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SECOND-ORDER STEIN: SURE FOR SURE AND OTHER APPLICATIONS
IN HIGH-DIMENSIONAL INFERENCE
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Stein’s formula states that a random variable of the form z�f (z) −
divf (z) is mean-zero for all functions f with integrable gradient. Here, divf

is the divergence of the function f and z is a standard normal vector. This pa-
per aims to propose a second-order Stein formula to characterize the variance
of such random variables for all functions f (z) with square integrable gradi-
ent, and to demonstrate the usefulness of this second-order Stein formula in
various applications.

In the Gaussian sequence model, a remarkable consequence of Stein’s
formula is Stein’s Unbiased Risk Estimate (SURE), an unbiased estimate
of the mean squared risk for almost any given estimator μ̂ of the unknown
mean vector. A first application of the second-order Stein formula is an Un-
biased Risk Estimate for SURE itself (SURE for SURE): an unbiased esti-
mate providing information about the squared distance between SURE and
the squared estimation error of μ̂. SURE for SURE has a simple form as a
function of the data and is applicable to all μ̂ with square integrable gradient,
for example, the Lasso and the Elastic Net.

In addition to SURE for SURE, the following statistical applications are
developed: (1) upper bounds on the risk of SURE when the estimation target
is the mean squared error; (2) confidence regions based on SURE and using
the second-order Stein formula; (3) oracle inequalities satisfied by SURE-
tuned estimates under a mild Lipschtiz assumption; (4) an upper bound on
the variance of the size of the model selected by the Lasso, and more gener-
ally an upper bound on the variance of the empirical degrees-of-freedom of
convex penalized estimators; (5) explicit expressions of SURE for SURE for
the Lasso and the Elastic Net; (6) in the linear model, a general semipara-
metric scheme to de-bias a differentiable initial estimator for the statistical
inference of a low-dimensional projection of the unknown regression coeffi-
cient vector, with a characterization of the variance after debiasing; and (7)
an accuracy analysis of a Gaussian Monte Carlo scheme to approximate the
divergence of functions f : Rn →R

n.

1. Introduction.

1.1. Stein’s formula. The univariate version of Stein’s formula reads E[Zg(Z)] =
E[g′(Z)] where Z ∼ N(0,1) and g is absolutely continuous with finite E[|g′(Z)|].1 In [45],
Stein observed that the set of equations E[Zg(Z)−g′(Z)] = 0 for all absolutely continuous g

with integrable gradient characterize the standard normal distribution. Stein went on to show
that if E[Wg(W) − g′(W)] is small for a large class of functions g, then W is close in distri-
bution to N(0,1); see, for instance, [18], Proposition 1.1, for a precise statement. Since then,
this powerful technique has been used to obtain central limit theorems under dependence; we
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E|max(Z,0){g(Z) − g(0)}| ≤ ∫∞
0 |g′(u)|E[ZI{Z≥u}]du = E[IZ>0|g′(Z)|] and similarly for Z < 0.
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refer the reader to the book [19] for a recent survey on Stein’s formula and its application to
normal approximation.

The multivariate version of Stein’s formula [46] can be described as follows. Let z =
(z1, . . . , zn)

�∼ N(0, In) be a standard normal random vector. Let f1, . . . , fn be functions
R

n → R and denote by f the column vector in R
n with ith component equal to fi . If each

fi is weakly differentiable with respect to zi and E[|fi(z)| + |(∂/∂zi)fi(z)|] < +∞ for each
i ∈ [n], then

(1.1) E
[
z�f (z)

] = E
[
divf (z)

]
holds, where divf = ∑n

i=1(∂/∂xi)fi is the divergence of f . The central object of the paper
is the random variable z�f (z) − divf (z), which is mean-zero in virtue of (1.1). We provide
in the next section an exact identity for the second moment of z�f (z) − divf (z) that we
termed second-order Stein formula.

1.2. Related work. Iterated Stein formulae have appeared in several works. If g :
R

p → R is smooth with compact support, iterating the univariate Stein’s formula di-
rectly yields E[zizjg(z)] = E[(∂/∂xj )(∂/∂xi)g(z)] for i 
= j as well as E[(z2

i − 1)g(z)] =
E[(∂2/∂x2

i )g(z)]. This may be succinctly written as

(1.2) E
[(

zz� − In

)
g(z)

] = E
[∇2g(z)

]
,

where ∇2g is the Hessian of g. Formulae that relate E[∇2g(z)] to expectations involving
g(z) and the density of z have been obtained for non-Gaussian z; see [29], Theorem 1, [25],
[57], Theorem 2.2, among others. In these works, (1.2) is used to estimate the Hessian in
optimization algorithms [25], to estimate the index in some single-index models [57] or to
extract discriminative features for tensor-valued data [29]. If z ∼ N(0, In), the second- or-
der iterated Stein formula from these works reduce to (1.2). The fact that iterating Stein’s
formula introduces higher order derivatives should be expected, because Stein’s formula is
intrinsically an integration by parts—Stein’s formula is sometimes referred to as Gaussian
integration by parts, for instance in [49], Appendix A.4, where statistical physics results are
rigorously derived using Stein’s formula and the so-called Smart path method as a central
tool. As we will see throughout the paper, the identity for the variance of z�f (z) − divf (z),
given in (2.3) below, does not involve the second derivatives of f or require their existence, in
striking contrast to the iterated formula (1.2). Although both identities can be seen as second-
order Stein formulae, they are of a different nature and aim different applications.

1.3. Motivations. In the Gaussian sequence model where y = μ + ε is observed for an
unknown mean μ ∈ R

n and noise ε ∼ N(0, In), Stein’s Unbiased Risk Estimate (SURE),
proposed in [46], provides an unbiased estimator for the risk ‖μ̂−μ‖2 of any estimator μ̂(y)

with integrable gradient as a consequence of (1.1). Namely, the decomposition

‖y − μ̂‖2 + 2 div μ̂ − n︸ ︷︷ ︸̂SURE
−‖μ̂ − μ‖2 = ε�h(ε) − divh(ε),

where h(ε) = ε − 2(μ̂ − μ) shows that ŜURE defined above is an unbiased estimate of
E[‖μ̂ − μ‖2] in virtue of Stein’s formula (1.1) applied to h. Although the identity E[ŜURE] =
E[‖μ̂ − μ‖2] is well understood and widely used, little is known about the quality of the
approximation ŜURE ≈ ‖μ̂ − μ‖2 in probability, or equivalently about the variance and con-
centration properties of the random variable ε�h(ε) − divh(ε) above. A first motivation of
the present paper is to understand the stochastic behavior of ε�h(ε) − divh(ε) (beyond un-
biasedness) in order to provide uncertainty quantification for SURE. If multiple estimators
{μ̂(1), . . . , μ̂(m)} are given for estimation of μ, it is natural to use the estimator among those
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with the smallest SURE. However, statistical guarantees for such SURE-tuned estimate are
lacking, except in very special cases, for instance when {μ̂(1), . . . , μ̂(m)} are linear functions
of y. When the estimators are linear, ŜURE is the same as Mallows’ Cp [38] and the SURE-
tuned estimate enjoys oracle inequalities with remainder term growing with logm; cf. [5] or
Section 3.3 and the references therein. We are not aware of oracle inequalities satisfied by
the SURE-tuned estimate for general nonlinear estimators {μ̂(1), . . . , μ̂(m)}; as explained in
Section 3.3 below, our bounds on the variance of ε�h(ε) − divh(ε) are helpful to fill this
gap.

A second motivation of the paper regards the Lasso β̂ in sparse linear regression with
Gaussian noise ε ∼ N(0, In). Despite an extensive body of literature on the Lasso in the last
two decades, little is known about the stochastic behavior of the size of the model selected by
Lasso; for instance, no previous results are available on the variance of this integer valued ran-
dom variable. It is well known that the model size of the lasso can be written as divf (ε) for
certain function f : Rn → R

n; see Section 3.4 below and the references therein. This integer
valued random variable—the size of the model selected by the Lasso—is not differentiable
with respect to ε and the Stein formulae (1.1)–(1.2) cannot be iterated further to understand
the variance of this discrete random variable. Another avenue to bound the variance of a ran-
dom variable of the form g(z),z ∼ N(0, In) is the Gaussian Poincaré inequality, which states
that Var[g(z)] ≤ E[‖∇g(z)‖2] for differentiable g :Rn →R [14], Theorem 3.20. Again, this
is unhelpful if g(·) is discrete-valued and nondifferentiable.

1.4. Contributions. The central result of the paper states that the variance of the random
variable z�f (z) − divf (z) is exactly given by

E
[(

z�f (z) − divf (z)
)2] = E

[∥∥f (z)
∥∥2 + trace

((∇f (z)
)2)]

when both f : Rn →R
n and its derivative are square integrable. Surprisingly, although this is

obtained by iterated integration by parts, the second derivatives do not appear. As explained
in the next section, the second derivatives of f need not exist for the previous display to
hold—in that sense, the previous display is more broadly applicable than (1.2). The above
formula appears especially useful for estimators commonly called for in high-dimensional
statistics such as the Lasso, the Elastic-Net or the Group-Lasso that are differentiable almost
everywhere with respect to the noise, but not twice differentiable. The contributions of the
paper are summarized below:

• We derive in Section 2.1 the above second-order Stein formula, an identity for the variance
of the random variable z�f (z) − divf (z).

• As a consequence, Section 2.3 provides an identity and an upper bound for Var[z�f (z) −
divf (z) − g(z)] in general, including Var[divf (z)].

Statistical applications are then provided in Section 3:

• Section 3.1 leverages the second-order Stein formula to construct an unbiased risk estimate
for Stein’s Unbiased Risk Estimate (SURE) in the Gaussian sequence model. We shall call
this general method SURE for SURE.

• Section 3.2 describes confidence regions based on SURE and the second-order Stein for-
mula.

• Section 3.3 provides oracle inequalities for SURE-tuned estimates.
• Section 3.4 provides new bounds on the variance of the size of the model selected by the

Lasso in sparse linear regression.
• Section 3.5 provides SURE for SURE formulas for the Lasso and E-net as well as the

consistency of SURE for SURE in the Lasso case.
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• Section 3.6 provides a scheme to de-bias a general class of estimators in linear regression
where one wishes to estimate a low-dimensional projection of the unknown regression
coefficient vector.

• Section 3.7 develops a Monte Carlo scheme to approximate the divergence of a general
differentiable estimator when the analytic form of the divergence is unavailable.

The above statistical applications are obtained as consequences of the second-order Stein
formula of Section 2.1. The point of the second-order Stein formula is that, in many statisti-
cal applications where the random variable z�f (z)−divf (z) appears, the standard deviation
Var[z�f (z)− divf (z)]1/2 is of smaller order than either divf (z) or z�f (z) and the approx-
imation z�f (z) ≈ divf (z) holds not only in expectation as in (1.2), but also in probability.

As the second-order Stein formulas in Section 2 are explicit identities and sharp inequali-
ties, the results in Section 3 are all nonasymptotic in nature except Corollary 3.5, often stated
with explicit constants. In applications to linear regression, the second-order Stein formulas
are used in conjunction with results which may require sparsity conditions, but the relatively
mild sparsity ‖β‖0 � n/ logp are sufficient in such cases where β is the coefficient vector
living in R

p and n is the sample size.

1.5. Notation. Throughout the paper, ‖ · ‖ is the Euclidean norm and ‖ · ‖F the Frobenius
norm, and f : Rn → R

m is L-Lipschitz if ‖f (u) − f (v)‖ ≤ L‖u − v‖, ∀u,v. For f : Rn →
R

n with components fi , denote by ∇fi ∈ R
n the gradient of each fi , and by ∇f the matrix

in R
n×n with columns ∇f1, . . . ,∇fn. The random variable X is said to be in L1 (resp., L2)

if E[|X|] < +∞ (resp., E[X2] < +∞). For two symmetric matrices A, B of the same size,
we write A � B if and only if B − A is positive semidefinite.

2. Mathematical results.

2.1. A second-order Stein formula. Stein’s formula (1.1) states that the random variable

(2.1) z�f (z) − divf (z)

is mean-zero. The main result of the current paper is the following second-order Stein for-
mula, which provides an identity for the variance of the random variable (2.1) with f in
the Sobolev space W 1,2(γn) with respect to the standard Gaussian measure γn in R

n. Let
C∞

0 (Rn) be the space of infinitely differentiable functions R
n → R with compact support.

The Sobolev space W 1,2(γn) is defined as the completion of the space C∞
0 (Rn) with respect

to the norm

(2.2) ‖g‖1,2 = E
[
g(z)2]1/2 +E

[∥∥∇g(z)
∥∥2]1/2

, g ∈ C∞
0

(
R

n),
where z ∼ N(0, In). By [13], Proposition 1.5.2, the space W 1,2(γn) corresponds to locally in-
tegrable functions g :Rn →R that are weakly differentiable and E[g(z)2] +E[‖∇g(z)‖2] <

+∞ for z ∼ N(0, In). This definition of the Sobolev space emphasizes the feasibility of ap-
proximating the functions in the space by infinitely smooth ones. Alternatively, W 1,2(γn) can
be defined as the completion of the space of Lipschitz functions under the same norm. We
refer to Section 1.5 in [13] for a complete description of the space W 1,2(γn).

THEOREM 2.1. Let z = (z1, . . . , zn) be a standard normal N(0, In) random vector. Let
f1, . . . , fn be functions Rn →R and f be the column vector in R

n with ith component equal
to fi .
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(i) Assume that each fi is twice continuously differentiable and that its first- and second-
order derivatives have subexponential growth. Then

E
[(

z�f (z) − divf (z)
)2] = E

n∑
i=1

f 2
i (z) +E

n∑
i=1

n∑
j=1

∂fi

∂xj

(z)
∂fj

∂xi

(z).(2.3)

An equivalent version of (2.3) for functions of y = N(μ, σ 2I ), in vector notation, is given in
(2.7) below.

(ii) If f :Rn →R
n is L-Lipschitz for L < +∞, then (2.3) holds.

(iii) If each component fi of f belongs to W 1,2(γn), then (2.3) holds.

We note that while (i) and (ii) may have broader appeal due to their simplicity, the assump-
tion in (iii) above is the most general: If f satisfies either the assumption in (i) or (ii) then the
components of f are in W 1,2(γn) and the assumption in (iii) holds. The presentation above
also highlights the proof strategy: We first derive (2.3) under the smoothness assumption in
(i) and (ii)–(iii) then follow by an approximation argument.

Here is a proof of Theorem 2.1(i). Extensions (ii) and (iii) are proved in Appendix A.

PROOF OF THEOREM 2.1(i). When the functions fi and (∂/∂xj )fi are treated as random
variables, their argument is always z through the proof, so we simply write fi for fi(z) and
similarly for the partial derivatives. A sum

∑
i or

∑
k always sums over {1, . . . , n}.

Write the left-hand side in (2.3) as

E

∑
i

(
zifi − ∂fi

∂xi

)(∑
j

zjfj − ∑
l

∂fl

∂xl

)
.

By a first application of Stein’s formula for each term zi below, the identity

(2.4) E

[(
zifi(z) − ∂fi

∂xi

(z)

)
g(z)

]
= E

[
fi(z)

∂g

∂xi

(z)

]
holds for any continuously differentiable function g :Rn →R such that the partial derivatives
(∂/∂xi)g have subexponential growth. Hence the left-hand side in (2.3) equals

E

∑
i

f 2
i +E

∑
i

fi

∑
j

zj

∂fj

∂xi

−E

∑
i

fi

∑
l

∂2fl

∂xi∂xl

.

We again apply Stein’s formula to each zj in the second term above to obtain

E

∑
i

f 2
i +E

∑
i

∑
j

∂fi

∂xj

∂fj

∂xi

+E

∑
i

fi

∑
j

∂2fj

∂xj∂xi

−E

∑
i

fi

∑
l

∂2fl

∂xi∂xl

.

Since f is twice continuously differentiable, by the Schwarz theorem on the symmetry of the
second derivatives, we have

∑
j (∂/∂xj )(∂/∂xi)fj = ∑

�(∂/∂xi)(∂/∂x�)f� and the proof of
(2.3) is complete. �

The second-order Stein formula (2.3) can then be rewritten as

E
[(

z�f (z) − divf (z)
)2] = E

[∥∥f (z)
∥∥2 + trace

((∇f (z)
)2)]

.(2.5)

By the Cauchy–Schwarz inequality,

E
[(

z�f (z) − divf (z)
)2] ≤ E

n∑
i=1

f 2
i (z) +E

n∑
i=1

n∑
j=1

(
∂fi

∂xj

(z)

)2

= E
[∥∥f (z)

∥∥2 + ∥∥∇f (z)
∥∥2
F

]
.

(2.6)
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If ∇f (z) is almost surely symmetric, then trace((∇f (z))2) = ‖∇f (z)‖2
F and the above in-

equality is actually an equality. However, the inequality in (2.6) is strict otherwise.
If y = μ + ε with ε ∼ N(0, σ 2In) and f :Rn →R

n, then

(2.7) E
[(

ε�f (y) − σ 2 divf (y)
)2] = σ 2

E
[∥∥f (y)

∥∥2] + σ 4
E
[
trace

((∇f (y)
)2)]

is obtained by setting z = ε/σ and applying Theorem 2.1 to f̃ (x) = σf (μ + σx), provided
that f̃ satisfies the assumption of Theorem 2.1(iii). Similarly, if y = μ+ ε with ε ∼ N(0,�)

then

E
[{

ε�f (y) − trace
(
�∇f (y)

)}2] = E
[∥∥�1/2f (y)

∥∥2] +E trace
[{

�∇f (y)
}2]

follows from Theorem 2.1 with z = �−1/2ε and f̃ (x) = �1/2f (μ + �1/2x).
Theorem 2.1 is also applicable under the central limit theorem. Let εm = m−1/2 ∑m

i=1 xi

with i.i.d. xi ∈ R
n, E[xi] = 0 and E[xix

�
i ] = �. If {‖f (εm)‖2,‖∇f (εm)‖2

F , (ε�
mf (εm))2,

m ≥ 1} is uniformly integrable and ∇f is almost everywhere continuous, then E[ε�
mf (εm)] =

E[trace(�∇f (εm))] + o(1) and

E
[(

ε�
mf (εm) − trace

(
�∇f (εm)

))2]
(2.8)

= E
[∥∥�1/2f (εm)

∥∥2] +E
[
trace

((
�∇f (εm)

)2)] + o(1)

as m → ∞ for fixed n. If, for instance, f : Rn → R
n is L-Lipschitz with almost every-

where continuous gradient and E[‖xi‖4] ≤ C for some constant C > 0 possibly depend-
ing on the dimension, then {‖εm‖4,m ≥ 1} is uniformly integrable, which implies that
{‖f (εm)‖2,‖∇f (εm)‖2

F , (ε�
mf (εm))2,m ≥ 1} is also uniformly integrable, so that (2.8)

holds by, for example, [55], Theorem 1.11.3.

2.2. Inner-product structure. The two sides of (2.5) are quadratic in f and (2.5) is en-
dowed with an inner-product structure. Indeed, if f,h : Rn → R

n satisfy the assumption of
Theorem 2.1(iii), so do f + h and f − h. Appliying (2.5) to f + h and f − h, taking the
difference and dividing by 4 yield

E
[{

z�f (z) − divf (z)
}{

z�h(z) − divh(z)
}]

(2.9)
= E

[
f (z)�h(z) + trace

(∇f (z)∇h(z)
)]

thanks to trace(∇f (z)∇h(z)) = trace(∇h(z)∇f (z)).

2.3. Extensions and upper bounds on variance. The second-order Stein formula (2.3)
lets us derive the variance of more general random variables of the form

(2.10) z�f (z) − σ 2 divf (z) − g(z)

and a related upper bound for the variance, where z ∼ N(0, σ 2In) and f : Rn → R
n and

g : Rn → R satisfy the smoothness and integrability conditions of respective dimensions as
in Theorem 2.1. The formula for the variance of (2.10) can be viewed as an extension of (2.3)
from g = 0 to general g. As a special case, this provides a formula and an upper bound for
the variance of the divergence with g(x) = x�f (x).

THEOREM 2.2. Let z ∼ N(0, σ 2In), f be as in (2.7) and g : Rn → R such that x �→
g(σx) belongs to W 1,2(γn). Then the variance of the random variable in (2.10) satisfies

Var
(
z�f (z) − σ 2 divf (z) − g(z)

)
= E

[
σ 2∥∥f (z) − ∇g(z)

∥∥2 + σ 4 trace
((∇f (z)

)2)] + Ṽ (g)(2.11)

≤ E
[
σ 2∥∥f (z) − ∇g(z)

∥∥2 + σ 4 trace
((∇f (z)

)2)](2.12)
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with Ṽ (g) = Var(g(z)) − σ 2
E[‖∇g(z)‖2]. In particular, with g(x) = x�f (x),

Var
[
divf (z)

] = E
[
trace

((∇f (z)
)2)] + Var

[
z�f (z)/σ 2]

−E
[∥∥f (z)/σ

∥∥2] − 2E
[
f (z)�

(∇f (z)
)
z/σ 2](2.13)

≤ E
[
trace

((∇f (z)
)2)] +E

[∥∥(∇f (z)
)
z/σ

∥∥2]
.

PROOF. Assume without loss of generality σ = 1. By (2.4),

E
[(

z�f (z) − divf (z)
)
g(z)

] = E
[
f (z)�∇g(z)

]
,

so that (2.11) follows from Theorem 2.1 and some algebra. The Gaussian Poincaré inequality
[14], 3.20, applied to g reads Ṽ (g) ≤ 0 which gives (2.12). Finally, for g(x) = x�f (x), we
have (∂g/∂xi)(z) = fi(z) + ∑n

j=1 zj (∂fj/∂xi)(z) so that ∇g(z) = f (z) + (∇f (z))z. �

As we have mentioned earlier, (2.11) becomes (2.7) when g = 0. The extension in Theo-
rem 2.2 is particularly useful in our investigation of the variance of SURE and other quantities
of interest. A striking feature of the upper bound in (2.13) is that the variance of the random
variable divf (z), defined using the first-order derivatives of f , can be bounded from above
using only the first-order partial derivatives of f . In particular, the second partial derivatives
of f may be arbitrarily large or may not exist. This feature will be used in the next section to
study the variance of the size of the model selected by the Lasso in linear regression, which
takes the form divf for a certain function f .

It can be seen from the definition of Ṽ (g) that the inequality (2.12) involves a single
application of the Gaussian Poincaré inequality to g(z). Thus, it holds with equality if and
only if g(x) is linear.

Finally, we obtain the following by applying (2.13) of Theorem 2.2 with the function f (x)

replaced by f (x) −E[∇f (z)]x:

Var
[
divf (z)

]
(2.14)

≤ E
[
trace

((∇f (z) −E
[∇f (z)

])2)] +E
[∥∥{∇f (z) −E

[∇f (z)
]}

z/σ
∥∥2]

.

This recovers Var[divf (z)] = 0 when f (z) is linear in z and may be useful in other cases
where ∇f (z) −E[∇f (z)] is small.

2.4. Beyond Gaussian distributions. Although the next section provides applications
of (2.5) and (2.12) in the Gaussian case only, we briefly mention here extensions to non-
Gaussian z when z has density x → exp(−ψ(x)) where ψ : Rn → R is twice continuously
differentiable with Hessian H(x) = ∇2ψ(x). Throughout, let h,f : Rn → R

n be smooth
vector fields with compact support and g :Rn →R be smooth. By integration by parts,∫ {∇ψ(z)�h(z) − divh(z)

}
g(z)e−ψ(z) dz =

∫
h(z)�∇g(z)e−ψ(z) dz.

Applying this identity twice, first to h = f and g(x) = ∇ψ(x)�f (x) − divf (x), second to
h(x) = ∇f (x)�f (z) and g = 1 gives

E
[{∇ψ(z)�f (z) − divf (z)

}2]
(2.15)

= E
[
f (z)�

{
H(z)

}
f (z) + trace

{∇f (z)2}]
which extends (2.3) to non-Gaussian distributions. Similar to Theorem 2.2, if ψ is addition-
ally strictly convex then

Var
(∇ψ(z)�f (z) − divf (z) − g(z)

)
(2.16)

= E
[∥∥H(z)1/2f (z) − H(z)−1/2∇g(z)}∥∥2 + trace

((∇f (z)
)2)] + Ṽ (g),
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where Ṽ (g) = Var(g(z)) − E[‖H(z)−1/2∇g(z)‖2] and Ṽ (g) ≤ 0 follows from the Brase-
camp–Lieb inequality [2], Theorem 4.9.1. In the special case where f = ∇u for some smooth
u :Rn →R, identity (2.15) is related to the Bochner formula used in the analysis of diffusion
operators [2], Section 1.16.1, which gives hope to extend (2.3) and its applications to prob-
ability measures defined on non-Euclidean manifolds—although this goal lies outside of the
scope of the present paper.

3. Statistical applications.

3.1. SURE for SURE. In the Gaussian sequence model, one observes y = μ + ε where
the noise ε ∼ N(0, In) is standard normal and μ is an unknown mean. Given an estimator
μ̂(y) where μ̂ : Rn → R

n is some known almost differentiable function with ∇μ̂(y) in L1,
SURE provides an unbiased estimate of the mean squared risk E‖μ̂ − μ‖2 given by

ŜURE = ‖μ̂ − y‖2 + 2 div μ̂(y) − n.(3.1)

The fact that this quantity is an unbiased estimate of E‖μ̂ − μ‖2 is a consequence of the
identity

‖μ̂ − μ‖2 = ‖μ̂ − y‖2 + 2ε�(μ̂ − μ) − ‖ε‖2

with E[‖ε‖2] = n and Stein’s formula (1.1) which asserts that E[ε�μ̂(y)] = E[div μ̂(y)]
whenever all partial derivatives of μ̂ are in L1. The random variable div μ̂(y) can be com-
puted from the observed data since it only involves y as well as the partial derivatives of μ̂.
The quantity d̂f = div μ̂(y) is an estimator sometimes referred to as the empirical degrees of
freedom of the estimator μ̂. In this subsection, we develop second-order Stein methods to
evaluate the accuracy of SURE.

3.1.1. SURE for SURE in general. We define the mean squared risk of the scalar estima-
tor ŜURE by

RSURE = E
[(

ŜURE − ‖μ̂ − μ‖2)2]
.(3.2)

This means we treat ŜURE as an estimate of the squared prediction error ‖μ̂ − μ‖2 as well.
This is reasonable as the actual squared loss ‖μ̂ − μ‖2 is often a more relevant target than its
expectation. One may also wish to treat ŜURE as an estimate of the deterministic E[‖μ̂−μ‖2]
and consider the estimation of Var(ŜURE). Thanks to Theorem 2.2, we will develop in the
next subsection methodologies for the consistent estimation of upper bounds for Var(ŜURE)
and RSURE under proper conditions on the gradient of μ̂.

SURE is widely used in practice to estimate ‖μ̂−μ‖2 or E‖μ̂−μ‖2 either because it is of
interest to estimate the prediction error of μ̂, or because several estimators of the mean vector
μ are available and the statistician hopes to use the ŜURE to compare them on equal footing.
Although ŜURE provides an unbiased estimate of the loss ‖μ̂ − μ‖2 and its expectation, such
estimate may end up being not so useful, or provide spurious estimates, if the quantity (3.2)
is too large. For estimators of interest where ŜURE is used in practice, it is important to un-
derstand the risk of ŜURE given by (3.2) in order to provide some uncertainty quantification
about the accuracy of ŜURE. For instance, one should expect ŜURE to be successful if R

1/2
SURE

is negligible compared to ŜURE, that is, R
1/2
SURE ≪ ŜURE. On the other hand, if R

1/2
SURE ≫ ŜURE

then we would expect that estimates from ŜURE would be spurious with strictly positive prob-
ability and ŜURE should not be trusted. Under the square integrability condition on the first
and second partial derivatives of f (y), [46] proposed an unbiased estimate of the risk (3.2).
However, the twice differentiability condition typically fails to hold for estimators involving
less smooth regularizers such as the Lasso. [23] studied the performance of SURE optimized
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separable threshold estimator (SureShrink), and thus the accuracy of SURE in this special
case. [24] derives an identity for the quantity (3.2) in the special case of the Lasso. In a gen-
eral study of SURE tuned estimators, [51] developed a correction for the excess optimism
with the nominal SURE in such schemes. Section 5 in [31] establishes consistency of SURE
for the Lasso when the design matrix has i.i.d. N(0,1) entries and the tuning parameter is
large enough. The second-order Stein identity

E
[{‖z‖2 − n + γ (z)

}2] = E
[
2p + 2�γ (z) + γ (z)2],

where � = ∑n
i=1(∂/∂xi)

2 is the Laplacian, was used in [32] to prove the inadmissibility of
SURE for the estimation of the squared loss of the James–Stein estimator when n ≥ 5.

The following result, which extends Theorem 3 of [46] to allow application to the Lasso
and other estimators only one-time differentiable, computes the expectation of the quantity
(3.2) as well as an unbiased estimator of it directly through Theorem 2.1.

THEOREM 3.1. Let ε ∼ N(0, In) and y = μ + ε. Let μ̂ be an estimator of μ with μ̂ :
R

n →R
n satisfying the assumptions of (2.7), and define ŜURE by (3.1). Then

E
[(

ŜURE − ‖μ̂ − μ‖2)2]
(3.3)

= E
[
4
∥∥y − μ̂(y)

∥∥2 + 4 trace
((∇μ̂(y)

)2) − 2n
]
.

Consequently, SURE for SURE

R̂SURE = 4
∥∥y − μ̂(y)

∥∥2 + 4 trace
((∇μ̂(y)

)2) − 2n(3.4)

is an unbiased estimate of the risk of ŜURE in (3.2).

REMARK 3.1. With the notation f (y) = μ̂ − y used in [46], ∇f (y) = ∇μ̂(y) − In and
SURE for SURE is also given by

R̂SURE = 2n + 4
∥∥f (y)

∥∥2 + 4 trace
((∇f (y)

)2) + 8 divf (y).(3.5)

PROOF. Write div μ̂ for div μ̂(y) and μ̂ for μ̂(y). By simple algebra,(‖μ̂ − μ‖2 − ŜURE
)2 = (

ε�{
2(μ̂ − y) + ε

} + (n − 2 div μ̂)
)2

.

By (2.7) applied to y → 2{μ̂(y) − y} + (y − μ), we obtain in expectation

RSURE = E
[∥∥2{μ̂ − y} + ε

∥∥2 + trace
{
(2∇μ̂ − In)

2}]
= E

[
4‖μ̂ − y‖2 + 4 trace

{
(∇μ̂)2} − 2n

]
(3.6)

+E
[
4ε�(μ̂ − y) + 4(n − div μ̂)

]
.

The proof of (3.3) is complete as the last line is 0 in virtue of Stein’s formula. Equality (3.5)
is obtained by observing the following for f (y) = μ̂(y) − y,

∇f (y) = ∇μ̂ − In, divf (y) = trace[∇μ̂] − n,

4 trace
[(∇f (y)

)2] + 8 divf (y) = 4 trace
[(∇μ̂(y)

)2] − 4n. �

REMARK 3.2. In the Gaussian sequence model where the noise ε has distribution
N(0, σ 2In) with σ 
= 1, the estimator ŜURE has the form

ŜURE = ‖y − μ̂‖2 + 2σ 2 div μ̂ − σ 2n.(3.7)

Theorem 3.1 implies that in this setting, SURE for SURE is

R̂SURE = 4σ 2‖y − μ̂‖2 + 4σ 4 trace
[
(∇μ̂)2] − 2σ 4n,(3.8)

as its expectation is identical to RSURE =E[(ŜURE − ‖μ̂ − μ‖2)2].
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3.1.2. Error bounds and consistency. In the spirit of SURE, SURE for SURE in (3.8)
is fundamentally a point estimator for the risk of SURE as defined in (3.2). It could be the
starting point for the construction of an interval estimator or simply provide some measure of
the performance of SURE when nothing else or better is available. Because of its availability
in broad settings, (3.8) is not expected to always yield sensible and theoretically justifiable
interval estimates. Still, we provide here consistent estimation of upper bounds for both the
risk (3.2) and Var(ŜURE) under proper conditions on μ̂. Furthermore, when the gradient is
a random orthogonal projection as in Lasso, isotonic regression and many other cases, the
theorem below proves the consistency of SURE for SURE in (3.8). Define

R̂′
SURE = 2σ 2(‖y − μ̂‖2 + ŜURE

)
,(3.9)

which satisfies R̂′
SURE − R̂SURE = 4σ 4{div μ̂− trace((∇μ̂)2)} compared with SURE for SURE

in (3.8). In particular, R̂′
SURE = R̂SURE if ∇μ̂ is a random orthogonal projection.

THEOREM 3.2. Let ŜURE, RSURE, R̂SURE and R̂′
SURE be as in (3.7), (3.2), (3.8) and (3.9),

respectively, and assume y = μ + ε with ε ∼ N(0, σ 2In).

(i) If E
∑n

i=1 |(∇μ̂)ii | < +∞, then E[R̂′
SURE] ≥ σ 4n.

(ii) If the function y → μ̂(y) is 1-Lipschitz, then

E
[(

(ŜURE)+1/2 −E
[‖μ̂ − μ‖2]1/2)4]1/4 ≤ R

1/4
SURE + 3σ.(3.10)

(iii) If the function y → μ̂(y) is 1-Lipschitz and ∇μ̂ is almost everywhere symmetric
positive semidefinite, then R̂SURE ≤ R̂′

SURE and

Var(ŜURE) = E
[(

ŜURE −E
[‖μ̂ − μ‖2])2] ≤ RSURE + σ 4n.(3.11)

(iv) If R̂′
SURE ≥ R̂SURE and max‖u‖=1 |u�(In − ∇μ̂)u| ≤ 1 almost surely, then

E

[(
R̂′

SURE

E[R̂′
SURE]

− 1
)2]

≤ 16σ 4

E[R̂′
SURE]

≤ 16

n
.(3.12)

REMARK 3.3. If μ̂(y) = Xβ̂(y) for some fixed X ∈ R
n×p and a penalized estimator

β̂(y) = arg minb∈Rp{‖y −Xb‖2/2+g(b)} for convex g : Rp →R, then μ̂ is 1-Lipschitz and
∇μ̂(y) is almost everywhere symmetric positive semidefinite. This follows from arguments
in [3, 9] as explained at the end of Appendix B. Hence for any convex regularized least-
squares estimate β̂(y), μ̂(y) = Xβ̂(y) satisfies the conditions in (ii)–(iv) above as well as
R̂SURE ≤ R̂′

SURE almost surely.

If the estimation of the deterministic quantity E[‖μ̂ − μ‖2] is essential, inequality (3.10)
asserts that up to an additive absolute constant, RSURE bounds from above the quartic risk of
ŜURE1/2 when the estimation target is E[‖μ̂ − μ‖2]1/2. If in addition the gradient is almost
everywhere symmetric positive semidefinite as in Remark 3.3, inequality (3.11) asserts that
the risk Var(ŜURE) is bounded from above by RSURE +σ 4n ≤ 2E[R̂′

SURE], with a slight modifi-
cation R̂′

SURE of the SURE for SURE. Moreover, under milder conditions in Theorem 3.2(iv)
which do not require the symmetry of the random matrix ∇μ̂, R̂′

SURE is a consistent estimator
of its expectation.

When the gradient ∇μ̂ is a random orthogonal projection, R̂′
SURE is identical to R̂SURE, so

that SURE for SURE is a consistent estimator of its risk RSURE and RSURE + σ 4n ≤ 2RSURE

are upper bounds for the risk Var(ŜURE). In the lasso case, ∇μ̂ is an orthogonal projection;
cf. Section 3.5.1 below.
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The proof of Theorem 3.2 is given in Appendix B. In fact, under the conditions for (3.12),
we prove the sharper

Var
(
R̂′

SURE

) ≤ 16σ 4
E
[
R̂′′

SURE

]
(3.13)

with R̂′′
SURE = (3/4)R̂′

SURE + (1/4)R̂SURE − σ 4 div μ̂ ≤ R̂′
SURE. This suggests the use of

16σ 4R̂′′
SURE or 16σ 4R̂′

SURE as estimated upper bounds for Var(R̂′
SURE).

3.1.3. Difference of two estimators. As we have briefly discussed above, the statement
of Theorem 3.1, SURE is often used to optimize among different estimators. Consider for
simplicity the comparison between two estimates μ̂(1) and μ̂(2) of μ. In this setting,

R
(diff)
SURE = E

[(∥∥μ̂(1) − μ
∥∥2 − ∥∥μ̂(2) − μ

∥∥2 − ŜURE
(diff))2](3.14)

is the proper risk for SURE, where

ŜURE
(diff) = ŜURE

(1) − ŜURE
(2)

(3.15)
= ∥∥μ̂(1) − y

∥∥2 − ∥∥μ̂(2) − y
∥∥2 + 2 div

(
μ̂(1) − μ̂(2))

is the difference in SURE between μ̂(1) and μ̂(2). When the loss ‖μ̂−μ‖2 is of smaller order
than n1/2, SURE may produce a spurious estimator due to the estimation of ‖ε‖2 by n in
(3.1). However, due to the cancellation of this common chi-square type error, the risk of the
estimator (3.15) could be of smaller order than the risk of SURE for both μ̂(j). Parallel to
Theorem 3.1, the second-order Stein formula leads to the following.

THEOREM 3.3. Let ε ∼ N(0, In), y = μ+ε, and μ̂(1) and μ̂(2) be estimates of μ based
on y. Let ŜURE(diff) and R

(diff)
SURE be as in (3.15) and (3.14), respectively, and f (y) = μ̂(1) −μ̂(2).

Suppose f :Rn →R
n satisfies the assumptions of (2.7). Then

R
(diff)
SURE = E

[
4
∥∥f (y)

∥∥2 + 4 trace
((∇f (y)

)2)]
.(3.16)

Consequently, SURE for SURE, given by

R̂
(diff)
SURE = 4

∥∥f (y)
∥∥2 + 4 trace

((∇f (y)
)2)

,(3.17)

is an unbiased estimate of the risk of ŜURE(diff) in (3.14).

PROOF. By algebra,∥∥μ̂(1) − μ
∥∥2 − ∥∥μ̂(2) − μ

∥∥2 − ŜURE
(diff) = 2ε�f (y) − 2 divf (y).

The conclusion follows directly from Theorem 2.1. �

3.2. Confidence region based on ŜURE. While SURE for SURE provides an unbiased
point estimator for the (mean) squared difference between ŜURE and the squared loss ‖μ̂ −
μ‖2, we may also use the second-order Stein formula to derive interval estimates for ‖μ̂−μ‖2

and E[‖μ̂ − μ‖2] based on ŜURE. As we are not compelled to directly use the R̂SURE in (3.8)
to construct such interval estimates, we present the following simpler approach.

THEOREM 3.4. Let y, μ, μ̂ = μ̂(y) and ŜURE be as in (3.7). Then

E
[(

ŜURE − ‖μ − μ̂‖2 − ‖ε‖2 + σ 2n
)2]

(3.18)
= 4σ 2

E
[‖μ̂ − μ‖2] + 4σ 4

E
[
trace

(
(∇μ̂)2)].
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If the right-hand side of (3.18) is bounded by σ 4v2
02nεn with a constant v0, then

P
{∣∣ŜURE − ‖μ − μ̂‖2∣∣ ≤ σ 2(vα + v0)

√
2n

} ≥ 1 − α − εn(3.19)

for all α ∈ (0,1), where vα is defined by P{(2n)−1/2|χ2
n − n| > vα} = α, and

P
{‖μ − μ̂‖2 ≤ ŜURE + σ 2(v−,α + v0)

√
2n

} ≥ 1 − α − εn,(3.20)

where v−,α is defined by P{(2n)−1/2(n − χ2
n) > v−,α} = α.

While the left-hand side of (3.18) is quartic in ‖μ̂ − μ‖, the right-hand side is quadratic.
Thus, ŜURE provides an accurate estimate of ‖μ − μ̂‖2 when the squared error is of greater
order than |‖ε‖2 − σ 2n| ≈ σ 2(2n)1/2|N(0,1)|, provided that the second term on the right-
hand side of (3.18) is of no greater order than max{σ 4n,σ 2

E[‖μ̂−μ‖2]}. Specifically, in such

scenarios, (3.19) implies that ŜURE is within a small fraction of ‖μ− μ̂‖2 when
√

‖μ − μ̂‖2/n

is of greater order than σn−1/4, and (3.19) and (3.20) provide confidence regions for the
entire vector μ. As σn−1/4 is known to be a lower bound for the error in the estimation of the
average loss in the estimation of μ [37, 41], (3.19) implies the rate optimality of the upper
bound (3.20) for the squared estimation error ‖μ − μ̂‖2, and thus the rate optimality of the
resulting confidence region for μ.

COROLLARY 3.5. If for some sequence (γn) with γn → 0,

(3.21) E
[
4‖μ̂ − μ‖2/

(
nσ 2) + 4 trace

{
(∇μ̂)2})/n

] ≤ γn,

then for all fixed α ∈ (0,1) independent of n,

P
{∣∣ŜURE − ‖μ − μ̂‖2∣∣ ≤ σ 2(vα)

√
2n

} → (1 − α),

P
{‖μ − μ̂‖2 ≤ ŜURE + σ 2(v−,α)

√
2n

} → (1 − α),

where vα , v−,α are defined in Theorem 3.4.

Similar to Theorem 3.4, Corollary 3.5 provides confidence regions for the entire vector μ

with exact asymptotic quantiles. Under the condition (3.21), ŜURE incurs an error character-
ized by the quantiles of the random variable ‖ε‖2 − σ 2n.

We will verify in Theorems 3.11 and 3.13 that the condition (3.21) holds for the Lasso
under commonly imposed regularity conditions in sparse regression theory.

Alternatively to Corollary 3.5, the following result replaces the condition on γn in (3.21)
by a data-driven surrogate γ̂n and provides nonasymptotic interval estimates for both E[‖μ̂−
μ‖2] and ‖μ̂ − μ‖2.

THEOREM 3.6. Suppose μ̂ is 1-Lipschitz and ∇μ̂(y) is almost surely symmetric positive
semidefinite. Let ŜURE be as in (3.7). Then

Var
(
ŜURE −E

[‖μ − μ̂‖2] + (
nσ 2 − ‖ε‖2)) ≤ 4E

[
σ 2

ŜURE + σ 4d̂f
]
,(3.22)

where d̂f = div μ̂. Moreover, there exist nonnegative random variables Xn and Yn with
E[X2

n] = E[Y 2
n ] = 1 such that∣∣ŜURE −E

[‖μ − μ̂‖2] + (
nσ 2 − ‖ε‖2)∣∣/(σ 2√n

)
(3.23)

≤ Xn

[
γ̂ 1/2
n + 4Yn/n1/2 + √

4Yn(6/n)1/4],
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where γ̂n = 4{ŜURE/(nσ 2) + trace[∇μ̂]/n}+. Consequently for positive α, β1 and β2 with
α + β1 + β2 = δ < 1 and κn,β2 = 2(6/(β2n))1/4 + 4/(β2n)1/2,

P

{ |ŜURE −E[‖μ − μ̂‖2]|
σ 2

√
2n

≤ vα + γ̂
1/2
n + κn,β2

(2β1)1/2

}
≥ 1 − δ.(3.24)

Moreover, (3.23) and (3.24) still hold with E[‖μ − μ̂‖2] replaced by ‖μ − μ̂‖2.

As discussed in Remark 3.3, the conclusions of Theorem 3.6 are applicable to all convex
penalized estimators in linear regression. Note that γ̂n is a biased estimate of the left-hand
side of (3.21) in general due to trace[{∇μ̂}2] ≤ trace∇μ̂. The estimate γ̂n involves d̂f =
trace[∇μ̂] instead of trace[{∇μ̂}2] because controlling the variance of d̂f easily follows from
Section 2.3, while we are not aware of available tools to bound the variance of trace[{∇μ̂}2]
except in specific cases where ∇μ̂ is a projection. The proofs of Theorem 3.4, Corollary 3.5
and Theorem 3.6 are given in Appendix C.

3.3. Oracle inequalities for SURE-tuned estimates. Beyond pairwise comparisons, the
following result provides guarantees on the SURE-tuned estimate μ̃, which is obtained by
selecting the estimator among {μ̂(1), . . . , μ̂(m)} with the smallest ŜURE, that is,

μ̃ = μ̂(k̂) with k̂ = arg min
j∈[m]

ŜURE
(j),(3.25)

where ŜURE(j) = ‖μ̂(j) − y‖2 + 2σ 2 trace∇μ̂(j) − nσ 2 for ε ∼ N(0, σ 2In).

THEOREM 3.7. Consider the sequence model y = μ + ε with ε ∼ N(0, σ 2In). Let
μ̂(1)(y), . . . , μ̂(m)(y) be all L-Lipschitz functions of y, μ̃ the SURE tuned estimator in (3.25),
j0 = arg minj=1,...,mE‖μ̂(j) − μ‖, s∗ = maxk∈[m]E[trace((∇μ̂(k) − ∇μ̂(j0))2)]. Then

(i) For any α ∈ (0,1), with probability at least 1 − α,

(3.26) ‖μ̃ − μ‖ − ∥∥μ̂(j0) − μ
∥∥ ≤ σ max

{(
8s∗m/α

)1/4
,
(
8m(

√
2L + 1)/α

)1/2}
.

(ii) For any δ ∈ (0,1), with probability at least 1 − δ,

(3.27)
∥∥μ̂(j0) − μ

∥∥ − min
j∈[m]

∥∥μ̂(j) − μ
∥∥ ≤ 2Lσ

√
2 log(m/δ)

so that the sum of (3.26) and (3.27) provide high probability bounds on ‖μ̃ − μ‖ −
minj∈[m] ‖μ̂(j) − μ‖.

(iii) For some absolute constant C > 0, in expectation

(3.28) E

[(
‖μ̃ − μ‖ − min

j∈[m]
∥∥μ̂(j) − μ

∥∥)2]1/2 ≤ Cσ
[(

s∗m
)1/4 + (1 + L)m1/2].

(iv) If maxj∈[m]E[‖μ̂(j) − μ‖2]/n ≤ Lσ 2, then the squared risk enjoys

(3.29) E
[‖μ̃ − μ‖2] − min

j∈[m]E
[∥∥μ̂(j) − μ

∥∥2] ≤ Lσ 2(32nm)1/2.

The proof is given in Appendix D. The assumption that the estimators μ̂(j) are L-Lipschitz
functions of y is mild; cf. Remark 3.3. Under this assumption, s∗ ≤ 4L2n and (3.28) implies

(3.30)
‖μ̃ − μ‖

n1/2 − min
j∈[m]

‖μ̂(j) − μ‖
n1/2 ≤ Cσ(1 + L)max

{(
m

αn

)1/4
,

(
m

nα

)1/2}
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with probability 1 − α for some absolute C > 0, where we used the n−1/2 scaling to feature
the normalized prediction risk ‖μ̃ − μ‖2/n. Theorem 3.7(i) can also be understood in terms
of sample size requirement: If ε > 0 is a fixed precision target and α ∈ (0,1), then n �
ε−2 max{m/α, (s∗m/α)1/2} samples are sufficient to ensure

P

{
n−1/2‖μ̃ − μ‖ − min

j∈[m]n
−1/2∥∥μ̂(j) − μ

∥∥ ≤ σε
}

≥ 1 − α.

We are not aware of a previous result of this form that applies with the above level of gen-
erality, that is, with no restriction on the nature of the estimators {μ̂(1), . . . , μ̂(m)} beyond
the Lipschitz requirement. As shown in the next proposition, the dependence in s∗ in the
term (s∗m/α)1/4 of (3.26) and the dependence in n in the term (m/(nα))1/4 of (3.30) are
unimprovable without additional assumptions.

PROPOSITION 3.8. There exist absolute constants C1,C2,C3 > 0 such that for any n ≥
C1, there exist μ ∈ R

n and two estimators μ̂(1)(y), μ̂(2)(y) that are 1-Lipschitz functions of
y such that s∗ = n and μ̃ in (3.25) satisfies

P

{
‖μ̃ − μ‖ − min

j=1,2

∥∥μ̂(j) − μ
∥∥ ≥ C2σn1/4

}
≥ C3.

Oracle inequalities stronger than (3.30) are available if the estimators {μ̂(j), j = 1, . . . ,m}
are affine in y, that is, of the form μ̂(j) = Ajy +bj for deterministic Aj ∈ R

n×n and bj ∈ R
n.

In this case, ŜURE(j) = ‖μ̂(j) − y‖2 + 2σ 2 traceAj − nσ 2 reduces to Mallows Cp [38] and if
μ̃ is the estimate among {μ̂(j), j ∈ [m]} with the smallest ŜURE, then

(3.31) E

[
‖μ̃ − μ‖ − min

j∈[m]
∥∥μ̂(j) − μ

∥∥] ≤ C(1 + L)σ(logm)1/2

for some absolute constant C > 0, provided that the operator norm of Aj is less than L for
all j ∈ [m]; cf. [5], Proposition 3.1, or [1, 51] for related results. If bj = 0 for all j and the
matrices Aj are symmetric and totally ordered in the sense of positive semidefinite matrices,
the right- hand side in (3.31) can even be reduced to O(σ) [7, 33]. Equation (3.31) provides
an oracle inequality with respect to the risk ‖μ̂ − μ‖; oracle inequalities of form (3.29) with
respect to the squared risk are studied in [22, 36] using exponential weights procedures,
and in [20, 21], [5], Theorem 2.1, using a convex relaxation of ŜURE named Q-aggregation
and introduced in [43]. For linear estimators, these works exhibit an error term involving
logm thanks to the availability of the Hanson–Wright inequality, which provides exponential
concentration bounds for random variables of the form ε�(Aj − Ak)ε.

As the optimal remainder term for an oracle inequality of the form (3.29) satisfied by

any estimator of the form μ̂(ĵ ), ĵ ∈ [m] is of order σ 2(n logm)1/2 for deterministic vectors
μ̂(j) = bj [44], Theorem 2.1, the dependence in n of (3.29) is optimal when m is smaller than
an absolute constant.

Compared to these existing results, the novelty of Theorem 3.7 lies in its scope: The-
orem 3.7 and (3.30) are applicable to to any collection of L-Lipschitz nonlinear estimators
{μ̂(j), j ∈ [m]}. The L-Lipschitz assumption is mild (cf. Remark 3.3) and Theorem 3.7 is thus
applicable far beyond the case of linear estimators studied in the aforementioned literature.

A drawback of Theorem 3.7 compared to (3.31) is the suboptimality of the dependence in
m. The difficulty to obtain a rate logarithmic in m is due to the unavailability of exponential
concentration equalities for random variables of the form ε�(μ̂(j) − μ̂(k)) for nonlinear μ̂(j),
μ̂(k).



1878 P. C. BELLEC AND C.-H. ZHANG

Finally, we note that an oracle inequality for the squared risk can be obtained using the Q-
aggregation procedure from [20, 21, 43] and its analysis in [5]. Indeed, let μ̃Q = ∑m

j=1 θ̂j μ̂
(j)

where

θ̂ = arg min
θ≥0,1�θ=1

[
‖μ̂θ − y‖2 + 2σ 2

m∑
j=1

θj div μ̂(j) + 1

2

m∑
j=1

θj

∥∥μ̂(j) − μ̂θ

∥∥2

]

and μ̂θ = ∑m
j=1 θj μ̂

(j) for every θ in the simplex {θ ∈R
m : θ ≥ 0,1�θ = 1} in R

m. Then μ̃Q

satisfies under the assumptions of Theorem 3.7

(3.32) E
[‖μ̃Q − μ‖2] − min

k∈[m]E
[∥∥μ̂(k) − μ

∥∥2] ≤ 2σ 2(√s∗m + (1 + L)2m
) + σ 2L2.

We refer to [5, 20, 21] for details on the construction of μ̃Q. The proof of (3.32) is given at
the end of Appendix D.

3.4. The variance of the model size of the Lasso. Consider a linear regression model

(3.33) y = Xβ + ε,

where β is the true coefficient vector, ε ∼ N(0, σ 2In) is the noise and X is a deterministic
design matrix. Consider the Lasso which solves the optimization problem

(3.34) β̂
(λ)
LASSO = arg max

b∈Rp

{‖Xb − y‖2/(2n) + λ‖b‖1
}
.

Let Ŝ = {j ∈ [p] : (β̂
(λ)
LASSO)j 
= 0} be the support of the Lasso. We are interested in the size

of Ŝ denoted by |Ŝ|. Even though the Lasso and sparse linear regression have been studied
extensively in the last two decades, little is known about the stochastic behavior of the discrete
random variable |Ŝ|. Under the sparse Riesz or similar conditions, |Ŝ| � ‖β‖0 with high
probability [59, 61, 63] but such results only imply a bound of the form Var[|Ŝ|] � ‖β‖2

0 on
the variance; we will see below that the variance of |Ŝ| is typically much smaller. There are
trivial situations where the behavior of |Ŝ| is well understood: if λ is very large for instance,
then |Ŝ| = 0 with high probability. Or, under strong conditions on X and β that grants support
recovery (cf. for instance, the conditions given in [40, 53, 56, 64]), Ŝ = supp(β) holds with
probability at least 1 − 1/p2 and in this case Var[|Ŝ|] ≤ E[(|Ŝ| − s0)

2] ≤ 1.
Outside of these situations, studying |Ŝ| appears delicate; for instance, our previous at-

tempts at studying the variance of |Ŝ| went as follows. Let (e1, . . . , ep) be the canonical basis
in R

p and let xj = Xej for all j = 1, . . . , p. The KKT conditions of the Lasso are given by

x�
j

(
y − Xβ̂

(λ)
LASSO

)
/(nλ)

⎧⎨⎩= sgn
((

β̂
(λ)
LASSO

)
j

)
if

(
β̂

(λ)
LASSO

)
j 
= 0,

∈ [−1,1] if
(
β̂

(λ)
LASSO

)
j = 0.

At a given point y, to understand the stability of Ŝ, a natural avenue is to identity how close
the quantities x�

j (y − Xβ̂
(λ)
LASSO)/(nλ) are from ±1 for the indices j /∈ Ŝ. If many indices

j /∈ Ŝ are such that x�
j (y − Xβ̂

(λ)
LASSO)/(nλ) is extremely close to ±1, then a tiny variation

in y may push some of the quantities x�
j (y − Xβ̂

(λ)
LASSO)/(nλ) toward ±1 resulting in many

new variables entering the support for this tiny variation in y. The current model size |Ŝ|
is noninformative about how many indices j /∈ Ŝ are such that x�

j (y − Xβ̂
(λ)
LASSO)/(nλ) is

extremely close to ±1 and the random variable |Ŝ| appears prone to instability.
With the second-order Stein formula (2.3) and the tools developed in the previous section,

the variance of |Ŝ| can be bounded as follows. First, we need to describe a condition on the



SECOND-ORDER STEIN 1879

deterministic matrix X which ensures that the KKT conditions of the Lasso hold strictly with
probability 1. We say that the KKT conditions hold strictly if

(3.35) ∀j /∈ Ŝ, −1 <
1

λn
x�

j

(
y − Xβ̂

(λ)
LASSO

)
< 1.

ASSUMPTION 3.1. For all δ1, . . . , δp ∈ {−1,1} and 1 ≤ j0 < j1 < · · · < jn ≤ p,

rank
(
xj0 xj1 · · · xjn

δj0 δj1 · · · δjn

)
(n+1)×(n+1)

= n + 1.

PROPOSITION 3.9. If X satisfies the above assumption, then the set B = {j ∈ [p] :
|x�

j (y − Xβ̂
(λ)
LASSO)| = λn} is such that XB has rank |B| and the solution β̂

(λ)
LASSO to the

optimization problem (3.34) is unique. Furthermore, if P[v�ε = c] = 0 for all vectors v 
= 0
and real c, then the KKT conditions of the Lasso β̂

(λ)
LASSO hold strictly with probability 1, that

is, (3.35) holds with probability 1.

Expositions of the results in the first part of the above proposition exist in the literature;
see, for instance, [59], Section 3, or [50, 52]. Compared with previous versions of the con-
dition on the design, Assumption 3.1, which clearly holds with probability 1 when X is the
realization of a continuous distribution over Rn×p , gives a natural interpretation in terms of
the rank of specific matrices. The fact that the KKT conditions of the Lasso hold strictly with
probability one is known although it is difficult to pinpoint an existing result in the form of
Proposition 3.9 in the literature. We provide a short proof in Appendix E for completeness.

Next, define the function f :Rn →R
n by

(3.36) f : ε → X
(
β̂

(λ)
LASSO − β

)
.

Then the function f is 1-Lipschitz and this property holds true for all convex penalized least-
squares estimators [3], Proposition 3. Consequently, almost everywhere the partial derivatives
of f exist and ∇f (ε) has operator norm at most one. It is enough to compute the gradient
of f Lebesgue almost everywhere and by the above proposition, the KKT conditions holds
strictly for almost every point ε0 ∈ R

n.
If the KKT conditions of the Lasso hold strictly for ε0, then by Lipschitz continuity of ε →

Xβ̂
(λ)
LASSO the KKT conditions also hold strictly in small enough nontrivial neighbourhood of

ε0. In this small neighborhood, the sign and support of β̂
(λ)
LASSO are unchanged and we have

for ‖h‖ small enough

Xβ̂
(λ)
LASSO(ε0 + h) = XŜ

(
X�̂

S
XŜ

)−1(
X�̂

S
(ε0 + h + Xβ) − λn sign

(
β̂

(λ)
LASSO(ε0)

))
,

where Ŝ denotes the locally constant support equal to the support of β̂
(λ)
LASSO(ε0). In this

neighborhood, the map h → Xβ̂
(λ)
LASSO(ε0 + h) as well as the map h → X(β̂

(λ)
LASSO(ε0 + h) −

β) are locally affine with linear part equal to the orthogonal projection

P Ŝ = XŜ

(
X�̂

S
XŜ

)−1
X�̂

S
.(3.37)

We conclude this calculation with the following lemma.

PROPOSITION 3.10. Let β̂
(λ)
LASSO be the Lasso estimator (3.34) with data (X,y) satisfy-

ing y = Xβ + ε. Define f (ε) = X(β̂
(λ)
LASSO − β) as in (3.36). Suppose Assumption 3.1 holds

and P{v�ε = c} = 0 for all deterministic v ∈ R
n and real c. Then almost surely

∇β̂
(λ)
LASSO =

((
X�̂

S
XŜ

)−1
X�̂

S
0Ŝc×n

)
p×n
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as well as

∇f (ε) = P Ŝ and divf (ε) = ‖P Ŝ‖2
F = traceP Ŝ = |Ŝ|,

where Ŝ = supp(β̂
(λ)
LASSO) and P Ŝ is as in (3.37).

3.4.1. Variance formula and relative stability. Using Theorem 2.2, we obtain the follow-
ing result whose proof is given in Appendix F.

THEOREM 3.11. Consider the linear model (3.33) and β̂
(λ)
LASSO in (3.34), with determin-

istic design X satisfying Assumption 3.1, true target vector β and noise ε ∼ N(0, σ 2In).
Then the variance of the size of the selected support satisfies

Var
[|Ŝ|] = E

[|Ŝ|] +E
[‖P Ŝε‖2/σ 2] + Var

(
g(ε)

) − σ 2
E
[∥∥∇g(ε)

∥∥2]
(3.38)

≤ E
[|Ŝ|] +E

[‖P Ŝε‖2/σ 2],
where g(ε) = ε�X(β̂

(λ)
LASSO − β)/σ 2. Consequently, Var[|Ŝ|] ≤ 2n as well as

Var
[|Ŝ|] ≤ 3E

[|Ŝ|] + 4E
[
|Ŝ| log

(
ep

1∨|Ŝ|
)]

(3.39)

≤ 3E
[|Ŝ|] + 4E

[|Ŝ|] log
(

ep

1∨E[|Ŝ|]
)
.

A significant feature of the above theorem, and Theorem 2.2 as well, is the requirement of
no condition on the true β , the penalty level λ or the design matrix X beyond Assumption 3.1.
In particular, the restricted eigenvalue condition is not required.

Using a/b + b/(a ∨ 1) − 2 ≤ (a − b)2/(b(a ∨ 1)), an implication of Theorem 3.11 is the
confidence interval

P

( |Ŝ|
E[|Ŝ|] + E[|Ŝ|]

|Ŝ| ∨ 1
− 2 ≤ Cα

(
3

|Ŝ| ∨ 1
+ 4 log(ep)

|Ŝ| ∨ 1

))
≥ 1 − α(3.40)

for E[|Ŝ|] with conservative Cα = 1/α, although E[|Ŝ|] is not a conventional parameter due
to its dependence on the specific choice of β̂ .

A sequence of nonnegative random variables (Zq)q≥1 is said to be relatively stable if
Zq/E[Zq] converges to 1 in probability. A direct consequence of Theorem 3.11 is that the
model size |Ŝ| is relatively stable provided that E[|Ŝ|] is not pathologically small. If the
setting and assumptions of Theorem 3.11 are fulfilled, then

E

[( |Ŝ|
E|Ŝ| − 1

)2]
≤ 3

E|Ŝ| + 4 log(ep/E|Ŝ|)
E|Ŝ| ≤ 3 + 4 log(ep)

E|Ŝ| .

Consequently, if one considers a sequence of regression problems such that E[|Ŝ|]/
log(ep) → +∞, then |Ŝ|/E|Ŝ| converges to 1 in L2 and in probability.

While the stability of |Ŝ| supports the use of the Lasso, it is guaranteed by Theorem 3.11
only when E[|Ŝ|] is of greater order than logp. In practice, this means observing a sufficiently
large |Ŝ| in view of (3.40). In general large E[|Ŝ|] happens when the penalty level is low or the
number of significant coefficients is large. It is known that P{|Ŝ| ≥ k} ≈ 1 when X has i.i.d.
N(0,�) rows with (�)jj = 1, β = 0 and λ = λ(k) = (σ/n1/2){L(k/p) − 1} under a mild
side condition on �, where L(t) is defined by P{N(0,1) > L(t)} = t [48], Proposition 14(ii).
As |Ŝ| is expected to be larger when β 
= 0, it would be reasonable to expect E[|Ŝ|] � logp

when λ = λ(kn) with kn � logp. Additionally, since the Lasso is known to satisfy estimation
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error bounds of the form ‖β̂ − β‖2 ≤ C2
0‖β‖0λ

2 with high probability for some constant
C0 > 0, on this event it must be that |Ŝ| ≥ (1 − b−2 − π0)‖β‖0 under the signal strength
condition #{j : |βj | > bC0λ} ≥ (1 − π0)‖β‖0. This implies that |Ŝ|≫ logp holds with high
probability when ‖β‖0 ≫ logp and b−2 + π0 < 1.

An informative benchmark to study the tightness of inequality (3.39) for the support of the
Lasso is the case X = √

nIp which reduces to the Gaussian sequence model. Then β̂
(λ)
LASSO is

the soft-thresholding operator and |Ŝ| is the sum of p i.i.d. Bernoulli random variables with
parameters q1, . . . , qp ∈ (0,1) and Var[|Ŝ|] = ∑p

j=1 qj (1 − qj ). Under mild assumption on

the probabilities qj (e.g., qj ≤ 1/2 for all j ), the variance Var[|Ŝ|] is of the same order as
E|Ŝ|. Hence the bound (3.39) is sharp up to a logarithmic factor.

3.4.2. Linearity of the variance in the true model size. From (3.39), we can also obtain
more explicit bounds on the variance of |Ŝ| by bounding from above E[|Ŝ|]. We provide
below upper bounds on E[|Ŝ|] under two assumptions on X: the Sparse Riesz Condition
(SRC) [59, 61] and the Restricted Eigenvalue (RE) condition [12]. Under both conditions, if
the tuning parameter of the Lasso is large enough then the squared risk ‖X(β̂

(λ)
LASSO −β)‖2/n

is bounded from above by C(X)s0λ
2 with high probability [12, 59, 61] and in expectation [3,

6, 58], where C(X) is a multiplicative constant that depends on X. We refer the reader to the
books [16, 27, 28] and the references therein for surveys of existing results. Throughout the
rest of this section, denote by s0 = ‖β‖0 the number of nonzero coefficients, or sparsity, of
the unknown coefficient vector β .

The Sparse Riesz Condition (SRC) [59, 61] on the design X holds if for certain η ∈ (0,1)

and nonnegative reals {ε1, ε2} and integers {m,k},

(3.41) |S| + ε2k ≤ min
B⊂[p]:|B\S|≤m

2(1 − η)2m − ε1k

φcond(X
�
BXB) − 1

,

where S denotes the support of β and φcond(·) denotes the condition number. Let φ(d) ≥
max{φcond(X

�
BXB) : |B| = d} be an upper bound for the d-sparse condition number of the

Gram matrix X�X/n. Given d and {η, ε1, ε2}, the SRC can be viewed as a sparsity condition
on β as it holds with k = ‖β‖0 when ‖β‖0 ≤ 2d(1 − η)2/{(1 + ε2)(φ(d) − 1) + 2(1 −
η)2 + ε1}. In particular, the SRC holds under the RIP condition δ2s0 < 1/2 or δ3s0 < 2/3 for
sufficiently small {η, ε1, ε2} where δk is the maximum spectrum norm of X�

BXB/n − IB

over |B| ≤ k. When X has i.i.d. N(0,�) rows, we may take d = a1n/ logp such that φ(d) =
(1 + a2)φcond(�) is a valid upper bound for the d-sparse condition number of X�X/n with
probability 1 − e−a2n for some small positive constants a1 and a2 [61].

Note that the original SRC in [61] is stated in terms of ratio of maximal and minimal sparse
eigenvalues instead of sparse condition number as in (3.41). A common feature on the works
on the SRC [59, 61] is that |Ŝ| � s0 with large probability (up to constants depending on the
SRC constants and the tuning parameter). We obtain E|Ŝ| � s0 as a consequence, provided
that P(|Ŝ|� s0) is large enough.

PROPOSITION 3.12. Let ε ∼ N(0, σ 2In) and s0 = ‖β‖0 in the linear model (3.33). Let
the tuning parameter of the Lasso (3.34) satisfy

(3.42) λ ≥ (σ/η)
√

(1 + τ)(2/n) log(p/k)}
with η ∈ (0,1). Assume that X is deterministic with maxj∈[p] ‖Xej‖2/n ≤ 1 and that (3.41)
holds with ε1 = 8(1 − η)/{√2πt0}, ε2 = 4/{t2

0 (2πt2
0 + 4)1/2} and some nonnegative integers

{m,k}, where t0 = η−1√2 log(p/k). Then, P(|Ŝ \ S| < m) ≥ 1 − (k/p)τ /(1 + (ηt0)
2) and

E[|Ŝ|] ≤ s0 +m+p(k/p)τ /(1+ (ηt0)
2). Consequently, if τ ≥ 1 then E|Ŝ| ≤ s0 +m+k/(1+

(ηt0)
2).
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The proof is given in Appendix H. In the above result, τ > 0, η < 1 are thought of as
absolute constants while k, m as sparsity levels typically proportional to the true sparsity s0
of β . For instance, the required lower bound on the tuning parameter in (3.42) reads λ ≥
1.01σ

√
4 log(p/s0)/n for η = 1/1.01, τ = 1 and k = s0. In particular if τ ≥ 1, s0 ≈ m and

k � s0 then the SRC grants E|Ŝ| � s0. We refer to [8, 59, 61] for more detailed discussions
on the SRC.

The expectation E[|Ŝ|] can also be bounded from above if both Assumption 3.1 and the
Restricted Eigenvalue (RE) condition [12] hold.

THEOREM 3.13. Consider the linear model (3.33) with ε ∼ N(0, σ 2In) and s0 = ‖β‖0.
Let τ, γ > 0, ω = σ(1 + τ)/

√
n and β̂

(λ)
LASSO be as in (3.34) with

(3.43) λ = σ(1 + τ)(1 + γ )

√
(2/n) log

(
ep/(s0 ∨ 1)

)
.

Assume that the columns of X are normalized such that maxj∈[p] ‖Xej‖2 ≤ n. Let Ŝ be the

support of β̂
(λ)
LASSO. Then the Lasso satisfies

E
[
2τε�X

(
β̂

(λ)
LASSO − β

) + ∥∥X(
β̂

(λ)
LASSO − β

)∥∥2]
/n ≤ s0(λ

2 + ω2) + (s0 ∨ 1)ω2

RE2(S, c0)
+ ω2

2
,

where RE(S, c0) = infu∈Rp :‖uSc‖1≤c0
√

s0∨1‖u‖(n−1/2‖Xu‖/‖u‖) and S is the support of β ,

provided that c0 ≥ γ −1
√

2(1 + 2ω2/λ2), for example, c0 = 2/γ . If in addition Assump-
tion 3.1 holds, then

E
[|Ŝ| + ∥∥X(

β̂
(λ)
LASSO − β

)∥∥2
/
(
2σ 2τ

)]
(3.44)

≤ (
√

τ + 1/
√

τ)2
[
(1 + γ )2{s0 log(ep/(s0 ∨ 1)) + (s0 ∨ 1)}

RE2(S,2/γ )
+ 1

4

]
.

The proof of Theorem 3.13 is given in Appendix I. Here, τ, γ, c0 > 0 > 0 are thought of as
absolute constants, and RE(S, c0) > 0 as of constant order. For instance, the tuning parameter
(3.43) reads λ = 1.01σ

√
2 log(ep/s0)/n for τ = γ = √

1.01 − 1. The scaling σ
√

log(p/s0)

for the tuning parameter visible in (3.42) and (3.43) allows for smaller tuning parameters than
the universal parameter σ

√
2 logp studied in earlier works on the Lasso (e.g., [12]). Tuning

parameters of order σ
√

log(p/s0) have been previously studied in [4, 6, 8, 35, 47].
The Gaussian concentration theorem is used in [3, 6] to obtain bounds on E[‖X(β̂

(λ)
LASSO −

β)‖2] as well as higher order moments of the squared risk; similar arguments are used to
derive Theorem 3.13. If X satisfies Assumption 3.1 then E[ε�X(β̂

(λ)
LASSO − β)] = E[|Ŝ|], so

that the argument leads to (3.44). Informally, this implies E[|Ŝ|] � 1 + s0 log(ep/(s0 ∨ 1)) up
to a multiplicative constant that depends only on γ , τ and the restricted eigenvalue. To our
knowledge, this bound on the size of the model selected by the Lasso under the RE condition
is new. Previous upper bounds of the form |Ŝ| � s0 require that both maximal and minimal
sparse eigenvalues of X�X/n are bounded away from 0 and +∞; cf. Proposition 3.12 above
or [61], [59], Lemma 1, [12], (7.9), [11], Theorem 3, among others. The major difference
between such conditions and the RE condition is that the RE condition does not require
any bounds on the maximal sparse eigenvalues of X�X/n. Inequality (3.44) reveals that the
RE condition is sufficient to control E[|Ŝ|] by s0 times a logarithmic factor. Under the RE
condition, assumptions on the maximal sparse eigenvalues of X�X/n are unnecessary to
control E[|Ŝ|].

The above bounds on E|Ŝ| under the SRC or the RE condition yield the following on the
variance of |Ŝ| in virtue of (3.39). If Assumption 3.1 holds:
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(i) If λ is as in (3.43) for some γ, τ > 0 and maxj=1,...,p ‖Xej‖2 ≤ n then

Var
[|Ŝ|] ≤ (s0 ∨ 1)C

RE2(S,2/γ )
log

(
ep

1 ∨ s0

)2
,

where C = C(γ, τ ) > 0 only depends on γ , τ .
(ii) If X satisfies the SRC (3.41) for some η > 0 and 0 ≤ m, k ≤ p, with λ is as in (3.42)

with τ ≥ 1 then for some absolute constant C ′ > 0,

Var
[|Ŝ|] ≤ C′

(
(s0 + m) log

(
ep

s0 + m

))
.

In other words, under the RE condition or the SRC with m ≈ s0 the standard deviation of
the size of the model |Ŝ| is smaller than

√
s0 up to logarithmic factors. The bound is sharper

under the SRC by a logarithmic factor.

3.4.3. Variance of degrees-of-freedom of penalized estimators. Some techniques above
are not specific to the Lasso. For instance, for any estimator defined as the solution of a
convex optimization problem of the form given in Remark 3.3, the map f : ε → X(β̂ − β) is
1-Lipschitz and satisfies

E
[(

σ 2d̂f− ε�f (ε)
)2] ≤ σ 2

E
∥∥X(β̂ − β)

∥∥2 + σ 4
E
∥∥∇f (ε)

∥∥2
F

(3.45)
≤ σ 2

E
∥∥X(β̂ − β)

∥∥2 + σ 4n

by Theorem 2.1 where d̂f = divf (ε). Similarly, by Theorem 2.2 we have

Var[d̂f] ≤ E
∥∥∇f (ε)

∥∥2
F +E

∥∥∇f (ε)ε
∥∥2

/σ 2

(3.46)
≤ 2n.

3.5. SURE for SURE in high-dimensional linear regression. Again we consider linear
regression with deterministic design X ∈ R

n×p . With the notation of Section 3.1, consider
the sequence model y = μ + ε where ε ∼ N(0, σ 2In) and the unknown mean is μ = Xβ , as
in the linear model (3.33).

3.5.1. Lasso. Set μ̂(y) = Xβ̂
(λ)
LASSO with the Lasso estimator (3.34). We have derived in

the previous section the gradient of ε → Xβ̂
(λ)
LASSO almost everywhere under Assumption 3.1.

It is instructive to use these calculations to make explicit SURE for SURE from Section 3.1
in the Lasso case. Under Assumption 3.1, |Ŝ| = div μ̂ = trace((∇μ̂)2) by Proposition 3.10,
so that Stein’s unbiased risk estimate is

ŜURE = ∥∥y − Xβ̂
(λ)
LASSO

∥∥2 + σ 2(2|Ŝ| − n
)

(3.47)

as in (3.7). Moreover, by Theorem 3.1, SURE for SURE in the Lasso case is

R̂SURE = 4σ 2∥∥y − Xβ̂
(λ)
LASSO

∥∥2 + σ 4(4|Ŝ| − 2n
)

(3.48)

which is an unbiased estimator of RSURE = E[(ŜURE − ‖X(β̂
(λ)
LASSO − β)‖2)2]. The identity

E[R̂SURE] = RSURE for the Lasso appeared previously in [24].
As ∇(Xβ̂

(λ)
LASSO) = P Ŝ is a random projection, Theorem 3.2 applies with R̂′

SURE = R̂SURE,
so that SURE for SURE is consistent. We explicitly state the consequences of this result in
the following proposition.
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PROPOSITION 3.14. Consider the sequence model y = μ + ε where ε ∼ N(0, σ 2In)

and let X ∈ R
n×p satisfy Assumption 3.1. Let β̂

(λ)
LASSO be the Lasso (3.34). Consider SURE

in (3.47) and SURE for SURE in (3.48). Then for any tuning parameter λ ≥ 0, the following
holds:

(i) Var(ŜURE) = E[(ŜURE −E[‖y − Xβ̂
(λ)
LASSO‖2])2] ≤ E[R̂SURE] + σ 4n.

(ii) E[R̂SURE] = 2σ 2
E[‖y − Xβ̂

(λ)
LASSO‖2 + ŜURE] ≥ nσ 4.

(iii) The self-bounding property Var[R̂SURE] ≤ 16σ 4
E[R̂SURE] holds.

(iv) Inequality E[|R̂SURE/E[R̂SURE]−1|2] ≤ 16/n holds so that the ratio R̂SURE/E[R̂SURE]
converges to 1 in L2 and in probability as n,p → ∞.

(v) For any α,γ ∈ (0,1), with probability at least 1 − α − γ ,∣∣ŜURE − ∥∥Xβ̂
(λ)
LASSO − μ

∥∥2∣∣2 ≤ γ −1R̂SURE

(
1 − 4(nα)−1/2)−1

.

The proof is given in Appendix J. In the above, (i) provides in terms of SURE for SURE
an upper bound for the mean squared error of SURE when the prediction risk is viewed as
the estimation target of SURE, and (iv) is a consistency result for SURE for SURE in the
Lasso case. The nonasymptotic Proposition 3.14 holds with no restriction on (n,p) and the
tuning parameter λ. The assumption-free nature of Proposition 3.14 is striking: SURE for
SURE is consistent even if the Lasso itself is not consistent for prediction in the sense that
E[‖Xβ̂

(λ)
LASSO − μ‖2/(nσ 2)] is bounded away from 0.

To bound the variance of R̂SURE, Proposition 3.14(iv) leverages the fact that for μ̂(y) =
Xβ̂

(λ)
LASSO, ∇μ̂(y) is a random orthogonal projection and R̂SURE = R̂′

SURE, cf. the discussion
following (3.9). While ∇μ̂(y) for μ̂(y) = Xβ̂(y) is not a projection for other estimators β̂
such as the Elastic-Net studied in Section 3.5.3, the upper bounds in Theorem 3.2 still apply
to R̂′

SURE for any convex regularized least-squares as explained in Remark 3.3.
A drawback of the confidence region in (v) is the conservative constant factor γ −1. This

can be fixed under common regularity assumptions made in sparse linear regression as fol-
lows with the approach of Section 3.2. Let {τ, γ, λ} be as in Theorem 3.13 and define
Cτ,γ = max(1,2τ)(

√
τ + 1/

√
τ)2{4(1 + γ )2 + 5}. Under the conditions of Theorem 3.13

including Assumption 3.1, (3.44) implies that the right-hand side of (3.18) is bounded by
σ 42nε∗

n with ε∗
n = Cτ,γ (s0 ∨ 1){log(p/(s0 ∨ 1))}/{nRE2(S,2/γ )}, so that

P
{∣∣ŜURE − ‖μ − μ̂‖2∣∣ ≤ 1.96σ 2

√
2n

} ≈ 95%

by Theorem 3.4 when ε∗
n = o(1), with v2

0 = εn = √
ε∗
n , and similarly

P
{‖μ − μ̂‖2 ≤ ŜURE + 1.645σ 2

√
2n

} ≈ 95%.

3.5.2. Two or more Lasso estimators. For the comparison of two Lasso estimators
β̂

(λ1)
LASSO and β̂

(λ2)
LASSO with λ1 
= λ2,

ŜURE
(diff) = ∥∥Xβ̂

(λ1)
LASSO − y

∥∥2 − ∥∥Xβ̂
(λ2)
LASSO − y

∥∥2

(3.49)
+ 2σ 2(∣∣Ŝ(λ1)

∣∣ − ∣∣Ŝ(λ2)
∣∣)

provides E[ŜURE(diff)] = E[‖X(β̂
(λ1)
LASSO −β)‖2−‖X(β̂

(λ2)
LASSO −β)‖2], where Ŝ(λj ) = supp(β̂

(λj )
LASSO).

If P A is the projection onto the column space of XA,

R̂
(diff)
SURE = 4σ 2∥∥X(

β̂
(λ1)
LASSO − β̂

(λ2)
LASSO

)∥∥2 + 4σ 4 trace
(
(P Ŝ(λ1) − P Ŝ(λ2) )

2)(3.50)

provides

ER̂
(diff)
SURE = R

(diff)
SURE = E

[(∥∥X(
β̂

(λ1)
LASSO − β

)∥∥2 − ∥∥X(
β̂

(λ2)
LASSO − β

)∥∥2 − ŜURE
(diff))2]

.
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The results of Section 3.3 are also directly applicable to SURE-tuned Lasso estimators: If λ̂

is the tuning parameter among {λ1, . . . , λm} with the smallest SURE, then for some absolute
constant C > 0,

E

[
n−1/2∥∥X(

β̂
(λ̂)
LASSO − β

)∥∥ − min
λ∈{λ1,...,λm}n

−1/2∥∥X(
β̂

(λ)
LASSO − β

)∥∥] ≤ C(m/n)1/4.

3.5.3. Elastic net. Similar computations can be carried out for other estimators such as
the Group Lasso or the Elastic Net. For instance, consider the Elastic Net estimator β̂EN
defined as the solution of the optimization problem

(3.51) β̂EN = arg max
b∈Rp

‖Xb − y‖2/2n + λ‖b‖1 + γ ‖b‖2/2,

where λ,γ > 0. Set μ̂(y) = Xβ̂EN. Then by similar arguments as in the Lasso case, the
KKT conditions of the optimization problem (3.51) hold strictly almost everywhere in y.
By differentiating the KKT conditions on a neighborhood where the KKT conditions hold
strictly (the details are omitted), the gradient of y → β̂EN is given by

∇β̂EN =
((

γ I Ŝ + X�̂
S
XŜ

)−1
X�̂

S
0Ŝc×n

)
p×n

,(3.52)

and the gradient of y → Xβ̂EN is given by

∇(Xβ̂EN) = XŜ

(
γ I Ŝ + X�̂

S
XŜ

)−1
X�̂

S
,(3.53)

where Ŝ ⊂ [p] is the set of nonzero coefficients of β̂EN. Stein’s unbiased risk estimate is
given by

ŜURE = ‖y − Xβ̂EN‖2 + 2σ 2 trace
[
XŜ

(
γ I Ŝ + X�̂

S
XŜ

)−1
X�̂

S

] − σ 2n,(3.54)

and SURE for SURE in the Elastic-Net case is

R̂SURE = 4σ 2‖Xβ̂EN − y‖2 + 4σ 4∥∥XŜ

(
γ I Ŝ + X�̂

S
XŜ

)−1
X�̂

S

∥∥2
F − 2σ 4n.(3.55)

By Theorem 3.1, this is an unbiased estimate of E[(ŜURE − ‖X(β − β̂EN)‖2)2]. SURE for
SURE R̂

(diff)
SURE for the difference between two E-nets or between the Lasso and E-net can be

derived similarly as in (3.50). We omit the details.

REMARK 3.4. Let d̂f = trace[XŜ (γ I Ŝ + X�̂
S
XŜ )−1X�̂

S
]. Since d̂f is the divergence of

the function ε → X(β̂EN − β), Theorem 2.2 implies that

Var[d̂f] ≤ E
[∥∥XŜ

(
γ I Ŝ + X�̂

S
XŜ

)−1
X�̂

S

∥∥2
F

]
+E

[∥∥XŜ

(
γ I Ŝ + X�̂

S
XŜ

)−1
X�̂

S
ε
∥∥2]

/σ 2.

If P Ŝ is the orthogonal projection onto the span of the columns of XŜ then the second term
satisfies E[‖XŜ (γ I Ŝ + X�̂

S
XŜ )−1X�̂

S
ε‖2]/σ 2 ≤ E[‖P Ŝε‖2]/σ 2. Since the right-hand side

of (3.38) is no greater than that of (3.39) for any random Ŝ by the proof of Theorem 3.11, we
obtain

Var[d̂f] ≤ E
[∥∥XŜ

(
γ I Ŝ + X�̂

S
XŜ

)−1
X�̂

S

∥∥2
F

]
+E

[
2|Ŝ| + 4|Ŝ| log

(
ep/

{
1 ∨ |Ŝ|})]

≤ 3E
[|Ŝ|] + 4E

[|Ŝ| log
(
ep/

{
1 ∨ |Ŝ|})].
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3.6. Debiasing nonlinear estimators in linear regression. Consider a linear regression
model

y = Xβ + ε(3.56)

with an unknown target vector β ∈ R
p , a Gaussian noise vector ε ∼ N(0, σ 2In), and a Gaus-

sian design matrix X ∈ R
n×p with i.i.d. N(0,�) rows. We assume that the covariance matrix

� is known and invertible.
This section explains how to construct an estimate of a linear contrast

θ = 〈a0,β〉(3.57)

from an initial estimator β̂ . Here and in the sequel, 〈·, ·〉 denotes the scalar product in R
n.

Define

u0 = �−1a0/
〈
a0,�

−1a0
〉
, z0 = Xu0, Q0 = Ip×p − u0a

�
0(3.58)

and assume for simplicity that a0 is normalized such that〈
a0,�

−1a0
〉 = 1.

By definition of u0, z0 ∼ N(0, In) and z0 is independent of XQ0.
We assume throughout this section that we are given an initial estimator β̂ . Since X =

z0a
�
0 +XQ0 and the two random vectors z0, XQ0 are independent, we view β̂ as a function

with three arguments β̂ = β̂(y,z0,XQ0) and we assume that the partial derivatives (∂/∂y)β̂

and (∂/∂z0)β̂ exist almost everywhere.
The estimator β̂ provides an initial estimate of the unknown parameter θ (3.57) by the

plug-in 〈a0, β̂〉. However, this estimator may be biased, and a first attempt to fix the bias is
the following one-step MLE correction in the direction given by the one-dimensional model
{β̂ + tu0, t ∈ R},

(3.59) 〈a0, β̂〉 + 〈z0,y − Xβ̂〉
‖z0‖2 .

Variants of the above debiasing scheme have been considered in [10, 15, 30, 31, 54, 60, 62],
among others. We multiply by ‖z0‖2 to avoid random denominators; the random variables
‖z0‖2 is chi-square with n degrees of freedom, equal to n + O(

√
n) with overwhelming

probability so that ‖z0‖2 ≈ n describes the number of observations.
When constructing the estimator (3.59) above by the one-step MLE correction, the statis-

tician hopes that the quantity

(3.60) ‖z0‖2〈a0, β̂ − β〉 + 〈z0,y − Xβ̂〉
is asymptotically standard normal; this is the ideal result to construct confidence intervals for
the unknown parameter (3.57) at the

√
n-adjusted rate.

By simple algebra, we have

(3.61) ‖z0‖2〈a0, β̂ − β〉 + 〈z0,y − Xβ̂〉 = z�
0 ε − z�

0 XQ0(β̂ − β).

The random variable z�
0 ε in the right-hand side is mean-zero and z�

0 ε/(σ/
√

n) is asymp-

totically standard normal. It remains to understand the bias term z�
0 XQ0(β̂ − β). For the

derivation below, we will argue conditionally on (ε,XQ0) and define f : Rn →R
n by

f (z0) = XQ0(β̂ − β).
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The quantity f (z0) is still biased and Stein’s formula lets us quantify the remaining bias in
(3.61) exactly as follows:

E
[
z�

0 XQ0(β̂ − β)|XQ0,ε
] = E

[
z�

0 f (z0)|XQ0,ε
] = E

[
divf (z0)|XQ0,ε

]
.

The partial derivatives (∂/∂z0i )fi where fi is the ith coordinate of f can be computed by the
chain rule

∂fi

∂z0i

= e�
i XQ0

[
〈a0,β〉 ∂β̂

∂yi

+ ∂β̂

∂z0i

]
.

Hence, the divergence of f , which quantifies the remaining bias in (3.61) is divf =
〈a0,β〉ν̂ + B̂ , where

(3.62) ν̂ = trace
[
XQ0

∂β̂

∂y

]
, B̂ = trace

[
XQ0

∂β̂

∂z0

]
.

It will be convenient to write divf instead as

(3.63) divf = 〈a0,β − β̂〉ν̂ + Â where Â = B̂ + 〈a0, β̂〉ν̂.

The quantities ν̂, Â and B̂ above can be constructed from the observed data since they only
depend on X, Q0, y and the derivatives of β̂ . However, the quantity 〈a0,β〉 is unknown; it is
the parameter of interest that we wish to estimate. This motivates the estimator of θ = 〈a0,β〉
defined by

(3.64) θ̂ = 〈a0, β̂〉 + z�
0 (y − Xβ̂) + Â

‖z0‖2 − ν̂

with Â and ν̂ as in (3.62) and (3.63). This estimator θ̂ is constructed so that the random
variable (‖z0‖2 − ν̂

)
(θ̂ − θ) − z�

0 ε = Â + ν̂〈a0,β − β̂〉 − z�
0 f (z0)

(3.65)
= divf (z0) − z�

0 f (z0)

is exactly mean-zero by the first-order Stein’s formula (1.1). Furthermore, the variance of
this random variable can be expressed exactly in terms of the derivatives of f thanks to the
second-order Stein formula (2.3). Similarly, the above equality can be rewritten as(‖z0‖2 − ν̂

)
(θ̂ − θ) = divf (z0) − z�

0
(
f (z0) − ε

)
,(3.66)

which is equal to divg(z0) − z�
0 g(z0) for g(x) = f (x) − ε since f and g have the same

divergence. Hence the random variable (3.66) is exactly mean zero by the first-order Stein’s
formula, and the second-order Stein formula (2.3) provides an exact identity for its variance.
We gather the above derivation in the following theorem.

THEOREM 3.15. Let β̂ be an estimator such that, if we write it as a function
β̂(y,z0,XQ0), all partial derivatives of the function XQ0β̂ with respect to y and z0 ex-
ist and are in L2. Define the estimator θ̂ of θ = 〈a0,β〉 by (3.64), with ν̂ and Â as in (3.62)
and (3.63). Then the random variable

(3.67)
(‖z0‖2 − ν̂)(θ̂ − θ)

σ
√

n
− z�

0 ε

σ
√

n

is exactly mean-zero and its variance is exactly equal to

(3.68)
1

nσ 2

(
E
[∥∥XQ0(β̂ − β)

∥∥2] +E
[
trace

((∇f (z0)
)2)])

,
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where f (z0) = XQ0(β̂ − β). Furthermore, the random variable (‖z0‖2 − ν̂)(θ̂ − θ) is also
mean-zero with variance equal to

(3.69) E
[∥∥Xβ̂ − y − z0a

�
0 (β̂ − β)

∥∥2 + trace
((∇f (z0)

)2)]
.

Theorem 3.15 is a direct consequence of the second-order Stein formula (2.3) and the
analysis summarized in (3.65).

The random variable z�
0 ε/(σ

√
n) is asymptotically standard normal. The first claim of the

above result implies that ((‖z0‖2 − ν̂)(θ̂ − θ))/σ
√

n is also asymptotically normal if (3.68)
converges to 0 as n → +∞. This provides a general strategy to derive asymptotic normality
results; however the calculation of the gradients of β̂ and f has to be carried out on case-by-
case basis which is outside of the scope of the present paper.

The above construction provides a general scheme to de-bias an initial estimator β̂ for the
estimation of a linear contrast θ = 〈a0,β〉 when the covariance matrix � is known because
(‖z0‖2 − ν̂)(θ̂ − θ) is mean-zero and its variance is exactly given by (3.69). Notably, both
(‖z0‖2 − ν̂)(θ̂ − θ) and the quantity inside the expectation in (3.69) only depends on the
unknown parameter of interest θ = a�

0 β and known observable quantities a�
0 β̂ , Â, ν̂, β̂ and

its derivatives. One may consider the z-score (‖z0‖2 − ν̂)(θ̂ −θ)/V ∗(θ)1/2 where V ∗(θ) is the
quantity inside the expectation in (3.69). First- and second-order Stein formulae provide this
z-score as the starting point to de-bias the general estimator β̂ and normalize its variance, as
soon as the partial derivatives of β̂ exist. Studying the asymptotic distribution of this z-score
requires tools beyond the scope of the present work and will be the subject of a forthcoming
paper.

A notable feature of the above result is the random variable ν̂ whose role is to adjust
multiplicatively the random variable (θ̂ − θ) so that (‖z0‖ − ν̂)(θ̂ − θ) is exactly mean-
zero. This adjustment accounts for the degrees-of-freedom of the initial estimator β̂ . We refer
to our concurrent paper [8] for theory of degrees-of-freedom adjustment in semiparametric
inference about a preconceived one-dimensional parameter θ = 〈a0,β〉.

3.7. Monte Carlo approximation of divergence. The second-order Stein formula and the
techniques presented in this paper also suggest a Monte Carlo method to approximate the
divergence in the general case.

Suppose we are interested in the approximation of divf (y) at the currently observed vec-
tor y. Assume that the function f (·) is 1-Lipschitz and its value can be quickly computed for
small perturbations of y, say, f (y + az) for small az. For example, when f (y) = Xβ̂ in the
linear model with a convex regularized least-squares estimator β̂ , the 1-Lipschitz condition
holds automatically [3] as discussed in Remark 3.3, and if β̂(y) has already been computed
by an iterative algorithm, the computation of β̂(y + az) would typically be fast as one can
use β̂(y) as a starting point (“warm start”) to compute β̂(y + az). Next, with the 1-Lipschitz
function h(z) = a−1(f (y + az) − f (y)) and z ∼ N(0, In) independent of y, if Ez denotes
the expectation with respect to z conditionally on y, we have by the Gaussian Poincaré in-
equality that

Ez
[(

z�h(z) − D0
)2] ≤ Ez

[∥∥h(z) + ∇h(z)z
∥∥2] ≤ 4n

with D0 = Ez divh(z) = ∫
Rn(2π)−n/2e−‖x‖2/2 divf (y + ax) dx. Hence If we compute

f (y + azj ) at m independent Gaussian perturbations z1, . . . ,zm ∼ N(0, In), inequality

E

[(
1

m

m∑
j=1

z�
j h(zj ) − D0

)2 ∣∣∣ y] ≤ 4n

m
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holds. Here, the function y → div(y) is locally integrable and almost surely bounded by n

thanks to the Lipschitzness of f . For almost every y, y is a Lebesgues point of divf so
that D0 → div(y) as a → 0 by the Lebesgues differentiation theorem. Hence D0 ≈ divf (y)

for small enough a > 0 and 1
m

∑m
j=1 z�

j h(zj ) provides a useful approximation of the di-
vergence thanks to the above conditional variance bound. For large m, more precise results
can be obtained by the central limit theorem. Note that by the second-order Stein formula,
1
m

∑m
j=1 z�

j h(zj ) is also close to the empirical average D̄(m) = 1
m

∑m
j=1 divf (y+azj ) thanks

to

E

[(
1

m

m∑
j=1

z�
j h(zj ) − D̄(m)

)2]
= 1

m
E
[∥∥h(z1)

∥∥2 + trace
{[∇h(z1)

]2}] ≤ 2n

m
.

We apply this probabilistic procedure to the Elastic-Net and Singular Value Thresholding
(SVT) [17] for which explicit formulae for d̂f = trace[∇f (y)] are available.

Indeed, [17], equation (1.8), provides an explicit formula for the degrees-of-freedom of
SVT with tuning parameter λ: If B̂ soft-thresholds the singular values of an observed matrix
Y ∈ R

m×n with tuning parameter λ, the divergence of B̂ with respect to Y is given by

d̂f =
q∧n∑
i=1

{
I{σi>λ} + |q − n|(1 − λ/σi)+

} + 2
q∧n∑
i=1

q∧n∑
j=1,j 
=i

σi(σi − λ)+
σ 2

i − σ 2
j

,

where σ1, . . . , σn∧q are the singular values of Y . We then compare on simulated data this
exact formula to the above random approximation scheme. For n = 100, q = 101, λ = 10.0,
with Y being the sum of standard normal noise plus a ground-truth rank-10 matrix, we apply
the above algorithm with m perturbations (Y + aZj )j=1,...,m for various values of m and
compute d̂fapprox = 1

m

∑m
j=1 trace{Z�

j h(Zj )} where h(Zj ) = a−1(B̂(Y +aZj )− B̂(Y )) with
a = 0.0001 as explained above. The results are in Figure 1.

In the case of the Elastic-Net with �1 parameter λ > 0 and �2 parameter γ > 0, we draw
a similar experiment with the exact formula for degrees-of-freedom being given by d̂f =
trace[XŜ (X�̂

S
XŜ + nγ )−1X�̂

S
] as in Section 3.5.3. With n = 500, p = 400, and again a =

0.001, X having independent symmetric ±1, λ = 0.8
√

4 log(p)/n, γ = 0.2
√

4 log(p)/n, we
obtain the standard errors and boxplots in Figure 2.

The experiments show that the above approximation scheme provides good approxima-
tions in these special cases where exact formula are available. Hence it could also be useful
for estimators where no exact formula is available for the divergence.

APPENDIX A: NONSMOOTH FUNCTIONS

PROOF OF THEOREM 2.1(ii) FOR LIPSCHITZ FUNCTIONS. If f is Lipschitz, then each
component fi of f is also Lipschitz. Hence fi belongs to the space W 1,2(γn) defined above
(2.2) and the weak gradient of fi is equal almost everywhere to its gradient in the sense of
Frechet differentiability (cf., e.g., [26], Theorems 4–6, pp. 279–281). Thus (ii) is a conse-
quence of (iii). �

PROOF OF THEOREM 2.1(iii) FOR fi ∈ W 1,2(γn). Since W 1,2(γn) is the completion
with respect to the norm (2.2) of the space C∞

0 (Rn) of smooth functions with compact sup-
port, for each coordinate i = 1, . . . , n there exists a sequence (gi,q)q≥1 of C∞

0 (Rn) functions
with maxi=1,...,nE[(fi −gi,q)

2 +‖∇fi −∇gi,q‖2] → 0 as q → +∞. Define gq :Rn →R
n as

the function with components g1,q , . . . , gn,q . By considering a subsequence, we may assume
that for all q ≥ 1,

E
[∥∥gq(z) − f (z)

∥∥2] +E
[∥∥∇gq(z) − ∇f (z)

∥∥2
F

] ≤ 2−q−2
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m 10 25 50 75 100 125 150 175 200 225 df_exact

mean 2600.98 2600.17 2598.41 2597.98 2597.39 2597.74 2597.91 2597.78 2597.90 2597.73 2598.75
std 22.06 11.96 9.52 8.21 6.91 5.98 5.41 4.72 5.02 5.56 NA

FIG. 1. Approximate d̂f for SVT, computed over 50 realisations of (Z1, . . . ,Zm) for various values of m. The rightmost column is the excact formula from [17]. The value of Y is
the same over all 50 realisations.
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m 10 25 50 75 100 125 150 175 200 225 250 df_exact

mean 52.16 52.06 52.23 52.39 52.34 52.33 52.40 52.35 52.41 52.40 52.43 52.45
std 2.91 1.77 1.36 1.18 1.02 0.88 0.89 0.88 0.77 0.72 0.68 NA

FIG. 2. Approximate div(Xβ̂) for the Elastic-Net, computed over 50 realisations of (z1, . . . ,zm) for various values of m The rightmost column is the excact formula from [17].
Corresponding boxplots are visible in Figure 1. The value of (X,y) is the same over all 50 realisations.
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which implies that gq → f and ∇gq → ∇f pointwise almost surely by the Borel–Cantelli
lemma. Let Xq = z�gq(z) − divgq(z) and X = z�f (z) − divf (z). Then Xq → X almost
surely. The triangle inequality and Theorem 2.1(i) applied to gk − gk+1 yields{

E
[
(Xq − X)2]}1/2

≤
∞∑

k=q

{
E
[
(Xk − Xk+1)

2]}1/2

≤
∞∑

k=q

{
E
[∥∥gk(z) − gk+1(z)

∥∥2] +E
[∥∥∇gk(z) − ∇gk+1(z)

∥∥2
F

]}1/2

≤
∞∑

k=q

2−k/2 → 0.

Hence, with another application of Theorem 2.1(i),

E
[(

z�f (z) − divf (z)
)2]

= lim
q→∞E

[(
z�gq(z) − divgq(z)

)2]
= lim

q→∞E
[∥∥gq(z)

∥∥2
2 + trace

(
(∇gq)

2(z)
)]

= E
[∥∥f (z)

∥∥2
2 + trace

(
(∇f )2(z)

)]
.

For the first and last equality, we use the fact that if two sequences (Zq)q≥1 and (Yq)q≥1 and
two random variables Y∞, Z∞ are such that E[(Yq −Y∞)2] → 0 and E[(Zq −Z∞)2] → 0 as
q → +∞ then E[Y 2

q ] → E[Y 2∞] and E[YqZq] → E[Y∞Z∞]. This completes the proof. �

APPENDIX B: PROOF OF CONSISTENCY

PROOF OF THEOREM 3.2. (i) Since E[ŜURE] = E[‖μ̂ − μ‖2],
E
[
R̂′

SURE

] = E
[
2σ 2‖y − μ̂‖2 + 2σ 2‖μ̂ − μ‖2] ≥ σ 2

E
[‖ε‖2] = σ 4n.

(ii) As ((ŜURE)
1/2
+ − ‖μ̂ − μ‖)2 ≤ |ŜURE − ‖μ̂ − μ‖2|, by the triangle inequality

E
[(

(ŜURE)+1/2 −E
[‖μ̂ − μ‖2]1/2)4]1/4

≤ R
1/4
SURE +E

[(‖μ̂ − μ‖ −E
[‖μ̂ − μ‖2]1/2)4]1/4

.

If y → μ̂ is a 1-Lipschitz function, then ε → ‖μ̂ − μ‖ is also 1-Lipschitz and the second
term above is bounded from above as follows:

E
[(‖μ̂ − μ‖ −E

[‖μ̂ − μ‖2]1/2)4]1/4

≤ E
[(‖μ̂ − μ‖ −E‖μ̂ − μ‖)4]1/4 +E

[(
E‖μ̂ − μ‖ −E

[‖μ̂ − μ‖2]1/2)4]1/4

≤ (2 + 1)σ = 3σ

by
∫ ∞

0 P(|(‖μ̂ − μ‖ − E‖μ̂ − μ‖| > σx)4x3 dx ≤ ∫ ∞
0 8e−x2/2x3 dx = 16 for the first term,

and by 0 ≤ E[‖μ̂−μ‖2]− (E‖μ̂−μ‖)2 ≤ σ 2 thanks to the Gaussian Poincaré inequality for
the second term. This yields (3.10).
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(iii) Let h = μ̂−μ and d̂f = div μ̂. By (3.7), ŜURE is a variable of form (2.10) with f (ε) =
ε − 2h and g(ε) = −‖h‖2. As ∇f (ε) = In − 2∇μ̂ and ∇g(ε) = −2(∇μ̂)h, (2.12) implies

Var(ŜURE)

≤ E
[
σ 2∥∥ε − 2h + 2(∇μ̂)h

∥∥2 + σ 4 trace
(
(In − 2∇μ̂)2)]

= RSURE + 4σ 2
E
[
(ε − 2h)�(∇μ̂)h + ∥∥(∇μ̂)h

∥∥2]
= RSURE + σ 2

E
[
ε�(∇μ̂)ε − (ε − 2h)�(∇μ̂)(ε − 2h) + 4h�{

(∇μ̂)2 − ∇μ̂
}
h
]

≤ RSURE + σ 4n,

where the first equality follows from (3.6), the second is simple algebra and the last inequality
follows from 0n×n � (∇μ̂)2 � ∇μ̂ � In.

(iv) Similar to (iii), R̂′
SURE/(4σ 2) = ‖y − μ̂‖2 + σ 2d̂f− σ 2n/2 is a variable of form (2.10)

with f (ε) = ε − h and g(ε) = ε�h − ‖h‖2 − σ 2n/2. Thus, (2.12) implies

Var
(
R̂′

SURE/
(
4σ 2))

≤ E
[
σ 2∥∥(∇μ̂ − In)(2h − ε)

∥∥2 + σ 4 trace
(
(In − ∇μ̂)2)]

≤ E
[
σ 2‖2h − ε‖2 + σ 4 trace

(
(In − ∇μ̂)2)]

= σ 2
E
[
4‖ε − h‖2 + 2σ 2(d̂f− n) + σ 2 trace

(
(∇μ̂)2)]

= (3/4)R′
SURE + RSURE/4 − σ 4

E[d̂f]
= E

[
R̂′′

SURE

]
with the R̂′′

SURE in (3.13). As R̂SURE ≤ R̂′
SURE, Var(R̂′

SURE/(4σ 2)) ≤ E[R̂′
SURE]. �

PROOF OF REMARK 3.3. The claim that μ̂ = Xβ̂(y) is 1-Lipschitz is proved in [3],
Proposition 3. The symmetry and positivity of ∇μ̂ is proved in [9], Proposition J.1, with
the argument outlined here: μ̂(y) ∈ ∂u(y) where the function u(y) = ‖y‖2/2 − ‖Xβ̂(y) −
y‖2/2 − g(β̂(y)) is convex, Alexandrov’s theorem on the almost sure second-order differ-
entiability of convex functions given, for instance, in [42], Theorem D.2.1, grants that the
Hessian of u is almost surely symmetric positive semidefinite, and the Hessian of u equals
∇μ̂(y) almost surely. �

APPENDIX C: PROOFS: CONFIDENCE REGIONS WITH SURE

PROOF OF THEOREM 3.4 AND COROLLARY 3.5. Assume σ = 1 without loss of gener-
ality. As f (y) = μ̂ − y = (μ̂ − μ) − ε,

ŜURE − ‖μ − μ̂‖2 = ‖μ̂ − y‖2 − ‖μ − μ̂‖2 + 2 div(μ̂ − y) + n

= ‖ε‖2 − 2ε�(μ̂ − μ) + 2 div(μ̂ − μ) − n,

so that (3.18) is a direct consequence of Theorem 2.1. By Markov’ inequality,

P
{∣∣ε�(μ̂ − μ) − div(μ̂ − μ)

∣∣ ≥ v0

√
n/2

}
≤ E

[‖μ̂ − μ‖2 + trace
((∇μ̂(y)

)2)]
/
(
v2

0n/2
) ≤ εn.

The conclusion follows from the definition of vα and the union bound.
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Corollary 3.5 follows from Theorem 3.4 with v2
0 = 2γ

1/2
n , εn = γ

1/2
n and the continuous

mapping theorem. �

PROOF OF THEOREM 3.6. Assume σ = 1 without loss of generality. Set d̂f = trace[∇μ̂],
h = μ̂ − μ and W = ŜURE − E[‖μ̂ − μ‖2] − ‖ε‖2 + n. As W is of the form (2.10) with
f (ε) = −2h and g(ε) = E[‖h‖2] − ‖h‖2,

Var(W) ≤ E
[∥∥−2h + (∇μ̂)(2h)

∥∥2 + trace
(
(2∇μ̂)2)]

≤ E
[
4‖h‖2 + 4 trace

(
(∇μ̂)2)]

≤ 4E[ŜURE + d̂f]
by (2.12). This gives (3.22). Let Xn = |W |/E[W 2]1/2. We have

|W | ≤ 2Xn

(
E[ŜURE + d̂f])1/2

.(C.1)

As ŜURE + d̂f is of form (2.10) with f (ε) = ε − 3h and g(ε) = −ε�h − ‖h‖2, (2.12) yields

Var(ŜURE + d̂f) ≤ E
[∥∥ε − 2h + (∇μ̂)(2h + ε)

∥∥2 + trace
(
(In − 3∇μ̂)2)].

Using trace[(∇μ̂)2] ≤ d̂f, the second term is bounded by n − 6d̂f + 9d̂f = n + 3d̂f. Since
(2h + ε)(∇μ̂)2(2h + ε) ≤ (2h + ε)(∇μ̂)(2h + ε), expanding the square yields

Var(ŜURE + d̂f)

≤ E
[‖ε − 2h‖2 + (2h + ε)(∇μ̂)(2h + ε) + 2(ε − 2h)�(∇μ̂)(2h + ε)

]
+E[n + 3d̂f]

= E
[
n + 3d̂f+ ‖ε − 2h‖2 + 4ε�(∇μ̂)ε

] −E
[
(ε − 2h)�(∇μ̂)(ε − 2h)

]
≤ E

[
4ŜURE + (6n − d̂f)

]
,

where the last inequality follows from ε�(∇μ̂)ε ≤ ‖ε‖2 and Stein’s formulae E[−4ε�h] =
E[−4d̂f] and E[‖h‖2] = E[ŜURE]. Hence there exists a random variable Yn ≥ 0 with E[Y 2

n ] ≤
1 such that almost surely E[ŜURE + d̂f] ≤ ŜURE + d̂f + 2YnE[ŜURE + d̂f]1/2 + Yn

√
6n. By

completing the square,(
E[ŜURE + d̂f]1/2 − Yn

)2 ≤ ŜURE + d̂f+ Y 2
n + Yn

√
6n.(C.2)

Combining (C.1) and (C.2) above, we get almost surely

|W | ≤ 2Xn

[
(ŜURE + d̂f)

1/2
+ + 2Yn + √

Yn(6n)1/4]
which is equivalent to (3.23). As Xn ≤ 1/

√
β1 and Yn ≤ 1/

√
β2 with probability at least

probability 1 − β1 − β2, the conclusions follow.
For the estimation of ‖μ̂ − μ‖2, we set W = ŜURE − ‖μ̂ − μ‖2 − ‖ε‖2 + n with E[W 2] ≤

4E[ŜURE+ d̂f] in virtue of trace({∇μ̂}2) ≤ d̂f by 1-Lipschitzness of μ̂ so that the upper bounds
for E[ŜURE + d̂f] still apply. �

APPENDIX D: PROOFS OF THEOREM 3.7, PROPOSITION 3.8 AND (3.32)

The proof of Theorem 3.7 requires the following lemma.
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LEMMA D.1. Consider the sequence model y = μ + ε with ε ∼ N(0, σ 2In). Let μ̂(1),
μ̂(2) be two estimators that are L-Lipschitz functions of y and let f (y) = μ̂(2) − μ̂(1). Let μ̃
be the estimator among {μ̂(1), μ̂(2)} with the smallest ŜURE. Then either

E
[
�4] ≤ 8σ 4

E trace
[{∇f (y)

}2] or E
[
�2] ≤ 8(

√
2L + 1)σ 2

holds, where � = ‖μ̃ − μ‖ − minj=1,2 ‖μ̂(j) − μ‖.

PROOF OF LEMMA D.1. Let ξ = ‖μ̂(1) − μ‖2 − ‖μ̂(2) − μ‖2 − ŜURE(1) + ŜURE(2) =
2 divf (y) − 2ε�f (y). By definitions of μ̃ and �,

|ξ | ≥ ‖μ̃ − μ‖2 − min
j=1,2

∥∥μ̂(j) − μ
∥∥2

= {∥∥μ̂(1) − μ
∥∥ + ∥∥μ̂(2) − μ

∥∥}�
≥ (∥∥f (y)

∥∥�) ∨ �2.

If σ 2
E trace[{∇f (y)}2] ≥ E[‖f (y)‖2], then E[�4] ≤ E[ξ2] and the identity (2.7) for

E[ξ2]/4 yields the bound on E[�4].
If now σ 2

E trace[{∇f (y)}2] ≤ E[‖f (y)‖2], as y → ‖f (y)‖ is 2L-Lipschitz

E
[∥∥f (y)

∥∥2]
E
[
�2] ≤ E

[∥∥f (y)
∥∥2

�2] + {
Var

(∥∥f (y)
∥∥2)

E
[
�4]}1/2

≤ E
[
ξ2] + {

Var
(∥∥f (y)

∥∥2)
E
[
ξ2]}1/2

≤ 8σ 2
E
[∥∥f (y)

∥∥2] +
√

(4L)28σ 2
E
[∥∥f (y)

∥∥2]
,

by the Cauchy–Schwarz inequality for the first inequality and the Gaussian Poincaré in-
equality Var[‖f (y)‖2] ≤ E[‖2{∇f (y)}f (y)‖2] ≤ (4L)2

E[‖f (y)‖2] for the second. Hence
E[�2] ≤ 8(

√
2L + 1)σ 2. �

PROOF OF THEOREM 3.7. Let j0 = arg minj=1,...,mE‖μ̂(j) − μ‖. For k ∈ [m], let

�k = Ik

(∥∥μ̂(k) − μ
∥∥ − ∥∥μ̂(j0) − μ

∥∥)+,

where Ik is the indicator of the event that the ŜURE of μ̂(k) is smaller than the ŜURE of μ̂(j0).
Then by Lemma D.1 we have E[Ak] ≤ 1 with

Ak = min
{
�4

k/
(
8σ 4s∗),�2

k/
(
8σ 2(

√
2L + 1)

)}
and X = m−1 maxk∈[m] Ak has also E[X] ≤ 1. Then almost surely,

(D.1) ‖μ̃ − μ‖ − ∥∥μ̂(j0) − μ
∥∥ ≤ �

k̂
≤ σ max

{(
8s∗mX

)1/4
,
(
8(

√
2L + 1)mX

)1/2}
so that P(X > 1/α) ≤ α yields (i).

(ii) Set Wk = (‖μ̂(j0) − μ‖ − ‖μ̂(k) − μ‖)+. For each k ∈ [m], the function y → ‖μ̂(j0) −
μ‖−‖μ̂(k) −μ‖ is 2L-Lipschitz with negative expectation so that P(Wk > 2Lσ

√
2x) ≤ e−x

for all x > 0 by Gaussian concentration and P(maxk∈[m] Wk > 2Lσ
√

2 log(m/δ)) ≤ δ by the
union bound.

(iii) is obtained using (D.1), E[X] ≤ 1 and E[maxk∈[m] W 2
k ] ≤ 8L2σ 2 log(em) by integra-

tion.
(iv) For (3.29), let k0 = arg minj∈[m]E[‖μ̂(j) −μ‖2]. For all j, k ∈ [m], we have for ξj,k =

‖μ̂(k) − μ‖2 − ŜURE(k) − ‖μ̂(j) − μ‖2 + ŜURE(j) that

E
[
ξ2
j,k

] = 4E
[
σ 2∥∥μ̂(j) − μ̂(k)

∥∥2 + 4σ 4 trace
({∇μ̂(k) − ∇μ̂(j)}2)]

≤ 16L2σ 4n + 16L2σ 4n = 32L2σ 4n
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by assumption. Since G = maxk∈[m] ξ2
k0,k

/(32L2σ 4mn) has E[G] ≤ 1 and ‖μ̃ − μ‖2 −
‖μ̂(k0) − μ‖2 ≤ (32Gmn)1/2Lσ 2 holds a.s., we get (3.29). �

PROOF OF PROPOSITION 3.8. Let v ∈R
n with ‖v‖2 = σ 2√n. Choose

μ = 0, μ̂(1)(y) = 0, μ̂(2)(y) = v + G(y),

where G : Rn → R
n with G(y)i = g(yi) and g is defined as the only function that is 2n+1σ

periodic, symmetric (g(−u) = g(u)) and with g(u) = σ( u
σ

∧ (2n − u
σ
)) on [0,2nσ ]. Observe

that g and G are both 1-Lipschitz. Furthermore, P(g′(yi) = ±1) = 1/2 by symmetry of g

and divG(y) = ∑n
i=1 ri where (r1, . . . , rn) are i.i.d. with P(ri = ±1) = 1/2. Since μ̂(1) is

the oracle, that is, it has smaller risk than μ̂(2), we now study the event � = {ŜURE(2) <

ŜURE(1)} in which μ̃ selects the worse estimator. Event � can be rewritten {‖v + G(y)‖2 −
2ε�(v + G(y)) + 2σ 2 divG(y) < 0}. We have P{divG(y) ≤ −√

n} ≥ C0 > 0 by the reverse
of Hoeffding inequality given in [39], Theorem 7.3.2, while ‖v+G(y)‖2 −2ε�(v+G(y)) =
σ 2√n(1 + oP(1)) since ‖v‖2 = σ 2√n, |G| ≤ σ2−n and ε�v = OP(σ‖v‖). This proves that
P(�) ≥ C3 > 0 for instance with C3 = C0/2 and any n ≥ C1 for large enough C1. On �, we
have μ̃ = μ̂(2) as well as

‖μ̃ − μ‖ − ∥∥μ̂(1) − μ
∥∥ = ∥∥μ̂(2) − μ

∥∥ = ∥∥v + G(y)
∥∥ ≥ C2σn1/4. �

PROOF OF (3.32) ASSUMING y → μ̂(j)(y) IS L-LIPSCHITZ FOR ALL j . Let k ∈ [m] be
fixed. Proposition 3.2 in [5] states that μ̃Q satisfies

‖μ̃Q − μ‖2 − ∥∥μ̂(j0) − μ
∥∥2

≤ max
k∈[m] 2

{
ε�(

μ̂(k) − μ̂(j0)
) − σ 2 div

(
μ̂(k) − μ̂(j0)

) − ∥∥μ̂(j0 − μ̂(k)
∥∥2

/4
}
.

Let Wj0,k be the random variable inside the maximum, which is of the form (2.10) with
f (ε) = (μ̂(k) − μ̂(j0) and g(ε) = ‖f (ε)‖2/4. Then G = maxj∈[m](Wj0,k − E[Wj0,k])2+/

(mVar[Wj0,k]) has E[G] ≤ 1 and Var[Wj0,k] ≤ σ 2‖(In − 1
2∇f )f (ε)‖2 + σ 4s∗ ≤ (1 +

L)2σ 2
E[‖μ̂j0 − μ̂(k)‖2] + σ 4s∗ by (2.12). Then almost surely

Wj0,k ≤ √
GmVar[Wj,k]1/2 −E

[∥∥μ̂j − μ̂(k)
∥∥2

/4
]

≤ σ 2
√

Gms∗ + (1 + L)σ
√

GE
[∥∥μ̂j − μ̂(k)

∥∥2]1/2 −E
[∥∥μ̂j − μ̂(k)

∥∥2
/4

]
≤ σ 2

√
Gms∗ + (1 + L)2σ 2G.

The proof is complete using E[G] ≤ 1 and E[‖μ̂(j0) − μ‖2] − minj∈[m]E[‖μ̂(j) − μ‖2] ≤
σ 2L2 by definition of j0 and L-Lipschitzness of μ̂(j0). �

APPENDIX E: STRICTNESS OF THE KKT CONDITIONS

PROOF OF PROPOSITION 3.9. Assume that XB has rank strictly less than |B|. Then there
must exist some j ∈ B and A ⊆ B \ {j} with xj = ∑

k∈A γkxk and rank(XA) = min(|A|, n).
By the definition of B ,

λnδj = x�
j

(
y − Xβ̂

(λ)
LASSO

) = λn
∑
k∈A

γkδk,

where δk = x�
k (y − Xβ̂

(λ)
LASSO)/(λn) ∈ {−1,1}. This is impossible by Assumption 3.1 on X.

Hence XB has rank |B|. For the uniqueness, consider two Lasso solutions β̂
(λ)
LASSO and b̂ of
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(3.34). It is easily seen that Xβ̂
(λ)
LASSO = Xb̂ by the strict convexity of the squared loss in Xb in

(3.34); actually the function y → Xβ̂
(λ)
LASSO is 1-Lipschitz (cf., for instance, [6]). Furthermore,

both β̂
(λ)
LASSO, b̂ must be supported on B . Hence XB(β̂

(λ)
LASSO)B = XB b̂B which implies that

b̂B = (β̂
(λ)
LASSO)B because XB has rank |B|.

It remains to show that for any j /∈ Ŝ, the KKT conditions on coordinate j holds strictly
with probability one. As XB has rank |B|, it suffices to consider the case of |Ŝ| < n. By the
KKT conditions, (β̂

(λ)
LASSO)Ŝ = (X�̂

S
XŜ )−1{X�̂

S
y − nλ sgn((β̂

(λ)
LASSO)Ŝ)}. As P[v�y = c] = 0

for all deterministic v 
= 0 and real c,

E
(
P
[
x�

j

{
y − XS

(
X�

S XS

)−1(
X�

S y − nλuS

)
/n

} = ±λ|X]) = 0

for all deterministic {S, j,u} satisfying rank(XS) = |S| < n, rank(XS∪{j}) = |S| + 1 and

uS ∈ {±1}S . Hence, P[|B| > |Ŝ|] = 0, which means that the KKT conditions of β̂
(λ)
LASSO must

hold strictly with probability one. �

APPENDIX F: PROOF: BOUND ON THE VARIANCE OF |Ŝ|

PROOF OF THEOREM 3.11. Assume σ = 1 without loss of generality due to scale in-
variance. The first claim follows from (3.37) and the discussion leading to it, combined
with Theorem 2.2. Next, we first use the rough bounds |Ŝ| ≤ n and ‖P Ŝε‖ ≤ ‖ε‖ to obtain
Var[|Ŝ|] ≤ 2n. For the right term of the minimum, for a fixed A ⊂ [p], the random variable
‖P Aε‖2 has chi-squared distribution with at most |A| degrees of freedom and a classical tail
bound (cf., for instance, [34], Lemma 1) states that

P
(‖P Aε‖2 > 2|A| + 3x

) ≤ P
(‖P Aε‖2 > |A| + 2

√
x|A| + 2x

) ≤ e−x.

Consequently, by the union bound over all
(p
m

) ≤ (
ep
m

)m supports A of size m,

P

(
max

A⊂[p]:|A|=m
‖P Aε‖2 > 2m + 3

(
m log

(
ep

m

)
+ x

))
≤ e−x.

By a second union bound over all possible support sizes m = 1, . . . , p,

P

(
max
A⊂[p]

{
‖P Aε‖2 − 2|A| − 3

(
|A| log

(
ep

|A| ∨ 1

))}
> 3(logp + x)

)
≤ e−x.

Finally, let X = (1/3)maxA⊂[p]{‖P Aε‖2 − 2|A| − 3(|A| log(
ep
|A|) + logp)} so that P(X >

x) ≤ e−x holds. The identity E[max(X,0)] = ∫ ∞
0 P(X > x)dx ≤ 1 yields

E
[‖P Ŝε‖2] ≤ 2E|Ŝ| + 3E

[|Ŝ| log
(
ep/

{|Ŝ| ∨ 1
}) + log(ep)

]
(F.1)

≤ 2E|Ŝ| + 4E
[|Ŝ| log

(
ep/

{|Ŝ|∨1
})]

.

The proof is complete as the second inequality in (3.39) follows from the concavity of the
function x → x log(ep/(x ∨ 1)). �

APPENDIX G: PRELIMINARIES FOR BOUNDS ON E|Ŝ|
LEMMA G.1. Let Z be a standard normal random variable. Then

P[Z > t] ≤ e−t2/2

(2πt2 + 4)1/2 , ∀t ≥ 0,

E
[(|Z| − t

)
+
] ≤ 2e−t2/2

(2π)1/2(t2 + 1)
, ∀t ≥ 0,
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and

E
[(|Z| − t

)2
+
] ≤ 4e−t2/2

(t2 + 2)(2πt2 + 4)1/2 , ∀t ≥ 0.(G.1)

REMARK. Compared with the usual tail probability bounds for standard Gaussian, the
upper bounds in Lemma G.1 is sharp at both t = 0 and t → ∞.

PROOF. Let t > 0. Let ϕ(t) and �(t) respectively be the density and cumulative distri-
bution function of Z. With u = tx + x2/2 and du = (t + x)dx,

�(−t)

ϕ(t)
=

∫ ∞
0

e−tx−x2/2 dx =
∫ ∞

0

e−u du

(t2 + 2u)1/2 =
∫ ∞

0
ft

(
u−1/2)e−u du,

where ft (x) = (t2 + 2/x2)−1/2 = x(t2x2 + 2)−1/2 is a concave function of x. Thus,

�(−t)/ϕ(t) ≤ ft

(
�(1/2)

) = ft (
√

π) = (
t2 + 2/π

)−1/2
.

This gives the tail probability bound. From the well known t (1 + t2)−1ϕ(t) ≤ �(−t), we
also have

E
[(|Z| − t

)
+
] = 2

{
ϕ(t) − t�(−t)

} ≤ 2ϕ(t)/
(
1 + t2).

Define Jk(t) = ∫ ∞
0 xke−x−x2/(2t2) dx. For the second tail moment, we have E[(|Z| − t)2+] =

2ϕ(t)J2(t)/t3 = 2�(−t)J2(t)/{t2J0(t)}. As in Proposition 10(i) in [48] and its proof, (G.1)
follows from J2(t)/J0(t) ≤ 1/(1/2 + 1/t2) due to the recursion Jk+1(t) + t−2Jk+2(t) =
(k + 1)Jk(t) for k ≥ 0. �

APPENDIX H: UPPER BOUND ON THE SPARSITY OF THE LASSO UNDER
THE SRC

PROOF OF PROPOSITION 3.12. The SRC (3.41) can be written as

(H.1)
(

max
B⊂[p]:|B\S|≤m

φcond
(
X�

BXB

) − 1
)(|S| + ε2k

) + ε1k ≤ 2(1 − η)2m.

Let g = (nλ)−1X�P ⊥
S ε with elements gj ∼ N(0, σ 2

j ) satisfying 1/σj ≥ tτ = η−1 ×√
(1 + τ)2 log(p/k). Let C0 = maxB:|B\S|≤m φcond(X

�
BXB) − 1 and

� = {
4(1 − η)

∥∥(|g| − η
)
+
∥∥

1 + C0
∥∥(|g| − 1

)
+
∥∥2

2 < ε1k + C0ε2k
}
.

It follows from Lemma H.1 below that |Ŝ \ S| < m in this event �. Applying Lemma G.1,
we find that

4(1 − η)E
[∥∥(|g| − η

)
+
∥∥

1

] ≤ 8(1 − η)pe−(ηtτ )2/2
√

2πtτ (1 + (ηtτ )2)
≤ ε1k(k/p)τ

1 + (ηt0)2

with ε1 = 8(1 − η)/{√2πt0} and

E
[∥∥(|g| − 1

)
+
∥∥2

2

] ≤ 4e−t2
τ /2

t2
τ (t2

τ + 2)(2πt2
τ + 4)1/2 ≤ ε2k(k/p)τ

1 + (ηt0)2

with ε2 = 4/{t2
0 (2πt2

0 + 4)1/2}. Thus, P{�} is no smaller than 1 − (k/p)τ /(1 + (ηt0)
2). Fi-

nally, E|Ŝ| is bounded from above by |S| + m + E[I�c |Ŝ|] so that combining E[I�c |Ŝ|] ≤
pP(�c) with the previous bound on P(�c) gives the upper bound on E|Ŝ|. �

The following lemma is a slight modification of [8], Proposition 7.4.
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LEMMA H.1 (Deterministic lemma). Let λ, ε1, ε2 > 0 and η ∈ (0,1). Let β̂ be the
Lasso (3.34) with y = Xβ + ε and S = supp(β). If for g = X�P ⊥

S ε/(nλ) and C0 =
maxB:|B\S|≤m φcond(X

�
BXB) − 1, we have

4(1 − η)
∥∥(|g| − η

)
+
∥∥

1 + C0
∥∥(|g| − 1

)
+
∥∥2

2 < ε1k + C0ε2k

and the SRC (3.41) holds, then |Ŝ \ S| < m.

PROOF. The SRC (3.41) can be written as (H.1). Let β the oracle LSE satisfying
supp(β) ⊆ S and Xβ = P Sy. Let B satisfy

S ∪ Ŝ ⊆ B ⊆ S ∪ {
j : ∣∣xT

j (y − Xβ̂)/n
∣∣ = λ

}
.

Let � = X�X/n, B1 = B \ S, u = (β̂ − β)/λ and v = �u. By algebra,

v�
B�

−1
B,BvB + v�

B1

(
�

−1
B,B

)
B1,B1

vB1 = v�
S

(
�

−1
B,B

)
S,SvS + 2u�

B1
vB1 .

Let s = X�(y − Xβ̂)/(nλ) = g − v. By the KKT conditions, sj = sgn(uj ) for j ∈ B1, so

that u�
B1

vB1 = ∑
j∈B\S |uj |(sjgj − 1) ≤ v�

B�
−1
B,BwB , where w is the vector with elements

wj = I {j ∈ B1}sj (sjgj − 1)+. By algebra,

(v − w)�B�
−1
B,B(v − w)B + v�

B1

(
�

−1
B,B

)
B1,B1

vB1

≤ v�
S

(
�

−1
B,B

)
S,SvS + wB�

−1
B,BwB.

It follows that

‖vS‖2
2 + ‖vB1 − wB1‖2

2 + ‖vB1‖2
2 ≤ φcond(�B,B)

(‖vS‖2
2 + ‖wB1‖2

2
)
.

Moreover, as vj −wj = −sj (sjgj −1)− for j ∈ B1, ‖vB1‖2
2 = ‖vB1 −wB1‖2

2 +‖wB1‖2
2. This

and the inequality above imply

2‖vB1 − wB1‖2
2 ≤ φcond(�B,B − 1)

(‖vS‖2
2 + ‖wB1‖2

2
)
.

As v = g − s and gS = 0, ‖vS‖2
2 = |S|. We also have ‖wB1‖2

2 ≤ ∑p
j=1(sjgj − 1)2+ so that

2‖vB1 − wB1‖2
2 ≤ C0(|S| + ‖(|g| − 1)+‖2

2). As sj = sgn(uj ) and |vj − wj | = (1 − sjgj )+ in
B1,

2(1 − η)2|B1| ≤ 2‖vB1 − wB1‖2
2 + 4(1 − η)

p∑
j=1

(sjgj − η)+

≤ C0
(|S| + ∥∥(|g| − 1

)
+
∥∥2

2

) + 4(1 − η)
∥∥(|g| − η

)
+
∥∥

1

< C0
(|S| + ε2k

) + ε1k.

Thus, by (H.1), |B1| ≤ m implies |B1| < m. As |B1| is allowed to change one-at-a-time along
the Lasso path from λ = ∞ and the condition on g is monotone in λ, |B1| < m holds for all
penalty levels satisfying the condition on g. For details of this argument, see [59], Proof of
Lemma 1. �
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APPENDIX I: UPPER BOUND ON THE SPARSITY OF THE LASSO UNDER THE RE
CONDITION

PROOF OF THEOREM 3.13. Let μ = (1+ τ)σ
√

2 log(ep/(s0 ∨ 1))/n and λ = (1+γ )μ.
For each j ∈ [p] set gj = (τ + 1)ε�Xej /n. By the KKT conditions of the Lasso, we have(

τε�Xh + ‖Xh‖2)/n ≤ g�h − λ‖hSc‖1 − λ sgn(βS)�hS,

where h = β̂
(λ)
LASSO − β . Define T = {u ∈ R

p : ‖uSc‖1 < c0
√

s0 ∨ 1‖u‖} as well as

fλ,μ(ε) = sup
u∈T

(g�u − μ‖uSc‖1 − λ sgn(βS)�uS)+
‖u‖ ,

gλ,μ(ε) = sup
u/∈T ,‖Xu‖>0

(g�u − μ‖uSc‖1 − λ sgn(βS)�uS − γ λc0
√

s0 ∨ 1‖u‖)+
‖Xu‖/√n

,

where a+ = max(a,0) for any real a. Let � be the event � = {h ∈ T } and I� be its indicator
function. Using the elementary inequality 2ab − b2 ≤ a2, we get(

2τε�Xh + ‖Xh‖2)/n ≤ I�fλ,λ(ε)2/RE(S, c0)
2 + I�cgλ,λ(ε)2.

We now bound the expectation E[fλ,μ(ε)2]. By simple algebra on each coordinate and the
Cauchy–Schwarz inequality,

fλ,μ(ε)2 = ∑
j∈S

(
gj − λ sgn(βj )

)2 + ∑
j /∈S

(|gj | − μ
)2

.

Each gj is centered, normal with variance at most ω2 = (1+τ)2σ 2/n, hence Lemma G.1 im-
plies that E[fλ,μ(ε)2] ≤ s0(λ

2 +ω2)+ (s0 ∨ 1)ω2, which is then bounded by 2−1(γ c0)
2(s0 ∨

1)λ2 by the condition on c0.
Note that by construction, the function ε → gλ,μ(ε) is ((1 + τ)/

√
n)-Lipschitz, so that by

the Gaussian concentration inequality (see, e.g., [14], Theorem 10.17),

E
[
gλ,μ(ε)2] =

∫ +∞
0

P
[
gλ,μ(ε) >

√
t
]
dt ≤

∫ +∞
0

P
[
ωN(0,1) >

√
t
]
dt = ω2/2,

provided that the median of gλ,μ(ε) is zero. We now prove that the median is indeed zero.
The event {fλ,μ(ε)2 ≤ 2E[fλ,μ(ε)2]} has probability at least 1/2 thanks to Markov’s in-
equality. Furthermore, we proved above that 2E[fλ,μ(ε)2] ≤ (c0γ )2(s0 ∨ 1)λ2. On this event
of probability at least 1/2, for any u ∈ T we have(

g�u − μ‖uSc‖1 − λ sgn(βS)�uS − (c0γ )λ
√

s0 ∨ 1‖u‖)+ = 0.

We have established that the median of gλ,μ is nonpositive and the proof is complete. �

APPENDIX J: CONSISTENCY OF SURE FOR SURE IN THE LASSO CASE

PROOF OF PROPOSITION 3.14. (i)–(iv) follow directly from Theorem 3.2. For (v),
Markov’s inequality with the bound in (iii) followed by the bound σ 4n ≤ E[R̂SURE] from
(ii) implies ∣∣R̂SURE −E[R̂SURE]

∣∣2 ≤ 4(nα)−1σ 4nE[R̂SURE] ≤ 4(nα)−1
E[R̂SURE]2

with probability at least 1 − α, and E[R̂SURE] ≤ (1 − 4(nα)−1/2)−1R̂SURE on this event
by the triangle inequality. The proof is completed using P(|ŜURE − ‖Xβ̂

(λ)
LASSO − μ‖2| ≤

γ −1
E[R̂SURE]) ≥ 1 − γ . which follows by another application of Markov’s inequality. �
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