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Abstract

The maximum correlation of functions of a pair of random variables is an important measure of
tochastic dependence. It is known that this maximum nonlinear correlation is identical to the absolute
alue of the Pearson correlation for a pair of Gaussian random variables or a pair of finite sums of
id random variables. This paper extends these results to pairwise Gaussian vectors and processes,
ested sums of iid random variables, and permutation symmetric functions of sub-groups of iid random
ariables. It also discusses applications to additive regression models.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The maximum correlation of functions of a pair of random variables is an important
easure of stochastic dependence. Formally, given random variables X1 and X2, the maximum

orrelation is defined as

R(X1, X2) = sup
{

Cov
(

f1(X1), f2(X2)
)

: Var
(

f1(X1)
)

= Var
(

f2(X2)
)

= 1
}
, (1)
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here f1 and f2 are real functions. If X1 and X2 are bivariate normal, it was established in
14] that

R(X1, X2) = |ρ(X1, X2)| (2)

here ρ(X1, X2) denotes the Pearson correlation between X1 and X2. Dembo, Kagan and
hepp (2001) showed that the equality (2) holds with R(X1, X2) =

√
m/n, 1 ≤ m ≤ n, if X1

nd X2 are respectively nested sums of m and n independent and identically distributed (iid)
andom variables with finite second moment. Following their work, Bryc et al. [4] removed the
econd moment condition for the nested sums, and Yu [21] extended the result to two sums of
rbitrary finite subsets of iid random variables.

The current paper extends the above results to more than two random variables and Gaussian
rocesses. Let λmin and λmax denote the smallest and largest eigenvalues of matrices or linear
perators, and Corr̸=(X1, . . . , X p) the p × p off-diagonal correlation matrix of p random
ariables with elements ρ(X j , Xk)I{ j ̸=k}. Since the maximum correlation of a pair of random
ariables can be expressed as R(X1, X2) = sup f1, f2 λmax

(
Corr̸=( f1(X1), f2(X2))

)
, a natural

xtension of the maximum nonlinear correlation to the multivariate setting is the extreme
igenvalue of the off-diagonal correlation matrix of marginal function transformations of

X1, . . . , X p,

ρN L
max(X1, . . . , X p) = sup

f1,..., f p

λmax
(
Corr̸=

(
f1(X1), . . . , f p(X p)

))
, (3)

here the supreme is taken over all deterministic f j with 0 < Var
(

f 2
j (X j )

)
< ∞, and similarly

ρN L
min(X1, . . . , X p) = inf

f1,..., f p
λmin

(
Corr̸=

(
f1(X1), . . . , f p(X p)

))
. (4)

or p = 2, ρN L
max = −ρN L

min ∈ [0, 1]. However, for p ≥ 3, ρN L
min ∈ [−1, 0] is no longer determined

y ρN L
max ∈ [0, p − 1], so that both quantities are needed to capture the extreme eigenvalues

f the off-diagonal nonlinear correlation matrix. Moreover, (3) and (4) lead to the following
urther extension to stochastic processes: For any process XT = {X t , t ∈ T } on an index set

equipped with a measure ν and Ws,t ≥ 0 as a weight function on T × T ,

ρN L
max = ρN L

max(XT , ν, W ) (5)

= sup
fT ∈FT

sup
∥h∥L2(ν)=1

∫
t∈T

∫
s∈T

ρ ( fs(Xs), ft (X t )) Ws,t h(s)h(t)ν(ds)ν(dt),

here ∥h∥L2(ν) =
{∫

T h2(t)ν(dt)
}1/2 and FT is the class of all deterministic fT = { ft , t ∈ T }

atisfying proper measurability and integrability conditions. Correspondingly,

ρN L
min = ρN L

min(XT , ν, W ) (6)

= inf
fT ∈FT

inf
∥h∥L2(ν)=1

∫
t∈T

∫
s∈T

ρ ( fs(Xs), ft (X t )) Ws,t h(s)h(t)ν(ds)ν(dt).

learly, (3) and (4) are respectively special cases of (5) and (6) with T = {1, . . . , p}, Ws,t =

I{s ̸=t} and the counting measure ν(A) = |A|. We refer to (5) and (6) as the maximum, minimum
or extreme nonlinear correlations of the process XT . Let KW, fT (s, t) = ρ

(
fs(Xs), ft (X t )

)
Ws,t

as a kernel and KW, fT : h →
∫

KW, fT (·, s)h(s)ν(ds) as a linear operator in L2(ν). The extreme
nonlinear correlations in (5) and (6) are expressed as the extreme eigenvalues of the operator
KW, fT : L2(ν) → L2(ν) via

ρN L
max = sup λmax(KW, fT ), ρN L

min = inf λmin(KW, fT ). (7)

fT ∈FT fT ∈FT

2
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ecause the weight function W is almost completely general, it can be used to absorb the
Radon–Nikodym derivative between two choices of the measure ν as follows. The pair {ν ′, W ′)
would yield the same extreme nonlinear correlations as {ν, W ) when the measures ν and ν ′ are
absolutely continuous with respect to each other and W ′

s,t = Ws,t
√

ν(ds)/ν ′(ds)
√

ν(dt)/ν ′(dt).
or T = {1, . . . , p}, we may take ν as the counting measure without loss of generality, so that

he quantities in (7) are given by the extreme eigenvalues of the matrix (KW, fT ( j, k))p×p.
The main assertion of this paper is that in a number of settings, the above weighted extreme

onlinear correlations are identical to their linear counterpart:

ρN L
max = ρL

max and ρN L
min = ρL

min, (8)

here ρL
max and ρL

min are defined by restricting the functions ft in (5) and (6) to be the identity
f (x) = x ; e.g. in the more general stochastic process setting,

ρL
max = ρL

max(XT , ν, W ) = sup
∥h∥L2(ν)=1

∫
t∈T

∫
s∈T

ρ (Xs, X t ) Ws,t h(s)h(t)ν(ds)ν(dt), (9)

and

ρL
min = ρL

min(XT , ν, W ) = inf
∥h∥L2(ν)=1

∫
t∈T

∫
s∈T

ρ (Xs, X t ) Ws,t h(s)h(t)ν(ds)ν(dt). (10)

We note that for Ws,t = 1, ρN L
max ≤ ν(T ) and ρN L

min ≥ 0, so that (8) is trivial when ρL
max = ν(T )

and ρL
min = 0. In fact, the first identify of (8) is nontrivial when ρL

max < ν(T ) and the second
dentify of (8) is nontrivial when ρL

min > 0. However, for general Ws,t , there is no explicit
ormula for such attainable extreme solutions when the maximum and minimum are also taken
ver all correlation operators ρ(Xs, X t ). Similar to (7), we define

ρL
max = λmax(KW ), ρL

min = λmin(KW ). (11)

here KW : h →
∫

KW (·, s)h(s)ν(ds) is the linear operator in L2(ν) with the kernel
KW (s, t) = E

[
Xs X t

]
Ws,t . As discussed below (7), for T = {1, . . . , p} we may take ν as the

ounting measure without loss of generality, so that (11) is given by the extreme eigenvalues
of the matrix (KW ( j, k))p×p.

We will begin by proving (8) for Gaussian processes XT on an arbitrary index set T . Our
analysis bears some resemblance to that of Lancaster [14] through the use of the Hermite
polynomial expansion, but the general functional nature of our problem requires additional
elements involving the spectrum boundary of the Schur product of linear operators. In fact,
we prove that only a pairwise bivariate Gaussian condition is required for (8) under proper
measurability and integrability conditions.

1.1. Hidden pairwise Gaussian and additive models

We generalize the results in (8) from pairwise Gaussian vectors to more general random
vectors and then present two implications to the analysis of additive models. We shall say that
a random vector X1:p = (X1, . . . , X p) is hidden Gaussian if X j = T j (Z j ) for a Gaussian vector
Z1:p = (Z1, . . . , Z p) and some deterministic transformations T j , 1 ≤ j ≤ p; X1:p is hidden
pairwise Gaussian if the Gaussian requirement on Z1:p is reduced to pairwise Gaussian. The
identities in (8) for the pairwise Gaussian process are equivalent to

ρL (Z , ν, W ) ≤ ρN L (X , ν, W ), ρN L (X , ν, W ) ≤ ρL (Z , ν, W ),
min 1:p min 1:p max 1:p max 1:p

3
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or all measures ν and weights Ws,t . That is to say, if the correlation structure of X1:p
s generated from a pairwise Gaussian distribution through marginal transformations, then
heir extreme nonlinear correlations are controlled within the extreme linear correlations
f the underlying pairwise Gaussian distribution. When Z1:p is jointly Gaussian and the
ransformations T j are monotone, this is the Gaussian copula model widely used in financial
isk assessment and other areas of applications.

Our interest in the extreme nonlinear correlations arises from our study of the additive
egression model where the response variable Y can be written as

Y =

p∑
j=1

f j (X j ) + ϵ.

s an important nonlinear relaxation of the linear regression, this model effectively mitigates
he curse of dimensionality in the more complex multiple nonparametric regression [3,5,10,20].
et ∥ f ∥L(0)

2 (P) denote the semi-norm given by ∥ f ∥
2
L(0)

2 (P)
= Var( f (X1:p)). Our result on the mini-

um eigenvalue of the nonlinear correlation matrix has two interesting implications in the anal-
sis of additive models as follows. Firstly, the characterization of ρN L

min in the current paper can
e used to verify the theoretical restricted eigenvalue and compatibility conditions required for
he analysis of additive models. In particular, the theoretical restricted eigenvalue and compati-
ility conditions on the design are critical for establishing upper bounds on the prediction error∑p

j=1 f̂ j −
∑p

j=1 f j∥
2
L(0)

2 (P)
of regularized estimators f̂ in the additive model [13,16–19]. Sec-

ndly, when the minimum nonlinear correlation of X1:p is bounded away from zero, the squared
oss for the estimation of individual f j can be derived from the prediction error bound via

p∑
j=1

∥ f̂ j − f j∥
2
L(0)

2 (P)
≤

1
ρN L

min

 p∑
j=1

f̂ j −

p∑
j=1

f j

2

L(0)
2 (P)

here ρN L
min is defined in (6) with the counting measure ν(A) = |A| and uniform weight

Ws,t = 1. See Section 3 for more detailed discussions.

.2. Symmetric functions

In addition to the extension of Lancaster [14] to pairwise Gaussian processes and vectors,
he current paper directly extends the results of Dembo, Kagan and Shepp (2001), Bryc et al.
4] and Yu [21] by establishing (8) for nested sums

(
X1, X2, . . . , X p

)
of iid random variables

Yi , with X j =
∑m j

i=1 Yi for some positive integers m1 < · · · < m p. Moreover, as a natural
eneralization of the nested sums, we consider groups of the iid variables as random vectors

X j = (Yi , i ∈ G j ) where G j are sets of positive integers. We extend the first part of (8) by
proving that for the counting measure ν and any weights W j,k ≥ 0

max
symmetric f1,..., f p

ρL
max

((
f1(X1), . . . , f p(X p)

)
, ν, W

)
= ρL

max

((
SG1 , . . . , SG p

)
, ν, W

)
(12)

where SG j =
∑

i∈G j
h0(Yi ) for any deterministic function h0 satisfying 0 < Var(h0(Yi )) < ∞

and the maximum is taken over all deterministic functions fi symmetric in the permutation of
its arguments. In the sequel, such fi are simply called symmetric functions. We also establish
the corresponding identity for the minimum correlation,

min
symmetric f1,..., f p

ρL
min

((
f1(X1), . . . , f p(X p)

)
, ν, W

)
= ρL

min

((
SG1 , . . . , SG p

)
, ν, W

)
, (13)

under a mild condition which holds when ∩
p G ̸= ∅.
j=1 j

4
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.3. Paper organization

The rest of the paper is organized as follows. In Section 2, we study the extreme eigenvalues
f nonlinear correlation matrix for pairwise Gaussian random vectors and processes; In
ection 3, we discuss the implications of our results in Section 2 on additive models; In
ection 4, we study the extreme eigenvalues of nonlinear correlation matrix of nested sums
nd also the more general symmetric functions of iid random variables.

. Pairwise Gaussian processes

To start with, we shall explicitly specify the measurability and integrability conditions for
he definition of the extreme linear and nonlinear correlations in (9), (10), (5) and (6).

Assumption A. (i) There exists Bn ⊂ Bn+1 ⊂ T such that ∪
∞

n=1 Bn = T , ν(Bn) < ∞ and∫
Bn

∫
Bn

W 2
s,tν(ds)ν(dt) < ∞ for any positive integer n ≥ 1.

(ii) The process XT is standardized to E[X t ] = 0 and E[X2
t ] = 1, the correlation operator

E
[
Xs X t

]
is measurable as a function of (s, t) in the product space T × T , and the weight

function Ws,t is element-wise nonnegative and symmetric, Ws,t = Wt,s ≥ 0.
iii) The operator KW in (11) is bounded.

We note that there is no loss of generality to assume that XT is standardized as (9) and (10)
nvolve only the correlation between Xs and X t . Under Assumption A (iii), the operator KW

ields finite extreme linear correlations in (9) and (10).

ssumption B. In (5) and (6), FT is the class of all function families fT = { ft , t ∈ T }

ith E[ ft (X t )] = 0, E[ f 2
t (X t )] > 0 and

∫
T E[ f 2

t (X t )]ν(dt) < ∞ such that E
[
Xm

t ft (X t )
]

are
easurable functions of t on T for all integers m ≥ 1, and in (7) the kernel KW, fT (s, t) =

orr( fs(Xs), ft (X t ))Ws,t is a measurable function of (s, t) on T × T .

In the discrete case where T = {1, . . . , p}, Assumption A always holds when E[X t ] = 0
nd E[X2

t ] = 1 and Assumption B always holds when FT is the set of all fT = { f1, . . . , f p}

atisfying E[ f j (X j )] = 0 and 0 < E[ f 2
j (X j )] < ∞, j = 1, . . . , p.

We first establish some equivalent expressions to (5) and (6) in the following lemma.

emma 1. Let ρN L
max and ρN L

min be as in (5) and (6) with the function class FT specified in
ssumption B. Then,

ρN L
max = sup

fT ∈FT

∫
t∈T

∫
s∈T E

[
fs(Xs), ft (X t )

]
Ws,tν(ds)ν(dt)∫

t∈T E
[

f 2
t (X t )

]
ν(dt)

, (14)

nd

ρN L
min = inf

fT ∈FT

∫
t∈T

∫
s∈T E

[
fs(Xs), ft (X t )

]
Ws,tν(ds)ν(dt)∫

t∈T E
[

f 2
t (X t )

]
ν(dt)

. (15)

A proof of Lemma 1 can be found in the Appendix. The more explicit expressions
stablished in the lemma will facilitate the Hermite polynomial expansion of the covariance in
ur analysis. Another ingredient of our analysis, stated in the following lemma, concerns the
xtreme eigenvalues of the Schur product.
5
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emma 2. Let ρL
max and ρL

min be as in (9) and (10) respectively and KW (s, t) = E[Xs X t ]Ws,t .
nder Assumption A,

ρL
min ≤

∫
t∈T

∫
s∈T

(
E[Xs X t ]

)m−1 KW (s, t)h(s)h(t)ν(ds)ν(dt) ≤ ρL
max. (16)

or any integer m ≥ 1 and function h(t) with
∫

h2(t)ν(dt) = 1.

The above lemma establishes that the spectrum of the operator given by the Schur power
ernel

(
E[Xs X t ]

)m−1 KW (s, t) =
(
E[Xs X t ]

)m Ws,t is controlled inside that of KW (s, t), so that
he Schur multiplication of a correlation matrix is a contraction. The proof of the lemma, given
n the Appendix, utilizes an interesting construction of the Schur power kernel with iid copies
f XT . Such a proof technique is simple but quite useful.

We are now ready to state the equivalence between the extreme nonlinear correlation and
he extreme linear correlation for pairwise Gaussian processes.

heorem 1. Let XT = {X t }t∈T be a pairwise Gaussian process in the sense that (Xs, X t )
re bivariate Gaussian vectors for all pairs (s, t) ∈ T × T . Under Assumptions A and B,

ρN L
max = ρL

max and ρN L
min = ρL

min,

here ρN L
max and ρN L

min are defined in (5) and (6) respectively, and ρL
max and ρL

min are defined in
9) and (10) respectively.

roof. As the normalized Hermite polynomials

Hm(x) = (m!)−1/2(−1)mex2/2(d/dx)me−x2/2

orm a orthonormal system with E[Hm(Z )] = 0 and E[H 2
m(Z )] = 1 for Z ∼ N (0, 1),

y Assumptions A and B we may write ft (X t ) =
∑

∞

m=1 am(t)Hm(X t ) in the sense of L2

onvergence. Let K m
W (s, t) =

(
E

[
Xs, X t

])m−1 KW (s, t) =
(
E

[
Xs, X t

])m Ws,t . As (Xs, X t ) is
ivariate normal with Var(Xs) = Var(X t ) = 1, E[Hm(Xs)Hn(X t )]Ws,t = K m

W (s, t) as in [14].
t follows that E

[
fs(Xs) ft (X t )

]
Ws,t =

∑
∞

m=1 K m
W (s, t)am(s)am(t). As |K m

W (s, t)| ≤ K 2
W (s, t),

emma 2 provides∫
s∈T

∫
t∈T

E
[

fs(Xs), ft (X t )
]
Ws,tν(ds)ν(dt)

=

∫
s∈T

∫
t∈T

{ ∞∑
m=1

K m
W (s, t)am(s)am(t)

}
ν(ds)ν(dt)

≤

∫
s∈T

∫
t∈T

KW (s, t)a1(s)a1(t)ν(ds)ν(dt)

+

∞∑
m=2

∫
s∈T

∫
t∈T

K 2
W (s, t)

⏐⏐am(s)am(t)
⏐⏐ν(ds)ν(dt)

≤ ρL
max

∞∑
m=1

∫
a2

m(t)ν(dt)

= ρL
max

∫
E

[
f 2
t (X t )

]
ν(dt).
t∈T
6
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oreover, as the exchange of summation and integration is allowed as the above,∫
s∈T

∫
t∈T

E
[

fs(Xs), ft (X t )
]
Ws,tν(ds)ν(dt)

=

∞∑
m=1

∫
s∈T

∫
t∈T

{
K m

W (s, t)am(s)am(t)
}
ν(ds)ν(dt)

≥ ρL
min

∞∑
m=1

∫
a2

m(t)ν(dt)

= ρL
min

∫
t∈T

E
[

f 2
t (X t )

]
ν(dt).

The proof is complete as inequalities in the other direction are trivial. □

Theorem 1 establishes the equality of the extreme eigenvalues of the nonlinear and linear
orrelation operators. However, as we have mentioned in the introduction, such results could be
rivial when ρL

max and ρL
min attain the extreme eigenvalues among all correlation operators. In the

ollowing three subsections, we discuss the discrete case T = {1, . . . , p}, the continuous case
= [0, 1], and stationary processes as three nontrivial examples and state the implications of

heorem 1 as corollaries.

.1. Hidden pairwise Gaussian vectors

The following part demonstrates the application of Theorem 1 to a finite number of pairwise
Gaussian random variables, that is, T = {1, 2, . . . , p}. As discussed below (7) and (11), we
take ν as the counting measure without loss of generality throughout the subsection.

Corollary 1. Let X1, X2, . . . , X p be pairwise Gaussian random variables with X j ∼ N (0, 1)
and a correlation matrix Σ = (Σ j,k)p×p. Let W = (W j,k)p×p be a matrix with elements
W j,k = Wk, j ≥ 0 and Σ ◦ W = (Σ j,k W j,k)p×p be the Schur product. Then, for all functions f j

satisfying E f j (X j ) = 0 and 0 < E f 2(X j ) < ∞,

λmin (Σ ◦ W ) ≤

E
[∑p

j=1
∑p

k=1 W j,k f j (X j ) f j (Xk)
]

∑p
j=1 E f 2

j (X j )
≤ λmax (Σ ◦ W ) . (17)

In particular, for Σ ◦ W = Σ with W j,k = 1,

λmin (Σ ) ·

p∑
j=1

E f 2
j (X j ) ≤ E

⎛⎝ p∑
j=1

f j (X j )

⎞⎠2

≤ λmax (Σ ) ·

p∑
j=1

E f 2
j (X j ). (18)

Equivalently, for W j,k = I{ j ̸=k}, (3) and (4) are given by their linear version,

ρN L
max(X1, . . . , X p) = λmax(Σ ) − 1 and ρN L

min(X1, . . . , X p) = λmin(Σ ) − 1. (19)

In the setting of the above corollary, the operator KW in (11) is given by the Schur product
atrix KW = Σ ◦ W , and for general weights W (18) and (19) are nontrivial with λmin(Σ ) > 0

and λmax(Σ ) < p when Σ is of full rank.
Finally, we state in the following corollary the implication of Theorem 1 on Gaussian copula

and other hidden pairwise Gaussian variables.
7
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orollary 2. Suppose X1:p =
(
X1, X2, . . . , X p

)
follows a hidden Gaussian distribution in the

ense of X j = T j (Z j ) for a Gaussian vector Z1:p = (Z1, . . . , Z p) and some deterministic
unctions T j with 0 < Var(T j (Z j )) < ∞. Let Σ z be the covariance matrix of the hidden vector
Z1:p. Then, for the counting measure ν and any symmetric W with W j,k ≥ 0,

λmin(Σ z
◦ W ) ≤ ρN L

min(X1:p, ν, W ), ρN L
max(X1:p, ν, W ) ≤ λmax(Σ z

◦ W ),

nd the above inequalities become equality when T j are almost surely invertible. In particular,
18) holds with Σ replaced by Σ z . Moreover, the Gaussian assumption on Z1:p can be
eakened to pairwise Gaussian.

Similarly to Corollary 1, the upper and lower bounds in the above corollary are nontrivial
hen the covariance matrix of Z1:p is of full rank. The above corollary has interesting

mplications as it states that the extreme eigenvalues of nonlinear correlation matrix fall into
he spectrum range of the covariance matrix of the underlying generating Gaussian distribution.
his is meaningful in statistical applications, that is, the well conditioning of the covariance
atrix of general nonlinear transformations follows from that of the underlying generating
aussian covariance matrix.

.2. Processes on finite intervals

Our result for a general pairwise Gaussian process with general index set also directly leads
o the same for Gaussian process on finite intervals. As discussed below (7), we take T = [0, 1]
nd the Lebesgue measure ν(dt) = dt without much loss of generality.

orollary 3. Let {X t , 0 ≤ t ≤ 1} be a Gaussian process with correlation ρ(Xs, X t ) and
Ws,t be a nonnegative symmetric square integrable function of (s, t) in [0, 1]2. Let KW (s, t) =

(Xs, X t )Ws,t . Let KW be the linear operator h(·) →
∫ 1

0 KW (·, s)h(s)ds. Then,

ρN L
max = λmax (KW ) , ρN L

min = λmin (KW ) ,

or the extreme nonlinear correlations in (5) and (6), where λmax (KW ) and λmin (KW ) are the
xtreme eigenvalues of the operator KW in L2([0, 1]). In particular, for K1 with W = 1,

Var
(∫ 1

0
f (X t , t)dt

)
≤ λmax (K1)

∫ 1

0
Var

(
f (X t , t)

)
dt

for all bounded continuous bivariate functions f (x, t).

In the above corollary, λ2
max(K1) ≤

∫ 1
0

∫ 1
0 ρ2(Xs, X t )dsdt ≤ 1, so that the maximum

igenvalue of the correlation operator K1 is nontrivial unless ρ2(Xs, X t ) ≡ 1. As the operator
K1 is Hilbert–Schmidt, the minimum eigenvalue λmin(K1) = 0 is always trivial. However,

min(KW ) may take nontrivial negative values for general W .
The setting here is related to the nested sum problem considered in Section 4 as follows. Let

S j =
∑ j

i=1 Yi , 1 ≤ j ≤ p, where Yi are iid random variables with E[Yi ] = 0 and E[Y 2
i ] = 1.

s the correlation kernel of {X t = S⌊pt⌋/
√

p, 0 ≤ t ≤ 1} uniformly converges to the correlation
kernel K1(s, t) = (s ∧ t)/

√
st of the standard Brownian motion as p → ∞,

λL
max(S1:p, ν

(p), W (p)) → λmax(KW ), λL
min(S1:p, ν

(p), W (p)) → λmin(KW ),

where ν(p)(A) = |A|/p is the normalized counting measure and W (p)
j,k = W j/p,k/p for

A ∪ { j, k} ⊆ {1, . . . , p}, and K is treated as the operator in L ([0, 1]) as in Corollary 3.
W 2

8
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.3. Stationary processes

In this subsection we consider stationary processes on the entire set of integers and the
ntire real line. In both cases we consider stationary pairwise Gaussian X t with E[X t ] = 0,
[X2

t ] = 1 and autocorrelation function

ρ(s, t) = ρ(t − s) = E[Xs X t ].

e consider weight functions Ws,t = Wt,s = W (t − s) ≥ 0 and write the kernel as

KW (s, t) = KW (s − t), KW (t) = ρ(t)W (t).

e shall first consider the discrete case.

orollary 4. Let {X t , t ∈ T }, T = {0, ±1, ±2, . . .}, be a pairwise Gaussian stationary
equence with autocorrelation ρ(t) = E[X t X0]. Let ν be the counting measure on T , Ws,t =

Wt,s = W (t − s) ≥ 0, KW (t) = ρ(t)W (t), and KW : h →
∑

s∈T KW (· − s)h(s) as an operator
n ℓ2. Suppose

∑
t∈T |KW (t)| < ∞. Then, (8) and (11) hold with

ρN L
max = λmax (KW ) = sup

|ω|≤π

⏐⏐K ∗

W (ω)
⏐⏐, ρN L

min = λmin (KW ) = inf
|ω|≤π

⏐⏐K ∗

W (ω)
⏐⏐,

here K ∗

W (ω) =
∑

s∈T KW (s) cos(ωs). In particular, for the autoregression sequence with
(t) = β |t |, |β| < 1 necessarily, we have K ∗

1 (ω) = (1 − β2)/(1 + β2
− 2β cos(ω)),

max (K1) = (1 + |β|)/(1 − |β|) and λmin (K1) = (1 − |β|)/(1 + |β|) for W (t) = 1.

We note that Corollary 4 gives the autoregression and implicitly many other examples in
hich ν(T ) = ∞ and λmax (KW ) < ∞ and λmin (KW ) > 0 are both nontrivial. For a pairwise
aussian stationary process {X t , t ∈ T }, the process { ft (X t ), t ∈ T } is in general non-Gaussian

nd non-stationary, and its spectrum is typically not tractable. Still, Corollary 4 shows that the
spectrum of the nonlinear { ft (X t ), t ∈ T } is contained within the spectrum of the underlying
process {X t , t ∈ T } under mild conditions.

Proof. Let F : h → Fh be the mapping from complex h ∈ L2([−π, π]) to its Fourier series
(Fh)(t) = (2π )−1/2

∫ π

−π
eiωt h(ω)dω, t ∈ T . For h with finitely many nonzero coefficients,

(KW Fh)(t) =

∑
s∈T

KW (|t − s|)
∫ π

−π

eiωs

(2π)1/2 h(ω)dω =

∫ π

−π

eiωt

(2π )1/2 K ∗

W (ω)h(ω)dω.

et K ∗

W be the mapping h(ω) → K ∗

W (ω)h(ω) in L2([−π, π]). As h with finitely many nonzero
ourier coefficients are dense in L2([−π, π]) and F is isometric from L2([−π, π]) onto ℓ2,

he above calculation implies KW F = F K ∗

W . Moreover, the spectrum decomposition KW =

λd Pλ is given by projections Pλ = F P∗

λ F−1 where P∗

λ h(ω) = h(ω)I {K ∗

W (ω) ≤ λ} gives
he spectrum decomposition K ∗

W =
∫

λd P∗

λ . This gives the main conclusion. For K1(t) = β |t |,
K ∗

1 (ω) =
∑

s∈T β |s|eiωs
= (1 − β2)/(1 + β2

− 2β cos(ω)) gives the spectrum. □

Next, we consider the continuous case. The spectrum of the Ornstein–Uhlenbeck process
K1(t) = e−|t | was studied in [15] by directly solving the eigenvalue problem for the restriction
f the kernel K1(s, t) = e−|t−s| on L2([a, b]) in the proof of Theorem 5 there.

orollary 5. Let {X t , t ∈ R} be a stationary pairwise Gaussian process on the entire real
ine with autocorrelation ρ(t) = E[X X ]. Let ν be the Lebesgue measure on R, W = W =
t 0 s,t t,s

9
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W (t − s) ≥ 0, KW (t) = ρ(t)W (t), and KW : h →
∫

∞

−∞
KW (· − s)h(s)ds as an operator in

L2(R). Suppose
∫

∞

−∞
|KW (t)|dt < ∞. Then, (8) and (11) hold with

ρN L
max = λmax (KW ) = sup

ω

⏐⏐K ∗

W (ω)
⏐⏐, ρN L

min = λmin (KW ) = inf
ω

⏐⏐K ∗

W (ω)
⏐⏐,

here K ∗

W (ω) =
∫

∞

−∞
KW (s) cos(ωs)ds. In particular, for the Ornstein–Uhlenbeck process with

(t) = e−|t |, K ∗

1 (ω) = 2/(1 + ω2), λmax (K1) = 2 and λmin (K1) = 0 for W (t) = 1.

roof. Here F is the Fourier transformation (Fh)(t) = (2π )−1/2
∫

∞

−∞
eiωt h(ω)dω, and

(KW Fh)(t) =

∫
∞

−∞

KW (|t − s|)
∫

∞

−∞

eiωs

(2π )1/2 h(ω)dωds =

∫
∞

−∞

eiωt

(2π )1/2 K ∗

W (ω)h(ω)dω.

his certainly holds for h ∈ L2(R) ∩ L1(R) which is dense in L2(R). Again, as F is isometric
n L2(R), KW F = F K ∗

W with the operator K ∗

W : h(ω) → K ∗

W (ω)h(ω). This gives the spectrum
ecomposition and spectrum limits of KW as in the proof of Corollary 4. For K1(t) = e−|t |,

K ∗

1 (ω) =
∫

e−|s|eiωsds = 1/(1 − iω) + 1/(1 + iω) gives the spectrum. □

Our problem is also related to mixing conditions on stochastic processes. For example, when
X t , −∞ < t < ∞} is a Gauss–Markov process, its ρ-mixing coefficient, given by

ρ∗(n) = sup
t

sup
f ∈F(−∞,t],g∈F[t+n,∞)

Corr( f, g)

ith FA being the set of all nonzero square integrable functions of {X t , t ∈ A}, can be
haracterized by ρ∗(n) = supt Corr(X t , X t+n) by (2). However, as this paper is mainly
otivated by the application in the additive model as discussed in Section 3 and the multivariate

xtension of Dembo, Kagan and Shepp (2001) as discussed in Section 4, our results do not yield
direct extension of the above explicit calculation of the ρ-mixing condition to more general

rocesses. We refer to Bradley et al. [2] for a survey of the relationship among different mixing
onditions.

. Applications to additive models

In this section, we discuss applications of our results to additive models, including jus-
ification of theoretical restricted eigenvalue and compatibility conditions and derivation of
onvergence rates for the estimation of individual component functions from prediction error
ounds. In the additive regression model, the relationship between the response variable Y
nd design vector X1:p = (X1, . . . , X p) is given by Y =

∑p
j=1 f j (X j ) + ε, or E[Y |X1:p] =

p
j=1 f j (X j ) in terms of the conditional expectation, where f j are assumed to be smooth

unctions and ε is the noise variable independent of X1:p with E[ε] = 0.
Additive models have been important tools for practical data analysis [5,8], mainly due

o the fact that it relaxes the stringent model assumption in linear regression and at the
ame time mitigates the curse of dimensionality in multiple nonparametric regression with

Y = f (X1:p) + ε. Another advantage of the additive model is the natural interpretation of its
omponents. For example, the rate of change of the j th function f j represents the effect of the
ovariate X j as in linear regression.

Due to its importance, additive models have been extensively investigated in both the
lassical low-dimension setting and the more contemporary high-dimensional setting where
nly a much smaller number than p of the components f j is actually nonzero. In both cases,

ne of the main assumptions is the invertibility condition of the additive model. In the very

10
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pecial linear regression setting Y =
∑p

j=1 X jβ j + ε, this invertibility condition is that the
inimum eigenvalue of the sample covariance matrix of the design vector X1:p is bounded away

rom zero. In the more general additive model, the component functions f j are not necessarily
inear and the invertibility condition is typically imposed on the sample covariance matrix of
ertain basis functions of f j . In the following, we connect the invertibility condition to ρN L

min in
10) and verify them over a large class of distributions, in both the low- and high-dimensional
ettings.

.1. Implications to low-dimensional additive models

We start with the low-dimensional setting where the number of covariates p is fixed or much
maller than the diverging sample size n. A useful way of understanding and implementing the
dditive models is to consider the projection of the response to the linear span of suitable
ases of the component functions f j . Denote a set of basis functions for f j by B j = B j (x j ) =

B j,1(x j ) · · · B j,M j (x j ))⊺ ∈ RM j with some positive integer M j , where the basis can be taken
s Fourier, spline, wavelet or other constructions and M j is allowed to grow as the sample size

increases. Under proper smoothness conditions, f j (x j ) can be adequately approximated by a
linear combination a⊺

j B j (x j ) of its basis functions, resulting in a d∗-dimensional regression
E[Y |X1:p] ≈

∑p
j=1 a⊺

j B j (X j ) with very large d∗
=

∑p
j=1 M j .

When iid copies {(X i,1, . . . , X i,p, Yi )}1≤i≤n of (X1, . . . , X p, Y ) are observed, the invertibility
condition in this d∗-dimensional regression can be written as

P

⎧⎪⎨⎪⎩ min∑p
j=1 ∥α j ∥

2
2=1

1
n

n∑
i=1

⎛⎝ p∑
j=1

a⊺
j B j (X i, j ) −

⎛⎝1
n

n∑
i=1

p∑
j=1

a⊺
j B j (X i, j )

⎞⎠⎞⎠2

≥ κ0

⎫⎪⎬⎪⎭ → 1 (20)

ith some fixed positive constant κ0. While probabilistic methods such as empirical process and
oncommutative Bernstein inequality can be used to verify the above condition, such analysis
nvariably requires the following population invertibility condition:

min∑p
j=1 ∥α j ∥

2
2=1


p∑

j=1

α
⊺
j B j (X j )


2

L(0)
2 (P)

≥ κ0,

s ∥ f (X1:p)∥2
L(0)

2 (P)
= Var( f (X1:p)) for all functions f : Rp

→ R. This population invertibility

ondition can be decomposed into a component-wise invertibility conditionα
⊺
j B j (X j )

2

L(0)
2 (P)

≥ κ1∥α j∥
2
2, for j = 1, . . . , p and κ1 > 0,

nd a population predictive invertibility condition
p∑

j=1

α
⊺
j B j (X j )


2

L(0)
2 (P)

≥ κ2

p∑
j=1

α
⊺
j B j (X j )

2

L(0)
2 (P)

for κ2 > 0. (21)

Assume that after proper centering and scaling the support of X1:p is [0, 1]p. The component-
ise invertibility condition is fulfilled when B j is orthonormal in L2([0, 1]) and the marginal
ensity of X j is uniformly greater than κ1 in [0, 1]. The orthonormal condition on B j can be
urther weakened to

α
⊺B j (X j )

2
(0) ≳ ∥α j∥

2 as in the case of B-spline. It is also well
j L2 ([0,1]) 2

11
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nown that the population predictive invertibility condition (21) holds when the joint density
f X1:p is uniformly greater than κ0 in [0, 1]p. However, while the lower bound assumption
n the individual marginal densities approximately holds after the quantile transformation of
ndividual samples (X1, j , . . . , Xn, j ), the lower bound assumption on the joint density is much
arder to ascertain. Consequently, it is unclear from the existing literature the extent of the
alidity of the largely theoretical assumption (21) beyond the restrictive condition on the lower
ound of the joint density.

Our results provide the validity of (21) in a broad collection of new scenarios as follows.
hen X1:p =

(
T1(Z1), . . . , Tp(Z p)

)
follows a hidden pairwise Gaussian distribution, Corol-

ary 2 provides (21) with κ2 = λmin(Σ z), Thus, the population predictive invertibility condition
is satisfied as long as the covariance matrix Σ z is well conditioned.

3.2. Implications to high-dimensional additive models

The prediction performance of additive models has also been carefully investigated in the
high-dimensional setting through regularized estimation. In the high-dimensional setting where
d∗ > n, e.g. p > n, the sample invertibility condition (20) would not hold for any κ0 > 0
as the rank of the matrix ((B⊺

j (X i, j ), j ≤ p)⊺, i ≤ n) cannot be greater than n. A popular
remedy to this impasse is to impose the sparsity condition that only a small unknown subset of
components f1, . . . , f p is actually non-zero. This is referred to as the sparse additive model and
has the natural interpretation that the response Y depends on the design variables only through
a small number of them. We use s, the number of non-zero f j , and the smoothness index of
the nonzero f j to measure the complexity of the sparse additive model. A core assumption in
the theory of penalized estimation in the sparse additive model is the restricted eigenvalue and
compatibility conditions. Let I = { j : f j ̸= 0} be the unknown index set of real signals and κ0
and ξ0 be positive constants, the theoretical restricted eigenvalue and compatibility conditions
can be defined as

φ∗
= inf

⎧⎪⎪⎨⎪⎪⎩
|I|

2−q
∑p

j=1 f j (X j )
2

L(0)
2 (P)(∑

j∈J
 f j (X j )

q

L(0)
2 (P)

)2/q :

∑
j∈I Pen j ( f j )∑
j∈Ic Pen j ( f j )

> ξ0

⎫⎪⎪⎬⎪⎪⎭ ≥ κ0 (22)

ith the convention 0/0 = 0, where q = 2 and J = {1, . . . , p} for the restricted eigenvalue
ondition, q = 1 and J = I for the compatibility coefficient, and Pen j ( f j ), typically a certain
orm of f j as a regularizer, is the penalty function.

In high-dimensional linear regression, the sample restricted eigenvalue and compatibility
onditions were respectively proposed in [1] and [9]. Condition (22), which generalizes the
opulation predictive invertibility condition (21) imposed in the low-dimensional setting, is
omparable to the key invertibility conditions imposed in [13] and [18] for q = 2 and [16]
nd [19] for q = 1.

To make the dependence on the compatibility condition more explicit, Theorem 1 of Meier
t al. [16] establishes that, in the case where all the unknown functions are twice differentiable,
he rate of convergence in terms of the in-sample prediction accuracy is s(log p/n)4/5/φn , where
n is a sample version of φ∗ defined in (22). Moreover, Theorem 2 of Meier et al. [16] and its
roof show that as long as the theoretical compatibility condition (22) holds, φn and φ∗ are of
he same order and the rate of the population prediction error is s(log p/n)4/5/φ∗. This directly
llustrates the role of φ∗ defined in the theoretical compatibility condition (22) on the rate of

onvergence.

12
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Despite the importance of (22) in theoretical justification of regularized prediction in sparse
additive models, it has been typically imposed as a condition but without further verification
of its validity other than in some very special cases such as the class of densities of X1:p

on [0, 1]p uniformly bounded away from 0 and ∞. The result of the current paper on the
minimum eigenvalue of the nonlinear correlation matrix sheds light on the theoretical restricted
eigenvalue and compatibility conditions for additive models in the sense that condition (22) is
satisfied with κ0 being the minimum eigenvalue of the correlation matrix of the latent pairwise
Gaussian vector Z1:p as in Corollary 2.

Corollary 6. Suppose
(
X1, X2, . . . , X p

)
follows a hidden Gaussian distribution with X j =

T j (Z j ) for a pairwise Gaussian vector (Z1, . . . , Z p) with Corr(Z1, . . . , Z p) = Σ z and some
deterministic functions T j with 0 < Var(T j (Z j )) < ∞. Then, condition (22) holds with
κ0 = λmin(Σ z). In particular, the theoretical restricted eigenvalue and compatibility conditions
hold when λmin(Σ z) is strictly bounded away from zero.

The above corollary implies that condition (22) holds for the Gaussian copula model. To the
best of the authors’ knowledge, this is a new connection of the theoretical restricted eigenvalue
and compatibility conditions to the widely-used model of multivariate dependency.

In addition to verifying the important condition (22), our results also provide the following
connection between the rate of convergence in the estimation of the individual components f j

and the prediction rate [13,16–19].

Corollary 7. Under the same assumption as Corollary 6,

λmin(Σ z)
p∑

i=1

∥ f̂i − fi∥
2
L(0)

2 (P)
≤

 p∑
i=1

f̂i −

p∑
i=1

fi

2

L(0)
2 (P)

≤ λmax(Σ z)
p∑

i=1

∥ f̂i − fi∥
2
L(0)

2 (P)
.

4. Symmetric functions of iid random variables

In this section, we move beyond the pairwise Gaussianity and consider the extreme nonlinear
correlation for symmetric functions of iid random variables. We first consider multiple nested
sums of iid random variables to directly generalize the results for a pair of nested sums
established in Dembo, Kagan and Shepp (2001) and [4]. In Section 4.2, we consider the class
of symmetric functions defined on groups of iid random variables and establish the extreme
nonlinear correlation in the much broader setting.

4.1. Nested sums

In this section, we consider the extreme nonlinear correlation for multiple nested sums of
iid random variables. Specifically, given positive integers m1 < m2 < · · · < m p and iid
non-degenerate random variables Y1, Y2, . . ., we consider

X j = Sm j =

m j∑
i=1

Yi for j = 1, . . . , p. (23)

Here, the non-degeneracy means that the distribution of the random variable is not concentrated
at a single point. In the case of p = 2, Dembo, Kagan and Shepp (2001) proved that the
maximum correlation of S and S is equal to

√
m /m if Y has finite second moment,
m1 m2 1 2

13
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nd Bryc et al. [4] proved the same result even without assuming the finite second order moment
y investigating the characteristic functions of sums of Yi . The following theorem extends their
esults from p = 2 to general finite p. Further extensions to general symmetric functions of
rbitrary groups of Yi are given in the next subsection.

heorem 2. Let Y, Y1, Y2, . . . be iid non-degenerate random variables and X1, X2, . . . , X p be
ested sums of Yi with sample sizes 1 ≤ m1 ≤ · · · ≤ m p as defined in (23). Then,

ρN L
max(X1:p; ν, W ) = λmax(R ◦ W ), ρN L

min(X1:p; ν, W ) = λmin(R ◦ W ), (24)

where R = (R j,k)p×p is the matrix with elements R jk = (m j ∧ mk)/√m j mk , ν is taken as the
ounting measure for the extreme nonlinear correlations defined in (5) and (6), and ◦ denotes
he Schur product. If Y has a finite second moment, then R ∈ Rp×p is the correlation matrix
f the nested sums X j = Sm j , 1 ≤ j ≤ p, so that (8) holds with X1:p for all measures ν and
eights W j,k = Wk, j ≥ 0,

ρN L
max(X1:p; ν, W ) = ρL

max(X1:p; ν, W ), ρN L
min(X1:p; ν, W ) = ρL

min(X1:p; ν, W ).

As discussed below Corollary 3, for m j = j and large p, λmax(R ◦ W )/p with weight
matrix W j,k is approximately the maximum eigenvalue of the operator KW ′ in L2([0, 1]) when
W j,k = W ′

j/p,k/p for a W ′
s,t continuous in (s, t) ∈ [0, 1]2.

Proof. As f j (X j ) = f j (Sm j ), m1 ≤ · · · ≤ m p, are symmetric functions of nested variable
groups {Yi , i ∈ G j } with G j = {1, 2, . . . , m j } and ∩

p
j=1G j = G1 ̸= ∅, it follows from

Theorem 3 in the next subsection that

ρN L
max(X1:p, ν, W ) ≤ λmax(R ◦ W ), ρN L

min(X1:p, ν, W ) ≥ λmin(R ◦ W ).

We note that ν is the counting measure here. It remains to prove that λmax(R◦W ) and
λmin(R◦W ) are attainable by functions f j (X j ). This would be simple under the second moment
condition on Y as we may simply set f j (X j ) = X j to achieve Corr(X1:p) = R. In the case
of E[Y 2] = ∞, we prove that R is in the closure of the correlation matrices generated by
( f j (X j ), j ≤ p). This will be done below by proving

lim
t→0+

ρ
(
sin(t X j − m j ct ), sin(t X j − mkct )

)
= R j,k, 1 ≤ j < k ≤ p, (25)

where ct ∈ (−π/2, π/2) is the solution of

E[sin(tY − ct )] = 0, or equivalently
E[sin(tY )]
E[cos(tY )]

= tan(ct ).

e shall choose the sequence t → 0+ such that for each t , P{sin(t(Y1 − Y2)) = 0} < 1 so
hat P{sin(tY ) = 0} < 1 and P{sin(tY − ct ) = 0} < 1. This is always feasible when Y is
on-degenerate.

As E[sin(tY )] → 0 and E[cos(tY )] → 1, it suffices to consider small t > 0 satisfying
ct | ≤ 1. Let Y ′

= tY − ct . As
⏐⏐ sin(y)(1 − cos(y))

⏐⏐ ≤ sin2(y) + 2| sin(y)|I{|y|>2}, we have⏐⏐⏐E[
sin(Y ′) cos(Y ′)

]⏐⏐⏐ =

⏐⏐⏐E[
sin(Y ′)(1 − cos(Y ′))

]⏐⏐⏐
≤ E

[
sin2(Y ′)

]
+

√
E

[
sin2(Y ′)

]
P{|Y | > 1/t}. (26)
14
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et Y ′

i = tYi − ct and S′
a:m =

∑m
i=a Y ′

i . We shall prove that for a ≤ b ≤ m ≤ n

lim
t→0+

ρ
(
sin(S′

a:m), sin(S′

b:n)
)

=
(m − b + 1)

(m − a + 1)1/2(n − b + 1)1/2 . (27)

his implies (25) with a = b = 1, m = m j and n = mk , but the more general a and b would
rovide the extension to sums of arbitrary subgroups of Yi later in Corollary 8.

Let fa,m = sin(S′
a:m). As sin(y + z) = sin(y) cos(z) + cos(y) sin(z). We write

fa,m =

m∑
u=a

fa,m,u where fa,m,u =

(u−1∏
i=a

cos(Y ′

i )
)

sin(Y ′

u) cos(S′

(u+1):m).

et a ≤ b ≤ m ≤ n. As E[sin(Y ′
a)] = 0, we have E[ fa,m] = 0 and E[ fa,m,u fb,n,v] = 0 for

≤ u < b or for m < v ≤ n. For b ≤ u ∧ v ≤ u ∨ v ≤ m,

fa,m,u fb,n,v

=

(u−1∏
i=a

cos(Y ′

i )
)

sin(Y ′

u) cos(S′

(u+1):m)
(v−1∏

i=b

cos(Y ′

i )
)

sin(Y ′

v) cos(S′

(v+1):n)

= sin(Y ′

u∧v) cos(Y ′

u∧v) sin(Y ′

u∨v)g(Y ′

i , a ≤ i ≤ n, i ̸= u ∧ v)

for a certain function g bounded by 1. Thus, as a consequence of (26)⏐⏐E[
fa,m,u fb,n,v

]⏐⏐ ≤

⏐⏐⏐E[
sin(Y ′) cos(Y ′)

]⏐⏐⏐E[
| sin(Y ′)|

]
≤ E

[
sin2(Y ′)

](√
E

[
sin2(Y ′)

]
+

√
P
{
|Y | > 1/t

})
or b ≤ u ∧ v < u ∨ v ≤ m. Moreover, for b ≤ u ≤ m,

E
[

fa,m,u fb,n,u
]

= E
[
sin2(Y ′

u)
]
E

[(b−1∏
i=a

cos(Y ′

i )
)(u−1∏

i=b

cos2(Y ′

i )
)

cos
(
S′

(u+1):m

)
cos

(
S′

(u+1):n

)]
.

hus, as Y ′

i = tYi − ct → 0 in probability, we find that for all a ≤ b ≤ m ≤ n

lim
t→0+

E
[
sin(S′

a:m) sin(S′

b:n)
]

E
[
sin2(Y ′)

] = lim
t→0+

m∑
u=a

n∑
v=b

E
[

fa,m,u fb,n,v

]
E

[
sin2(Y ′)

] = #
{
b ≤ u = v ≤ m

}
.

his implies (27) and completes the proof. □

.2. Symmetric functions of groups of variables

In this section, we consider a broader setting than nested sums considered in Section 4.1. We
se {Yi }i≥1 to denote an infinite sequence of iid random variables and define random vectors

X j = (Yi , i ∈ G j ) for arbitrary sets of positive integers G j of finite size m j = |G j | < ∞.
gain we are interested in the extreme nonlinear correlation among X1, . . . , X p.
As X j are vectors, we adjust the definition of the extreme nonlinear correlations in (5) and

6) as follows: Given a p × p symmetric matrix W = (W j,k) with W j,k ≥ 0, define

ρN L
max, symm = ρN L

max, symm(X1, . . . , X p, W ) = sup λmax
(
KW, f1:p

)
, (28)
f1:p∈F1:p

15
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here F1:p = {( f1, . . . , f p) : 0 < Var( f j (X j )) < ∞, f j (y1, . . . , ym j ) symmetric ∀1 ≤ j ≤ p}

nd KW, f1:p =
(
Corr

(
f j (X j ), fk(Xk)

)
W j,k

)
p×p. Correspondingly, define

ρN L
min, symm = ρN L

min, symm(X1, . . . , X p, W ) = inf
f1:p∈F1:p

λmin
(
KW, f1:p

)
. (29)

We omit ν in the notation as it is taken as the counting measure in {1, . . . , p} without loss
of generality as discussed below (7). Here, the symmetry of f j means permutation invariance,
f j (y1, . . . , ym j ) = f j (yi1 , . . . , yim j

) for all permutations i1, . . . , im j of 1, . . . , m j . To avoid
confusion, we call the above quantities extreme symmetric nonlinear correlations. We extend
Theorem 2 to groups satisfying the following assumption.

Assumption C. There exist certain sets G0, j of positive integers such that

|G0, j ∩ G0,k | =
(
|G j ∩ Gk | − 1

)
+

∀1 ≤ j < k ≤ p, |G0, j | ≤ |G j | − 1 ∀1 ≤ j ≤ p.

ssumption C holds when ∩
p
j=1G j ̸= ∅, as we can simply set G0, j = G j \ {i0} for a fixed

0 ∈ ∩
p
j=1G j . Hence, for the special case that G j are nested with ∅ ̸= G1 ⊂ G2 ⊂ · · · ⊂ G p,

ssumption C holds automatically. However, G0, j do not need to have anything to do with G j

eyond the specified conditions on their size and the size of their intersections.

heorem 3. Let Y, Y1, Y2, . . . be iid non-degenerate random variables and X j = (Yi , i ∈ G j )
or arbitrary groups of positive integers G1, . . . , G p of finite size m j = |G j | < ∞. Let

N L
max, symm and ρN L

min, symm be the extreme symmetric nonlinear correlations among X1, . . . , X p

s defined in (28) and (29) with weight matrix W . Let R(ℓ)
∈ Rp×p be the matrix with elements

R(ℓ)
j,k =

(
|G j ∩ Gk |

ℓ

)(
|G j |

ℓ

)−1/2(
|Gk |

ℓ

)−1/2

(30)

for 1 ≤ ℓ ≤ ℓ∗, with the convention 0/0 = 0, where ℓ∗
= max1≤ j≤p |G j |. Then,

ρN L
max,symm = λmax(R◦W ), ρN L

min, symm = min
1≤ℓ≤ℓ∗

λmin
((

R(ℓ)
◦ W

)
J (ℓ),J (ℓ)

)
, (31)

with R = R(1), J (ℓ)
= {1 ≤ j ≤ p : |G j | ≥ ℓ} and ◦ being the Schur product. If in addition

Assumption C holds, then

ρN L
min, symm = λmin

(
R◦W

)
. (32)

The first part of (31) asserts that the maximum symmetric nonlinear correlation is identical to
its linear version, while the second part gives a formula for the minimum symmetric nonlinear
correlation. Under Assumption C, (32) asserts the equality between the minimum symmetric
nonlinear correlation and its linear version. The connection between Theorems 2 and 3 can
be built under the observation that f j (

∑m j
i=1 Yi ) is a symmetric function of X j = {Yi }i∈G j

when G j = {1, 2, . . . , m j }, and the corresponding index sets G j satisfy Assumption C due to
the nested structure of {G j }1≤ j≤p. For the case p = 2, Theorem 3 serves as an extension of
Dembo, Kagan and Shepp (2001) from functions f j (

∑m j
i=1 Yi ) of the two sums to any symmetric

functions of iid random variables and of Yu [21] from two f j (
∑

i∈G j
Yi ) with arbitrary G j .

An interesting aspect of Theorem 3 is that under Assumption C the extreme symmetric
nonlinear correlation is attained by sums of the form

f j (X j ) =

∑
h0(Yi ) for 1 ≤ j ≤ p, (33)
i∈G j

16
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or any function h0 with 0 < Var(h0(Y )) < ∞, e.g. h0(Yi ) = Yi when Yi has finite variance.
hat is to say, among symmetric functions, the most extreme multivariate correlations are
chieved by the linear summation of iid random variables. The following corollary, based on
heorem 3 and (27) in the proof of Theorem 2, asserts that the extreme symmetric nonlinear
orrelations for groups of Yi are achieved by functions of the corresponding sums of Yi without
ssuming the finite second moment condition.

orollary 8. Let X j = (Yi , i ∈ G j ) and SG j =
∑

i∈G j
Yi with iid non-degenerate Yi . Then,

ρN L
max, symm(X1, . . . , X p, W ) = ρN L

max

(
(SG1 , . . . , SG p ), ν, W

)
= λmax

(
R◦W

)
,

ρN L
min, symm(X1, . . . , X p, W ) = ρN L

min

(
(SG1 , . . . , SG p ), ν, W

)
= λmin

(
R◦W

)
,

nder Assumption C, where ν is taken as the counting measure in the extreme nonlinear
orrelations in (5) and (6). Consequently, (8) holds for X j = SG j when E[Y 2] < ∞.

The proof of Theorem 3 relies on the Hoeffding [11,12] decomposition of symmetric
unctions of random variables, stated as Lemma 3; See Lemma 1 in [12], the decomposition
emma in [7], and Lemma 1 in [6].

emma 3. Let Y = (Y1, . . . , Ym) with iid components Yi and f0(Y ) = f0(Y1, . . . , Ym)
ith a symmetric function f0(y1, . . . , ym). Suppose E[ f0(Y )] = 0 and E[ f 2

0 (Y )] < ∞. Define
f0,1(y1) = E[ f0(Y )|Y1 = y1] and for k = 2, . . . , m define

f0,k(y1:k) = E

⎡⎣ f0(Y ) −

k−1∑
j=1

∑
1≤i1<···<i j ≤m

f0, j (Yi1 , . . . , Yi j )
⏐⏐⏐⏐Y1:k = y1:k

⎤⎦ .

hen, the following expansion holds,

f0(Y ) =

m∑
ℓ=1

∑
1≤i1<···<iℓ≤m

f0,ℓ(Yi1 , . . . , Yiℓ ), (34)

nd that for all s = 1, . . . , ℓ and ℓ = 1, . . . , m

E
[

f0,ℓ(Yi1 , . . . , Yiℓ )
⏐⏐⏐{Yi1 , . . . , Yiℓ}\Yis

]
= 0. (35)

onsequently,

E
[

f 2
0 (Y )

]
=

m∑
ℓ=1

(
m
ℓ

)
E

[
f 2
0,ℓ(Y1:ℓ)

]
. (36)

roof of Theorem 3. Assume without generality E[ f j (X j )] = 0,E[ f 2
j (X j )] = 1 for all j as

N L
max,symm and ρN L

min, symm are defined through the correlations between f j (X j ) and fk(Xk). Let
G(ℓ)

= {(i1, . . . , iℓ) : i1 < · · · < iℓ, is ∈ G for 1 ≤ s ≤ ℓ} for all subsets G of positive integers.
ince f j (X j ) are symmetric functions of {Yi }i∈G j , (34) gives

f j (X j ) =

m j∑
ℓ=1

∑
(i1,...,iℓ)∈G(ℓ)

j

f j,ℓ(Yi1 , . . . , Yiℓ ). (37)

e first apply (35) and obtain the following expression for the cross-product,

E
[

f (Y , . . . , Y ) f ′ (Y ′ , . . . , Y ′ )
]

= 0
j,ℓ i1 iℓ k,ℓ i1 i
ℓ′

17
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hen {i1, . . . , iℓ} ̸= {i ′

1, . . . , i ′

ℓ′}. It follows that

E f j (X j ) fk(Xk) = E
|G j ∩Gk |∑

ℓ=1

∑
(i1,...,iℓ)∈(G j ∩Gk )(ℓ)

f j,ℓ(Yi1 , . . . , Yiℓ ) fk,ℓ(Yi1 , . . . , Yiℓ )

=

ℓ∗∑
ℓ=1

(
|G j ∩ Gk |

ℓ

)
E

[
f j,ℓ(Y1:ℓ) fk,ℓ(Y1:ℓ)

]
(38)

ith the convention
(m

ℓ

)
= 0 for ℓ > m. Let R(ℓ)

∈ Rp×p be the matrix defined in (30). Let
g j,ℓ = g j,ℓ(Y1:ℓ) =

(m j
ℓ

)1/2 f j,ℓ(Y1:ℓ). For u = (u1, . . . , u p)⊺ with ∥u∥2 = 1, (38) provides

u⊺KW, f1:p u = E

⎛⎝ p∑
j=1

p∑
k=1

W j,ku j uk f j (X j ) fk(Xk)

⎞⎠
=

p∑
j=1

p∑
k=1

W j,ku j uk

ℓ∗∑
ℓ=1

(
|G j ∩ Gk |

ℓ

)
E

[
f j,ℓ(Y1:ℓ) fk,ℓ(Y1:ℓ)

]
=

ℓ∗∑
ℓ=1

E

⎡⎣ ∑
j∈J (ℓ)

∑
k∈J (ℓ)

R(ℓ)
j,k W j,ku j uk g j,ℓ(Y1:ℓ)gk,ℓ(Y1:ℓ)

⎤⎦
≤ max

1≤ℓ≤ℓ∗
λmax

((
R(ℓ)

◦ W
)

J (ℓ),J (ℓ)

) ℓ∗∑
ℓ=1

E

⎡⎣ ∑
j∈J (ℓ)

u2
j g

2
j,ℓ(Y1:ℓ)

⎤⎦
= max

1≤ℓ≤ℓ∗
λmax

((
R(ℓ)

◦ W
)

J (ℓ),J (ℓ)

) p∑
j=1

E
[
u2

j f 2
j (X j )

]
= max

1≤ℓ≤ℓ∗
λmax

((
R(ℓ)

◦ W
)

J (ℓ),J (ℓ)

)
,

here the second to the last equality follows from (36) and the fact that g j,ℓ = 0 for
> m j = |G j |. Similarly, for all u = (u1, . . . , u p)⊺ with ∥u∥2 = 1,

u⊺KW, f1:p u ≥ min
1≤ℓ≤ℓ∗

λmin

((
R(ℓ)

◦ W
)

J (ℓ),J (ℓ)

)
.

hus, by (28) and (29),

ρN L
max,symm ≤ max

1≤ℓ≤ℓ∗
λmax

((
R(ℓ)

◦ W
)

J (ℓ),J (ℓ)

)
,

ρN L
min,symm ≥ min

1≤ℓ≤ℓ∗
λmin

((
R(ℓ)

◦ W
)

J (ℓ),J (ℓ)

)
. (39)

o prove (39) holds with equality, we pick a specific f1:p for each ℓ as follows. Let h0 be a
unction satisfying E[h0(Y )] = 0 and E[h2

0(Y )] = 1. For j ∈ J (ℓ) define

h(ℓ)
0, j (X j ) =

(
|G j |

ℓ

)−1/2 ∑
|S|=ℓ,S⊆G j

∏
i∈S

h0(Yi ) (40)

s symmetric functions of X j . For { j, k} ⊂ J (ℓ) we have

E
[
h(ℓ)

0, j (X j )h
(ℓ)
0,k(Xk)

]
=

(
|G j ∩ Gk |

)(
|G j |

)−1/2(
|Gk |

)−1/2

I{ℓ≤|G j ∩Gk |} = R(ℓ)
j,k .
ℓ ℓ ℓ

18
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hus, when f j (X j ) = h(ℓ)
0, j (X j ) for j ∈ J (ℓ), we have (KW, f1:p )J (ℓ),J (ℓ) =

(
R(ℓ)

◦ W
)

J (ℓ),J (ℓ) .
As this holds for every ℓ ≤ ℓ∗, (39) holds with equality by (28) and (29). We note that

[ f j (X j ) fk(Xk)] ̸= 0 = R(ℓ)
j,k typically holds for j ̸∈ J (ℓ) or k ̸∈ J (ℓ) as E[ f 2

j (X j )] = 1.
It remains to prove that the extreme eigenvalues in (39) are achieved with ℓ = 1. For the

aximum eigenvalue, we notice that by (30),

R(ℓ)
j,k =

(
|G j ∩ Gk |

ℓ

)(
|G j |

ℓ

)−1/2(
|Gk |

ℓ

)−1/2

I{|G j ∩Gk |≥ℓ}

=
|G j ∩ Gk |(|G j ∩ Gk | − 1) · · · (|G j ∩ Gk | − l + 1)I{|G j ∩Gk |≥ℓ}√

|G j |(|G j | − 1) · · · (|G j | − l + 1)
√

|Gk |(|Gk | − 1) · · · (|Gk | − l + 1)

≤
|G j ∩ Gk |√
|G j | · |Gk |

,

so that 0 ≤ R(ℓ)
j,k W j,k ≤ R(1)

j,k W j,k for all { j, k} ⊆ J (ℓ). Thus,

λmax

((
R(ℓ)

◦ W
)

J (ℓ),J (ℓ)

)
≤ λmax

((
R(1)

◦ W
)

J (ℓ),J (ℓ)

)
≤ λmax

(
R(1)

◦ W
)
. (41)

due to the element-wise positiveness of
(
R(ℓ)

◦ W
)

J (ℓ),J (ℓ) . As (39) holds with equality, this
completes the proof of (31).

The remaining of the proof is to characterize min1≤ℓ≤ℓ∗ λmin
((

R(ℓ)
◦ W

)
J (ℓ),J (ℓ)

)
under

Assumption C. As the result can be of independent interest, we state it in the following lemma
and supply a proof immediately after the lemma.

Lemma 4. Under Assumption C, we have

min
1≤ℓ≤ℓ∗

λmin
((

R(ℓ)
◦ W

)
J (ℓ),J (ℓ)

)
= λmin

(
R ◦ W

)
where R(ℓ) are defined in (30), R(1)

= R and ℓ∗
= max1≤ j≤p |G j |.

Proof of Lemma 4. Under Assumption C, we set

g(ℓ−1)
0, j (X j ) =

(
|G j | − 1

ℓ − 1

)−1/2 ∑
|S|=ℓ−1,S⊆G0, j

∏
i∈S

h0(Yi ), j ∈ J (ℓ), 2 ≤ ℓ ≤ ℓ∗,

with the h0 in (40). Similar to the proof of the first part of (39) with equality, we have

E
[
g(ℓ−1)

0, j (X j )g
(ℓ−1)
0,k (Xk)

]
=

(
|G0, j ∩ G0,k |

ℓ − 1

)(
|G j | − 1

ℓ − 1

)−1/2(
|Gk | − 1
ℓ − 1

)−1/2

I{|G0, j ∩G0,k |≥ℓ−1}

=

(
(|G j ∩ Gk | − 1)+

ℓ − 1

)(
|G j | − 1

ℓ − 1

)−1/2(
|Gk | − 1
ℓ − 1

)−1/2

I{|G j ∩Gk |≥ℓ}.

or j = k, Var
(
g(ℓ−1)

0, j (X j )
)

≤ 1 as |G0, j | ≤ |G j | − 1. It follows that, for |G j ∩ Gk | ≥ 1,

R j,kE
[
g(ℓ−1)

0, j (X j )g
(ℓ−1)
0,k (Xk)

]{= R(ℓ)
j,k, j ̸= k in J (ℓ),

(ℓ) (ℓ)

≤ R j,k, j = k ∈ J .
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or the case |G j ∩ Gk | = 0, the above relationship trivially holds with both sides equal to zero.
t follows that when λmin(R ◦ W ) ≤ 0,

λmin
((

R(ℓ)
◦ W

)
J (ℓ),J (ℓ)

)
= min

∥uJ (ℓ) ∥2=1

∑
j∈J (ℓ)

∑
k∈J (ℓ)

u j uk R(ℓ)
j,k W j,k

≥ min
∥u∥2=1

∑
j∈J (ℓ)

∑
k∈J (ℓ)

u j uk R j,k W j,kE
[
g(ℓ−1)

0, j (X j )g
(ℓ−1)
0,k (Xk)

]
≥ min

∥u∥2=1
λmin(R ◦ W )E

[ ∑
j∈J (ℓ)

(
u j g

(ℓ−1)
0, j (X j )

)2
]

≥ λmin(R ◦ W ),

here the last inequality holds due to the fact that

E
[
(g(ℓ−1)

0, j (X j ))2
]

=

(
|G0, j |

ℓ − 1

)(
|G j | − 1

ℓ − 1

)−1

I{|G0, j |≥ℓ−1} ≤ 1.

n the general case, we notice that λmin(R ◦ (W − cIp×p)) ≤ 0 and W j,k − cI{ j=k} ≥ 0 for all
≤ j, k ≤ p and c = min1≤ j≤p W j, j , so that

min
f1:p∈F1:p

λmin
(
KW, f1:p

)
− c = min

f1:p∈F1:p
λmin

(
K1, f1:p ◦ (W − cIp×p)

)
= λmin

(
R ◦ (W − cIp×p)

)
= λmin

(
R ◦ W

)
− c

s the diagonal of K1, f1:p and R are both Ip×p. □
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ppendix

We prove Lemmas 1 and 2 in this Appendix.

Proof of Lemma 1. Let gt (x) = h(t) ft (x)
/{

E
[

f 2
t (X t )

]}1/2 with h satisfying ∥h∥
2
L2(ν) = 1.

As
∫
T E[g2

t (X t )]ν(dt) = ∥h∥
2
L2(ν)= 1, fT ∈ FT implies gT ∈ FT , so that by (5)

ρN L
max = sup

fT ∈FT

sup
∥h∥L2(ν)=1

∫
s∈T

∫
t∈T

ρ ( fs(Xs), ft (X t )) Ws,t h(s)h(t)ν(ds)ν(dt)

≤ sup

∫
s∈T

∫
t∈T E

[
gs(Xs), gt (X t )

]
Ws,tν(ds)ν(dt)∫ [

2
] .
gT ∈FT E gt (X t ) ν(dt)
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n the other hand, letting h(t) =
{
E

[
f 2
t (X t )

]/ ∫
t∈T E

[
f 2
t (X t )

]
ν(dt)

}1/2, we have

ρN L
max ≥

∫
s∈T

∫
t∈T

ρ ( fs(Xs), ft (X t )) Ws,t h(s)h(t)ν(ds)ν(dt)

=

∫
s∈T

∫
t∈T E

[
fs(Xs), ft (X t )

]
Ws,tν(ds)ν(dt)∫

t∈T E
[

f 2
t (X t )

]
ν(dt)

.

or all fT ∈ FT . Thus, (5) and (14) are equivalent. We omit the proof of the equivalence
etween (6) and (15) as it can be established by the same argument. □

roof of Lemma 2. Let h be a function on T with ∥h∥L2(ν) = 1 and Bn ⊂ T be as
n Assumption A. Let {X (i)

t , t ∈ T }1≤i≤m−1 be iid copies of XT . Because
⏐⏐E[

Xs X t
]⏐⏐ ≤[

|X (i)
s X (i)

t |
]

≤ 1 and |KW (s, t)| ≤ Ws,t , by Cauchy–Schwarz

E
∫

Bn

∫
Bn

(m−1∏
i=1

⏐⏐X (i)
s X (i)

t

⏐⏐)⏐⏐⏐KW (s, t)h(s)h(t)
⏐⏐⏐ν(ds)ν(dt)

≤

(∫
Bn

∫
Bn

W 2
s,tν(ds)ν(dt)

)1/2

< ∞.

hus the exchange of expectation and integration is allowed in the following derivation:∫
Bn

∫
Bn

(
E[Xs X t ]

)m−1 KW (s, t)h(s)h(t)ν(ds)ν(dt)

= E
∫

Bn

∫
Bn

(m−1∏
i=1

(
X (i)

s X (i)
t

))
KW (s, t)h(s)h(t)ν(ds)ν(dt)

= E
∫

Bn

∫
Bn

KW (s, t)
{

h(s)
m−1∏
i=1

X (i)
s

}{
h(t)

m−1∏
i=1

X (i)
t

}
ν(ds)ν(dt)

≤ ρL
max

∫
E

[(
I {t ∈ Bn}h(t)

m−1∏
i=1

X (i)
t

)2]
ν(dt)

= ρL
max

∫
Bn

h2(t)ν(dt).

oreover, as the exchange of expectation and integration is allowed,∫
Bn

∫
Bn

(
E[Xs X t ]

)m−1 KW (s, t)h(s)h(t)ν(ds)ν(dt)

= E
∫

Bn

∫
Bn

KW (s, t)
{

h(s)
m−1∏
i=1

X (i)
s

}{
h(t)

m−1∏
i=1

X (i)
t

}
ν(ds)ν(dt)

≥ ρL
min

∫
E

[(
I {t ∈ Bn}h(t)

m−1∏
i=1

X (i)
t

)2]
ν(dt)

= ρL
min

∫
Bn

h2(t)ν(dt).

s the operator KW is bounded by Assumption A, ρL
max and ρL

min are both finite, so that the
nequalities still hold as Bn → T . □
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