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We consider the problem of constructing pointwise confidence intervals
in the multiple isotonic regression model. Recently, Han and Zhang (2020)
obtained a pointwise limit distribution theory for the so-called block max–
min and min–max estimators (Fokianos, Leucht and Neumann (2020); Deng
and Zhang (2020)) in this model, but inference remains a difficult problem
due to the nuisance parameter in the limit distribution that involves multiple
unknown partial derivatives of the true regression function.

In this paper, we show that this difficult nuisance parameter can be effec-
tively eliminated by taking advantage of information beyond point estimates
in the block max–min and min–max estimators. Formally, let û(x0) (resp.
v̂(x0)) be the maximizing lower-left (resp. minimizing upper-right) vertex in
the block max–min (resp. min–max) estimator, and f̂n be the average of the
block max–min and min–max estimators. If all (first-order) partial derivatives
of f0 are nonvanishing at x0, then the following pivotal limit distribution the-
ory holds: √

nû,v̂(x0)
(
f̂n(x0) − f0(x0)

)
� σ ·L1d

.

Here nû,v̂(x0) is the number of design points in the block [û(x0), v̂(x0)], σ is
the standard deviation of the errors, and L1d

is a universal limit distribution
free of nuisance parameters. This immediately yields confidence intervals for
f0(x0) with asymptotically exact confidence level and oracle length. Notably,
the construction of the confidence intervals, even new in the univariate set-
ting, requires no more efforts than performing an isotonic regression once us-
ing the block max–min and min–max estimators, and can be easily adapted to
other common monotone models including, for example, (i) monotone den-
sity estimation, (ii) interval censoring model with current status data, (iii)
counting process model with panel count data, and (iv) generalized linear
models. Extensive simulations are carried out to support our theory.

1. Introduction.

1.1. Overview. The field of estimation and inference under shape constraints has under-
gone rapid development in recent years, mostly notably in the direction of estimation theory
of multidimensional shape constrained models. We briefly give some review of the history
and some recent progress:

• (Univariate shape constraints) Starting from the seminal work of [25, 55, 56], estimation
of a univariate monotone density or regression function has received much attention, cf.
[8–10, 26, 27, 29, 38, 67, 69]. Estimation of a univariate convex density or regression
function is a more challenging task, but considerable progress has been made through the
efforts of many authors, cf. [8, 10, 32, 33, 35, 43, 44, 52]. Recent years also witnessed
much progress in further understanding the behavior of the maximum likelihood estimator
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(MLE) of a univariate log-concave density, cf. [1, 17, 19, 20, 46, 47]. Other topics include
estimation of unimodal regression functions, cf. [8, 12], estimation of a concave bathtub-
shaped hazard function, cf. [45], and estimation of a k-monotone density, cf. [2].

• (Multidimensional monotonicity constraints) [11] initiated a study of risk bounds for the
least squares estimator (LSE) of a bivariate coordinate-wise nondecreasing regression
function. [39] extends the results of [11] to the more challenging case d ≥ 3. See also
[37] for some further improvements. [15] studied block max–min and min–max estimators
originally proposed in [23]. See also a recent work [21] for a different notion of multidi-
mensional monotonicity.

• (Multidimensional convexity constraints) Convex/concave regression in multidimensional
settings is initiated in [50]. Consistency of the LSEs is proved in [51, 60]. [41] studied
global and adaptive risk bounds for convex bounded LSEs in a random design for d ≤ 3.
[47] studied global risk bounds for log-concave MLEs, and [22] studied their adaptation
properties, both for d ≤ 3. [68] studied log-concave density estimation in high dimensions.
Other topics include estimation of s-concave densities, cf. [37, 40, 48, 63], and additive
modeling, cf. [13].

Despite these remarkable progress in the estimation theory of shape constrained models in
multivariate settings for various tuning-free estimators, little next to nothing is known about
how these merits can be actually useful in making inference for the multidimensional shape
constrained function of interest. The purpose of this paper is to start to fill this gap, within
the context of multiple isotonic regression [15, 39].

Here is our setup. Consider the regression model

Yi = f0(Xi) + ξi, i = 1, . . . , n,(1.1)

where X1, . . . ,Xn are design points in [0,1]d which can be either fixed or random, and
ξ1, . . . , ξn are independent mean-zero errors. The true regression function f0 is assumed to
belong to the class of coordinate-wise nondecreasing functions on [0,1]d :

f0 ∈Fd ≡ {
f : [0,1]d →R, f (x) ≤ f (y) if xi ≤ yi for all i = 1, . . . , d

}
.

The hope of making some real progress in the inference aspect of this model, beyond
purely the estimation theory, is spurred by the recent work of the second and third authors
[42], who obtained a pointwise limit distribution theory for the block max–min and min–max
estimators originally proposed in [23] and rigorously defined in [15]. For any x0 ∈ [0,1]d , let
the block max–min and min–max estimators, f̂ −

n and f̂ +
n , be defined as

f̂ −
n (x0) ≡ max

u≤x0
min
v≥x0[u,v]∩{Xi}�=∅

1

|{i : u ≤ Xi ≤ v}|
∑

i:u≤Xi≤v

Yi

≡ max
u≤x0

min
v≥x0[u,v]∩{Xi}�=∅

Ȳ |[u,v] and

f̂ +
n (x0) ≡ min

v≥x0
max
u≤x0[u,v]∩{Xi}�=∅

Ȳ |[u,v].

(1.2)

Note that in the univariate case (d = 1), the block max–min estimator f̂ −
n and the block

min–max estimator f̂ +
n are the same and coincide with the isotonic least squares estimator

(LSE) at design points {Xi}. However, f̂ −
n and f̂ +

n are in general different and f̂ −
n ≤ f̂ +

n is
only guaranteed at design points in d ≥ 2; see [15] for an explicit example in which the two
estimators differ.

If the errors ξi’s are i.i.d. mean-zero with variance σ 2, [42] showed that

ω−1
n (α)

(
f̂ ∓

n (x0) − f0(x0)
)
� r(σ ) · K(f0, x0) ·D∓

α .(1.3)
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Here ωn(α) is the local rate of convergence of f̂ ∓
n , depending on the ‘local smoothness’ level

α of f0 at x0 (the precise meaning of this will be clarified in Section 2) and the design of the
covariates in a fairly complicated way, r(σ ) is a constant depending on the noise level of the
errors, and K(f0, x0) is a constant depending on the unknown information concerning the
derivatives of f0 at x0. [42] also showed that the limit distribution theory (1.3) is optimal in a
local asymptotic minimax sense.

One may naturally wish to use (1.3) for construction of confidence intervals (CIs) for
f0(x0), but unfortunately, the complications for using directly the above limit theory for in-
ference are multifold:

1. The constants K(f0, x0), r(σ ) depend on the unknown information of derivatives of f0
at x0 and the noise level σ ;

2. The local rate of convergence ω−1
n (α) depends on the unknown local smoothness level

α of f0.

Even one could be content with the knowledge of the local smoothness level of f0 at x0, for
instance, assuming all first-order partial derivatives are nonvanishing, the problem of getting
a consistent estimate of the nuisance parameter K(f0, x0), which involves many derivatives
of f0 at x0 is already very challenging. Since one of the main features of shape-constrained
methods is the avoidance of tuning parameters—which is particularly important in multidi-
mensional settings—we would ideally want to avoid estimation of derivatives to begin with.

A popular tuning-free testing approach for inference in the univariate monotone-response
models, put forward in [3, 6], proposes the use of a log likelihood ratio test. The strength
of this method lies in the fact that the limit distribution of the log likelihood ratio statistic
is pivotal, that is, not depending on nuisance parameters, in particular the derivative of the
monotone function of interest, provided it is nonvanishing at the point of interest. Using the
quantiles for the pivotal limit distribution, one can then obtain CIs by inverting a family of
log likelihood ratio tests. The same idea is further exploited in [16, 18] in the contexts of
inference for the mode of a log-concave density and for the value of a concave regression
function.

It is natural to wonder if a similar program, based on likelihood methods, can be extended
to multidimensional settings, for instance in the multiple isotonic regression model (1.1) we
study here. Apart from the apparent lack of any limit distribution theory for the LSE, that is,
the maximum likelihood estimator under Gaussian likelihood, the more fundamental problem
is that the LSE does exhibit some undesirable suboptimal behavior. In particular, as have been
clear from the work [39], the LSE does not adapt to constant functions at the near optimal
parametric rate, while the block max–min and min–max estimators (1.2) do [15, 42]. This
strongly hints that a limit distribution theory of type (1.3) does not hold for the LSE, or at most
can only hold for a very restrictive range of α, since (1.3) already recovers the parametric rate
for constant signals.

Another common approach for avoiding estimation of nuisance parameters in limit distri-
butions is the bootstrap. However, as shown in [49, 59, 62], standard bootstrap methods in
nonstandard problems, in particular those with cube-root asymptotics and nonnormal limit
distributions, typically lead to inconsistent estimates. Although it is in principle possible to
develop consistent bootstrap procedures,for example, m-out-of-n bootstrap, or bootstrap with
smoothing, cf. [59, 62], these procedures involve one or more tuning parameters that need to
be carefully calibrated in practice, which unfortunately demerits the tuning-free advantages
of shape-constrained methods.

The conceptual and practical difficulties in the likelihood and bootstrap methods lead us
to a completely different approach for making inference of f0(x0). Our proposal for the
construction of the CI for f0(x0), as will be detailed in (1.7) below, requires essentially no
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FIG. 1. Figure illustration of the specification of û(x0) and v̂(x0).

more efforts than performing an isotonic regression once using the block max–min and min–
max estimators. The key idea for our proposal is to use information beyond point estimates
in isotonic regression to directly estimate the scaled magnitude ω∗

n ≡ ωn(α)r(σ )K(f0, x0)/σ

of the error of estimating f0(x0) in (1.3) and therefore to bypass the difficult problem of
estimating the nuisance parameter K(f0, x0). More important, the implementation of this
idea does not require consistent estimation of the scaled magnitude: Given estimates f̂n(x0)

and ω̂∗
n, it requires only the convergence in distribution of the product of (f̂n(x0)−f0(x0)}/ω∗

n

and the ratio ω∗
n/ω̂

∗
n to a known distribution. See Theorems 1 and 2 in the next section and

their proofs.
Formally, let (û(x0), v̂(x0)) be any pair such that

f̂ −
n (x0) ≡ max

u≤x0
min
v≥x0[u,v]∩{Xi}�=∅

Ȳ |[u,v] = min
v≥x0[u,v]∩{Xi}�=∅

Ȳ |[û(x0),v],

f̂ +
n (x0) ≡ min

v≥x0
max
u≤x0[u,v]∩{Xi}�=∅

Ȳ |[u,v] = max
u≤x0[u,v]∩{Xi}�=∅

Ȳ |[u,v̂(x0)].
(1.4)

Let the average of the two estimators f̂ ∓
n in (1.2) be the block average estimator f̂n(x0), that

is,

f̂n(x0) ≡ 1

2

(
f̂ −

n (x0) + f̂ +
n (x0)

)
,(1.5)

and let nû,v̂(x0) be the number of design points in the block [û(x0), v̂(x0)], that is,

nû,v̂(x0) ≡ ∑
i

1Xi∈[û(x0),v̂(x0)].(1.6)

When (Y1, . . . , Yn) are in general positions (i.e., A �= B implies Ȳ |A �= Ȳ |B for nonempty A

and B), the set of design points in the rectangle [û−, v̂−] giving f̂ −
n (x0) in (1.4) is unique.

In this case, û(x0) = û− is unique if we confine our choice to the rectangle [û−, v̂−] with
at least one design point in each of its 2d sides. Similarly, v̂(x0) is also unique when the
solution [û+, v̂+] for f̂ +

n (x0) in (1.4) is required to have a design point on each side. For such
specification of (û(x0), v̂(x0)), nû,v̂(x0) defined above is uniquely specified. See Figure 1 for
an illustration. In any cases, our theoretical results hold for all feasible pairs (û(x0), v̂(x0)) in
(1.4).

We propose the following form of CI:

In(cδ) ≡
[
f̂n(x0) − cδ · σ̂√

nû,v̂(x0)
, f̂n(x0) + cδ · σ̂√

nû,v̂(x0)

]
,(1.7)
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where σ̂ is the square root of an estimator σ̂ 2 of the variance σ 2, and cδ > 0 is a critical value
chosen by the user that depends only on the confidence level δ > 0.

The crux of our proposal (1.7) is the following pivotal limit distribution theory: Under the
same conditions as in the limit distribution theory (1.3),√

nû,v̂(x0)
(
f̂n(x0) − f0(x0)

)
� σ ·Lα,(1.8)

where the distribution of Lα does not depend on the nuisance parameter K(f0, x0). Hence,
given a consistent variance estimator σ̂ 2, the CI (1.7) can both achieve asymptotically exact
confidence level 1 − δ and shrink at the oracle length on the order of ωn(α) · r(σ ) ·K(f0, x0),
provided that the local smoothness α is known. This is the case, for example, if one assumes
that all first-order partial derivatives are nonvanishing, much as in [3, 6] in the univariate case
that assumes a nonvanishing first derivative for the monotone function at the point of interest.
By relaxing the requirement of asymptotically exact confidence level, it is also possible,
by calibrating the critical value cδ alone, to construct conservative CIs (1.7) that adapt to
any given range of local smoothness levels α, while maintaining the optimal order of the
length as in the limit theory (1.3). One natural question here is that whether the likelihood
approach of [3, 6] in the much simpler univariate setting, wins over our proposal (1.7) in
terms of adaptation to unknown local smoothness α. As will be clear in Section 2, the limit
distributions of log likelihood ratio tests also depend on α, so indeed the likelihood approach
of [3, 6] by itself does not offer a stronger degree of universality from the perspective of
adaptation.

At a deeper level, the viewpoint of our construction for the CI for f0(x0) is markedly dif-
ferent from that of [3, 6]. We treat the nuisance parameters K(f0, x0) and r(σ ) differently
in the limit theory (1.3), with a particular view that it is K(f0, x0) that constitutes the main
difficulty of using (1.3) for inference, while the problem of r(σ ) is relatively minor. The un-
derlying reason for this is that K(f0, x0) involves the information for derivatives of f0 at x0,
which cannot be obtained in a simple way from point estimates that take local averages, while
r(σ ) can be relatively easily estimated using known methods (e.g., difference estimators [36,
54, 57]), or large samples (if available) in the data-driven local block [û(x0), v̂(x0)].

The idea for the construction of the proposed CI (1.7) has a much broader scope of appli-
cations beyond the isotonic regression model (1.1). In Section 3, similar constructions of CIs
are exploited in a number of other models with monotonicity shape constraints, including (i)
monotone density estimation [26, 27, 56], (ii) interval censoring model with current status
data [34], (iii) estimation of the mean function of a counting process with panel count data
[66], and more generally, (iv) generalized linear models with monotonicity. These new CIs
share the same general scheme that the constructions utilize the local information encoded
by the analogue of û(x0), v̂(x0) as in the regression setting, and require essentially no more
efforts than performing the (maximum likelihood) estimation procedure once.

The results of this paper, in particular the pivotal limit distribution theory (1.8) and the
resulting CI (1.7), make a significant further step in developing practical inference methods
using the block estimators (1.2) beyond the limit theory (1.3) developed in [42], especially
in view of the dependence of the constant factor K(f0, x0) on the partial derivatives of the
unknown f0. However, the techniques used in proving (1.3) in [42] serve as the foundation
for establishing the limit theory in (1.8) in this paper. In addition, as a key technical ingredient
in proving (1.8), we show that the limiting Gaussian white noise versions of properly rescaled
û(x0), v̂(x0) are almost surely well defined (see Lemma A.1), so the limit distribution Lα in
(1.8) is indeed well defined.

The rest of the article is organized as follows. In Section 2, we give a review of the limit
distribution theory (1.3) developed in [42], study the proposed CI (1.7), and present the piv-
otal limit distribution theory (1.8). Some comparisons with the Banerjee–Wellner likelihood
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based inference method are also detailed in Section 2. In Section 3, we illustrate the general-
ity of our method of constructing CIs in the four models mentioned above. Section 4 contains
extensive simulation results that demonstrate the accuracy of the coverage probability of our
proposed CIs, along with a detailed numerical comparison with the Banerjee–Wellner CIs [3,
6]. For clarity of presentation, proofs are deferred to the Appendix [14].

1.2. Notation. For the simplicity of presentation, we write the CI [θ̂ − c0, θ̂ + c0] which
is symmetric around θ̂ as I = [θ̂ ± c0].

For a real-valued measurable function f defined on (X ,A,P ), ‖f ‖Lp(P ) ≡ ‖f ‖P,p ≡
(P |f |p)1/p denotes the usual Lp-norm under P , and ‖f ‖∞ ≡ supx∈X |f (x)|. Let (F,‖·‖)

be a subset of the normed space of real functions f : X → R. For ε > 0 let N (ε,F,‖·‖) be
the ε-covering number of F ; see [65], page 83, for more details.

For two real numbers a, b, a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}. For x ∈ R
d , let

‖x‖p denote its p-norm (0 ≤ p ≤ ∞). For any x, y ∈ R
d , x ≤ y if and only if xi ≤ yi for

all 1 ≤ i ≤ d . Let [x, y] ≡ ∏d
k=1[xk ∧ yk, xk ∨ yk], xy ≡ (xkyk)

d
k=1, and x ∧ (∨)y ≡ (xk ∧

(∨)yk)
d
k=1. Let 1d = (1, . . . ,1) ∈ R

d . For �1, �2 ∈ {1, . . . , d}, we let 1[�1:�2] ∈ R
d be such that

(1[�1:�2])k = 1�1≤k≤�2 . We use Cx to denote a generic constant that depends only on x, whose
numeric value may change from line to line unless otherwise specified. a �x b and a �x b

mean a ≤ Cxb and a ≥ Cxb respectively, and a �x b means a �x b and a �x b [a � b means
a ≤ Cb for some absolute constant C]. OP and oP denote the usual big and small O notation
in probability. � is reserved for weak convergence. For two integers k1 > k2, we interpret∑k2

k=k1
≡ 0,

∏k2
k=k1

≡ 1. We also interpret (∞)−1 ≡ 0,0/0 ≡ 0.

2. Confidence interval: Isotonic regression.

2.1. Limit distribution theory in [42]: A review. Let us now describe the setting under
which limit distribution theory for the block max–min and min–max estimators (1.2) is de-
veloped in [42]. The exposition below largely follows [42].

First, some further notation. For f :Rd →R, and k ∈ {1, . . . , d}, αk ∈ Z≥1, let ∂
αk

k f (x) ≡
dαk

dx
αk
k

f (x). For a multi-index j = (j1, . . . , jd) ∈ Z
d≥0, let ∂j ≡ ∂

j1
1 · · · ∂jd

d , and j ! ≡ j1! · · · jd !
and xj ≡ x

j1
1 . . . x

jd

d for x ∈ R
d . For α = (α1, . . . , αd) ∈ Z

d≥1 in Assumption A below, that is,
for some 0 ≤ s ≤ d , 1 ≤ α1, . . . , αs < ∞ = αs+1 = · · · = αd , let J (α) (resp. J∗(α)) be the
set of all j = (j1, . . . , jd) ∈ Z

d≥0 satisfying 0 <
∑s

k=1 jk/αk ≤ 1 (resp.
∑s

k=1 jk/αk = 1) and
jk = 0 for s + 1 ≤ k ≤ d , and let J0(α) ≡ J (α) ∪ {0}. We often write J = J (α), J∗ = J∗(α)

and J0 = J0(α) if no confusion arises.

ASSUMPTION A. f0 is coordinate-wise nondecreasing (i.e., f0 ∈ Fd ), and is α-smooth
at x0 with intrinsic dimension s, α = (α1, . . . , αd) with integers 1 ≤ α1, . . . , αs < ∞ =
αs+1 = · · · = αd , 0 ≤ s ≤ d , in the sense that ∂

jk

k f0(x0) = 0 for 1 ≤ jk ≤ αk − 1 and
∂

αk

k f0(x0) �= 0, 1 ≤ k ≤ s, and in rectangles of the form
⋂d

k=1{|(x − x0)k| ≤ L0 · (rn)k},
rn = (ω

1/α1
n , . . . ,ω

1/αd
n ) with ωn > 0, the Taylor expansion of f0 satisfies for all L0 > 0,

lim
ωn↓0

ω−1
n sup

x∈[0,1]d ,
|(x−x0)k |≤L0·(rn)k,

1≤k≤d

∣∣∣∣f0(x) − ∑
j∈J0

∂jf0(x0)

j ! (x − x0)
j

∣∣∣∣ = 0.

The above assumption will be satisfied if f0 depends only on its first s coordinates, and
is locally Cmax1≤k≤s αk at x0, with ∂

jk

k f0(x0) = 0 for 1 ≤ jk ≤ αk − 1 and ∂
αk

k f0(x0) �= 0,
1 ≤ k ≤ s.
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ASSUMPTION B. The design points {Xi}ni=1 satisfy either of the following:

• (Fixed design) {Xi}’s follow a β-fixed lattice design: there exist some {β1, . . . , βd} ⊂ (0,1)

with
∑d

k=1 βk = 1 such that x0 ∈ {Xi}ni=1 = ∏d
k=1{x1,k, . . . , xnk,k}, where {x1,k, . . . , xnk,k}

are equally spaced in [0,1] (i.e., |xj,k − xj+1,k| = 1/nk for all j = 1, . . . , nk − 1) and
nk = �nβk�.

• (Random design) {Xi}’s follow i.i.d. uniform random design in [0,1]d and are also inde-
pendent of {ξi}’s.

In β-fixed lattice design, we assume without loss of generality

0 ≤ α1β1 ≤ · · · ≤ αsβs ≤ · · · ≤ αdβd ≤ ∞.(2.1)

Otherwise we may find a permutation of {1, . . . , d} to satisfy the above condition and the
theory below will be carried over for the permuted indices.

In the random design, we assume for simplicity that the law P of Xi is uniform on [0,1]d ;
the forthcoming Theorem 0 holds with minor changes when P is relaxed to have Lebesgue
density π that is bounded away from 0 and ∞ on [0,1]d and is continuous over an open
set containing the region {((x0)1, . . . , (x0)s, xs+1, . . . , xd) : 0 ≤ xk ≤ 1, s + 1 ≤ k ≤ d}. More
discussion on the above assumptions is referred to [42]. The following limit distribution the-
ory is obtained by [42].

THEOREM 0. Let x0 ∈ (0,1)d . Suppose Assumptions A and B hold, and the errors {ξi}
are i.i.d. mean-zero with finite variance Eξ2

1 = σ 2 < ∞ (and are independent of {Xi} in the
random design case). Let κ∗, n∗ be defined by

β-fixed lattice design Random design

κ∗ arg max1≤�≤d

∑d
k=� βk

2+∑s
k=� α−1

k

1

n∗ n
∑d

k=κ∗ βk n

If κ∗ is uniquely defined, then for some finite random variables C∓(f0, x0),

(
n∗/σ 2) 1

2+∑s
k=κ∗ α

−1
k

(
f̂ ∓

n (x0) − f0(x0)
)
�C

∓(f0, x0).

Furthermore, if either {αk}sk=1 is a set of relative primes, that is, the greatest common divisor
of {αk1, αk2} is 1 for all 1 ≤ k1 < k2 ≤ s, or all mixed derivatives ∂jf0 of f0 vanish at x0 for
all j ∈ J∗, then

C
∓(f0, x0) =d K(f0, x0) ·D∓

α ,

where K(f0, x0) = {∏s
k=κ∗(∂

αk

k f0(x0)/(αk + 1)!)1/αk }
1

2+∑s
k=κ∗ α

−1
k , and D

∓
α are given by

D
−
α ≡ sup

g1∈G1

inf
g2∈G2

Vα(g1, g2), D
+
α ≡ inf

g2∈G2
sup

g1∈G1

Vα(g1, g2).

Here

G1 ≡ {
g1 ∈ R

d : g1 > 0, (g1)k ≤ (x0)k, s + 1 ≤ k ≤ d
}
,

G2 ≡ {
g2 ∈ R

d : g2 > 0, (g2)k ≤ (1 − x0)k, s + 1 ≤ k ≤ d
}
,

Vα(g1, g2) ≡ G(g1, g2)∏d
k=κ∗((g1)k + (g2)k)

+
s∑

k=κ∗

(g2)
αk+1
k − (g1)

αk+1
k

(g2)k + (g1)k
,
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whereG is a Gaussian process defined onRd≥0 ×R
d≥0 with the following covariance structure:

for any (g1, g2), (g
′
1, g

′
2),

Cov
(
G(g1, g2),G

(
g′

1, g
′
2
)) =

d∏
k=κ∗

(
(g1)k ∧ (

g′
1
)
k + (g2)k ∧ (

g′
2
)
k

)
.

Strictly speaking, [42] proved the case for the block max–min estimator f̂ −
n , but the case

for the block min–max estimator f̂ +
n follows from the same proofs. We refer the readers to

[42] for detailed discussion and some concrete examples for κ∗, n∗. The merit of using the
block average estimator f̂n is discussed in Section 4.3.

Theorem 0 is comprehensive under the general Assumptions A and B. To capture the
essence, we consider a simple yet important case in the following Corollary 1.

COROLLARY 1. Suppose f0 is locally C1 at x0 ∈ (0,1)d with ∂kf0(x0) > 0 for all 1 ≤
k ≤ d , and the design points {Xi} either (i) form a balanced fixed lattice design with β1 =
· · · = βd = 1/d , or (ii) follow a uniform random design on [0,1]d . Suppose the errors {ξi}
are i.i.d. mean-zero with finite variance Eξ2

1 = σ 2 < ∞ (and are independent of {Xi} in the
random design case). Then,

(
n/σ 2)1/(2+d)(

f̂ ∓
n (x0) − f0(x0)

)
�

{
d∏

k=1

(
∂kf0(x0)/2

)}1/(2+d)

·D∓
1d

.

REMARK 1. Theorem 0 (and Corollary 1) in the random design case requires the in-
dependence of the errors and the random design points due to the precise form of the limit
distribution. Although this independence assumption is not most desirable, it is common in
limit distribution theories for other one-dimensional shape-constrained regression estimators
under random design settings, for instance in the convex regression model [24]. It is an inter-
esting open question to see if the theory carries over to the more general settings, for instance
E[ξi |Xi] = 0 and E[ξ2

i |Xi = x] = σ 2(x) for some smooth enough function σ .

2.2. Pivotal limit distribution theory. In this subsection, we formally establish the pivotal
limit distribution theory (1.8). The main idea of the pivotal limit distribution theory (1.8) is
that the information for K(f0, x0) is already encoded in û(x0), v̂(x0), so after proper scal-

ing, we may naturally view
√

nû,v̂(x0)/σ 2 as an estimator for {ωn(α)r(σ )K(f0, x0)}−1 =
(n∗/σ 2)1/(2+∑s

k=κ∗ α−1
k )/K(f0, x0). Indeed, we have the following.

THEOREM 1. Let x0 ∈ (0,1)d . Suppose Assumptions A and B hold, and the errors
{ξi} are i.i.d. mean-zero with finite variance Eξ2

1 = σ 2 < ∞ (and are independent of {Xi}
in the random design case). If the limit distribution in Theorem 0 is of the explicit form
C

∓(f0, x0) = K(f0, x0) · D∓
α , then with f̂n(x0) and nû,v̂(x0) defined respectively, in (1.5)

and (1.6) √
nû,v̂(x0)

(
f̂n(x0) − f0(x0)

)
� σ ·Lα.

Here Lα is a finite random variable defined by

Lα ≡ Sα
(
g∗

1,α, g∗
2,α

) · 1

2

(
sup

g1∈G1

inf
g2∈G2

Vα(g1, g2) + inf
g2∈G2

sup
g1∈G1

Vα(g1, g2)
)
,
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where g∗
1,α and g∗

2,α are almost surely uniquely determined via

inf
g2∈G2

Vα
(
g∗

1,α, g2
) = sup

g1∈G1

inf
g2∈G2

Vα(g1, g2),

sup
g1∈G1

Vα
(
g1, g

∗
2,α

) = inf
g2∈G2

sup
g1∈G1

Vα(g1, g2),

and

Sα
(
g∗

1,α, g∗
2,α

) ≡
√√√√ s∏

k=κ∗

(
g∗

2,α + g∗
1,α

)
k,

with the Gi (i = 1,2), Vα and κ∗ in Theorem 0. In particular, Lα does not depend on
K(f0, x0).

Theorem 1 provides a pivotal limit distribution theory in the sense that the limit distribu-
tion of certain statistic concerning f̂n(x0) − f0(x0) does not depend on the difficult nuisance
parameter K(f0, x0).

This pivotal phenomenon can be understood from an oracle perspective. As an illustration,
we focus on the leading case α = (1, . . . ,1) and σ = 1 in the setting of balanced fixed lattice
design. In this case, n∗ = n and κ∗ = 1. The oracle bandwidth vector h∗ = h∗(x0) balances
the bias and variance:

h∗
�∂�f0(x0) ≈ 1√∏d

k=1(n
1/dh∗

k)
for 1 ≤ � ≤ d,

which yields

h∗
� ≈ (

∂�f0(x0)
)−1 · n−1/(2+d)

(
d∏

k=1

∂kf0(x0)

)1/(2+d)

.

Hence, with u∗ = u∗(x0) = x0 − h∗/2 and v∗ = v∗(x0) = x0 + h∗/2,∣∣√nu∗,v∗(x0)
(
f̂n(x0) − f0(x0)

)∣∣
≈

√√√√n

d∏
k=1

(
v∗
k − u∗

k

) · n−1/(d+2)K(f0, x0) · ∣∣OP(1)
∣∣

=
√√√√√n2/(2+d)

(
d∏

k=1

∂kf0(x0)

)−2/(2+d)

· n−1/(d+2)K(f0, x0) · ∣∣OP(1)
∣∣

= const. × ∣∣OP(1)
∣∣,

where |OP(1)| denotes a universal random variable. Theorem 1 can then be understood as the
data driven bandwidth vectors û(x0), v̂(x0) mimic the above oracle vectors u∗(x0), v

∗(x0)

in achieving a pivotal limiting behavior. We note that the asymptotic variance of f̂n(x0) is
proportional to (n−1 ∏d

k=1 ∂kf0(x0))
2/(2+d).

2.3. Confidence interval. The pivotal limit distribution theory in Theorem 1 naturally
implies the tuning free CI (1.7). In this subsection, we study (1.7) under fixed lattice and
uniform random designs as in Assumption B. The nonuniform random design case will be
discussed at the end.
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To construct the CI, it remains to find a good estimate for the variance σ 2. Estimation
of variance in the nonparametric regression model (1.1) is a well studied topic in the liter-
ature; for instance, we may use the class of difference estimators [36, 54, 57]. Below we
present a ‘principled’ estimator that shows the reason why σ 2 is much easier to estimate than
K(f0, x0)—point estimates already contain enough information for the variance, as long as
a law of large numbers is satisfied. Formally, let

σ 2
û,v̂ ≡ 1

nû,v̂(x0)

∑
Xi∈[û(x0),v̂(x0)]

(
Yi − f̂n(x0)

)2
.(2.2)

Note that σ 2
û,v̂ only requires information of the observed {Yi} in the data driven neighborhood

[û(x0), v̂(x0)] of x0 and the fitted value f̂n(x0). Intuitively, since we have large samples in
[û(x0), v̂(x0)], it is natural to expect good performance of σ 2

û,v̂ in the large sample limit. In
fact, we have the following proposition.

PROPOSITION 1. Under the conditions of Theorem 0, σ 2
û,v̂ →p σ 2.

One theoretical advantage of (2.2) compared with the difference estimators is that σ 2
û,v̂

takes local average around x0, and therefore may in principle estimate the variance even in
the heteroscedastic regression setting, for example, when the variance of Ȳ |[u,v] is given by
σ 2

u,v with a certain strictly positive and continuous σu,v defined on the entire [0,1]d ×[0,1]d .
The practical issue, however, is that the effective sample size in [û(x0), v̂(x0)] is relatively
small so (2.2) typically requires very large samples to achieve accurate variance estimation,
in particular for d ≥ 2.

With a consistent variance estimator, Theorem 1 can then be used to justify the use of the
CI of the form defined in (1.7).

We first consider the leading case α = 1d , where it is possible to construct asymptotically
exact CIs.

THEOREM 2. Let cδ > 0 be a continuity point of the d.f. of |L1d
| such that

P
(|L1d

| > cδ

) = δ.(2.3)

For any consistent variance estimator σ̂ 2, that is, σ̂ 2 →p σ 2, the CI In(cδ) defined in (1.7)
satisfies

lim
n→∞Pf0

(
f0(x0) ∈ In(cδ)

) = 1 − δ.(2.4)

Furthermore, with K(f0, x0) = (
∏d

k=1(∂kf0(x0)/2))1/(d+2) as in Theorem 0, for any ε > 0,

lim inf
n→∞ Pf0

(∣∣In(cδ)
∣∣ < 2cδgε · (σ 2/n

)1/(d+2)
K(f0, x0)

) ≥ 1 − ε.(2.5)

Here gε ∈ (0,∞) is such that

P
(
S

−1
1d

≥ gε

) ≤ ε.(2.6)

Theorem 2 shows that if the critical value cδ is chosen according to (2.3), then the CI In(cδ)

achieves the asymptotic exact confidence level 1 − δ. Furthermore, the CI In(cδ) shrinks at
the oracle length, being automatically adaptive to the unknown information on the derivatives
of f0 at x0, that is, K(f0, x0).

The choice of the critical value cδ depends on the distribution of L1d
. Since L1d

does
not depend on the unknown regression function f0, it is possible to simulate cδ for different
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values of confidence levels δ > 0. See Section 4 for more details on simulated critical values
of L1d

for d = 1,2,3.
Note that the CI in Theorem 2, although enjoying the advantage of achieving asymptoti-

cally exact confidence level, is not adaptive to the unknown local smoothness α of the isotonic
regression function f0 at x0. By relaxing the requirement of exact CI and calibrating the crit-
ical value cδ only, the following theCI In(cδ) may adapt to all local smoothness level α as
well as the unknown information of f0 at x0 expressed by K(f0, x0). More concretely, we
have the following theorem.

THEOREM 3. Let cδ > 0 be chosen such that

sup
α

P
(|Lα| > cδ

) ≤ δ.(2.7)

For any consistent variance estimator σ̂ 2, that is, σ̂ 2 →p σ 2, the CI In(cδ) defined in (1.7)
satisfies

lim inf
n→∞ Pf0

(
f0(x0) ∈ In(cδ)

) ≥ 1 − δ.(2.8)

Furthermore, with κ∗, n∗ and K(f0, x0) defined in Theorem 0, for any ε > 0,

lim inf
n→∞ Pf0

(∣∣In(cδ)
∣∣ < 2cδgε,α

(
σ 2/n∗

) 1

2+∑s
k=κ∗ α

−1
k K(f0, x0)

) ≥ 1 − ε.(2.9)

Here gε,α ∈ (0,∞) is such that

P
(
S

−1
α

(
g∗

1,α, g∗
2,α

) ≥ gε,α
) ≤ ε.(2.10)

To make the above theorem useful for construction of α-adaptive CIs, it is crucial to choose
the critical value cδ > 0 such that (2.7) is satisfied. The proposition below shows that this is
indeed possible.

PROPOSITION 2. The following holds for some constant L0 > 0 depending only on d, x0:
for any t ≥ 1,

sup
α

P
(|Lα| > t

) ≤ L0 exp
(−t4/(d+2)/L0

)
.

Hence, it suffices to choose cδ �d,x0 log(d+2)/4(1/δ) to satisfy (2.7).
Nonuniform random design. So far we have assumed that the design distribution P is

uniform on [0,1]d in the random design case. The situation will be more complicated for
general design distributions P , as the limit distribution in Theorem 0 can depend on P in
a rather complicated and nonlocal way. Note that for general P , Theorem 0 requires the
Lebesgue density π of P to be bounded away from 0 and ∞ on [0,1]d and to be continuous
in the neighborhood of x0. In the special case where s = d (i.e., f0(x) depends on all elements
of x at x = x0), the effect of P is local and can be factored out in the limit distribution theory
in Theorem 0; see [42], Remark 1 (5), for detailed discussion. In this case, using similar
arguments as in the proof of Theorem 1, we still have√

nû,v̂(x0)
(
f̂n(x0) − f0(x0)

)
� σ ·L1d

.

Hence, for any consistent variance estimator σ̂ 2, (1.7) continues to be an asymptotic 1 − δ CI
of f0(x0) which shrinks at the oracle length in a similar sense to the statements of Theorem 2.
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2.4. Comparison with the approach of [6] in d = 1. [5, 6] developed an inference proce-
dure using the log likelihood ratio test for various monotone-response models in the univariate
case d = 1. In the regression setting, this idea is best illustrated in the random design, with
P being the uniform distribution on [0,1] and the errors {ξi} being i.i.d. N (0,1). The block
max–min and min–max estimators f̂ ∓

n defined via (1.2) and their average f̂n all reduce to the
univariate LSE at design points.

We consider testing the hypothesis

H0 : f0(x0) = m0 vs. H1 : f0(x0) �= m0.

To form a likelihood ratio test, let f̂ 0
n be the constrained least squares estimator defined via

f̂ 0
n ∈ argmin

f ∈F1,f (x0)=m0

n∑
i=1

(
Yi − f (Xi)

)2
.

f̂ 0
n is well defined on the design points, and can be computed by performing two isotonic

regressions on {(Yi, f (Xi)) : Xi ≤ x0} and {(Yi, f (Xi)) : Xi > x0} followed by thresholding
(see [3], page 939). Under the Gaussian likelihood, the likelihood ratio test statistic is given
by

2 logλn(m0) = −
n∑

i=1

(
Yi − f̂n(Xi)

)2 +
n∑

i=1

(
Yi − f̂ 0

n (Xi)
)2

.(2.11)

[5, 6] showed that if f0 is locally C1 at x0 with f ′
0(x0) > 0 and H0 holds, then

2 logλn(m0)�K1,(2.12)

where the distribution K1 is free of the nuisance parameter f ′
0(x0) that would otherwise

be present in the limit distribution theory (cf. Theorem 0 in the simplest case d = 1, α =
1). A CI of f0(x0) can now be obtained through inversion of (2.12): Let IBW

n (dδ) ≡ {m0 :
2 logλn(m0) ≤ dδ} (BW refers to Banerjee–Wellner) with P(K1 > dδ) = δ. Then

Pf0

(
f0(x0) ∈ IBW

n (dδ)
) → P(K1 ≤ dδ) = 1 − δ.

REMARK 2. For a fixed m0, the likelihood ratio test requires two isotonic regressions to
calculate the test statistic (2.11), which can be computed efficiently thanks to the fast PAVA
algorithms. With carefully written algorithms the inversion of (2.12) may not add too much
computational burden to obtain the likelihood ratio test based CIs; see, for example, [28] for
a fast algorithm in the related current status model. However, the proposed procedure (1.7) is
still computationally simpler and more straightforward.

The validity of the Banerjee–Wellner CI crucially relies on the assumption f ′
0(x0) > 0.

Compared with our procedure, it is natural to wonder if the likelihood ratio approach offers
a stronger degree of universality in terms of adaptation to unknown local smoothness of the
regression function. As we will show below, the limit distribution of the log likelihood ratio
test statistic does depend on the number of vanishing derivatives of f0, and is therefore not
adaptive to the local smoothness of f0.

To formally state the result, let slogcm(f, I ) be the left-hand slope of the greatest convex
minorant of f restricted to the interval I . Write slogcm(f ) = slogcm(f,R) for simplicity.
Let

slogcm0(f ) = (
slogcm

(
f, (−∞,0]) ∧ 0

)
1(−∞,0] + (

slogcm
(
f, (0,∞)

) ∨ 0
)
1(0,∞).

Let B be the standard two-sided Brownian motion started from 0, and Xa,b;α(t) ≡ aB(t) +
btα+1. Let ga,b;α ≡ slogcm(Xa,b;α) and g0

a,b;α ≡ slogcm0(Xa,b;α). These quantities are a.s.
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well defined for b > 0 and an odd integer α ≥ 1 as Xa,b;α(t) is of the order Oa.s.(t
α+1) for

t → ±∞ and is a.s. bounded on compacta. Informally, ga,b;α is the ‘isotonic regression for
Xa,b;α’ in the Gaussian white noise model dXa,b;α(t) = b(α + 1)tα dt + a dB(t), and g0

a,b;α
is the ‘constrained isotonic regression’ subject to g0

a,b;α(0) = 0.

THEOREM 4. Consider the above setting. Suppose f0 is nondecreasing and locally Cα

at x0 for some α ≥ 1, with ∂jf0(x0) = 0 for j = 1, . . . , α − 1 and ∂αf0(x0) �= 0. Then under
H0,

2 logλn(m0)�
∫
R

{(
g1,1;α(t)

)2 − (
g0

1,1;α(t)
)2}dt ≡ Kα.

REMARK 3. By [42], Lemma 1, α’s satisfying the assumption of Theorem 4 must be
odd, and ∂αf0(x0) > 0.

It is clear from Theorem 4 that the limit distribution for the log likelihood ratio test depends
on the unknown local smoothness level α of f0 through the slope processes g1,1;α, g0

1,1;α . This
phenomenon is observed numerically in [18] in another related setting: the limit distributions
for the log-likelihood ratio tests for the mode of a log-concave density depend on the number
of vanishing derivatives at the mode.

REMARK 4. If the variance σ 2 is unknown, then the log-likelihood ratio test statistic
involves the unknown σ 2. By taking (2.11) as the definition of the quantity of 2 logλn(m0),
it holds (under the same conditions as in Theorem 4) that 2 logλn(m0)� σ 2 ·Kα .

3. Beyond isotonic regression: Inference in other monotone models. The idea for
constructing tuning-free CIs in the previous section has a much broader scope beyond the
setting of multiple isotonic regression. As a proof of concept, in this section we construct CIs
for a few further nonparametric models with certain monotonicity shape constraints, adapting
essentially the same idea as developed in the previous section.

3.1. The common scheme. We briefly outline the common scheme for the construction
of CIs in the models to be studied in detail below. Suppose we want to estimate a univariate
monotone function f0. There is a natural piecewise constant estimator f̂n (usually the maxi-
mum likelihood estimator) for f0 that exhibits a nonstandard limit distribution at the point of
interest x0, typically at a cube-root rate ωn = n−1/3 under curvature conditions on f ′

0 at x0:

ω−1
n

(
f̂n(x0) − f0(x0)

)
� sup

h1>0
inf

h2>0

[
a · G(h1, h2)

h1 + h2
+ b · (h2 − h1)

]

=d inf
h2>0

sup
h1>0

[
a · G(h1, h2)

h1 + h2
+ b · (h2 − h1)

]
=d

(
a2b

)1/3 ·D1.

Recall that D1 ≡ D
+
1 =d D

−
1 is defined in Theorem 0. In fact, D1/2 follows the well-known

Chernoff distribution (cf. [30]).
Here we have two nuisance parameters, namely a, b:

• b is a difficult nuisance parameter to estimate, which usually involves the derivatives of the
monotone function to be estimated. This will be tackled by the analogue of ‘nû,v̂(x0)’.

• a is typically easy to estimate, either via observed samples or via fitted values in the ana-
logue of the ‘local block [û(x0), v̂(x0)]’ of x0.
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One special feature in the one-dimensional setting is the exchangability of supremum and
infimum in the limit distribution, so û(x0) and v̂(x0) are simply the left and right end-points
of the constant piece of f̂n that contains x0. As v̂(x0) − û(x0) is of order OP(ωn(a/b)2/3),
we would expect the following pivotal limit distribution theory:√

n
(
v̂(x0) − û(x0)

)(
f̂n(x0) − f0(x0)

)
� a ·L1.(3.1)

Now given a consistent estimate ân of a, we have the following generic CI of f0(x0):

I∗
n(cδ) ≡ [

f̂n(x0) ± cδ · ân/

√
n
(
v̂(x0) − û(x0)

)]
.

Similar to the regression setting, the construction of CIs in specific models to be detailed
below is tuning-free, and requires essentially no further efforts beyond a single step of (max-
imum likelihood) estimation.

3.2. Monotone density estimation. Consider the classical problem of estimating a de-
creasing density f0 on [0,∞) based on i.i.d. observations X1, . . . ,Xn. The maximum likeli-
hood estimator (MLE) f̂n, known as the Grenander estimator, is the left derivative of the least
concave majorant of the empirical distribution function Fn. By the max–min representation,
for any x0 ∈ (0,∞), we may write

f̂n(x0) = inf
0<u<x0

sup
v≥x0

Fn(v) − Fn(u)

v − u
= Fn(v̂(x0)) − Fn(û(x0))

v̂(x0) − û(x0)
,

where (û(x0), v̂(x0)) is the a.s. uniquely specified pair for which the last equality in the above
display holds. It is well known (see, e.g., [26, 27, 55, 65]) that if f0 is locally C1 at x0 with
f ′

0(x0) < 0 and f0(x0) > 0, then

n1/3(f̂n(x0) − f0(x0)
)
� sup

h1>0
inf

h2>0

[√
f0(x0) · G(h1, h2)

h1 + h2
+ 1

2

∣∣f ′
0(x0)

∣∣(h2 − h1)

]
=d

(
f0(x0)

∣∣f ′
0(x0)

∣∣/2
)1/3 ·D1.

To use the above limit theorem to form CI, the difficult nuisance to estimate is f ′
0(x0), while

the easy one is f0(x0). The inference problem in the density setting is recently tackled in
[31], using both the log likelihood ratio test approach similar to [3, 6] and a bootstrap assisted
approach for the smoothed maximum likelihood estimator. Our proposal for a CI of f0(x0) is
the following:

Iden
n (cδ) ≡ [

f̂n(x0) ± cδ ·
√

f̂n(x0)/

√
n
(
v̂(x0) − û(x0)

)] ∩ [0,∞).

Let L1 and S1 be as in Theorem 1 with d = 1 and α = 1.

THEOREM 5. Suppose f0 is locally C1 at x0 with f ′
0(x0) < 0 and f0(x0) > 0. Let cδ > 0

be a continuity point of the d.f. of |L1| such that P(|L1| > cδ) = δ. Then

lim
n→∞Pf0

(
f0(x0) ∈ Iden

n (cδ)
) = 1 − δ.

Furthermore, for any ε > 0,

lim inf
n→∞ Pf0

(∣∣Iden
n (cδ)

∣∣ < 2cδgε · n−1/3(f0(x0)
∣∣f ′

0(x0)
∣∣/2

)1/3) ≥ 1 − ε.

Here gε ∈ (0,∞) is such that P(S−1
1 ≥ gε) ≤ ε.

It is also possible to consider adaptive CIs by calibrating the critical value cδ similarly as
in Theorem 3. We omit the details.
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3.3. Current status data: Interval censoring model. Let X1, . . . ,Xn and T1, . . . , Tn be
independent i.i.d. samples from distribution functions F0 and G0 supported on [0,∞). Let
�i ≡ 1Xi≤Ti

. We observe (�1, T1), . . . , (�n,Tn) and want to estimate F0, the distribution of
unobserved X1, . . . ,Xn. Consider the maximum likelihood estimator F̂n that maximizes

F �→
n∑

i=1

(
�i logF(Ti) + (1 − �i) log

(
1 − F(Ti)

))
.(3.2)

Let T(1) ≤ · · · ≤ T(n) be the order statistics of T1, . . . , Tn. It is well known (see, e.g., [34, 65])
that the solutions (F̂n(T(1)), . . . , F̂n(T(n))) is given by the isotonic regression over (�(i) =
1X(i)≤T(i)

)ni=1. In other words, for any t0 ∈ (0,∞),

F̂n(t0) = max
i:Ti≤t0

min
j :Tj≥t0

∑j
k=i �(k)

j − i + 1
≡ max

u≤t0
min
v≥t0

�̄(·)|[u,v] = �̄(·)|[û(t0),v̂(t0)],

where (û(t0), v̂(t0)) is any pair for which the last equality in the above display holds. It is
also well known (see, e.g., [34, 65]) that if F0,G0 has positive and locally continuous density
f0, g0 at t0, then

n1/3(F̂n(t0) − F0(t0)
)

� sup
h1>0

inf
h2>0

[√
F0(t0)

(
1 − F0(t0)

)
/g0(t0) · G(h1, h2)

h1 + h2
+ 1

2
f0(t0)(h2 − h1)

]
=d

(
F0(t0)

(
1 − F0(t0)

)
f0(t0)/2g0(t0)

)1/3 ·D1.

The inference problem in the current status model is investigated in [6, 31] using likelihood
ratio methods; see [4] for similar likelihood ratio based inference methods in the context of
monotone, uni-modal and U–shaped failure rates under a right–censoring mechanism. Here
we take a different approach, similar to our proposal in the regression setting. Note that the
difficult nuisance parameter in this problem is f0(t0) since X1, . . . ,Xn are unobserved, while
F0(t0) and g0(t0) are easy to estimate. For instance, we may use F̂n(t0) to estimate F0(t0),
and

ĝn(t0) ≡ ∑
i

1Ti∈[û(t0),v̂(t0)]/
{
n
(
v̂(t0) − û(t0)

)}
to estimate g0(t0). Now consider the following CI for F0(t0):

Icur
n (cδ) ≡ [

F̂n(t0) ± cδ ·
√

F̂n(t0)
(
1 − F̂n(t0)

)
/ĝn(t0)/

√
n
(
v̂(t0) − û(t0)

)] ∩ [0,1]

=
[
F̂n(t0) ± cδ ·

√
F̂n(t0)

(
1 − F̂n(t0)

)
/

√∑
i

1Ti∈[û(t0),v̂(t0)]
]

∩ [0,1].

THEOREM 6. Suppose F0,G0 has positive and locally continuous density f0, g0 at t0.
Let cδ > 0 be a continuity point of the d.f. of |L1| such that P(|L1| > cδ) = δ. Then

lim
n→∞PF0,G0

(
F0(t0) ∈ Icur

n (cδ)
) = 1 − δ.

Furthermore, for any ε > 0,

lim inf
n→∞ PF0,G0

(∣∣Icur
n (cδ)

∣∣
< 2cδgε · n−1/3(F0(t0)

(
1 − F0(t0)

)
f0(t0)/2g0(t0)

)1/3) ≥ 1 − ε.

Here gε ∈ (0,∞) is such that P(S−1
1 ≥ gε) ≤ ε.
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3.4. Panel count data: Counting process model. The examples in previous subsections
are amongst the ‘classical’ ones in the field of monotonicity-constrained estimation. Below
we consider one further example, in the context of panel count data, that is less ‘classical’
due to its increased complexity. The inference problem for this model is previous studied in
[61] using likelihood ratio methods.

Here is the setup. We follow the notation in [66]. Suppose that N = {N(t) : t ≥ 0} is
a counting process with mean function �0(t) = EN(t). Let K be an integer-valued ran-
dom variable, and T = {Tk,j : 1 ≤ j ≤ k, k ≥ 1} be an triangular array of observation times.
We assume that N and (K,T ) are independent and Tk,j−1 ≤ Tk,j . Let X = (NK,TK,K),
where TK = (TK,1, . . . , TK,K) and NK = (N(TK,1), . . . ,N(TK,K)). We observe i.i.d. copies
X1, . . . ,Xn of X, where Xi = (N

(i)
Ki

, T
(i)
Ki

,Ki). The problem is to estimate �0(t). By build-
ing a Poisson model for N(t) ∼d Poisson(�0(t)), and pretending independence of the events
within each sample Xi , we may consider the estimator �̂n that maximizes the pseudo log-
likelihood

� �→
n∑

i=1

Ki∑
j=1

[
N

(i)
Ki,j

log�
(
T

(i)
Ki,j

) − �
(
T

(i)
Ki,j

)]
.(3.3)

Let s1 < s2 < · · · < sm be the ordered distinct observation time points in the set {T (i)
Ki,j

: 1 ≤
j ≤ Ki, i = 1, . . . , n}. For 1 ≤ � ≤ m, define

w� ≡
n∑

i=1

Ki∑
j=1

1
T

(i)
Ki ,j

=s�
, N̄� ≡ 1

w�

n∑
i=1

Ki∑
j=1

N
(i)
Ki,j

1
T

(i)
Ki ,j

=s�
.

It is known (see, e.g., [64, 66]) that

�̂n(t0) = max
si≤t0

min
sj≥t0

∑j
p=i wpN̄p∑j

p=i wp

=
∑

p:û(t0)≤sp≤v̂(t0)
wpN̄p∑

p:û(t0)≤sp≤v̂(t0)
wp

,

where (û(t0), v̂(t0)) is any pair in {s1, . . . , sm}2 such that the right-hand side of the above
display holds. Under the assumption that �0 is nondecreasing and locally C1 with �′

0(t0) >

0 and further regularity conditions, [66] proved the following limit distribution theory for
�̂n(t0):

n1/3(�̂n(t0) − �0(t0)
)

� sup
h1>0

inf
h2>0

[√
σ 2(t0)/g(t0) · G(h1, h2)

h1 + h2
+ 1

2
�′

0(t0)(h2 − h1)

]
=d

(
σ 2(t0)�

′
0(t0)/2g(t0)

)1/3 ·D1.

Here σ 2(t0) ≡ Var(N(t0)) and g(t0) ≡ ∑∞
k=1 P(K = k)

∑k
j=1 gk,j (t0) with gk,j denoting the

Lebesgue density of Tk,j .
The difficult nuisance parameter in this problem is �′

0(t0), and easier ones are σ 2(t0) and

g(t0). For instance, with nû,v̂(t0) being the number of {T (i)
Ki,j

} in the interval [û(t0), v̂(t0)],
that is,

nû,v̂(t0) =
n∑

i=1

Ki∑
j=1

1
T

(i)
Ki ,j

∈[û(t0),v̂(t0)],

let ĝn(t0) ≡ nû,v̂(t0)/{n(v̂(t0) − û(t0))} and

σ̂ 2
n (t0) ≡ 1

nû,v̂(t0)

n∑
i=1

Ki∑
j=1

(
N

(i)
Ki,j

− �̂n(t0)
)21

T
(i)
Ki ,j

∈[û(t0),v̂(t0)].
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Consider the following CI for �0(t0):

Ipan
n (cδ) ≡

[
�̂n(t0) ± cδ ·

√
σ̂ 2

n (t0)/ĝn(t0)/

√
n
(
v̂(t0) − û(t0)

)] ∩ [0,∞)

= [
�̂n(t0) ± cδ · σ̂n(t0)/

√
nû,v̂(t0)

] ∩ [0,∞).

THEOREM 7. Suppose �0 is nondecreasing and locally C1 with �′
0(t0) > 0 and further

regularity conditions (as specified in Theorem 4.3 of [66]) hold. Let cδ > 0 be a continuity
point of the d.f. of |L1| such that P(|L1| > cδ) = δ. Then

lim
n→∞P�0

(
�0(t0) ∈ Ipan

n (cδ)
) = 1 − δ.

Furthermore, for any ε > 0,

lim inf
n→∞ P�0

(∣∣Ipan
n (cδ)

∣∣ < 2cδgε · n−1/3(σ 2(t0)�
′
0(t0)/2g(t0)

)1/3) ≥ 1 − ε.

Here gε ∈ (0,∞) is such that P(S−1
1 ≥ gε) ≤ ε.

REMARK 5. Similar to [66], we do not assume that the Poisson model for the counting
process N , used in building the pseudo likelihood for the definition �̂n, need to be true.

3.5. Generalized linear models and the i.n.i.d. (independent, not identically distributed)
case. The likelihoods in (3.2) and (3.3) hint that a similar idea could be taken further to
the generalized linear models as follows. Suppose real-valued random variables Yi’s (i =
1, . . . , n) are independent samples with density f (·; θ0,i) (with respect to a σ -finite measure
ν on the real line) from a canonical exponential family:

f (y; θ) = exp
(
y · p(θ) − q(θ)

)
, θ ∈ �,(3.4)

where � = {θ ∈ R : ∫ ey·p(θ)ν(dy) < ∞} and ν does not put all the mass at a single point
y0. We assume that θ0,i ≡ θ0(xi), where θ0 : [0,1] → R is monotonically nondecreasing.
Let �0 be the interior of �. In general we may assume that the natural parameter p(θ) is
a continuously differentiable and strictly increasing function of θ . However, as the mean
function μ(θ) = ∫

yf (y; θ)ν(dy) = ∂q(θ)/∂p(θ) is always continuously differentiable and
strictly increasing in p(θ) in �0, we consider for simplicity the parametrization θ = μ(θ),
as alternative parametrizations can be easily handled by applying the delta-method to our
results. In this setting, the variance is given by

∫
(y − θ)2f (y; θ)ν(dy) = 1/p′(θ) in �0. We

shall assume that the variance is finite at θ = θ0(0) and θ = θ0(1) even when they are on the
boundary of the domain �, for example, p′(θ0(0)) = p′(θ0(1)) = ∞ when Yi ∈ {0,1}.

We are interested in estimating θ0 by the maximum likelihood estimator θ̂n that maximizes

θ �→
n∑

i=1

(
Yi · p(

θ(xi)
) − q

(
θ(xi)

))
over θ ∈ R

n such that θ1 ≤ · · · ≤ θn. As p(θ) and q(θ) are analytic in �0, by [58], The-
orem 1.5.2, the solution θ̂n ∈ R

n is given by the isotonic regression of (Yi)
n
i=1. For any

x ∈ [0,1], let

θ̂n(x) ≡ max
i:xi≤x

min
j :xj≥x

∑j
k=i Yk

j − i + 1
≡ max

u≤x
min
v≥x

Ȳ |[u,v].(3.5)

Then we may identify θ̂n,i = θ̂n(xi), i = 1, . . . , n.



2038 H. DENG, Q. HAN AND C.-H. ZHANG

From here the analysis of the maximum likelihood isotonic regression in the generalized
linear model reduces to a special case of the analysis of the max–min estimator in the i.n.i.d.
case where

Yi are independent with E[Yi] = θ0(xi) and Var(Yi) = σ 2(xi)(3.6)

under a Lindeberg condition on Yi and a smoothness condition on θ0(xi).
Formally, let x1 ≤ · · · ≤ xn with xi0−1 ≤ x0 ≤ xi0 for some i0 ∈ {2, . . . , n − 1}, α > 0

be fixed and ωn ≡ n−α/(2α+1). For (h1, h2) ∈ R
2≥0 define Sn,h1,h2 ≡ {i : i0 − nω

1/α
n h1 ≤ i ≤

i0 + nω
1/α
n h2}. We assume that for some g0(x0) > 0∣∣∣∣ ∑

i∈Sn,h1,h2

θ0(xi) − θ0(x0)

ωn|Sn,h1,h2 |
− g0(x0)

hα+1
2 − hα+1

1

h1 + h2

∣∣∣∣ = o(1),

∣∣∣∣ ∑
i∈Sn,h1,h2

σ 2(xi)/σ
2(x0)

|Sn,h1,h2 |
− 1

∣∣∣∣ = o(1),(3.7)

∑
i∈Sn,h1,h2

E[(Yi − θ0(xi))
21(Yi−θ0(xi ))

2>c−1σ 2(x0)|Sn,h1,h2 |]
σ 2(x0)|Sn,h1,h2 |

= o(1),

uniformly in (h1, h2) ∈ [1/c, c]2 for every c > 1. Under these conditions, we have the fol-
lowing theorem.

THEOREM 8.

1. Suppose (3.6) and (3.7) hold with a nondecreasing function θ0 and max1≤i≤n σ 2(xi) =
O(1). Let θ̂n be as in (3.5). Then

ω−1
n

(
θ̂n(x0) − θ0(x0)

)
� sup

h1>0
inf

h2>0

[
σ(x0) · G(h1, h2)

h1 + h2
+ g0(x0)

hα+1
2 − hα+1

1

h1 + h2

]
=d

((
σ(x0)

)2α
g0(x0)

)1/(2α+1) ·Dα.

2. Suppose αβ is a positive odd integer for some β > 0 and that θ0(·) has αβ −1 vanishing
derivatives and positive the (αβ)-th derivative at x0. Let π(·) be a density such that π(x) =
(1 + o(1))π0β · |x − x0|β−1 uniformly in a neighborhood of x0. Then, the first line of (3.7)
holds (in probability) when x1 ≤ · · · ≤ xn are the ordered independent samples from π(·).
Moreover, in the generalized linear model (3.4), the second and third lines of (3.7) and the
uniform boundedness condition on the variance always hold.

In addition to providing a general limit distribution theory in the i.n.i.d. case, the above
theorem specifies sufficient conditions under which the fast convergence rate with α > 1 can
be achieved when more xi are sampled near x0 than the usual xi = i/n, and vice versa.

In Theorem 8, the difficult nuisance parameter is g0(x0), and the easier one is σ 2(x0). Let
(û(x0), v̂(x0)) be any pair such that θ̂n(x0) = Ȳ |[û(x0),v̂(x0)]. Consider the following CI for
θ0(x0):

IGLM
n (cδ) ≡ [

θ̂n(x0) ± cδ · σ̂n�n/

√
n
(
v̂(x0) − û(x0)

)]
,

where σ̂ 2
n ≡ 1/p′(θ̂n(x0)) under (3.4) or σ̂ 2

n ≡ σ 2
û,v̂ as in (2.2) in general, and �n = 1 + oP(1).

If we choose �n ≡
√

n(v̂(x0) − û(x0))/
∑

i 1xi∈[û(x0),v̂(x0)], the CI above reduces to [θ̂n(x0) ±
cδ · σ̂n/

√∑
i 1xi∈[û(x0),v̂(x0)]] in the similar form to (1.7).
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TABLE 1
Simulated critical values cδ for d = 1

δ 0.01 0.02 0.05 0.1 0.15 0.2 0.5

f0(x) = 2(x − 0.5) 3.04 2.65 2.11 1.68 1.42 1.23 0.59
f0(x) = 5(x − 0.5) 3.04 2.65 2.11 1.68 1.42 1.23 0.59
f0(x) = 10x2 3.04 2.66 2.11 1.68 1.42 1.23 0.59

THEOREM 9. Assume the same conditions as in Theorem 8 with α = 1. Let cδ > 0 be a
continuity point of the d.f. of |L1| such that P(|L1| > cδ) = δ. Then

lim
n→∞Pθ0

(
θ0(x0) ∈ IGLM

n (cδ)
) = 1 − δ.

Furthermore, for any ε > 0,

lim inf
n→∞ Pθ0

(∣∣IGLM
n (cδ)

∣∣ < 2cδgε · n−1/3(σ 2(x0)g0(x0)
)1/3) ≥ 1 − ε.

Here gε ∈ (0,∞) is such that P(S−1
1 ≥ gε) ≤ ε.

The above theorem covers only the usual case of α = 1 for the cube-root rate. The critical
value cδ for general α can be handled as in Theorem 3.

4. Simulation studies.

4.1. Critical values cδ via simulations. In this subsection, we discuss (i) simulation
methods to approximate critical values cδ of the pivotal limit distribution theory (with lo-
cal smoothness α = (1, . . . ,1) as in Theorem 2), and (ii) data-driven adjustments to edge
effect and small sample size.

4.1.1. Simulated critical values cδ . We use the following method to simulate critical
values cδ :

1. Specify a true mean function f0 defined on a fixed lattice {Xi} in [0,1]d , and generate
B = 106 repeated observations {{Yi,b = f0(Xi)+ ξi,b, i = 1, . . . , n} : b = 1, . . . ,B} with i.i.d.
ξi,b ∼ N (0, σ 2) (we take σ = 1 for this simulation).

2. At design point x0, we obtain T (x0;b) ≡ {√nû,v̂(x0;b)|f̂n(x0;b) − f0(x0)|/σ : b =
1, . . . ,B}, where f̂n(x0;b) and nû,v̂(x0;b) are calculated via (1.5) and (1.6). We note that the
block [û(x0), v̂(x0)] is specified by û(x0) from the block max–min estimator and v̂(x0) from
the block min–max estimator.

3. Find critical values cδ by the corresponding quantiles of {T (x0;b) : b = 1, . . . ,B}.
(d = 1). The simulated critical values cδ for d = 1 are summarized in Table 1. As the block

max–min and min–max estimators (1.2) are equivalent to the isotonic least squares estimator
(LSE) at design points in d = 1, we use isoreg (based on the PAVA algorithm [7, 58]) built
in R. Let n = 105, so that Xi = i/n for all 1 ≤ i ≤ n and x0 = 0.5.

As the sample size (n = 105) for d = 1 is quite large, the estimates for different f0’s
remain the same at least up to two decimal places, with an exception for c0.02. Such precision
is typically sufficient for the purpose of inference.

(d ≥ 2). For multiple isotonic regression, we use brute force to compute the block max–
min and min–max estimators, which seems to be the only algorithm readily available. With
computational complexity O(n3), the brute force algorithm is much more expensive than the
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TABLE 2
Simulated critical values cδ for d = 2

δ 0.01 0.02 0.05 0.10 0.15 0.20 0.50

f0(x) = 2x1 + 2x2 − 2 2.61 2.26 1.78 1.41 1.19 1.03 0.49
f0(x) = 2x1 + 5x2 − 3.5 2.63 2.27 1.80 1.43 1.21 1.04 0.50
f0(x) = 5x1 + 5x2 − 5 2.64 2.29 1.81 1.43 1.21 1.05 0.50

linear-time PAVA algorithm specific to the univariate isotonic LSE. Thus, it is not computa-
tionally feasible to perform B = 106 simulations on, say, a 105 × 105 (i.e., n = 1010) lattice.

Nevertheless, we present below in Table 2 (d = 2) and Table 3 (d = 3) some encouraging
simulation results by brute force computation over relatively small lattices:

• For d = 2, we use a 50 × 50 lattice and take sample critical values at x0 = (0.5,0.5).
• For d = 3, we use a 16 × 16 × 16 lattice and take sample critical values at x0 =

(0.5,0.5,0.5).

The simulated critical values cδ in d = 2,3, albeit of small sample size in each dimension,
already support the pivotal limit distribution theory. Their concrete numeric values are, how-
ever, less stable compared with d = 1 for different mean functions f0, largely due to the curse
of dimensionality that requires much larger sample size n to achieve similar accuracy as in
d = 1. Unfortunately, brute force seems not ideal for this task. It is therefore of great interest
to develop fast algorithms for the block max–min and min–max estimators (1.2) in view of
their theoretically attractive properties.

By taking average, we give a few suggested critical values as follows.

4.1.2. Data-driven adjustments. As the pivotal limit distribution theory relies on local
smoothness of f0 and a large sample size, it is not surprising that for outskirt design points
or when the sample size is relatively small, CIs constructed via (1.7) with the critical val-
ues suggested in Table 4 would be less accurate. See, for instance, the plots given below in
Section 4.2 for demonstration. This is particularly relevant for d ≥ 2, since a lot more points
are present on the outskirts and in practice the sample size in each dimension is usually not
as large as in the univariate case. These issues call for critical value adjustments to improve
accuracy in inference.

Our proposal is to adjust the critical values based on the observed {Yi} and the sample
size. More specifically, we propose the use of critical values simulated through a smooth
proxy f̂smooth of the block average estimator f̂n. In order to match the noise level of {Yi},
the variance σ 2 in simulation can be chosen to be the variance estimate σ̂ 2 of {Yi}. A sim-
ple smoothing method to get f̂smooth is the isotonization of the LOESS fit f̂loess (with de-
fault smoothing parameter built in R) of f̂n, that is, f̂smooth = the block average estimate for
{f̂loess(Xi)}. See [53] for more details on constrained smoothing. As f̂smooth is expected to be

TABLE 3
Simulated critical values cδ for d = 3

δ 0.01 0.02 0.05 0.10 0.15 0.20 0.50

f0(x) = 2x1 + 2x2 + 2x3 − 3 2.26 1.96 1.55 1.24 1.05 0.91 0.44
f0(x) = 2x1 + 5x2 + 5x3 − 6 2.41 2.09 1.66 1.33 1.13 0.98 0.48
f0(x) = 5x1 + 5x2 + 5x3 − 7.5 2.41 2.10 1.67 1.34 1.14 0.99 0.49
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TABLE 4
Suggested critical values cδ (∗: use with caution)

δ d = 1 d = 2 d = 3

0.05 2.11 1.80∗ 1.63∗
0.10 1.68 1.42∗ 1.30∗

‘close’ to the true mean function of interest, it is reasonable to expect the simulated critical
values for f̂smooth to better mimic those for f0 for design points on the outskirts and when the
sample size is relatively small. We call the critical values simulated from f̂smooth the adjusted
critical values.

As will be clear from the next subsection, the adjusted critical values improve the inference
accuracy both for design points on the outskirts and for smaller samples.

4.2. Numerical performance of the proposed confidence intervals. In this subsection,
we investigate the numerical performance of the proposed CIs, exclusively in the multiple
isotonic regression model. More specifically, we construct CIs for f0(x) at each design point
x ∈ {Xi} and compute their corresponding coverage probabilities as follows:

1. For each specified mean function f0, generate B = 104 repeated observations {{Yi,b =
f0(Xi) + ξi,b, i = 1, . . . , n} : b = 1, . . . ,B} with i.i.d. ξi,b ∼N (0, σ 2).

2. For each b = 1, . . . ,B , construct the CI In(x; cδ, b) for each design point x via (1.7).
The CIs with the suggested cδ in Table 4 are referred to as vanilla CIs, and the CIs with
adjusted cδ (as described in the proceeding subsection) as CV-adjusted CIs.

3. Report B−1 ∑B
b=1 1(f0(x) ∈ In(x; cδ, b)) as the coverage probability at design point x,

that is, the proportion of the CIs {In(x; cδ, b) : b = 1, . . . ,B} that successfully cover the truth
f0(x) out of B = 104 repeated observations. We focus on 95% CIs, that is, δ = 0.05.

For variance estimation, we use the class of difference estimators [36, 54, 57] rather than
the principled estimator in (2.2), as the latter requires large samples that are computationally
expensive for d ≥ 2. Specifically, we use the following variance estimator σ̂ 2:

σ̂ 2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i

(2Yi − Yi−1 − Yi+1)
2/

(
6(n − 2)

)
, d = 1,∑

i,j

(4Yi,j − Yi−1,j − Yi+1,j − Yi,j−1 − Yi,j+1)
2

/
(
20 × (n1 − 2)(n2 − 2)

)
, d = 2,∑

i,j,k

(6Yi,j,k − Yi−1,j,k − Yi+1,j,k

− Yi,j−1,k − Yi,j+1,k − Yi,j,k−1 − Yi,j,k+1)
2

/
(
42(n1 − 2)(n2 − 2)(n3 − 2)

)
, d = 3,

(4.1)

where, with slight abuse of notation, the observations are (Yi)1≤i≤n for d = 1,
(Yi,j )1≤i≤n1,1≤j≤n2 for d = 2, and (Yi,j,k)1≤i≤n1,1≤j≤n2,1≤k≤n3 for d = 3.

4.2.1. Coverage probability. The scatter plots of coverage probabilities at all design
points in d = 1 are given in Figure 2. In d = 1, we consider f0(x) = e2x and n = 100, so
that x ∈ {0.01,0.02, . . . ,1.00}. We observe slightly larger errors of the coverage probabili-
ties of the vanilla CIs at points near x = 0 or x = 1, but overall the coverage errors are small
for the small sample size n = 100. When σ 2 is unknown and estimated by the difference esti-
mator (4.1), the errors are slightly inflated at most of the design points, but are still controlled
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FIG. 2. Scatter plots for the coverage probabilities of the 95% CIs in d = 1, where f0(x) = e2x and n = 100.

within 1%. The CIs are overall biased slightly towards under-coverage, which is possibly due
to the bias in variance estimation: the median of σ̂ 2’s from 104 simulations is 0.9803, slightly
smaller than the true σ 2 = 1.

The scatter plots of coverage probabilities in d = 2 are given in Figure 3. We consider
test function f0(x) = ex1+x2 on a 25 × 25 lattice on [0,1]2 so that (x1, x2) ∈ {(i/25, j/25) :
i = 1, . . . ,25, j = 1, . . . ,25}. We call design points in the inner 17 × 17 lattice (i.e., {x :
5/25 ≤ x1 ≤ 21/25,5/25 ≤ x2 ≤ 21/25}) inner points, and the rest outskirt points. We can
clearly identify edge effect in Figure 3 when using the approximated universal critical value
1.80 in Table 4; the coverage probabilities at outskirt points are more biased as shown in
Figure 3(a) and (c). The CV-adjusted CIs significantly reduce the edge effect and improve
the coverage accuracy, as shown in Figure 3(b) and (d). Figure 4 shows the boxplots for the
coverage probabilities at all design points using the aforementioned two types of CIs (vanilla
and CV-adjusted) and under both known and unknown σ 2. The CV-adjusted CIs clearly have
more accurate coverage.

Our simulation results for d = 3 exhibit similar phenomena to the case d = 2. See the
scatter plots in Figure 5 and the boxplots in Figure 6, where we designate the design points
in the inner 5 × 5 × 5 lattice as inner points and the rest outskirt points. For the vanilla CIs,
we use the approximated universal critical value 1.63 in Table 4. The lattice of size 9 × 9 × 9
has too few points in each dimension, so distributional approximation to the pivot limit is less
accurate, as shown in Figure 5(a) and (c). On the other hand, the CV-adjusted CIs yield much
better empirical results, as shown in Figure 5(b) and (d).

In conclusion, the above simulations support our proposed inference procedure via the
pivotal limit distribution theory. In situations when sample size (in terms of each dimension)
is relatively small, or the design points are on the outskirts, CV-adjusted CIs are shown to
significantly improve the inference accuracy compared with the vanilla CIs that use universal
critical values in Table 4.

4.2.2. CI lengths. Another important theoretical property stated in Theorem 2 is that
the proposed CI (1.7) shrinks at the oracle rate. Suppose we know the partial derivatives
{∂kf0(x0),1 ≤ k ≤ d}, the limit distribution theory in Corollary 1 implies an oracle CI[

f̂n(x0) ± cδ · (n/σ 2)−1/(d+2)

{
d∏

k=1

(
∂kf0(x0)/2

)}1/(2+d)]
,(4.2)
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FIG. 3. Scatter plots for the coverage probabilities of the 95% CIs in d = 2, where f0(x) = ex1+x2 in 25 × 25
lattice.

where cδ is the 1 − δ quantile of |D| = |(D−
1d

+ D
+
1d

)/2| which can be similarly simulated

as in Section 4.1.1. Recall D∓
1 /2 follows Chernoff distribution, so c0.05 = 1.9964 in d = 1;

see, for example, [30], Table 3.1. Our simulation suggests that c0.05 is approximately 1.85 in
d = 2 and 1.78 in d = 3. Then, Theorem 2 (2.5) asserts that the length of the proposed CI
should shrink at the same rate as the length of the oracle CI in (4.2).

To see this in finite samples, we carry out a simulation that follows the same procedure
as before but with varying sample sizes n. Only balanced fixed lattice design is considered
in this simulation, so sample size n indicates an n1/d × · · · × n1/d lattice. See Figure 7 for
the boxplots for the lengths of the proposed CI based on 104 simulations, where the lengths

FIG. 4. Boxplots for the coverage probabilities of the 95% CIs at all design points in d = 2 under known and
unknown variance σ 2 = 1, where f0(x) = ex1+x2 on a 25 × 25 lattice.
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FIG. 5. Scatter plots for the coverage probabilities of the 95% CIs in d = 3, where f0(x) = e2(x1+x2+x3)/3 on
a 9 × 9 × 9 lattice.

of the oracle CIs in (4.2) are given in red dashed lines. It clearly shows that the proposed CI
indeed shrinks at the oracle length.

4.3. The merit of using the block average estimator. In (1.7) and (1.8), we propose to
use the block average estimator (1.5) to carry out statistical inference about f0(x0). It is of
natural interest to ask if using either the block max–min or min–max estimator alone in the
proposed procedure is adequate as this would almost reduce the computational cost by half.
In this subsection, we will show empirically the benefits of using (1.5). Specifically, while
of the block average estimator improves upon the block max–min estimators only slightly

FIG. 6. Boxplots for the coverage probabilities of the 95% CIs at all design points in d = 3 under known and
unknown variance σ 2 = 1, where f0(x) = e2(x1+x2+x3)/3 on a 9 × 9 × 9 lattice.
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FIG. 7. Boxplots for the lengths of the 95% CIs of: (i) f0(x) = ex at x0 = 0.5 in d = 1, (ii) f0(x) = ex1+x2 at
x0 = (0.5,0.5) in d = 2 and (iii) f0(x) = e2(x1+x2+x3)/3 at x0 = (0.5,0.5,0.5) in d = 3 under different sample
sizes n. Red dashed lines represent the lengths of the oracle CIs. Here σ = 1 is known.

in the mean squared error (numerical results omitted), the proposed CI (1.7) which uses the
block average estimator outperforms the CIs that uses the block max–min estimator alone by
a fairly considerable amount in terms of accuracy for the coverage of the CIs (the situation
for block min–max estimator is analogous).

More precisely, for inference based on the block max–min estimator alone, we consider
the following form of the CIs:

I−
n

(
c−
δ

) ≡
[
f̂ −

n (x0) ± c−
δ · σ̂ /

√
n−̂

u,v̂(x0)
]
,(4.3)

where n−̂
u,v̂(x0) ≡ ∑

i 1Xi∈[û−(x0),v̂
−(x0)] with û−(x0), v̂

−(x0) defined as any pair such that

f̂ −
n (x0) ≡ max

u≤x0
min
v≥x0[u,v]∩{Xi}�=∅

Ȳ |[u,v] = Ȳ |[û−(x0),v̂
−(x0)].

We conjecture that

CONJECTURE 1. Under the same settings as in Theorem 1, for some finite random vari-
able L−

α (that does not depend on K(f0, x0)),√
n−̂

u,v̂(x0)
(
f̂ −

n (x0) − f0(x0)
)
� σ ·L−

α .

Note that in d = 1 the block max–min and min–max estimators are equivalent, so the above
conjecture reduces to Theorem 1. Below we consider d = 2,3, and provide some numerical
evidence that the CIs using the block average estimator could provide better probability cov-
erage than using only the block max–min estimator based on Conjecture 1.

The summary of statistics for the coverage probabilities of the 95% CIs in d = 2 is listed
in Table 5. The mean squared errors of the coverage probabilities of the 95% CIs by the
block average estimator are 1.67 × 10−4 under known σ 2, and 1.84 × 10−4 under unknown
σ 2 for vanilla CIs, reducing about 18% of those by the block max–min estimator which are
2.05 × 10−4 and 2.23 × 10−4 respectively. Similar conclusion can be made for CV-adjusted
CIs.

The summary of statistics for the coverage probabilities of the 95% CIs in d = 3 is listed
in Table 6. As the simulated critical values used in this simulation are less accurate due to
the relatively small sample size in d = 3, the vanilla CIs for both the block average estimator
and the block max–min estimator suffer from slight under-coverage. However, when using
CV-adjusted CIs with improved accuracy in the mean of the coverage probabilities, similar
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TABLE 5
Summary of statistics for the coverage probabilities of the 95% CIs in d = 2 by the block average and the block

max–min estimators

vanilla CIs CV-adjusted CIs

σ known σ u nknown σ known σ unknown

average max–min average max–min average max–min average max–min

mean 0.9414 0.9405 0.9405 0.9397 0.9503 0.9503 0.9503 0.9503
median 0.9444 0.9440 0.9438 0.9432 0.9503 0.9503 0.9503 0.9503
s.d. 0.00961 0.01072 0.00973 0.01080 0.00146 0.00156 0.00140 0.00155

reduction in the mean squared errors of the coverage probabilities can be observed for the
block average estimators.

4.4. Numerical comparison with Banerjee–Wellner (BW) CIs in d = 1. In this subsec-
tion, we compare numerically the coverage probabilities and the lengths of the CIs in [6] (cf.
Section 2.4), hereafter referred as BW CIs, with the CIs proposed in this paper, labelled as
DHZ in the plots.

4.4.1. Coverage probability. For the performance on coverage, we consider four differ-
ent mean functions f0(x)’s: e2x , 10x5, (4πx + sin(4πx))/2 and log(x + 0.001) on [0,1].
We let n = 103 and x ∈ {1/n, . . . , (n − 1)/n,n/n}, and assume σ = 1 is known. For fair
comparison, we use the vanilla CIs with the universal critical value 2.11 for the proposed
CIs, and the recommended critical value 2.26916 in [6], Method 2, Table 2, for the BW CIs,
both for 95% coverage. The scatter plots and boxplots for the coverage probabilities at design
points {1/n, . . . , (n − 1)/n} are given in Figure 8 and Figure 9. The coverage probabilities
are approximated by the relative frequencies of the successful coverage of the corresponding
CIs out of B = 104 simulations.

Both types of CIs have rather accurate coverage probabilities at design points that are far
from the outskirts for functions with nonextreme derivatives; see Figure 8(a) and Figure 8(d).
Nevertheless, the proposed CIs appear to have two advantages. First, the edge effect in the
BW CIs is much more severe than in the proposed CIs; many more outskirt points suffer
under-coverage for the BW CIs. A similar phenomenon is observed in the related current
status model in [30], Figure 9.16, page 270. Note that as the LSE is probably inconsistent
near the edge, we do not expect the BW or the proposed CIs to provide accurate coverage
in theory. However, it turns out the proposed CIs are able to give some reasonably good
coverage for outskirt points numerically.

Second, the coverage probabilities of the proposed CIs over flat regions (where derivatives
of the mean functions are small) are more biased towards over-coverage, while the BW CIs

TABLE 6
Summary of statistics for the coverage probabilities of the 95% CIs in d = 3 by the block average and the block

max–min estimators

vanilla CIs CV-adjusted CIs

σ known σ u nknown σ known σ unknown

average max–min average max–min average max–min average max–min

mean 0.9273 0.9287 0.9232 0.9246 0.9513 0.9510 0.9512 0.9511
median 0.9277 0.9293 0.9236 0.9247 0.9516 0.9513 0.9515 0.9515
s.d. 0.01521 0.01450 0.01563 0.01497 0.00342 0.00428 0.00334 0.00402



CONFIDENCE INTERVALS FOR MULTIPLE ISOTONIC REGRESSION 2047

FIG. 8. Scatter plots for the coverage probabilities of the 95% BW CIs and proposed CIs.

are likely to suffer again under-coverage; see Figure 8(b) when x ∈ [0.1,0.5], and Figure 8(c)
when x is around 0.25 and 0.75.

4.4.2. CI lengths. We compare the lengths of the BW CIs and the proposed CIs.
We may first have a glance at the BW and the proposed CIs. Let f0(x) = e2x and continue

the above setting in Section 4.4.1 but with n = 102. For one observation {(Xi, Yi),Xi =
i/n,1 ≤ i ≤ n}, we compute both CIs for the function values at design points {1/n, . . . , (n −
1)/n} and plot them in Figure 10.

FIG. 9. Boxplots for the coverage probabilities of the 95% BW CIs and proposed CIs. (a), (b), (c) and (d)
correspond to the functions in Figure 8. Here some outliers of the boxplots for BW CI are removed as they can be
as small as 0.6.
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FIG. 10. 95% BW CIs and proposed CIs for f0(x) = e2x at {0.01, . . . ,0.99}. Here n = 102 and σ = 1 is known.
Red line represents f0(x) = e2x and blue dots are f̂n(Xi).

From Figure 10, we notice an interesting difference between the BW and the proposed
CIs: The lower and upper boundaries of the BW CIs seem to be monotone, but, because it
is possible to have small nû,v̂(x0) for any x0, the proposed CIs at certain locations could
be quite large. We may employ some practical remedies for the proposed CI, for example,
adding an extra size constraint nû,v̂(x0) ≥ 5 in the maximization and minimization of (1.4),
but the improvement may not be as substantial as in Figure 10(a).

We also observe in this simulation that the BW CIs are narrower in Figure 10. To investi-
gate this phenomenon more carefully, we continue the setting in Section 4.4.1 with n = 103

and compute the lengths of both CIs for design points {1/n, . . . , (n − 1)/n}. We run 104

simulations, so that, at each design point, we obtain 104 BW CIs and the proposed CIs. The
lengths of the CIs for f0(x) = e2x and f0(x) = 10x5 are given in Figure 11. In each subfigure

FIG. 11. Lengths of the 95% BW CIs and proposed CIs.
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of Figure 11, the lower (resp. upper) boundary of the shaded area represents the 1st (resp.
3rd) quantile of the lengths of 104 CIs, the black line is the median of the lengths, and the
red line represents the length of the oracle CI defined in (4.2). Although the lengths of the
proposed CI shrink at the oracle rate, which supports Theorem 2 (2.5) in d = 1, it seems that
the BW CIs based on LRT are usually narrower than the proposed CIs.
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[56] PRAKASA RAO, B. L. S. (1970). Estimation for distributions with monotone failure rate. Ann. Math. Stat.

41 507–519. MR0260133 https://doi.org/10.1214/aoms/1177697091
[57] RICE, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215–1230. MR0760684

https://doi.org/10.1214/aos/1176346788
[58] ROBERTSON, T., WRIGHT, F. T. and DYKSTRA, R. L. (1988). Order Restricted Statistical Inference. Wi-

ley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley,
Chichester. MR0961262

[59] SEIJO, E. and SEN, B. (2011). Change-point in stochastic design regression and the bootstrap. Ann. Statist.
39 1580–1607. MR2850213 https://doi.org/10.1214/11-AOS874

[60] SEIJO, E. and SEN, B. (2011). Nonparametric least squares estimation of a multivariate convex regression
function. Ann. Statist. 39 1633–1657. MR2850215 https://doi.org/10.1214/10-AOS852

[61] SEN, B. and BANERJEE, M. (2007). A pseudolikelihood method for analyzing interval censored data.
Biometrika 94 71–86. MR2307901 https://doi.org/10.1093/biomet/asm011

[62] SEN, B., BANERJEE, M. and WOODROOFE, M. (2010). Inconsistency of bootstrap: The Grenander estima-
tor. Ann. Statist. 38 1953–1977. MR2676880 https://doi.org/10.1214/09-AOS777

[63] SEREGIN, A. and WELLNER, J. A. (2010). Nonparametric estimation of multivariate convex-transformed
densities. Ann. Statist. 38 3751–3781. MR2766867 https://doi.org/10.1214/10-AOS840

[64] SUN, J. and KALBFLEISCH, J. D. (1995). Estimation of the mean function of point processes based on
panel count data. Statist. Sinica 5 279–289. MR1329298

[65] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Pro-
cesses. Springer Series in Statistics. Springer, New York. MR1385671 https://doi.org/10.1007/
978-1-4757-2545-2

[66] WELLNER, J. A. and ZHANG, Y. (2000). Two estimators of the mean of a counting process with panel
count data. Ann. Statist. 28 779–814. MR1792787 https://doi.org/10.1214/aos/1015951998

[67] WRIGHT, F. T. (1981). The asymptotic behavior of monotone regression estimates. Ann. Statist. 9 443–448.
MR0606630

[68] XU, M. and SAMWORTH, R. J. (2021). High-dimensional nonparametric density estimation via symmetry
and shape constraints. Ann. Statist. To appear. Available at arXiv:1903.06092.

http://arxiv.org/abs/arXiv:1601.06844
http://www.ams.org/mathscinet-getitem?mr=4185808
https://doi.org/10.1214/19-AOS1928
http://www.ams.org/mathscinet-getitem?mr=0426273
http://www.ams.org/mathscinet-getitem?mr=0065093
http://www.ams.org/mathscinet-getitem?mr=2597581
https://doi.org/10.3150/09-BEJ202
http://www.ams.org/mathscinet-getitem?mr=3845018
https://doi.org/10.1214/17-AOS1619
http://www.ams.org/mathscinet-getitem?mr=3576560
https://doi.org/10.1214/16-AOS1480
http://www.ams.org/mathscinet-getitem?mr=2722462
https://doi.org/10.1214/10-AOS814
http://www.ams.org/mathscinet-getitem?mr=2462212
https://doi.org/10.1214/193940307000000202
http://www.ams.org/mathscinet-getitem?mr=2911667
https://doi.org/10.1287/opre.1110.1007
http://www.ams.org/mathscinet-getitem?mr=1105842
https://doi.org/10.1214/aos/1176348118
http://www.ams.org/mathscinet-getitem?mr=1874153
https://doi.org/10.1214/ss/1009213727
http://www.ams.org/mathscinet-getitem?mr=2136637
https://doi.org/10.1111/j.1467-9868.2005.00486.x
http://www.ams.org/mathscinet-getitem?mr=0267677
http://www.ams.org/mathscinet-getitem?mr=0260133
https://doi.org/10.1214/aoms/1177697091
http://www.ams.org/mathscinet-getitem?mr=0760684
https://doi.org/10.1214/aos/1176346788
http://www.ams.org/mathscinet-getitem?mr=0961262
http://www.ams.org/mathscinet-getitem?mr=2850213
https://doi.org/10.1214/11-AOS874
http://www.ams.org/mathscinet-getitem?mr=2850215
https://doi.org/10.1214/10-AOS852
http://www.ams.org/mathscinet-getitem?mr=2307901
https://doi.org/10.1093/biomet/asm011
http://www.ams.org/mathscinet-getitem?mr=2676880
https://doi.org/10.1214/09-AOS777
http://www.ams.org/mathscinet-getitem?mr=2766867
https://doi.org/10.1214/10-AOS840
http://www.ams.org/mathscinet-getitem?mr=1329298
http://www.ams.org/mathscinet-getitem?mr=1385671
https://doi.org/10.1007/978-1-4757-2545-2
http://www.ams.org/mathscinet-getitem?mr=1792787
https://doi.org/10.1214/aos/1015951998
http://www.ams.org/mathscinet-getitem?mr=0606630
http://arxiv.org/abs/arXiv:1903.06092
https://doi.org/10.1214/ss/1009213727
https://doi.org/10.1007/978-1-4757-2545-2


2052 H. DENG, Q. HAN AND C.-H. ZHANG

[69] ZHANG, C.-H. (2002). Risk bounds in isotonic regression. Ann. Statist. 30 528–555. MR1902898
https://doi.org/10.1214/aos/1021379864

http://www.ams.org/mathscinet-getitem?mr=1902898
https://doi.org/10.1214/aos/1021379864

	Introduction
	Overview
	Notation

	Conﬁdence interval: Isotonic regression
	Limit distribution theory in han2019limit: A review
	Pivotal limit distribution theory
	Conﬁdence interval
	Comparison with the approach of banerjee2001likelihood in d=1

	Beyond isotonic regression: Inference in other monotone models
	The common scheme
	Monotone density estimation
	Current status data: Interval censoring model
	Panel count data: Counting process model
	Generalized linear models and the i.n.i.d. (independent, not identically distributed) case

	Simulation studies
	Critical values cdelta via simulations
	Simulated critical values cdelta
	Data-driven adjustments

	Numerical performance of the proposed conﬁdence intervals
	Coverage probability
	CI lengths

	The merit of using the block average estimator
	Numerical comparison with Banerjee-Wellner (BW) CIs in d=1
	Coverage probability
	CI lengths


	Acknowledgments
	Funding
	Supplementary Material
	References

