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It is popular in psychology to hypothesize that representations of exact number are innately determined—in
particular, that biology has endowed humans with a system for manipulating quantities which forms
the primary representational substrate for our numerical and mathematical concepts. While this
perspective has been important for advancing empirical work in animal and child cognition, here
we examine six natural predictions of strong numerical nativism from a multidisciplinary perspective,
and find each to be at odds with evidence from anthropology and developmental science. In particular,
the history of number reveals characteristics that are inconsistent with biological determinism of
numerical concepts, including a lack of number systems across some human groups and remarkable
variability in the form of numerical systems that do emerge. Instead, this literature highlights the
importance of economic and social factors in constructing fundamentally new cognitive systems to
achieve culturally specific goals.
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One exciting hypothesis about human numerical cognition is that
the origins of human mathematics can be found in innate systems
of quantity representation (Dehaene et al., 2008, 2009; Gallistel &
Gelman, 1991, 1992; Leslie, Gelman, et al., 2008; Nieder, 2017;
Szkudlarek & Brannon, 2017). Indeed, there is abundant evidence
documenting an evolutionarily ancient, cross-species ability to dis-
cern discrete quantities. These abilities have been demonstrated in a
wide variety of animals ranging from insects to fish, birds, monkeys
(Agrillo&Bisazza, 2017; Cantlon, 2012; Jordan et al., 2005; Nieder,
2020; Pahl et al., 2013), and human infants (Feigenson et al., 2002,
2004; Jordan & Brannon, 2006; Wynn, 1992a, 1998; Xu & Spelke,
2000) even as young as 2 days old (Izard et al., 2009). Two
behavioral patterns in perception have been documented
(Feigenson et al., 2004; Jevons, 1871): Precise discernment of small
numerosities (known as subitizing; with a range roughly from 1 to 4),
and an approximate and ratio-sensitive discrimination ability that
obeys Weber’s law for larger numerosities, both of which can be
derived from information-processing considerations (Cheyette &
Piantadosi, 2020).

In addition to these abilities (termed “quantical” cognition by
Núñez, 2017), many people also use symbolic resources for
forming exact representations of large numerosities beyond the
range of subitizing. This capacity can be seen in the familiar use
of number words like “six hundred and forty thousand,” but, as
we review below, language is not the only symbolic format found
in human groups. The ability to symbolically represent exact
large numerosities has been argued to transcend the other quan-
tity representation systems because, on their own, systems for
representing small numerosities are exact only up to about 3–5,
and the psychophysics of the large quantity discrimination sys-
tem is approximate. Neither, on their own, appears able to capture
many people’s fluency with large symbolic numbers (Barner,
2017; Carey & Barner, 2019; Krajcsi et al., 2018; Rips, 2017;
Testolin, 2020).

Here, we focus specifically on hypotheses about the origin of this
system that can symbolically and exactly represent large numer-
osities. One foundational question in the study of numerical cogni-
tion has been to discover to what extent the conceptual knowledge
for large, exact, symbolic number is innately available or biologi-
cally determined. Strongly nativist accounts provide a family of
popular hypotheses to explain the origins of symbolic number.
We consider theories of numerical cognition to advance “biologi-
cally deterministic” or “nativist” arguments when they posit that:
(a) innate quantity mechanisms scale up, essentially on their own, to
produce large, exact symbolic number and perhaps mathematics
(i.e., claiming that innate quantity systems have the requisite math-
ematical content, rather than merely functioning to provide input to
learning mechanisms); or (b) there are innate mechanisms of
representation that are isomorphic to the mathematical and logical
foundations of number.

Generally, in these approaches, the human-specific capacities that
allow for large, exact, symbolic number mirror the elements of
the abstract mathematical logic of number (for a brief overview,
see Barner, 2017). Thus, these approaches suggest that the axioms
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and structures of mathematical systems like Peano arithmetic
(Peano, 1890) may be part of the innate repertoire that humans
are born with.While the precise sense in which these representations
are innately available does not tend to be formalized, here we take it
to mean that these capacities are not critically dependent on specific
environmental input (i.e., they are precultural and preverbal, as with
the quantity abilities we describe above that are available early in
ontogeny). For instance, Gallistel and Gelman (1992) posit that an
innate accumulator mechanism, following Meck and Church
(1983), functions as the representational basis for not just the
approximate discrimination of quantity, but also exact representa-
tions. Gelman (2004) suggests that natural numbers derive their
meaning from a system of mental magnitudes which exist even
before learning: “Subjects believe that the property denoted by
‘three’ may be added to the property denoted by ‘two’ to obtain the
property denoted by ‘five’ because this is already true for the
prelinguistic concepts to which the words refer and from which
they derive their meaning” (p. 442). Leslie, Gelman, et al. (2008)
hypothesize that human infants are born with a generative system for
discrete integers consisting of an innate concept of “one” and a
successor function that recursively creates concepts of higher
numbers (i.e., effectively computing S(x) = x + 1). Although chal-
lenged elsewhere (Carey, 2009b; Relaford-Doyle & Núñez, 2018),
this explicit invoking of the Peano axioms (Leslie, Gallistel, et al.,
2008) leads to the strong claim that “humans possess an inbuilt
learning mechanism in the form of the successor function that
employs a little piece of algebra” (Leslie, Gelman, et al., 2008,
p. 217). Under this hypothesis, children learning to count and use
symbolic number do not discover the concepts themselves, but
rather how to align the successor-system with the approximate
system, and how to use language to form concise symbols for
higher numerosities. Under proposals like these, the conceptual
content of large exact number can be considered as biologically
determined, with behaviors involving symbolic number (such as
counting) being expressions of an underlying pregiven content.
In the developmental literature, strongly nativist accounts have

been criticized for not explaining the empirically observed progres-
sion of stages in number learning, including the difficulty that
children appear to have in learning number words (Carey, 2009a;
Carey & Barner, 2019). There is strong evidence from quantitative,
model-driven theory comparisons that children’s early meanings are
not based on an approximate system (Lee & Sarnecka, 2010, 2011;
Sarnecka & Lee, 2009; Wagner et al., 2019), leaving nativist
approaches that hinge on approximation unlikely to be correct. In
a review of numerous training studies on approximate number,
Szűcs and Myers (2017) found that studies claiming causal links
between approximation and exact number had high false-positive
rates and did not consider compelling alternative explanations for
data, concluding that there “is no conclusive evidence that specific
ANS training improves symbolic arithmetic” (p. 187).
An alternative hypothesis about the origins of symbolic number,

and especially large exact number, holds that the required concepts
are constructed out of representations that are distinct from number
but, when combined appropriately, can express equivalent content
(Carey, 2009a; Piantadosi et al., 2012). In this way, mathematics
learning might be more like learning a skill—or collection of
skills—that requires combining cognitive pieces in order to express
something qualitatively different than what was antecedently avail-
able (Carey, 2009a), much like programmers create qualitatively

distinct programs from simpler pieces (Piantadosi et al., 2012).
More generally, the view that symbolic number is not primarily
determined biologically has been advanced most recently by Núñez
(2017), who argued that cross-cultural work in number has often
been overlooked. Similarly, Beller et al. (2018) have argued for
culture as a critically important element in the study of
numerical cognition, suggesting that an interdisciplinary approach
could be especially useful.

In this article, we draw on findings from both cognitive psychol-
ogy and the anthropology of number in order to evaluate the position
that human-like abstract number and mathematics primarily origi-
nate in biological mechanisms of quantity representation. The view
that symbolic number arises through some strong form of biological
determinism makes a number of predictions about the form and
function of numerical systems across human groups. Specifically, if
the representations at the core of symbolic number acquisition are
primarily biologically determined, we should expect that: (i) number
should be found in all human groups; (ii) the mode of constructing
quantity representations should be universally shared; (iii) number
should emerge relatively easily in development; (iv) the timing of
number acquisition should be roughly the same across human
groups; (v) number should emerge easily within each human group;
and (vi) the history of number should exhibit the level of abstraction
hypothesized in nativist theories. It is worth thinking about each of
these predictions in the context of behaviors which unambiguously
are biologically determined, such as puberty or some aspects of the
development of vision.

In contrast, we argue that symbolic number and counting fail all
of the natural predictions (i)–(vi) of biological determinism. The
cultural history of mathematics shows that, large, exact, symbolic
number is cognitively difficult for humans to create, the product of a
long cross-cultural history (Chrisomalis, 2009b; Damerow, 2015;
Ifrah, 2000; Joseph, 1987) and that modern conceptions of number
are far from universal across human groups. The picture that
emerges instead from the ethnographic literature reveals a diversity
of culturally contingent approaches to problems of quantity, which
are constructed according to local needs, perceptions, practices, and
history (Beller et al., 2018; Crossley, 2007; Dixon &Kroeber, 1907;
Hymes, 1955; Owens & Lean, 2018; Robson, 2008;Wolfers, 1971).
We consider each of (i)–(vi) in turn.

Cross-Cultural Absence of Exact Number

Perhaps the most striking demonstrations of cultural influence on
number are found in environments that do not afford the cultural
support required to create any number words at all. The Pirahã
culture provides a contemporary example, with number terms being
extraneous to their mode of living and thus entirely absent from the
language (D. L. Everett, 2005). Tasks requiring counting cannot be
solved by native Pirahã people (Frank et al., 2008; Gordon, 2004)
and the only words which express quantity can be shown to mean
relative, not exact, quantity. For example, when Pirahã people were
asked to count 10 physical objects in ascending order (i.e., from 1 to
10), they appeared to use a one-two-many count system. That is,
participants labeled sets of size “one” as hói, sets of size “two” as
hoí, and all other sets as baágiso. However, when counting down, it
was apparent that the terms were actually relative and approximate
quantifiers rather than exact numerical terms—including even the
word initially assumed to mean “one” (see Figure 1). Specifically,
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the word that was thought to mean “one” really means “few,” and it
can be appropriately applied even up to 5 or 6 objects if elicitation
started with 10. Similarly, the word that was thought to mean “two”
really means something like “some,” and the word that was thought
to mean “many” does indeed mean “many.” Thus the correct
meanings only became apparent when the initial context was varied
via the experimental manipulation of counting down. Beyond the
Pirahã, these results raise the question of how many other cultures
that appear to have small exact number words in actuality would be
shown to have a similar relative system if the context were
manipulated.
While Pirahã culture is remarkable in many other respects, other

indigenous groups have used small number words in a nonexact
manner. Hammarström (2010) surveys a number of languages that
have been reported in the literature to have no exact number words
above “one,” including two languages that potentially had no exact
number words at all (Oro Win and Xilixana). John Peters, a
missionary-turned-sociologist who spent many years living among
the Xilixana during the initial contact period, described a numeri-
cally ambiguous system that “frustrated and infuriated” him:

Quantity is limited to three words, though the meaning can be modified
by gesture. Mõle means one, and possibly two. Yaluku pèk means
something between two and five, while yalami means anything more
than two. : : : The highest amount would be indicated by using the term
yalami together with a phrase meaning “like the trees of the forest.”
They once told me that there were yalami people in a village they
had just visited. I didn’t know whether the population was 16 or 80.
This system obviously would not work in Western society for purchas-
ing a bicycle or six items at the grocery store, but it was perfectly
adequate for the Yanomami. Exact numbers were not important. (Peters,
1998, p. 52)

Experimental work has shown that theMundurukú of Brazil make
use of quantity terms beyond “two” in an approximate fashion, and
they likewise do not verbally count: When asked to name a quantity
of dots on a screen (between 1 and 15 dots), Mundurukú people
mostly showed consistency with terms for “one” and “two,” whereas

terms for “three” and greater were not applied uniformly (Pica et al.,
2004). For instance, when five dots were displayed, the term for “five”
(pũg põgbi; or “one hand”) was used only 28% of the time. Other
answers included “some,” “four,” “three,” “many,” or other idiosyn-
cratic utterances (and see Izard et al., 2008). This does not mean that
quantity judgments are impossible for Mundurukú speakers, as exact
small quantity and larger approximate quantity estimations seem to be
universal and are easily demonstrated in the absence of learned
number symbols (Butterworth et al., 2008; Dehaene et al., 2008;
Frank et al., 2008, 2012; Pica et al., 2004). However, recent work
by C. Everett (2019) has argued that even small numbers are not
generally privileged in lexical systems of the world.

The use of numerical terms in a nonexact or vague manner
has also been documented for a number of Australian indigenous
groups (see Figure 2), including one language where the term for
“one” could be used approximately (Warlmanpa; Bowern & Zentz,
2012). The existence of vague number words in Australia suggests a
lack of utility for precise numeration prior to colonization (Harris,
1982), although small numeral systems do not necessarily imply
vague number usage (Bowern & Zentz, 2012). Yet as McGregor
(2004) points out, in cases where collections with numerosities
exceeding subitizing range are culturally designated as “many,” it
makes little sense to apply an exact counting procedure since the
numerically labeled quantities can be immediately and nonverbally
apprehended.

Such cultural patterns would be surprising under theories in
which all humans have an innate concept of “one” along with an
innate successor function, since the concepts that these systems
generate are not lexically marked in languages like these, but nearby
quantity terms (e.g., “a few”) are. While the potential lack of
utility for exact quantification historically might be invoked to
defend strongly nativist accounts, such reasoning begs the question
of why symbolic number (and especially large number) would be
biologically encoded in the first place if it were not useful.
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Figure 1
Relativity of Pirahã “Number Words” (From Frank et al., 2008)
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Figure 2
Vague and Nonvague Australian Numeral Systems (From Bowern &
Zentz, 2012)
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Pirahã provides an interesting case in this context, where it is likely
that symbolic number would be useful in trade, and yet it is neither
adopted nor constructed. In fact, Pirahãs rejected number words and
counting as outsider knowledge which is not required for a satisfy-
ing life (D. L. Everett, 2005). Explaining these cultural patterns
remains challenging under strongly nativist accounts.

Forms of Number Representation Are
Diverse Across Cultures

Many nonindustrialized people have developed rich numerical
systems that are quite different from our familiar decimal counting
system. Binary, quinary (base-5), and vigesimal (base-20) systems
have commonly been encountered (Flegg, 1983/2002; Menninger,
1969/1992), along with comparatively rarer forms such ternary,
quaternary, senary (base-6), and others (Hammarström, 2010). But
interestingly—and perhaps counter-intuitively—the concept of a
single counting base is not sufficient for explaining the variety of
systems that have been invented, with body-part systems and
multiple bases also being common, thus necessitating new forms
of classification (Hymes, 1955; Laycock, 1975). Body-part systems
have been observed in South Eastern Australia (Howitt, 1904, pp.
697–698), and the Torres Strait Islands (Ray, 1907), with Ray
(p. 47) describing a base-2 verbal count coexisting with a 19-part
body tally (which started on the little finger of the left side and
looped over the body to the little finger on the right hand). The
names for the places were distinct from the numeral roots for “one”
(urapun) and “two” (ukasar) however, as they were instead the
literal names of positions on the body. Similar body-part systems
have been documented in Papua New Guinea (Franklin & Franklin,
1962; Saxe, 2014; Williams, 1940b). Verbally these systems can be
compared with modulus systems, although they may function like
base counting systems when totals are able to be carried, either
mentally or with additional bodies (Wolfers, 1971). An abundance
of multibase systems have also been studied in Papua New Guinea
and Oceania (Owens, 2001; Owens & Lean, 2018), for instance the
common 2-5-20 cycle, where counting proceeds: 1, 2, 2 + 1, 2 + 2,
5 (often one “hand”), 5 + 1, 5 + 2, 5 + 2 + 1, 5 + 2 + 2, 5 + 5,
and so on, up to a new base of 20 (often one “man”). Even systems of
finger counting show a great deal of diversity (Bender & Beller,
2012), as do numerical notation systems (Chrisomalis, 2009b).
While it may seem that the morphological labeling system for

integers is a degree of freedom removed from the underlying
semantics of a discrete infinity of integer concepts, in some cases
morphological patterns seem inconsistent with notions of an innate
recursive number generator. For example, the theory of an innate
successor function posits that each natural number is generated as
the successor of a previous natural number, with recursion ground-
ing out at “one” (Leslie, Gelman, et al., 2008). This would suggest
that addition by one—application of the successor function—should
provide the most natural base system for counting since it would
transparently map between words/morphology and meaning. How-
ever, even the way that count series are linguistically formed varies
beyond the additive, as some systems exhibit multiplication and
even subtraction in their construction (Bowern & Zentz, 2012;
Carrier, 1981; Dixon & Kroeber, 1907).
Yoruba counting is one well-known system that employs sub-

traction, with 15 root words and a primarily vigesimal structure
(Verran, 2000). An example illustrating subtraction can be seen

from the numeral words for 40–60, which in decimal form could be
translated as: 20 × 2 [forty], 1 + (20 × 2) [forty-one], 2 + (20 × 2)
[forty-two], and so on to forty-four, followed then by: −5 – 10 +
(20 × 3) [forty-five], – 4 – 10 (20 × 3) [forty-six], et cetera up until:
–10 + (20 × 3) [fifty]. To give a written example in Yoruba, “forty-
five” would be márùúndínláàádọ́ ta; where “twenty placed three
ways” (the elision ọ́ ta) occurs at the end of the phrase. Prior to this
we have m (mode grouped), árùún (mode 5), followed by the
elisions dín (it reduces), and then láàád (add 10 it diminishes;
see Verran, 2000, p. 350). From fifty-one to sixty the system
proceeds: 1 – 10 + (20 × 3) until fifty-four, then followed by:
–5 + (20 × 3) and so on until sixty, or 20 × 3. According to Mann
(1887), this particularly complex systemmay have a cultural genesis
in the counting and distribution of cowrie shell currency, and in her
earlier work Verran (2000) noted the etymological connections to
the counter’s hands and feet.

Variation in form goes beyond the structure of the counting
system and includes its use. This may seem unfamiliar because,
in cultures with formal education, we may consider the ability to
apply numbers to any set as one of their defining features. However,
some cultures have imposed constraints on the category of items that
their number words can be applied to (Seidenberg, 1962), suggest-
ing that the generalizability and abstraction that our culture finds in
number—and encodes into features like an innate successor func-
tion—does not generalize well to other human groups. Such diver-
sity is particularly evident in Papua New Guinea (Wolfers, 1971),
where variations likely developed through a combination of inno-
vation and diffusion, moderated by cultural constraints on necessity
and interest in enumeration (Owens & Lean, 2018). For example,
Ponam Islanders have an extensive decimal count system with terms
upwards of 9,000, yet strikingly, not everything would be counted
with this system. Carrier (1981) reported that as a rule, they did not
count people:

Despite obvious skill with numbers, no one has any idea howmany people
live on the island, how many households there are or how many children
are attending the primary school. Even more surprising, many parents of
large families do not knowhowmany children they have without stopping
to think about it. And almost no one knows that there are 14 clans on the
island, although everyone knows their names and can calculate the
number in a few moments. (p. 471)

Saxe (2014) has shown how the introduction of monetary
exchange drives the creation of new forms of number representation
and arithmetical abilities, but exchange itself does not necessarily
imply number usage. For some groups the exact number of gifts
given in a ceremonial exchange is important (e.g., the Ekagi or the
Melpa; Owens & Lean, 2018, pp. 132–133), whereas for others, it is
the visual quality of the presentation that takes precedence, with
exact number playing little to no role (e.g., the Adzera, Dani, or
Loboda; Owens & Lean, 2018, pp. 128–132). For the Ponam, it is
not the absolute number of objects that matters in a ceremonial
exchange, but rather the number relative to another’s gift (Carrier,
1981).

Symbolic Number Learning Is a Difficult
Developmental Process

Ordinary language learning is notable for its rapidity and
richness. Children begin to use their first words within about a year
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(Brown, 1973) and can acquire word meanings from even single
instances (Carey & Bartlett, 1978; Heibeck & Markman, 1987;
Spiegel & Halberda, 2011). Analyses of the distribution of ages at
which children learn words have even suggested that across lan-
guages, children typically require only about 10 examples in order to
learn a word, and that these most useful examples come relatively
independent of a word’s overall frequency (Mollica & Piantadosi,
2017). In comparison, acquiring the correct numerical meaning of
number words (i.e., not just the words themselves) is a lengthy and
difficult process (Baroody, 2006; Carey, 2009a; Carey & Barner,
2019). Children in the U.S., Japan, and Russia typically learn
meanings for number words between ages 2.5 and 4 years (Le
Corre & Carey, 2007; Lee & Sarnecka, 2010, 2011; Piantadosi
et al., 2014; Sarnecka & Lee, 2009; Wynn, 1990, 1992b), even
though they know how to recite these words in sequence before the
process even begins (Carey, 2009a; Fuson, 1988; Gelman &
Gallistel, 1986). Why is it, despite being in a culture that strongly
values numeracy and teaches it with omnipresent stimuli like
Sesame Street and counting board games, that U.S. children require
over a year to learn the meanings involved in number? Moreover,
even learning to count properly does not appear to be fully sufficient
for generalizing children’s number knowledge to all possible num-
ber words (Davidson et al., 2012).
The stages of learning are suggestive of genuine conceptual

creation (Carey, 2009a), where children arrive at an insight into
how a counting procedure relates to cardinality. In line with this,
detailed modeling and experimental work has shown that children’s
meanings do not appear to rely on approximate estimation—which
is shared with other species and available in infancy—but instead
follow a stage-like progression before a sudden jump in understand-
ing (Lee & Sarnecka, 2010; Sarnecka & Lee, 2009; Wynn, 1990,
1992b). This stage-like progression can be explained by learners
who do statistical inference over a space of procedures themselves
(Piantadosi et al., 2012). More recent work has shown how learners
might construct generative mental theories of entire structures like
the integers (infinite, ordered, and discrete) from a simpler basis that
does not presuppose this conceptual structure, but is able to acquire
many different structures across domains (Piantadosi, 2021). This
general approach of learning procedures and representations is
notable in drawing on inferential processes that have been argued
for independently in concept learning (Amalric et al., 2017;
Calvo & Symons, 2014; Depeweg et al., 2018; Erdogan et al.,
2015; Goodman et al., 2008; Goodman et al., 2015; Lake et al.,
2017; Piantadosi & Jacobs, 2016; Romano et al., 2018; Rothe
et al., 2017; Rothe et al., 2016; Wang et al., 2019; Yildirim &
Jacobs, 2015), potentially showing how number systems may be
constructed like other—even artificial—systems of rules that adults
acquire and fluidly manipulate.
Importantly, even as children learn number, they seem not to

automatically understand what we would consider principles of
arithmetic (cf., Gelman & Gallistel, 1986). Children are able to
apply the counting procedure before they have an explicit under-
standing of a successor function (Cheung et al., 2017), or other
properties like commutativity (Baroody & Gannon, 1984) and
infinity (Cheung et al., 2017). Such a protracted period of learning
suggests that acquiring these principles is not driven by initial
conceptual knowledge of axiomatic properties of number (Carey
Barner, 2019).

The Timing of Symbolic Number Acquisition Varies
Cross-Culturally

While there is certainly cultural variability in the age at which
biologically determined events occur (e.g., in motor development;
Karasik et al., 2010), the picture from number learning is starkly
different in scale: The age at which children learn the meaning of
number words appears to be driven almost entirely by external
factors. Evidence for this comes from some of our own work with
the Tsimane’, an autarkic indigenous people from lowland Bolivia.
The Tsimane’ language has a decimal system of numeration,
although it is possible that a quinary system was formerly employed
(Sakel, 2011, pp. 167–168). While counting and number have
grown in importance for Tsimane’ people over several decades
(e.g., the use of Spanish has increased mainly due to market contact
and government education initiatives), mathematical abilities still
remain of marginal importance when considered relative to large-
scale industrialized societies.

Tsimane’ children proceed through the same stages of number
learning observed in the U.S. but at a much slower rate, sometimes
taking three to four times as long to acquire counting (Piantadosi
et al., 2014). For comparison, we know of no variation in biology
that is changed by a factor of 3—it would be as though children in
the U.S. went through puberty in their early teens, but in some
cultures this happened around age 40. This argues strongly against,
for instance, biological maturation as the cause of children’s diffi-
culty in number learning. Instead, the timing of number acquisition
for Tsimane’ is likely caused by being exposed to far fewer formal
and informal instances of number usage, including much less child-
directed speech in general (Cristia et al., 2017). This timing differ-
ence is unlikely to be purely about learning the words themselves
(Boni et al., 2021), as the acquisition curves in Tsimane’ number are
most consistent with them needing to wait longer to observe the
required data for learning or constructing number (Mollica, 2019).
These effects mirror in an indigenous group known effects of input
on number acquisition even in the U.S. and the Oksapmin (Saxe,
1981). The implication then is not only that verbal counting systems
are cognitively difficult to develop, but that they crucially depend on
a great deal of learning and input—the extent and nature of which in
turn hinge on the cultural context.

A data-driven hypothesis matches studies in the U.S. which have
found a strong effect of the amount of data learners receive in
driving their acquisition (Levine et al., 2010). In some cases, the
relevant data might be subtle and depend on other representational
systems. For instance, Almoammer et al. (2013) found that the
timing of Slovenian and Saudi Arabic number acquisition is likely
influenced by the presence of dual grammatical markers in these
languages. In both cases, almost total dependence on data is
consistent with the lack of symbolic number in some cultures
[see (i) above], and hard to understand under theories that derive
number primarily from biology rather than primarily from
experience.

Long Historical Development of Symbolic Number

The development of symbolic number concepts throughout his-
tory has been neither uniform nor universally shared across different
contexts. While all humans appear able to perceive quantity and
have the ability to develop symbolic number and counting given the
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appropriate input, the extent to which exact number concepts are
actually developed is driven by environmental and cultural factors.
For example, Divale (1999) has argued that climatic conditions
predict the development of counting systems in traditional societies
(in terms of highest count), specifically through situations where
food storage and calculation are important for survival. This sug-
gests that counting systems in such situations are developed as
solutions to culturally relevant problems.
However, the relation between number and culture is not found in

a simple unilineal social development of number concepts
(Donohue, 2008), as some 19th-century theorists believed (e.g.,
Crawfurd, 1863). Epps et al. (2012) for instance have argued that
hunter-gatherer and agriculturalist modes of social organization are
not good predictors of number system development, and in the
development of written numerical systems, Chrisomalis (2009b)
provides evidence for a multilineal, rather than unilineal evolution.
Yet the greater elaboration of number systems is, in general, related
to greater sociocultural complexity (Chrisomalis, 2009b; Divale,
1999; Nissen et al., 1993; Overmann, 2016; Robson, 2008;
Schmandt-Besserat, 1978). Sociocultural complexity here refers
largely to matters of material culture, hierarchical division, socio-
economic stratification, population density, and the production and
management of surplus (e.g., for ceremonial feasting; Hayden &
Villeneuve, 2011). Large-scale comparative ethnological analyses
suggest that such complexity precedes the greater elaboration of
number systems (Overmann, 2016), and hence number development
can be seen as a class of pragmatic solutions to social exigencies—
exigencies which have not been universally shared across cultures
throughout history (Hayden & Villeneuve, 2011; Saxe, 2014).
The suggestion that material and complex cultural needs provided

the impetus and cognitive scaffolding for number development
(Overmann, 2013) fits with archeological evidence demonstrating
the historical development of abstract number systems. The history
of numbers in the ancient Near East, which effectively is the early
history of writing and accounting, provides a striking and
well-attested example of the social roots of number. Toward the
end of the third millennium BCE in Mesopotamia, a numerical
system akin to modern numerals was developed using cuneiform

script (Damerow, 2015; Damerow & Englund, 1993b); however,
the entire cuneiform writing system had its genesis in a much earlier
bureaucratic need for administrative control. Over the span of
thousands of years, a variety of quantitative control mechanisms
emerged that were in fact the pragmatic responses of a centralized
bureaucracy to growing economic complexity. In particular,
these mechanisms consisted of increasingly refined techniques
for information recording and quantification (Nissen et al., 1993,
p. 116).

The use of physical material (such as stone and clay tokens) to track
goods stretches back for millennia before the oldest known written
signs were made on tablets, first occurring somewhere around 3,400
BCE (Friberg, 1994; Schmandt-Besserat, 1986). The contents of
these tablets consisted exclusively of numerical content (Englund,
2004). However, unlike later texts, the very earliest written symbols
had not yet been codified into a well-defined system. The early
symbols were likely linked to prior counting practices using clay
tokens (e.g., some symbols are clearly impressed tokens; Englund,
2004; Friberg, 1994; Nissen, 1993), but they were used in a flexible
manner and probably document a transitional phase to a more
structured numerical system (Damerow & Englund, 1993b). For
example, at this stage signs could apparently be repeated an arbitrary
number of times, in comparison to the decimal limit that appears later
(e.g., see Figure 3).

The practical deficiencies of such a flexible system likely led to
the emergence of protocuneiform in archaic tablets sometime
around 3,100 BCE. Used primarily for accounting purposes, the
numerical content of these tablets was highly structured and rule-
based, but the symbols were not representations of a single abstract
system of natural numbers. Instead, the texts indicate a variety of
pragmatic and context-dependent metrological systems, the symbols
of which expressed both quantitative and qualitative information
and which were therefore unlike modern numerals—a fact
which eluded Assyriologists for many decades (see Damerow &
Englund, 1993a; Englund, 2004). For instance, depending on the
metrological context, the same ● symbol could denote different
amounts of various goods. Thus unlike a numeral, a single● could
represent 10 sheep in one system, 6 lots of barley in another
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Figure 3
Photograph (van Driel, 1982) and Line Drawing (Englund, 1998) of an Early Simple Numerical Tablet with Non-
Standard Numerical Grouping (Jebel Aruda, ca. 3500–3350 BCE)
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(about 150 L), or 18 lots of field area in yet another system (about
6 ha; Nissen et al., 1993, pp. 25–29, pp. 131–132), among other
possibilities.
It was not until the end of the third millennium BCE, centuries

after the appearance of the proto-cuneiform texts, that a “pure”
number system was developed in the form of the sexagesimal place
value notation system. Being a universally applicable symbolic
system that expressed only the abstract concept of number, this
new system was initially used to translate values between the
various metrological systems, and according to Robson (2008) it
“temporarily changed the status of numbers from properties of real-
world objects to independent entities that could be manipulated
without regard to absolute value or metrological system” (p. 78).
Unlike those earlier numerical systems which proliferated symbols
fit for specific metrological contexts, the new symbols were akin to
modern numerals, although they operated on base-60 (with 10 as a
subbase) and without a symbol for zero. To return to the earlier
example with the context-dependent● symbol, by now 1, 6, 10, or
18 units of anything could be expressed as , , , and ,
respectively. While this system did not supplant the traditional
systems for accounting purposes, it enabled mathematical investi-
gations that were of little practical value administratively, and found
application some 1,500 years later in Babylonian astronomy, per-
haps the earliest empirical science that can be historically linked
to modern practice (Damerow & Englund, 1993b; Joseph, 1987;
Pingree, 1992).
This record suggests that the very idea of a natural number (in the

mathematical sense), or the creation of a symbolic system that
strictly expressed that concept, was a drawn-out process in ancient
Mesopotamia, being dependent on particular sociopolitical condi-
tions and needs. The implication is not that prior to these develop-
mentsMesopotamian people had no numerical concepts nor that this
history represents a universal cultural evolutionary stage (and see
Chrisomalis, 2009a), but rather that particular social conditions were
required for the development of these symbolic systems which were
important in enabling further conceptual developments in number
and mathematics (Joseph, 1987). For example, the positional prin-
ciple of the sexagesimal place value system used in Babylonian
astronomy was later adopted by the Greeks, who appear to have
merged it with their own alphabetic numeral system (Chrisomalis,
2009b). The constructed nature of the “integer” then seems to run
parallel to another mathematical invention—negative numbers. The
concept of debt in accounting was known and utilized in Mesopo-
tamia without the concept of negative numbers (Nissen et al., 1993),
and such numbers were resisted in Europe for quite some time
(Mattessich, 1998). Yet debt obviously can be conceptualized as a
negative quantity, and the first full mathematical acceptance of
negative numbers, about 600 CE in India, was likely derived from
accounting practices (Mattessich, 1998). This again illustrates that
aspects of number which today may seem natural or fundamental,
were derived culturally in response to specific material needs—not
axiomatically from biology.

Large Exact Number Representations Started
Concretely, Not Abstractly

Strongly nativist theories assume that the key abstractions—
high-level knowledge about integer concepts, like a successor
function, that is not dependent on a particular physicalization—

are innately specified. However, the anthropological history of
number suggests that early systems for quantity representation
drew on concrete physical objects, not on preexisting abstract
concepts of integers or successorship. Indeed, the history of number
charts that abstractions only arose when social conditions necessi-
tated increasingly complex quantitative solutions.

In the early ethnology of indigenous approaches to number, much
was made of the preponderance of concrete referents and techniques
(Conant, 1896).1 It was noted that number words frequently had
body-part referents (e.g., hand for “five”), and also that external
material such as counting sticks or tally objects were often utilized,
demonstrating a dependence on physical items that would be odd if
the required concepts were shared innately. Such external materials
were often used alongside or in place of a developed verbal counting
system. This remarkable phenomenon—marrying physical and
verbal—has been almost entirely lost in psychological discussions
of how humans represent number (but see Bender & Beller, 2012).
For example, Fortune (1942, pp. 58–60) reported that the Mountain
Arapesh counted without difficulty using only three numeral root
words. Each time their count exceeded 24, they would stake a
physical peg into the ground to keep track of howmany multiples of
24 had been passed. Thus, this system represented exact quantities
modulo 24 in a verbal system, and multiples of 24 with physical
stakes. In Papua New Guinea, counts that surpassed the limit of a
body-part system would necessitate another physical body if the
ability to mentally carry the total had not been developed, as it had
not for some groups (Wolfers, 1971). There is also evidence from
Southern New Guinea of item-specific counting systems arising
from physical practices, for instance in the counting of yams (Evans,
2009; Hammarström, 2009).

The use of external material could also enable exact quantity
manipulations outside of a verbal counting system. For example,
Iqwaye people historically managed quantities that were likely
beyond the practical limits of their count system: Mimica (1992,
p. 16) describes a knotted rope with 161 shells historically used for
enumerating warriors, where rather than verbally counting indivi-
duals, men could instead bemarked off against each shell one by one
to obtain the proper amount. In a similar manner, some Australian
aboriginal people notched message sticks as mnemonics without
necessarily needing (separate) symbolic number: Each mark would
simply correspond to some informational item that the messenger
needed to relay (Howitt, 1904, pp. 691–710). Howitt (1904) also
described the estimation of time whereby a messenger made, or in
other cases removed, a body mark for each day traveled (p. 702).
While it is known that aboriginal Australian counting systems were
diverse and not uniformly one-two-many systems (Bowern & Zentz,
2012; Dawson, 1881; Harris, 1982), such techniques could still be
utilized among those groups that did not develop extensive verbal
counting systems.

As McGregor (2004) points out, these methods of tallying and
marking are conceptually related to counting, yet they remain sym-
bolically and cognitively distinct activities. In Peirce’s classification
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1 Many of these early authors were influenced by 19th century notions of
social progress (e.g., Conant, 1905; Crawfurd, 1863; McGee, 1899), and
attributed numerical differences to racial and social inferiority (cf., Dawson,
1881). Critiques can be found in Harris (1982) andMimica (1992), or Verran
(2000), and tangentially in Donohue (2008) and D. L. Everett (2005, 2009),
and McGregor (2004).
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(Burks, 1949), a number word and a tally mark both constitute signs,
but the number word is symbolic in that it arbitrarily points to some
numerosity, whereas the tally set is iconic in that it always contains its
own referent (i.e., its own numerosity in marks). What is shared by
these systems then appears to be a capacity for instantiating one-to-
one correspondence between sensory objects and linguistic or
physical markers, suggesting that a principle like one-to-one corre-
spondence is a necessary precursor to number (Carey&Barner, 2019;
Izard et al., 2009), particularly given that it is a strategy used
by children before learning number (Jara-Ettinger et al., 2015).
However, young children initially have only a partial understanding
of one-to-one correspondence as it relates to exact number, and they
cannot relate the principle to arbitrary set sizes (Izard et al., 2014;
Muldoon et al., 2005).Moreover, capacities suggesting a potential for
understanding one-to-one correspondence have recently been found
in nonhuman primates (Koopman et al., 2019), again raising the
challenge of what specifically differs between humans and other
species as a key issue for the field.
If one-to-one correspondence is necessary in order to construct

number, that makes the natural prediction that one-to-one correspon-
dence tasks should be possible even within groups that lack symbolic
number. Among the Pirahã results have been mixed, with Gordon
(2004) and C. Everett andMadora (2012) reporting failures on one-to-
one matching in the absence of number words. Frank et al. (2008) on
the other hand were able to replicate Gordon’s findings, but they
showed success on the one-to-one matching task. In the Frank et al.
(2008) study, Pirahã people were asked to line up markers one-to-one
with a line of items provided by an experimenter. When objects were
placed in parallel, making the one-to-one alignment natural, partici-
pants were able to match items one-to-one. However, when asked to
match with an orthogonally presented array, where a visual strategy of
verifying correspondence without number words becomes very
difficult, they did not succeed (see Figure 4). In a similar manner,
the use of one-to-one matching in dot counting tasks by some
Mundurukú people has been reported by Pica et al. (2004), who
noted that some participants (when prompted) were able to “count
very slowly and non-verbally bymatching their fingers and toes to the
set of dots” (p. 500). This in turn suggests that one of the primary

utilities for symbolic number is in providing a verbal memory cue for
one-to-one correspondence. Indeed, Frank et al. (2012) showed that
English undergraduates’ performance in matching tasks mirrors those
of Pirahãs when they are given a dual task to prevent verbalizing. In
turn, the earliest archeological evidence for tally systems reflects
iconic one-to-one correspondence, with artifacts appearing to dem-

onstrate repetitions of single units like ||||| (Bogoshi et al., 1987;
Coolidge & Overmann, 2012; d’Errico et al., 2012), as opposed say
to cross-tallied unit groupings like .

Of course, the archeological record depends exclusively on found
physical material, and it is not easy to draw firm conclusions about the
underlying meanings (although elaborate attempts have been made;
Elkins, 1996; Marshack, 1964; Robinson, 1992). Moreover, the
history of nonartifactual and potentially ancient counting techniques
such as finger counting (Bender & Beller, 2012), and even numeral
words, are not fully recoverable. Yet by turning to historical linguistics
we see that the oldest known verbal counting systems, likely the two-
cycle systems (Owens&Lean, 2018), are constructed out of numerical
roots for numerosities within subitizing range only (i.e., 1 and 2),
again pointing to the role of external material and genuine conceptual
construction in creating higher number representations (Overmann,
2018). The unusual historical stability of low-limit number words, in
contrast to higher number words (Pagel &Meade, 2018), also suggests
a primary role for perception (Barner, 2017).

Body-part systems can present a bridge between externalized and
verbal counting, particularly when they function physically like tallies
yet have named positions like a verbal count list (e.g., see Williams,
1940a). Saxe (2014) carried out a series of numerical cognition studies
with the Oksapmin in 1980, who at the time utilized a 27-part system
(see Figure 5), in addition to a separate list of conversational and
noncounting words for numbers up to “five” (Saxe, 2014, p. 331).
When presented with an addition task with objects present (e.g., six
objects plus eight more), elders had no difficulty enumerating the total
set, and indeed many would physically touch each individual object
once along the body system, eventually exhausting all objects and
thereby arriving at the correct sum. However, when the objects were
not visible, the same task proved difficult. On the other hand, many
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Figure 4
Line-Match Tasks Used by Frank et al. (2008)

(a) Parallel match. (b) Orthogonal match.

Note. See the online article for the color version of this figure.
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younger Oksapmin people succeeded via the use of novel strategies;
for instance by symbolically dissociating position names from their
usual physical location (see Study 4-1; Saxe, 2014). Such strategies
were more common and elaborate among those with greater partici-
pation in the expanding market economy, demonstrating that even
seemingly simple mental arithmetic requires cultural scaffolding in
order to be developed. In effect, purely mental arithmetical operations
were not fully available for the elders, even well-within range of the
body-part system, simply because the supporting cognitive strategies
had not been widely developed (presumably by virtue of their lack of
relevance in traditional Oksapmin life; Saxe, 2014, p. 47). It should
also be noted that symbolic abstraction in body-based systems such as
finger counting is widespread and diverse (Bender & Beller, 2012),
again pointing to a culturally contingent interplay between mind and
body. More recently, the extent to which concrete methods for
manipulating number can be internalized has been demonstrated
dramatically by the practice of mental abacus, although even then
the role of gesture remains critically important (Brooks et al., 2017).
The idea that abstract number systems have their roots in physical

material also finds parallel in the historical development of measure-
ment systems. In the same way that the etymology of English
language measurement words show a strong bias toward the body
or external objects, small-scale societies have hadmeasurement terms
that are “overwhelmingly based on the body” (Cooperrider &
Gentner, 2019, p. 3). The historical process of abstraction that occurs
more generally in materially complex societies relies upon reflection
and the construction of new concepts which arise from material
structures acting as cognitive scaffolding—a process in which tallies
are but an early example (Overmann, 2016). Yet as Cooperrider and
Gentner (2019) point out, there is no straightforward path toward
greater abstraction (and see Chrisomalis, 2009b; Donohue, 2008).
Based on analysis of the historical and ethnographic record of
measurement practices, they conclude that the use of abstract units
is not a natural or intuitive activity, but rather is a culturally evolved
practice that develops over long periods of time. For instance, just as
the Adzera of Papua New Guinea would keep records of gifts to be
reciprocated using string bark tallies (Owens & Lean, 2018, p. 129),

the practice of recording debts on stocks of notched wood survived at
the English exchequer until the 19th century (Baxter, 1989; “Records
By Tally Sticks,” 1909).

Concluding Discussion

Because we live in highly numerate and literate societies where
virtually every adult understands not just counting but also at least
some higher mathematics, it is easy to lose sight of the fact that
throughout human history there has been a striking diversity of ways
to represent number. Within the field of numerical cognition, the
prevalence of theories based in biological determinism may be due
to the fact that much of the work on number has prioritized animal
work over data from nonindustrialized cultures (Núñez, 2017).
Animal work has been instrumental in understanding fundamental
mechanisms of quantity representation across species, but nonhu-
man animals do not learn symbolic number in the same way as
human children, nor do they have anything approaching the breadth
of other mathematical abilities that are available to humans. Thus, in
seeking the origins of number, it may well be that the differences
between humans and animals ought to be emphasized, as opposed to
the similarities.

A richly accumulative culture may be one of the primary differ-
ences between animals and all human groups. Depending on
powerful and general learning mechanisms, cultural transmission
permits mathematical knowledge to be passed down and perhaps
leads to striking cascades in how people think (C. Everett, 2017).
Formal and informal pedagogical practices prevent each generation
from needing to reinvent mathematical abstractions (revising old
ones instead), in what Tomasello (2009) called “the ratchet effect.”
If part of this ratchet works to simplify and abstract, then over time
cultural transmission may tend to remove complications that are
otherwise perfectly natural for humans—such as counting systems
that depend on the type of object, rely on subtraction, interface with
physical objects, or use icons. If scientists happen to live in a culture
where this ratchet has led to a particularly simple and abstract
formulation of numbers (e.g., the Peano axioms), it would be easy to
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Figure 5
Oksapmin Body-Part System (From Saxe & Esmonde, 2005)
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confuse the outcome of this cultural process with human nature—
especially if the breadth of human numerical creation was not well
appreciated. It is easy to forget, for instance, that the mathematics
we know today—including concepts as simple as fractions, real
numbers, and zero—has been unknown throughout almost all of
human history, even up through the scientific revolution (e.g.,
Grattan-Guinness, 1996; Ifrah, 2000; Kleiner, 1988; Logan, 1979;
Mattessich, 1998). Galileo formalized his physics with geometrical
arguments, not algebraic equations, but generations of successive
physicists have been able to reformulate the underlying ideas of
physics in increasingly general and simple mathematical forms,
from Newton’s laws, to Lagrangian and Hamiltonian mechanics,
and more. Just as it would be a mistake to suppose that modern,
elegant incarnations of physics must be innate because they are
simple, it equally would be mistaken to think that distinctly WEIRD
(Henrich et al., 2010) formulations of natural number somehow
reflect a universal human nature.
Instead, the early ethnographic history suggests that representa-

tions are constructed ad hoc according to the cultural stock of
available techniques—which are not necessarily attached to an
underlying integer-like representation. Even when two domains
are both plausibly numerical, some cultures have invented separate
quantity systems which are not necessarily easily translatable. For
the Kewa of Papua New Guinea, Franklin and Franklin (1962) write
of a division between verbal counting and a body-part system used
for specific purposes such as calendar reckoning: “The body-part
system is not usually used to specify an exact number, e.g., one, five
or ten. Informants cannot give the body-part system equivalent of a
four base system number. Instead, the words meaning a few, lots,
several, are used” (p. 189). In terms of verbal counting, some
indigenous groups have historically used count systems with rela-
tively high practical upper limits, some have only linguistically
marked numerosities of small sets within subitizing range, and
others have not marked exact numerosities at all (at times excluding
even an unambiguous numerical term for “one”). Iconic techniques,
based on one-to-one correspondence, have allowed some groups to
solve quantitative problems without the use of the symbolic number.
The movement to mathematics in the current Western sense, and
hence the study of numbers as abstract entities unto themselves, was
dependent on the development of writing and the concerns of
complex hierarchical state-like societies, and hardly a natural or
universal occurrence. Indeed, Chrisomalis (2009b, p. 427) argues
that the most significant event in the history of numerical notation
was not the often-cited invention of positional systems or the
discovery of zero, but in fact the rise of capitalism as a dominant
world system.
Importantly, our claim here is not that evolution and biology play

no role in symbolic number learning—clearly humans differ from
other animals in their capacity for mathematical and numerical
cognition, and this difference could not exist without a biological
foundation. As in any other cognitive domain, comparison between
humans and other animals is likely to be informative (e.g., Cantlon,
2012), for instance, about how evolutionarily ancient systems shape
our own learning and perception. Our claim is that whatever
biological heritage is relevant for large exact numbers, the biology
does not determine the form of mental numerical content. We have
argued that this is evidenced in the diversity of numerical systems
that exist, the cultures in which they do not, and the difficulties
of constructing number both historically and developmentally.

The history of number shows that appeals to nativism—specifically
innate content tantamount to the integers—oversimplify and
obscure crucial sociocultural processes. Thus, although our focus
here has been on cultural factors, it is apparent that the correct
picture is in fact a biocultural one. It is likely that biological learning
mechanisms can be broadly deployed to learn structures and pro-
cedures across domains, supporting the variety of numerical forms
that have emerged cross-culturally and throughout history (as well
as their absence).

This points to the need for developmentalists to pursue theories of
how procedural knowledge may be learned, represented, and taught
(Rule et al., 2020); perhaps drawing on our ability for metaphor
(Lakoff Núñez, 2000; Núñez, 2009) and structure more generally
(Tenenbaum et al., 2011). One approach to this is to formalize
statistical learning theories that work over general spaces of algo-
rithms like those in counting and other domains because children
learn counting as an algorithm. Indeed, developmental theories of
early number should have drawn on the now classic educational
literature showing that children have a rich ability to revise and
improve algorithms that they have been taught in domains like
addition (Ashcraft, 1982, 1987; Groen&Resnick, 1977; Kaye et al.,
1986; Siegler & Jenkins, 1989; Svenson, 1975). Models of such
learning argue that children effectively choose between known
procedures (Siegler & Jenkins, 1989; Siegler & Shipley, 1995;
Siegler & Shrager, 1984) or create fundamentally new procedures
(Jones & Van Lehn, 1994; Neches, 1987). If such abilities are
available early in learning, and people’s capacity to infer such
procedures extends far beyond numerical content, it is then most
natural to hypothesize that number learning itself depends on these
much more general algorithmic mechanisms of learning and repre-
sentation (Piantadosi, 2021).

Nativist developmental theories have tended to argue that
specific innate content is required for large exact representations,
while ignoring the fact that developmental processes can acquire so
much more—including fractions, real numbers, complex numbers,
vectors, matrices, tensors, arbitrary groups or fields, transfinite
numbers, logic, set theory, calculus, non-Euclidean geometry,
computability theory, and so on. Considering the breadth of human
learning ability, theories which posit that exact symbolic number is
determined by innate resources—while accepting these other do-
mains as constructed—would seem to miss the marks of parsimony
and adequacy, in addition to failing the most natural empirical
predictions we describe above.
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