection (ADV �2

�55

sfc
v ·=Tdz), where v and T are ocean

velocity and temperature, respectively, integrated from the
surface to 55-m depth, which broadly corresponds to the
mean depth of the Chukchi Sea. Examination of these ther-
modynamic terms allowed identification of the physical pro-
cesses responsible for SIC variability. We also evaluated the
persistency of the sea ice itself by using SIC anomalies in each
month. Although the energy budget for sea ice production
and latent heat for melting at the sea–ice interface is not per-
fectly consistent owing to the data assimilation procedure, the
homogeneity of the ice–ocean model output and its reliability,
as shown in the following section, is suitable for empirical
prediction using CCA. The original model grid was bili-
nearly interpolated to a 0.58 3 0.58 grid size before CCA was
conducted.

b. CCA

Canonical correlation analysis is a multivariate statistical
technique used to identify linear correlation relationships
between multidimensional variables. In the climate research
community, CCA is commonly used both for extraction of the
dominant coupled patterns between the predictor and the
predictand from atmospheric and oceanic data (Bretherton
et al. 1992) and for seasonal climate forecasting (Zwiers and
von Storch 2004) and research on sea ice predictability (Tivy
et al. 2011; Nakanowatari et al. 2014, 2015). In this study, we
followed the methodology and data processing adopted by
Barnett and Preisendorfer (1987), whereby predictor and pre-
dictand data were standardized by subtracting the mean value
of the analyzed period and dividing anomalous values with
the standard deviations. Then, a prefiltering procedure was
applied to the predictor and predictand data using principal
component analysis (PCA), following which the linear trend
components were removed. Noise was removed from the
obtained series of PCs using Monte Carlo techniques to
obtain the significant principal modes, and it was these
derived PC modes that were used for CCA. The Monte Carlo
techniques were conducted using 100 surrogate data with tem-
poral variation of white noise, and then the significant PCs for
the predictand and the predictor were determined by the

value of the explained variance larger than the top 95% of
that for the surrogate data. The mathematical representation
of CCA is described in appendix. Because SIC in November–
December is affected by the integration of the preceding
atmospheric and oceanic forcings, we adopted 2-month aver-
ages for the predictors in accordance with earlier related stud-
ies (Nakanowatari et al. 2014, 2015). CCA was conducted
between SIC in November–December and the 2-month aver-
age predictors at lead times from 0 (November–December) to
11 months (previous December–January) to evaluate the pre-
dictability at given lead times.

The forecast skill for each predictor was evaluated using
field-averaged cross-validated correlation between the observed
and modeled data. Field-averaged cross-validated correlation
is a standard metric used to evaluate the skill of CCA-based
forecasting models (e.g., Barnston 1994). In this procedure,
each of the 37 years from 1980 to 2016 was held out in turn,
while the remaining 36 years were used for CCA. The entire
sequence of the CCA procedure was performed for each case
to obtain the predicted SIC in the entire analyzed period.
The field-averaged cross-validated correlation was calculated
by averaging the correlation between the observed and pre-
dicted SIC at each grid point over the analyzed area. This
cross-validation scheme is commonly used to prevent overfit-
ting of statistical prediction models (Michaelsen 1987; Elsner
and Schmertmann 1994).

The significance of local skill (skill at a single grid point)
was determined using a Monte Carlo simulation, which
involved a phase randomization technique that generated
1000 surrogate time series (Kaplan and Glass 1995). First,
absolute Fourier amplitudes (square root of spectra) for the
observed SICs were estimated for each grid point, and then
the 1000 surrogate time series were generated via an inverse
Fourier transform with the observed Fourier amplitudes and
randomized phases. Surrogate correlation coefficients were
estimated between the surrogate and observed SIC time
series. The relative position of the absolute value of the
observed correlation coefficients in the sorted absolute values
of the surrogate correlation coefficients provided the level of
confidence regarding the observed correlation coefficient at
each grid point.

c. Observational data

For evaluation of the interannual variability of sea ice in
the Chukchi Sea using PIOMAS, we used satellite-based SIC
derived from Nimbus-7 SMMR and DMSP SSM/I-SSMIS
passive microwave data with the revised NASA team algo-
rithm for 1979–2016 (Cavalieri et al. 1996). This satellite-
based SIC dataset is identical to the SIC dataset assimilated in
PIOMAS in terms of the sea ice algorithm and satellite sensor
type, except that the former comprises processed and quality-
controlled data of long-term dataset. The spatial resolution is
25 km on a polar-stereographic coordinate system. Before
undertaking comparison of the satellite-based SIC and the
PIOMAS hindcast SIC data, the daily mean satellite-based
SIC data were averaged over each month and bilinearly inter-
polated to a 0.258 3 0.258 grid. For validation of the ocean
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temperature and current field in the PIOMAS data, we used
time series mooring observations of ocean temperature and
current speed recorded near the bottom at station A3 in the
Bering Strait obtained during 1990–2016 (Woodgate et al.
2015; Woodgate 2018; Woodgate and Peralta-Ferriz 2021).
Station A3 is located in the north of the strait, which is an
area influenced by the water properties of both eastern and
western channels; thus, it is known to be representative of the
entire throughflow (Woodgate et al. 2005, 2006).

To explore the source of sea ice predictability and its rela-
tion to the atmospheric circulation pattern, we used monthly
mean NCEP–NCAR reanalysis data from 1979–2016, which
are identical to the atmospheric forcing of the PIOMAS hind-
cast. The meteorological variables used in this study were sur-
face wind stress, 2-m air temperature, 10-m wind speed, SLP,
and 500-hPa geopotential height. Generally, the drag coeffi-
cient of surface wind stress is influenced by the existence of
sea ice (Leppäranta 2005). Therefore, in comparison with the
other meteorological variables, there would appear to be
uncertainty in the wind stress data attributable to the atmo-
spheric boundary layer conditions in the sea ice area. More-
over, the atmospheric reanalysis surface wind data in winter
have large uncertainty owing to the limited observational data
in comparison with the data availability in summer (Inoue
et al. 2009; Nose et al. 2018). To assess our results, we
also used ERA-Interim monthly mean wind stress data on a
0.7583 0.758 grid from 1979 to 2016 (Dee et al. 2011).

3. Chukchi Sea ice variability in early winter (1979–2016)

First, we present the spatial distribution of the sea ice edge
in the Chukchi Sea for 1979–2016 in early winter derived from
satellite-based observations (Fig. 1). In this season, the loca-
tion of the sea ice edge largely fluctuates from the Bering Sea
(∼638N) to the northern Chukchi Sea (∼728N). However, the
fraction of the open-water area in the Chukchi Sea has
increased since the 2000s, consistent with the trend of surface
air temperature over the Chukchi Sea in winter (Kug et al.
2015). The time series of averaged SIA in the Chukchi Sea
shows that the interannual variability of SIA in early winter
has decreased similarly to that in summer (Fig. 1b). In particu-
lar, the year-to-year fluctuations of SIA in early winter coin-
cided with those in summer in the 1980s to mid-1990s. The
correlation between SIA in early winter and summer is 0.57
(P = 0.008) for 1979–97. If the linear trend component is
removed from these time series, the correlation between
them is reduced to 0.49 (P = 0.034) but it remains significant
at the 95% confidence level. This result indicates that sea ice
advance in early winter can be explained by the initial condi-
tion of the summertime SIA for this period, although recent
numerical modeling studies showed that the summertime SIA
itself is not skillfully predicted before spring (Bonan et al.
2019; Bushuk et al. 2020). However, summertime SIA has been
relatively low since the late 1990s, and the above correlation rela-
tionship is weakened. The 2-month lagged autocorrelation of
SIA anomalies is not statistically significant (r = 0.37, P = 0.159)
from 1998 onward. These results suggest that interannual vari-
ability of SIA in the Chukchi Sea in early winter is not well

explained by the persistence of the sea ice condition in the pre-
ceding summer in recent decades.

4. Sea ice and ocean temperature states in PIOMAS

Here, we show the mean state and interannual fluctuations
of the ice–ocean variables of PIOMAS with special emphasis
on the Chukchi Sea. The climatological SIC distribution and
the standard deviation of SIC anomalies in early winter
(November–December) during 1979–2016 for the satellite-
based observations and PIOMAS are shown in Figs. 2a and 2b,
respectively. It is confirmed that the climatological sea ice dis-
tribution of PIOMAS is very similar to that of the satellite-
based observations with SIC of 50%–90% within the Chukchi
Sea (Fig. 2a). The prominent interannual variability of the sat-
ellite-based SIC in the northern Chukchi Sea (728N, 1708W) is
well reproduced in PIOMAS (Fig. 2b). The PIOMAS SIC
also quantitatively tracks the temporal variability in SIA in

FIG. 1. (a) Sea ice edge distribution (contours) of satellite-based
observations in early winter (November–December) from 1979 to
2016. The sea ice edge is defined as the boundary of the 40% SIC
averaged in early winter. Sea ice edges in those years with low sea
ice extent (i.e., 1997, 2006, 2007, 2010, 2013, 2014, and 2016) in the
Chukchi Sea are shown by colors. (b) Time series of SIA anomalies
in the Chukchi Sea (658–708N, 1808–1608W) in November–December
(red) and August–September (blue) from 1979 to 2016. The SIA
anomalies are defined by the SIA relative to the climatological mean
values from 1979 to 2016. The correlation coefficient between the
time series is shown in (b) and the value in parentheses is for the
detrended time series.
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the Chukchi Sea (658–708N, 1808–1608W) when compared
with the satellite-based observations (r = 0.96, P , 0.001;
Fig. 2c). The reliability of the spatiotemporal variability of
PIOMAS SIC confirms that such hindcast data are appropri-
ate for examination of the interannual variability of SIC in
the Chukchi Sea.

To evaluate the climatological distribution of PIOMAS
upper-ocean temperature in and around the Chukchi and
Bering Seas, the climatological distribution of the annual
mean subsurface ocean temperature at 22-m depth is shown
in Fig. 3a, in which the observed data are not assimilated. The
relatively warm water moving from the Bering Sea to the
Chukchi Sea along the west coast of Alaska indicates that
advective heat fluxes associated with the Bering Strait volume
transport are well reproduced in PIOMAS, despite the rea-
sonably coarse grid size. Time series of ocean temperature
anomalies near the bottom of the Bering Strait in the mooring
data and PIOMAS in summer (August–September) are

illustrated in Fig. 3b. In summer, ocean heat transport via the
Bering Sea Throughflow is known to be a precondition of the
ocean heat content (HC) in the Chukchi Sea in early winter
(Serreze et al. 2016). The interannual variability of the ocean
temperature is quantitatively reproduced in PIOMAS; the
correlation between the observed and PIOMAS ocean tem-
perature anomalies is 0.75. PIOMAS also realistically repro-
duces the interannual variability of the ocean current speed in
the Bering Strait in autumn (October–November). The verti-
cally averaged northward current speed in the Bering Strait in
PIOMAS is correlated significantly with the observed current
speed near the bottom (r = 0.91), although the absolute veloc-
ity in PIOMAS is somewhat underestimated (Fig. 3c). This
might be related to the fact that the spatial resolution of

FIG. 2. Climatological monthly mean SIC (%; contours) and
standard deviation of the interannual variability (colors) in early
winter (November–December) from (a) satellite-based observa-
tions and (b) PIOMAS from 1979 to 2016. (c) Time series of SIA
anomalies in the Chukchi Sea (658–708N, 1808–1608W) for satellite-
based observations (gray) and PIOMAS (black) in early winter
(November–December) from 1979 to 2016.

FIG. 3. (a) Climatological annual mean of subsurface ocean tem-
perature at 22 m derived from PIOMAS for 1979–2016. The cross
mark indicates the location of mooring station A3 north of the
Bering Strait (Woodgate et al. 2006). (b) Time series of potential
temperature near the bottom for A3 mooring observations (black)
for 1990–2016 and potential temperature at 27–55-m depth (bottom
depth) of PIOMAS (red) for 1979–2016 in August–September.
(c) Time series of northward current speed near the bottom for A3
mooring observations (black) for 1990–2016 and northward current
speed averaged from the surface to the bottom depth of PIOMAS
(red) for 1979–2016 in October–November.
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PIOMAS is insufficient to represent the narrow current struc-
ture of the Bering Strait volume transport. However, the
PIOMAS-simulated mean volume transport in the Bering
Strait (0.80 Sv; 1 Sv ≡ 106 m3 s21) is close to the observed esti-
mation (0.81 Sv) (Grebmeier and Maslowski 2014). These
comparisons confirm that the interannual signals of ocean
temperature and current field, and the related volume and
heat transport, in the Chukchi Sea are reasonably represented
in PIOMAS and thus that this long-term historical dataset is
suitable for the purpose of our study.

5. Prediction skill for Chukchi Sea ice in early winter

Prediction skill for each predictor at the corresponding
forecast lead times, evaluated by the area-averaged value of
the cross-validated correlation between the predicted and
simulated SICs in the Chukchi Sea in early winter, is shown in
Fig. 4. The highest prediction skill is obtained from SIC per-
sistence at the lead time of 1 month, but the prediction skill
decreases at lead times of 2–3 months, consistent with the
insignificant correlation between SIA in the Chukchi Sea in
summer and early winter from 1998 (Fig. 1b). Except for the
persistence of SIC itself, relatively high prediction skill is
obtained from Qice and ocean HC predictors at the 1-month
lead time, indicating that local sea ice production, which is
related to the oceanic thermal condition, determines SIC (i.e.,
sea ice advance) rather than the advection of sea ice
(ADVice). At the 2-month lead time (September–October),
the maximum forecast skill is obtained from ocean HC, and it
is comparable with that from SIC; the forecast skill for both
the Qsfc and ADV predictors is significant and higher than
that for both Qice and ADVice. This result indicates that Qsfc

and ADV are responsible for the significant prediction skill
for HC at the 2-month lead time and Qice at the 1-month lead
time. It is noteworthy that meaningful prediction skill is also
found at 4- and 5-month lead times (June–July and July–
August) for ADV and Qsfc, although these signals are related
to the transient signal attributable to the minimum SIA
recorded in summer 2007 (Stroeve et al. 2008). Except for the
high prediction skill at 4- and 5-month lead times attributable
to the minimum sea ice event in 2007, the 2-month leading
Qsfc and ADV including HC, is essential for predicting sea ice
production and useful for seasonal prediction of sea ice
advance in the Chukchi Sea for the past 37 years.

The spatial distribution of CCA skill for SIC in early winter
as predicted by the 2-month leading major predictors and
1-month leadingQice is shown in Fig. 5. For the 2-month lead-
ing HC predictor, the significant prediction skill with a cross-
validated correlation of .0.4 is found in the northern part of
the Chukchi Sea, covering 66% of the analyzed area. This
spatial distribution of significant prediction skill resembles
that for the 2-month leading ADV predictor (Fig. 5c),
although the significant prediction skill is found mainly in the
northwestern Chukchi Sea, which covers 55% of the analyzed
area. The CCA skill distribution for the 2-month leading
ADV and HC is largely overlapped, indicating that the ocean
heat conditions responsible for SIC predictability are closely
related to lateral advection of ocean heat flux (i.e., ADV).

The CCA skill for SIC predicted by the 2-month leading Qsfc

predictor (Fig. 5b) shows that significant forecast skill is found
over the southern or southeastern Chukchi Sea, covering 43%
of the analyzed area. For the 1-month leading Qice predictor
(Fig. 5d), significant prediction skill covers the entire region
of the Chukchi Sea. These results indicate that the 2-month
leading ocean heat advection and surface heat flux indepen-
dently influence SIC in early winter (i.e., sea ice advance) in
the Chukchi Sea through change in the 1-month leading sea
ice production. In the following section, the source of SIC pre-
dictability related to the 2-month leading Qsfc and ADV is
examined diagnostically from the temporal and spatial pat-
terns of the leading CCAmodes.

6. Source of predictability

Evaluation of the forecast skill clarified that the two predic-
tors of the 2-month leading Qsfc and ADV (September–
October) are the determinant factors for predicting sea ice
advance in early winter. The statistics for the CCA calcula-
tions (i.e., the PC modes, CCA truncation points, and squared
canonical correlations) are summarized in Table 1. The CCA
truncation points reflect the number of EOF modes for the
predictors and predictands, which are in turn adopted for the
CCA calculation. The canonical correlation is the correlation
between the predictor and the predictand time series for each
CCA mode, and its squared values indicate the contribution
of each CCA mode to the total variance of the predictand.
In both predictor cases (2-month leading Qsfc and ADV),
the squared canonical correlations for first CCA mode
(CCA1) are distinctly large (0.69 and 0.63, respectively).
Therefore, we examine the spatiotemporal patterns for
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FIG. 4. Forecast skill (global cross-validated correlation) of SIC
(November–December) in the Chukchi Sea (658–758N, 1808–1608W)
for 0-month (November–December) to 11-month (December–
January) lead times from SIC (gray), ocean HC (black), ADV (red),
Qsfc, (blue), Qice (green), and ADVice (cyan). Horizontal solid
and dashed lines indicate the zero value and the 95% confi-
dence level, respectively.
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CCA1 to identify the source of SIC predictability in the fol-
lowing subsections.

a. Qsfc predictor case (September–October)

The canonical correlation maps and time series for the lead-
ing CCA mode (CCA1), shown in Fig. 6, are the spatial distri-
bution of the correlation coefficients between the canonical

correlation time series of Qsfc for CCA1 and the recon-
structed SIC of four EOF modes. Because 40% of the total
SIC variance is explained by CCA1 (Table 1), CCA1 is the
source of predictability in Qsfc related to SIC prediction skill.
The canonical correlation pattern of Qsfc in CCA1 shows sig-
nificant negative values higher than 20.8, in the southeastern
Chukchi Sea (Fig. 6a), where the canonical correlation of SIC

FIG. 5. Spatial distribution of CCA skill (cross-validated correlation between the SIC and
predicted SIC) for 2-month leading forecast from (a) ocean HC, (b) Qsfc, and (c) ADV, and for
1-month leading forecast from (d) Qice. Bold contour (black) indicates the area where the cross-
validated correlation is significant at the 95% confidence level.
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shows positive values (Fig. 6b). The climatological upward
surface heat flux in September–October is prominent at more
than 100 W m22 in the southeastern Chukchi Sea (Fig. 7a);
therefore the negative correlation between SIC and Qsfc

in the canonical correlation map indicates that autumn pre-
conditioning of the atmospheric cooling anomaly leads to sea
ice advance in the eastern Chukchi Sea. The canonical corre-
lation time series of CCA1 exhibits remarkable year-to-year
variability (Fig. 6c), and the positive SIC anomalies in 1994,
1999, and 2001 are related to the distinct increase in surface
cooling in September–October. The averaged SIA in the
Chukchi Sea in early winter shows distinct positive anomalies
in 1994, 1999, and 2001, but the preceding summertime SIA
anomaly is relatively low except for 1994. This result suggests
that the SIAs in early winter in the years of 1999 and 2001 are
caused by the anomalous heat loss in autumn rather than the
persistence of summertime sea ice condition.

Climatological atmospheric conditions indicate that the north-
easterly wind is prominent over the Chukchi Sea where surface
air temperature is ,08C in September–October (Fig. 7b); there-
fore, the northeasterly cold wind anomaly is considered a possi-
ble cause of the upward surface heat flux (cooling). To
understand the mechanism of the atmospheric cooling process
in relation to the leading CCA mode for Qsfc, we conducted
regression analysis of the meteorological variables (surface wind
speed and air temperature) related to turbulent heat flux onto
the predictor canonical correlation time series. The regression
map of surface wind and air temperature in the NCEP–NCAR
reanalysis against the canonical correlation time series of CCA1
is shown in Fig. 8a. The leading CCAmode forQsfc in the Chuk-
chi Sea is related to both the northeasterly wind anomaly and
the negative surface air temperature anomaly associated with
the cyclonic circulation pattern over the Gulf of Alaska.

Because the northeasterly wind anomaly is related to the
cyclonic circulation anomaly over the Gulf of Alaska
(Fig. 8a), which is likely related to the atmospheric teleconnec-
tion pattern such as the Pacific–North American pattern (Barn-
ston and Livezey 1987), we investigated the atmospheric
circulation pattern related to the northeasterly wind anomaly
in terms of the atmospheric teleconnection pattern. The regres-
sion map of 500-hPa geopotential height (z500) against the
canonical component time series of CCA1 for Qsfc is shown in
Fig. 9. The northeasterly wind anomaly over the Chukchi Sea
is related to the negative anomaly over the Gulf of Alaska,
which is accompanied by positive anomalies over the subarctic
North Pacific and North America. To check the relationship
between the dominant teleconnection patterns in the North

Pacific and the leading CCA mode for Qsfc, we calculated the
correlations between the canonical correlation time series of
CCA1 and the major teleconnection pattern indexes in the
Northern Hemisphere (NOAA CPC 2021). We obtained sig-
nificant correlation between the canonical component time
series of CCA1 and the east Pacific–North Pacific index in
October (r = 0.47) at the 95% confidence level. Thus, when the
east Pacific–North Pacific pattern is in the negative phase, the
northeasterly wind over the Chukchi Sea leads to ocean pre-
conditioning preferential for sea ice advance in early winter.

b. ADV predictor case (September–October)

The canonical correlation maps and time series for CCA
mode 1 (CCA1) of ADV in September–October, which
explain 39% of the original variance of SIC (Table 1), are
shown in Fig. 10. Significant positive correlation for ADV is
zonally found around 718–728N (Fig. 10a), where significant
negative correlation for SIC is found (Fig. 10b). This result
indicates that the ocean heat flux convergence set up in
September–October suppresses sea ice advance in the Chukchi
Sea in early winter. The canonical correlation time series exhib-
its a remarkable negative anomaly of SIC in 1991, 1995, and
2016, which is related to excess ocean heat advection, indicat-
ing that the abnormal delays in sea ice advance in these years
were related to lateral ocean heat advection in autumn
(Fig. 1b). It is noteworthy that the canonical correlation time
series for ADV shows a remarkable negative anomaly in 2012
when the summertime sea ice extent in the Arctic Ocean
reached a record minimum (Parkinson and Comiso 2013). This
result implies that suppressed ocean heat flux convergence in
late autumn was related to the substantial sea ice advance in
early winter despite a low sea ice condition in summer.

The physical mechanism controlling ADV in the northern
Chukchi Sea is considered to involve local change in ocean
currents and advection of the upstream temperature anomaly.
Here, we evaluate the influence of change of the local cur-
rents on the ADV signal in the northern Chukchi Sea using
ocean velocity and sea surface height (SSH) in September–
October. The regression map of surface ocean currents in
September–October onto the canonical correlation time
series of ADV is shown in Fig. 11a. The northward current
anomaly is prominent in the entire Chukchi Sea with a maxi-
mum in the Bering Strait, indicating that increase in the vol-
ume transport in the Bering Strait is related to ocean heat flux
convergence within the Chukchi Sea. The regression map of
SSH in September–October shows a significant negative
anomaly that extends along the coastal area of the East

TABLE 1. PC and CCA truncation points for each predictor case. The percentage of the original variance in the predictand and the
predictor retained after PC truncation and the percentage of the original variance in the predictand explained by each CCA mode
are shown in parentheses.

Truncation points
(percent variance explained)

Canonical correlation2

(percent predictand variance explained)

PC-ND SIC PC-predictor CCA CCA1 CCA2 CCA3 CCA4

Qsfc 4 (89) 6 (69) 4 0.69 (40) 0.46 (27) 0.27 (15) 0.12 (7)
ADV 4 (89) 8 (67) 4 0.63 (39) 0.54 (33) 0.23 (14) 0.04 (3)
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Siberian Sea (ESS) (Fig. 11b). This result indicates that the
Bering Strait volume transport in September–October is pre-
dominantly controlled by barotropic adjustment of sea level
change in the Arctic Ocean, particularly in the ESS. The sig-
nificant sea level change in the ESS and the relation to Bering
Strait volume transport is consistent with an earlier study
based on satellite-based bottom pressure data from the Grav-
ity Recovery and Climate Experiment (GRACE; Peralta-
Ferriz and Woodgate 2017). We examined the impact of the
ocean temperature anomaly on the ADV signal in the north-
ern Chukchi Sea through lead–lag correlation analysis
between SST and the canonical correlation time series of
ADV; however, the influence of anomalous ocean tempera-
tures was weak in this area (not shown).

The dominant controlling factors of volume transport in the
Bering Strait are considered to comprise the dynamical bal-
ance of the pressure head difference between the North
Pacific and the Arctic Ocean and the locally induced wind-

driven ocean current system (Woodgate et al. 2012). Negative
SSH anomaly is found over the continental shelf with an
amplified signal from the ESS to the Bering Strait (Fig. 11b).
The pattern of amplification of the SSH anomaly along the
coast is similar to the characteristics of the dynamical
response of SSH caused by arrested topographic waves
(ATWs) (Csanady 1978), which are prominent in the subarc-
tic North Pacific in winter (Qiu 2002, Nakanowatari and
Ohshima 2014). Here, we examine the application of ATW
theory to the interannual variability of volume transport in
the Bering Strait in September–October and compare it with
that derived from the PIOMAS ocean current speed.

According to Csanady (1978), the alongshore volume trans-
port of ATWs (VATW), which occurs in a steady manner, can
be determined as follows:

VATW �
� l2

l1

tl
rf

dl, (1)

FIG. 6. CCA mode 1 of 2-month leading Qsfc predictor case. Canonical correlation map of
(a) Qsfc (September–October) and (b) SIC (November–December), and (c) the time series
of the canonical correlation for Qsfc and SIC. The canonical correlation between them is 0.83.
Colored regions in (a) and (b) indicate areas where the correlations are significant at the 95%
confidence level.
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where a right-handed coordinate system is used with the l axis
along the coastline, tl is the alongshore component of wind
stress, r is the density of water, and f is the Coriolis parame-
ter. On time scales longer than 1 month, the volume transport
of the coastally trapped flow is determined by Eq. (1), which
can be derived from the linear momentum equation (or vor-
ticity equation) in a stationary state. It is this steady flow that
Csanady (1978) called an ATW. This equation implies that
the alongshore transport at l1 is the sum of the Ekman trans-
port to or from the coast over the integral route from the
starting point of l2 to l1. The integral route of the Ekman
transport depends on several factors, such as the shape of the
coastline, shelf width, shelf slope, and bottom friction, which
are difficult to identify (Csanady 1978). Considering that the
significant negative SSH anomaly signal is extended to
∼1758E, we calculated the ATW transport in the Bering Strait
(labeled BS in Fig. 11b) along the coast of the ESS from
1758E [labeled S (for starting point) in Fig. 11b].

The correlation between the time series of the volume
transport in the Bering Strait in PIOMAS and the ATW cal-
culated from the wind stress data of the NCEP–NCAR rean-
alysis is found to be 0.69 from 1980 to 2016 (significant at the
95% confidence level). The amplitude of the detrended ATW
transport anomalies in September–October is comparable
with that of the detrended volume transport anomalies in the
Bering Strait on a year-to-year time scale (Fig. 12a). This
result demonstrates that the interannual variability of the vol-
ume transport in the Bering Strait is explained quantitatively

by ATW theory. We also examined ATWs on the basis of
ERA-Interim wind stress data, and the obtained results are
almost identical to those derived using NCEP–NCAR reanal-
ysis data (Table 2). The ATW transport in September–
October is also significantly correlated with the detrended
SIA in the Chukchi Sea in early winter (r = 20.55; Fig. 12a
and Table 2); therefore, this quantity may be used for sea-
sonal prediction of the volume transport in autumn and the
sea ice advance in early winter.

It is noteworthy that the interannual variability of SIA in
the Chukchi Sea in November–December is highly correlated
with ATW variability in September–October after 2000
(Table 2). For example, the Arctic SIA in summer 2012 was a
record minimum of past decades and the ice retreat was par-
ticularly pronounced in the Pacific sector, including the Chuk-
chi Sea (Parkinson and Comiso 2013); however, the SIA
anomaly in the Chukchi Sea in early winter was relatively
large in 2012 (Figs. 1a and 12a). This positive SIA anomaly
was consistent with the remarkable low value of the Bering
Strait volume transport and ATW anomaly (20.20 Sv), which
led to suppressed advection of ocean heat flux in autumn
(September–October) and promoted sea ice advance in early
winter. Conversely, in 2016, the ATW anomaly in September–
October was 0.3 Sv (i.e., the largest value of the past 38 years)
and the SIA anomaly in the Chukchi Sea was the second lowest
value, even when the linear trend was removed (Fig. 12a).
When linear trends are included in the ATW and volume

FIG. 7. Climatological (a) total surface heat flux (W m22) and
(b) 2-m surface air temperature (8C; contours) and 20-m surface wind
(m s21; vectors) in September–October derived from NCEP–NCAR
reanalysis for 1979–2016. In (a), negative values mean upward, and
the region where the absolute value is.100Wm22 is shaded.

FIG. 8. Regression of (a) September–October 10-m surface wind
speeds (m s21; vectors) and SLP (hPa; contours) and (b) 2-m sur-
face air temperature (8C; contours) onto Qsfc canonical correlation
time series for CCA1. The correlations of wind speed and surface
air temperature where the canonical correlation time series exceeds
the 95% confidence level are also shown by color shading.
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transport anomalies in the Bering Strait in September–October,
the positive ATW volume transport anomaly in 2016 becomes
more prominent with a value of 0.34 Sv and the SIA in the
Chukchi Sea also shows a minimum value (Fig. 12b). These
results imply that the contribution of the ocean heat transport
related to the Bering Strait volume transport to the ocean heat
condition in the Chukchi Sea has become larger in recent years.

Earlier studies identified that the interannual variability of
the volume transport in the Bering Strait induced by the sea
level difference between the Pacific and Arctic Oceans is
related to the Canada Basin (Beaufort high) and the Bering
Sea (Aleutian low) (Danielson et al. 2014; Peralta-Ferriz and
Woodgate 2017). Here, we explore the atmospheric circula-
tion pattern responsible for the interannual variability of
ATWs in September–October through regression onto the
canonical correlation time series of CCA1 for the 2-month
leading ADV. The map of regression of SLP in September–
October onto the canonical correlation time series of ADV is
shown in Fig. 13a. Significant positive and negative anomalies
are found in the Canada Basin and east of the Kamchatka
Peninsula, respectively. The correlation between the time
series of CCA1 for ADV and SLP in the Canada Basin
(77.58N, 1508W) during the entire analyzed period is signifi-
cant at the 95% confidence level (r = 0.46), but the correlation
between them becomes small after 2000 (r = 0.09). The time
series of SLP in the Canada Basin shows that year-to-year
variability is prominent in autumn and that there are no
noticeable linear trends (Fig. 13b), similar to the case of the
summertime Beaufort high (Hori et al. 2015). Conversely, the

time series of SLP east of the Kamchatka Peninsula (658N,
1708E) is highly correlated with the time series of CCA1 for
ADV during the entire analyzed period (r = 20.49) and the sig-
nificant correlation between them persists after 2000 (r =20.70).
This result is consistent with the findings of Serreze et al. (2019),
showing that the wind-driven volume transport in the Bering
Strait, based on mooring observations, is correlated significantly
with SLP east of the Kamchatka Peninsula. It is noteworthy that
the time series of SLP east of the Kamchatka Peninsula shows a
weak trend of decrease with a minimum in 2016 (Fig. 13b). Thus,
it is suggested that the interannual variability of ocean heat
advection in the Chukchi Sea and the maximum ATW in 2016
were controlled by the volume transport in the Bering Strait
driven by the southeasterly wind anomaly related to the low SLP
anomaly east of the Kamchatka Peninsula rather than by the
high SLP anomaly in the Canada Basin.

It is interesting to consider the cause of the anomalously
low SLP east of the Kamchatka Peninsula in autumn 2016.
Using the entire record of the A3 mooring observations,
Serreze et al. (2019) discussed the importance of the low SLP
east of the Kamchatka Peninsula in October 2016, which is
related to the highest heat and volume transports in the
Bering Strait, but the formation mechanism of the SLP anom-
aly has not been examined. The year 2016 was characterized
by frequent occurrence of relatively strong tropical cyclones
in autumn (JMA 2016). In particular, three large tropical
cyclones migrated northward to reach northern Japan, where
large amounts of rainfall influenced the land and ocean envi-
ronments (Kuroda et al. 2020). Therefore, the northward
migration of these tropical cyclones might have influenced
wind conditions in the ESS. Examination of the NCEP–
NCAR reanalysis monthly mean SLP data indicates that the
anomalous low values occurred to the east of the Kamchatka
Peninsula in September–October 2016 (Fig. 14a). Examina-
tion of the daily mean SLP indicates that the anomalous low
signal of SLP was partly related to the northward migration of
a long-lived category-5 tropical cyclone (TC Chaba). This
tropical cyclone was generated on September 26, and it
moved northward to the east of the Kamchatka Peninsula
by 6 October, strengthening along the way (Fig. 14a). In asso-
ciation with the cyclonic circulation to the east of the Kam-
chatka Peninsula, strong easterly winds occurred over the
ESS on 7 October. The time series of mean SLP to the east of
the Kamchatka Peninsula shows that SLP reached 990 hPa
around 6 October (Fig. 14b), and the zonal wind speed shows
a strong easterly wind of ∼10 m s21 (Fig. 14c), which is suit-
able for the generation of ATWs in the ESS. These results
demonstrate that the anomalously low SLP to the east of the
Kamchatka Peninsula in September–October 2016 and the
enhancement of ATWs are highly influenced by the north-
ward migration of tropical cyclones.

7. Summary and discussion

In this study, we investigated the seasonal predictability of
sea ice advance in the Chukchi Sea in early winter through
statistical analysis of long-term ice–ocean coupled reanalysis
data, which realistically reproduce the year-to-year variability

FIG. 9. Regression map between September–October 500-hPa
geopotential height (m) and Qsfc canonical correlation time series
for CCA1. Light and dark shading indicates areas where the posi-
tive and negative correlation between them exceeds the 95% confi-
dence level, respectively.
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of the ice–ocean fields in and around the Chukchi Sea. We
found that the 2-month leading (September–October; autumn)
ocean HC from 0- to 50-m depth in the Chukchi Sea is the
main factor for the interannual variability of sea ice advance
through change in the sea ice production process. The ocean
HC responsible for SIC predictability is independently related
to surface heat flux and ocean heat advection. Our objective
analysis based on PIOMAS outputs confirms that Bering Strait
heat transport in summer–autumn is the dominant predictor
for the timing of sea ice advance in the Chukchi Sea (Serreze
et al. 2016).

Upward surface heat flux, which is related to cooling by
northeasterly winds, enhances sea ice advance in the south-
eastern Chukchi Sea. Sea ice advance was prominent in the
1980s to 1990s, which was related to this surface cooling pro-
cess by anomalous northeasterly winds. The northeasterly
wind anomalies in these years were related to the east
Pacific–North Pacific teleconnection pattern. Nakanowatari
et al. (2015) identified the connection between the interannual

variability of the sea ice area in the Bering Sea and the sum-
mertime atmosphere teleconnection pattern, which is related
to atmospheric convection in the western tropical Pacific
Ocean. Yuan and Xiao (2018) reported significant connection
between SST fluctuation in the Kuroshio–Oyashio confluence
and surface air temperature in the western and eastern North
Pacific through the meandering of the westerlies. Therefore,
the east Pacific–North Pacific teleconnection pattern related
to the northeasterly wind might be linked to air–sea interac-
tions in the northwestern Pacific.

Ocean heat advection within the Chukchi Sea, which is con-
trolled by the strength of the volume transport in the Bering
Strait, has a role in suppressing sea ice advance in the north-
western Chukchi Sea. The strength of the autumn volume
transport in the Bering Strait is related to SSH variability in
the ESS, which is well explained by the ATWs forced by
southeasterly wind stress along the shelf of the ESS. The
importance of sea level variability on the pressure head
driving force for the volume transport in the Bering Strait has

FIG. 10. CCA mode 1 of the 2-month leading ADV predictor case. Canonical correlation map of
(a) ADV (September–October) and (b) SIC (November–December), and (c) time series of canoni-
cal correlation for ADV and SIC. The canonical correlation between them is 0.79. Colored regions
in (a) and (b) indicate areas where the correlations are significant at the 95% confidence level.
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been identified in earlier studies (e.g., Peralta-Ferriz and
Woodgate 2017), but application of ATW theory to the volume
transport in the Bering Strait and its quantitative evaluation is a
new finding. Our study also found that a possible cause of the
wind stress is the SLP anomaly east of the Kamchatka Penin-
sula rather than the high pressure system in the Canada Basin.
In particular, the anomalously low sea ice in 2016 was partly
caused by abnormal ATWs driven by strong southeasterly
winds associated with northward migration of a tropical
cyclone. It has been reported that a poleward trend of tropical
cyclone migration has been evident in both hemispheres since
the 1980s (Kossin et al. 2014). Moreover, the number of tropical
cyclones in the western North Pacific has increased since 1980
(Yamaguchi and Maeda 2020). Thus, the wind-driven process
of ocean heat advection would likely exacerbate the delay of
sea ice advance in early winter caused by the ocean and atmo-
sphere warming projected in the future.

During 2014–16, unusually warm ocean temperatures
occurred in the southeastern Bering Sea, associated with
strong advection of warm water from the Gulf of Alaska
through the Unimak Pass (Stabeno et al. 2017). Moreover, it

was also reported that an unprecedented warming event
occurred in the Gulf of Alaska and the Bering Sea in 2016,
which reflected the combination of a strong El Niño event
with a positive phase of the Pacific decadal oscillation and
anomalous deepening of the Aleutian low (Walsh et al. 2018).
Because some of the warm water in the Bering Sea flows into
the Chukchi Sea through the Bering Strait, the 2016 delay of
sea ice advance in early winter was also influenced by this

FIG. 11. Regression map of (a) surface ocean current anomaly
(cm s21; vectors) and (b) SSH anomaly (cm; colors) in September–
October onto the canonical correlation time series for ADV from
1980 to 2016. In (a) and (b), the surface ocean current and SSH
anomalies, for which the correlations are significant at the 95%
confidence level, are shown by bold vectors (black) and contours
(white), respectively. In (b), the integral routes of ATWs are
defined by the magenta line from the start point (S) to the Bering
Strait (BS).
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FIG. 12. (a) Time series of the autumn (September–October)
ATW transport anomalies (red) in the Bering Strait (BS) (shown
in Fig. 11), volume transport in the BS from PIOMAS (green), and
SIA anomalies in the Chukchi Sea (black) from 1980 to 2016 with-
out the linear trend component. (b) As in (a), but for the raw
monthly mean data with the linear trend component. The scale of
the SIA anomalies is shown on the right-hand axis and inverted for
comparison with the volume transport.

TABLE 2. Correlation coefficients between the time series of
ATWs along the East Siberian Sea calculated from the wind
stress from the NCEP–NCAR reanalysis and ERA-Interim, the
SIA in the Chukchi Sea in November–December, and the
Bering Strait (BS) volume transport derived from PIOMAS
outputs in September–October. Bold numbers indicate
correlations exceeding the 95% confidence level based on the
Monte Carlo simulation, using a phase randomization technique
generating 1000 surrogate time series (Kaplan and Glass 1995).

SIA
(1980–2016)

BS volume
transport

(1980–2016)
SIA

(2001–16)

ATW (NCEP–NCAR) 20.55 0.69 20.63
ATW (ERA-Interim) 20.54 0.69 20.69
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warm water advection. Kodaira et al. (2020) reported that
water temperature was anomalously warm and there was less
sea ice in the Chukchi Sea in 2018–20. They highlighted that a
distinct southerly wind related to an atmospheric blocking
high system over the Bering Sea induces wind-driven trans-
port in the Bering Strait. Thus, for precise forecasting of sea
ice advance in the Chukchi Sea, further investigation of the
upstream ocean thermal conditions and wind-driven ocean
current system responsible for the volume transport in the
Bering Strait must be conducted.

Lenetsky et al. (2021) examined the interannual variability of
ocean heat transport using long-term mooring observations
from the Bering Strait for 1998–2015. They revealed the impor-
tance of the ocean temperature anomaly to ocean heat trans-
port and skillful prediction of sea ice advance in the Chukchi
Sea. Although we focused on the importance of the volume
transport change in the Bering Strait with regard to ocean heat
advection in the Chukchi Sea, we also obtained the highest pre-
diction skill of SIC in the Chukchi Sea, when the 2-month lead-
ing ocean HC was used for the predictor (Fig. 4), which is
consistent with their study. The ocean temperature anomaly is
determined by surface heat flux as well as by lateral advection
anomalies; therefore, the ocean temperature signal is consid-
ered a better predictor for sea ice advance in the Chukchi Sea.

Although the variability of sea ice advance is determined
by atmospheric cooling (promotion effect) and ocean heat

advection (suppression effect), there is a possibility that the
dominant mechanism has shifted from an atmospheric process
to an oceanic process since the 2000s. In fact, we established
that the interannual variability of SIA in the Chukchi Sea has
been sensitive to that of ATWs after 2000. The comparison
between the canonical correlation time series for CCA1
for ADV and Qsfc in September–October and SIA in the
Chukchi Sea also supports the above hypothesis (Fig. 15).
The correlation between the canonical correlation time series
ofQsfc and SIA is significant before 2000 (r =20.71), but their
correlation is small after 2000 (r = 20.08). Conversely, the
canonical correlation time series of ADV is correlated signifi-
cantly with SIA in the Chukchi Sea during the entire analyzed

FIG. 13. (a) Regression map (contours) of monthly mean SLP
(hPa) in September–October onto the canonical correlation time
series of ADV. Shadings indicates significance at the 95% confi-
dence level. (b) Time series of monthly mean SLP anomalies in the
Canada Basin [CB; 77.58N, 1508W, marked by the red cross in (a)]
and east of the Kamchatka Peninsula (KP; 658N, 1708E, marked by
the blue cross) in September–October.

FIG. 14. (a) Daily mean SLP distribution (hPa; colors) and sur-
face wind speed (m s21; vectors) on 7 Oct 2016, and the tracking
route for TC Chaba (black line). The location of the center of the
typhoon is plotted with the arrival date (red). The monthly mean
SLP (hPa) averaged in September–October 2016 is also indicated
by contours (thin black). (b) Time series of the daily mean SLP
east of the Kamchatka Peninsula [KP; 658N, 1708E, shown in (a) by
the cross] from 1 Sep to 30 Oct 2016 (black) and its climatology
(gray). (c) As in (b), but for the zonal wind speed (m s21) in the East
Siberian Sea [EES; 708N, 1808W, marked by the triangle in (a)].
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period (r = 0.67), including the period after 2000 (r = 0.63).
Because SIA has decreased drastically since the 2000s
(Fig. 1b), the ocean temperature in the Chukchi Sea might
not be effectively cooled, even under northeasterly wind con-
ditions. CMIP6 multimodel ensemble forecasts under global
warming scenario SSP2–4.5 or SSP5–8.5 (Notz et al. 2020)
project that the Arctic Ocean will become practically free of
sea ice in September before the middle of the twenty-first cen-
tury; therefore, it is suggested that ocean heat advection could
become a principal influencing factor of the interannual vari-
ability of sea ice advance in the Chukchi Sea in the future.

Oceanographic in situ observations are very limited in polar
regions, and the resultant data gap limits the reliability of ocean
and sea ice forecasts (Smith et al. 2019). Toward improvement
of weather and climate predictions in the Arctic region, the
optimum observing system in the Arctic region and effective
exploitation of current observations in numerical weather and
climate forecast systems have been discussed within the frame-
work of international research projects such as the Polar Predic-
tion Project of the World Meteorological Organization. The
findings of our study indicate that autumn preconditioning of
ocean heat conditions in the Chukchi Sea, which is related to
ocean heat advection from the Bering Strait, has made a large
contribution to the interannual variability of the sea ice advance
in early winter since the 2000s. Therefore, development of a
pan-Arctic near-real-time observing system using Argo profiling
floats and expansion of the voluntary observing ship program
will be necessary for enhanced skill in predicting sea ice in the
marginal sea ice zone through improvement of the initial condi-
tions of forecast models. Because this study was based on a sta-
tistical examination using hindcast outputs, to design a pan-
Arctic near-real-time observing system, we will need to examine
the impact of enhanced in situ observations on sea ice forecast-
ing skill using an ice–ocean coupled data assimilation system.
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APPENDIX

Canonical Correlation Analysis

This appendix provides a mathematical expression of the
CCA methodology used in this study. In accordance with
Barnett and Preisendorfer (1987), the two-dimensional pre-
dictand T(x′,t) and predictor data Y(x,t) are standardized
by and prefiltered with PCA as follows:

Y x, t( ) � ∑p
j�1

k
1=2
j aj t( )ej x( ), x � 1, 2,…,p;

T x′, t( ) � ∑q
j�1

l
1=2
j bj t( )fj x′( ), x′ � 1, 2,…,q;

(A1)

where kj and lj are the eigenvalues, aj(t) and bj(t) are the
principal components, and e and f are the eigenvectors for
EOF mode j. The truncation modes p and q are determined
by the truncation rule of the principal components based
on the Monte Carlo technique with 100 surrogate data
points with temporal variations of white noise.

1980 1985 1990 1995 2000 2005 2010 2015
−2000

−1000

0

1000

2000

year

S
ea

 ic
e 

ar
ea

 a
no

m
al

y 
(K

m
2 )

Chukchi sea (65�−75�N, 180�−160�W)

 

 

C
an

on
ic

al
 c

or
re

la
io

n 
tim

e 
se

rie
s

−4

−2

0

2

4
ND−SIA (detrend)
CCA1(adv)
CCA1(Qsfc)

FIG. 15. Time series of the detrended SIA averaged over
the Chukchi Sea (658–758N, 1808–1608W; black) in November–
December and the canonical correlation time series of ADV (red)
and Qsfc (blue) in September–October. The scale of the canonical
correlation time series is shown on the right-hand axis.
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From the truncated principal components, the cross-
correlation matrix C (p 3 q) is calculated as follows:

cjk � aj t( )bk t( )〈 〉
t, (A2)

where angle brackets (
〈〉
) denote an average over time. The

canonical component vectors (uj and yk) are estimated by
solving the eigenvalue problems of matrix Cjk:

CCT
[ ]

rj � m2
j rj, j � 1, 2,…,p

CTC
[ ]

sk � m2
ksk, k � 1, 2,…, q

}
, (A3)

where rj and sk are eigenvectors of matrix C, which evalu-
ate the contribution of each principal component aj(t)
and bj(t) to the corresponding canonical component vec-
tors. The canonical component vectors are expressed as
follows:

uj �
∑p
i�1

airij and yk � ∑q
i�1

bisik: (A4)

They are also referred to the canonical correlation time
series, and the correlations between the canonical component
vectors are called the canonical correlation coefficients.

The canonical correlation maps (gj and hk) for the predic-
tor and the predictand are obtained by T(x′,t) or Y(x,t) and
the corresponding canonical component vectors:

gj x( ) � Y x,t( )uj t( )〈 〉
t, hk x′( ) � T x′ ,t( )yk t( )〈 〉

t: (A5)

Finally, the predicted value (T′) is estimated from the
linear combination of the eigenvalue (mj), canonical corre-
lation map (hj), and the canonical component vectors of
uj(t):

T′ x′, t( ) � ∑q′′
j�1

mjuj t( )hj x′( ), x′ � 1,…,q′′ # q: (A6)

The adopted CCA modes (q′′) for the prediction, deter-
mined by the statistical significance test, are usually equal
to or less than the total CCA modes (q).
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