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Abstract

The maximum correlation of functions of a pair of random variables is an important measure of
stochastic dependence. It is known that this maximum nonlinear correlation is identical to the absolute
value of the Pearson correlation for a pair of Gaussian random variables or a pair of finite sums of
iid random variables. This paper extends these results to pairwise Gaussian vectors and processes,
nested sums of iid random variables, and permutation symmetric functions of sub-groups of iid random
variables. It also discusses applications to additive regression models.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The maximum correlation of functions of a pair of random variables is an important
measure of stochastic dependence. Formally, given random variables X; and X;, the maximum
correlation is defined as

R(X1, X2) = sup|Cov( /i(X0), f2(X2)) : Var(fi(X0)) = Var(f2(X2) = 1}, (M
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where fi and f, are real functions. If X; and X, are bivariate normal, it was established in
[14] that

R(X1, X3) = [p(X1, X3)| @

where p(X;, X;) denotes the Pearson correlation between X; and X,. Dembo, Kagan and
Shepp (2001) showed that the equality (2) holds with R(X1, X») = /m/n, 1 <m <n, if X,
and X, are respectively nested sums of m and »n independent and identically distributed (iid)
random variables with finite second moment. Following their work, Bryc et al. [4] removed the
second moment condition for the nested sums, and Yu [21] extended the result to two sums of
arbitrary finite subsets of iid random variables.

The current paper extends the above results to more than two random variables and Gaussian
processes. Let Ay and A, denote the smallest and largest eigenvalues of matrices or linear
operators, and Corrx(Xy,..., X,) the p x p off-diagonal correlation matrix of p random
variables with elements o(X;, X;)I{j.. Since the maximum correlation of a pair of random
variables can be expressed as R(X, X;) = SUp;, 4 Amax (Corr¢(f1 (X1), fz(Xz))), a natural
extension of the maximum nonlinear correlation to the multivariate setting is the extreme
eigenvalue of the off-diagonal correlation matrix of marginal function transformations of
Xi,.... Xp,

,omax(Xl, LX) = fsupf Amax (COIT?(; (fl(Xl), cees f,,(X,,))) , 3)
L fp

where the supreme is taken over all deterministic f; with 0 < Var( f jz(X j )) < 00, and similarly

P X1 Xp) = 0t i (Cort (fi(XD. - fy(X,))) - @)
For p =2, pNL = —pNL € [0, 1]. However, for p > 3, pNL € [—1, 0] is no longer determined
by pNEL € [0, p — 1], so that both quantities are needed to capture the extreme eigenvalues
of the off-diagonal nonlinear correlation matrix. Moreover, (3) and (4) lead to the following
further extension to stochastic processes: For any process X7 = {X;,t € 7} on an index set
T equipped with a measure v and W;, > 0 as a weight function on 7 x T,

P = P (X7, v, W) ®)
= sup  sup f . f Tp(fsm), Fi(X1)) Wy h(s)h(t)v(ds)v(dt),

JreFT IhlLy,m=1

where [l/2]l 1,0y = { [ K2()v(dn)}'"? and Fr is the class of all deterministic f = {f;, € T}
satisfying proper measurability and integrability conditions. Correspondingly,

pnl\{lﬁ = pmm(XT’ VY, W) (6)
— inf  inf / / P (fs(X). fi(X0) Wi ch($)h(t)v(ds)v(dr).
SreFrlhl,m=t JieT JseT

Clearly, (3) and (4) are respectively special cases of (5) and (6) with T = {1, ..., p}, W,, =
I{5-2) and the counting measure v(A) = |A|. We refer to (5) and (6) as the maximum, minimum
or extreme nonlinear correlations of the process Xr. Let Ky, ¢ (s, 1) = ,0( (X)), fi(X ,)) Wi
as a kernel and Ky ¢ : h — f Kw, r+ (-, s)h(s)v(ds) as a linear operator in L(v). The extreme
nonlinear correlations in (5) and (6) are expressed as the extreme eigenvalues of the operator
KvaT . Lz(\}) — Lz(l)) via

PNE = sup Amax(Kw. ), pNE = inf Amin(Kw,fp). @
freFr JTeFT
2
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Because the weight function W is almost completely general, it can be used to absorb the
Radon-Nikodym derivative between two choices of the measure v as follows. The pair {v', W’)
would yield the same extreme nonlinear correlations as {v, W) when the measures v and V' are
absolutely continuous with respect to each other and W, = s/ V(ds) V' (ds)/v(dt)/V'(dr).
For 7 = {1, ..., p}, we may take v as the counting measure without loss of generality, so that
the quantities in (7) are given by the extreme eigenvalues of the matrix (Kw, z-(j, k) pxp-

The main assertion of this paper is that in a number of settings, the above weighted extreme
nonlinear correlations are identical to their linear counterpart:

NL
Prmax = pmax and pmll‘l = pmm’ (8)

where pk  and pL. are defined by restricting the functions f; in (5) and (6) to be the identity
f(x) = x; e.g. in the more general stochastic process setting,

pL = pk Xy v, W)= sup / / p (Xs, X0) Wy h(hOVds)v(dD), ()
1Rl Lywy=1J1eT JseT

and
Poiin = Pin(X 7,0, W) = / / p (Xy, X)) Wy h(s)h(t)v(ds)v(dr).  (10)
||hHL2<v> VieT JseT

We note that for Wy, = 1, pNE < v(T) and pNE > 0, so that (8) is trivial when pL = v(T)
and /omin = 0. In fact, the first identify of (8) is nontrivial when pnﬁax < v(7) and the second
identify of (8) is nontrivial when prﬁin > 0. However, for general W;,, there is no explicit
formula for such attainable extreme solutions when the maximum and minimum are also taken
over all correlation operators p(Xy, X;). Similar to (7), we define

Prax = max(Kw).  Plsin = Amin(Kw). (11)

where Ky : h — fKW(-,s)h(s)v(ds) is the linear operator in L,(v) with the kernel
Kw(s, t) = IE[XSX,]WS,,. As discussed below (7), for 7 = {1, ..., p} we may take v as the
counting measure without loss of generality, so that (11) is given by the extreme eigenvalues
of the matrix (Kw(j, k))pxp-

We will begin by proving (8) for Gaussian processes X on an arbitrary index set 7. Our
analysis bears some resemblance to that of Lancaster [14] through the use of the Hermite
polynomial expansion, but the general functional nature of our problem requires additional
elements involving the spectrum boundary of the Schur product of linear operators. In fact,
we prove that only a pairwise bivariate Gaussian condition is required for (8) under proper
measurability and integrability conditions.

1.1. Hidden pairwise Gaussian and additive models

We generalize the results in (8) from pairwise Gaussian vectors to more general random
vectors and then present two implications to the analysis of additive models. We shall say that
arandom vector X1, = (X1, ..., X ) is hidden Gaussian if X ; = T;(Z ;) for a Gaussian vector
Zi.p, = (Zy,...,Z,) and some deterministic transformations 7,1 < j < p; X., is hidden
pairwise Gaussian if the Gaussian requirement on Z;., is reduced to pairwise Gaussian. The
identities in (8) for the pairwise Gaussian process are equivalent to

PE(Z1pov, W) < pNE(X 1 v, W), pNE(X 1, v, W) < pE (Z1), v, W),
3



Z. Guo and C.-H. Zhang Stochastic Processes and their Applications xxx (xxxx) xxx

for all measures v and weights W ;. That is to say, if the correlation structure of Xi.,
is generated from a pairwise Gaussian distribution through marginal transformations, then
their extreme nonlinear correlations are controlled within the extreme linear correlations
of the underlying pairwise Gaussian distribution. When Z;., is jointly Gaussian and the
transformations 7; are monotone, this is the Gaussian copula model widely used in financial
risk assessment and other areas of applications.

Our interest in the extreme nonlinear correlations arises from our study of the additive
regression model where the response variable Y can be written as

P
Y = Z fi(X) +e
J=1
As an important nonlinear relaxation of the linear regression, this model effectively mitigates
the curse of dimensionality in the more complex multiple nonparametric regression [3,5,10,20].

Let || £ LO®) denote the semi-norm given by || f ||i(0)(ﬂ») = Var(f(X1.)). Our result on the mini-
2 2

mum eigenvalue of the nonlinear correlation matrix has two interesting implications in the anal-
ysis of additive models as follows. Firstly, the characterization of ,on]:']ﬁ in the current paper can
be used to verify the theoretical restricted eigenvalue and compatibility conditions required for
the analysis of additive models. In particular, the theoretical restricted eigenvalue and compati-
bility conditions on the design are critical for establishing upper bounds on the prediction error

I Z;’:l f; — f:1 fi ||i(0)(P) of regularized estimators f in the additive model [13,16-19]. Sec-
2

ondly, when the minimum nonlinear correlation of X ., is bounded away from zero, the squared
loss for the estimation of individual f; can be derived from the prediction error bound via

» p p
- 1 -~
2
E 15 = Fil o e = —3z fo_sz
j=1 2 Pmin 1521 j=1
NL

min
where p,.- is defined in (6) with the counting measure v(A) = |A| and uniform weight
Wy, = 1. See Section 3 for more detailed discussions.

2

()
P ®)

1.2. Symmetric functions

In addition to the extension of Lancaster [14] to pairwise Gaussian processes and vectors,
the current paper directly extends the results of Dembo, Kagan and Shepp (2001), Bryc et al.
[4] and Yu [21] by establishing (8) for nested sums (X LX2, oo, X p) of iid random variables
Y;, with X; = 271:11 Y; for some positive integers m; < --- < m,. Moreover, as a natural
generalization of the nested sums, we consider groups of the iid variables as random vectors
X; = (Y;,i € G;) where G, are sets of positive integers. We extend the first part of (8) by
proving that for the counting measure v and any weights W;; > 0

max P (LX), (X)) v, W) = pk ((S,.---. S6,).v. W) (12)

symmetric f1,..., fp

where SGj = ZieGj ho(Y;) for any deterministic function A satisfying 0 < Var(ho(Y;)) < oo
and the maximum is taken over all deterministic functions f; symmetric in the permutation of
its arguments. In the sequel, such f; are simply called symmetric functions. We also establish
the corresponding identity for the minimum correlation,

min ol (A D, fo(X ) v, W) = pE((Seys -5 S6,) v, W), (13)

symmetric f1,..., fp
under a mild condition which holds when ﬂleG i # 0.

4



Z. Guo and C.-H. Zhang Stochastic Processes and their Applications xxx (xxxx) xxx

1.3. Paper organization

The rest of the paper is organized as follows. In Section 2, we study the extreme eigenvalues
of nonlinear correlation matrix for pairwise Gaussian random vectors and processes; In
Section 3, we discuss the implications of our results in Section 2 on additive models; In
Section 4, we study the extreme eigenvalues of nonlinear correlation matrix of nested sums
and also the more general symmetric functions of iid random variables.

2. Pairwise Gaussian processes

To start with, we shall explicitly specify the measurability and integrability conditions for
the definition of the extreme linear and nonlinear correlations in (9), (10), (5) and (6).

Assumption A. (i) There exists B, C B,41 C T such that U2, B, = T, v(B,) < oo and
an an W2, v(ds)v(dt) < oo for any positive integer n > 1.

(i) The process X7 is standardized to E[X;] = 0 and IE[XZZ] = 1, the correlation operator
]E[XSX,] is measurable as a function of (s, ¢) in the product space 7 x 7, and the weight
function W, is element-wise nonnegative and symmetric, W, , = W; ; > 0.

(iii) The operator Ky in (11) is bounded.

We note that there is no loss of generality to assume that X7 is standardized as (9) and (10)
involve only the correlation between X; and X,. Under Assumption A (iii), the operator Ky
yields finite extreme linear correlations in (9) and (10).

Assumption B. In (5) and (6), F7 is the class of all function families fr = {f,,t € T}
with E[f;(X)] = 0, E[f*(X)] > 0 and [ E[f*(X)]v(dr) < oo such that E[X}" f;(X,)] are
measurable functions of 7 on 7 for all integers m > 1, and in (7) the kernel Ky, (s, 8) =
Corr(fy(Xs), f:(X;))W;, is a measurable function of (s, ) on 7 x 7.

In the discrete case where 7 = {1, ..., p}, Assumption A always holds when E[X,] = 0
and ]ET[X%] =1 and Assumption B always holds when F7 is the set of all fr = {fi,..., f,}
satisfying E[f;(X;)] =0 and 0 < E[f}(X;)] < o0, j=1,..., p.

We first establish some equivalent expressions to (5) and (6) in the following lemma.
Lemma 1. Let pNL
Assumption B. Then,

and pﬁlﬁ be as in (5) and (6) with the function class Fr specified in

R p— Jrer Jier ELS(X). f(xz)]ws,,v(ds)v(dt), 14
freFr Srer E[f(X0)]vidn)
and
T Sier B[£(X0), 2f,(xf)]ws,,v(ds)v(dr) as)
ITeFT Jier E[f7 (X)) ]v(d1)

A proof of Lemma 1 can be found in the Appendix. The more explicit expressions
established in the lemma will facilitate the Hermite polynomial expansion of the covariance in
our analysis. Another ingredient of our analysis, stated in the following lemma, concerns the
extreme eigenvalues of the Schur product.
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Lemma 2. Let Péax and pém be as in (9) and (10) respectively and Kw(s, t) = E[ X X,1W; ;.
Under Assumption A,

pL < f / (BLXX1)"™" Ky (5. Oh()h(0)v(ds)v(dt) < ply. (16)
teT JseT

for any integer m > 1 and function h(t) with fhz(t)v(dt) =1.

The above lemma establishes that the spectrum of the operator given by the Schur power
kernel (IE[XSXt]) KW(s 1) = (]E[X X ]) 5.t 1s controlled inside that of Ky (s, t), so that
the Schur multiplication of a correlation matrix is a contraction. The proof of the lemma, given
in the Appendix, utilizes an interesting construction of the Schur power kernel with iid copies
of X7. Such a proof technique is simple but quite useful.

We are now ready to state the equivalence between the extreme nonlinear correlation and
the extreme linear correlation for pairwise Gaussian processes.

Theorem 1. Let X7 = {X,};c7 be a pairwise Gaussian process in the sense that (X, X;)
are bivariate Gaussian vectors for all pairs (s,t) € T x T. Under Assumptions A and B,

NL __ _
P = Py and pit = pli,

where pNE and ,omin are defined in (5) and (6) respectively, and pk. and pr’;ﬁn are defined in
(9) and (10) respectively.
Proof. As the normalized Hermite polynomials

Hy(x) = )™ 2(=1)"e"2(d fdx)" e /2

form a orthonormal system with E[H,(Z)] = 0 and E[Hrf,(Z)] =1 for Z ~ N(,1),
by Assumptions A and B we may write f,(X,) = ijf:, a,(t)H,(X,) in the sense of L,
convergence. Let Ky(s,t) = ( [XS,X,])milKW(s,t) = (IE[Xv X,])mWX,,. As (Xg, X;) is
bivariate normal Wlth Var(X) = Var(X;) = 1, E[H,,(X,)H, (X)W, = Ky(s, t) as in [14].
It follows that E[ £,(X,) fi(X)|Ws, = Yooy Kin(s, Dam(s)am(t). As |Kiy(s, 1) < Ki,(s, 1),
Lemma 2 provides

/ / E[fi(X,), fi(X)]Wsv(ds)v(di)
seT JteT

:/ / {ZK"M“,(S,t)am(s)am(t)}v(ds)v(dt)
seT JreT =

/ / K (5. Nan(s)ay(t)v(ds)v(d1)
seT teT

IA

/ / 2 (5. 1) (st (1) (s 0(d1)
seT JieT

m=

pmaXZ/a,n([)V(dt)

= plflax/ TE[ff(x,)]u(dt).

IA
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Moreover, as the exchange of summation and integration is allowed as the above,

/ / E[ f(X,), fi(X)] W, v(ds)v(dt)

seT JteT

= Z/ / { K3 (s, D)am($)am (1) o(ds)v(dr)
m=1 seT JteT

Phin f a (tyv(dt)
m=1

Pin / TE[ff(X,)]v(dr).

The proof is complete as inequalities in the other direction are trivial. [

Theorem 1 establishes the equality of the extreme eigenvalues of the nonlinear and linear
correlation operators. However, as we have mentioned in the introduction, such results could be
trivial when pL, . and pL. attain the extreme eigenvalues among all correlation operators. In the
following three subsections, we discuss the discrete case 7 = {1, ..., p}, the continuous case
T = 1[0, 1], and stationary processes as three nontrivial examples and state the implications of
Theorem 1 as corollaries.

2.1. Hidden pairwise Gaussian vectors

The following part demonstrates the application of Theorem 1 to a finite number of pairwise
Gaussian random variables, that is, 7 = {1, 2, ..., p}. As discussed below (7) and (11), we
take v as the counting measure without loss of generality throughout the subsection.

Corollary 1. Let X, Xo, ..., X, be pairwise Gaussian random variables with X; ~ N(0, 1)
and a correlation matrix X = (X )pxp. Let W = (W, )pxp be a matrix with elements
Wir=Wr;j=0and X oW = (Xt W;)pxp be the Schur product. Then, for all functions f;
satisfying Ef;(X;) =0 and 0 < IEfz(Xj) < 00,

E [Z;J:l Py Wj,kfj(Xj)fj(Xk)]

Amin (X o W) < ;;:1 EfJZ(X]) < Amax (X o W). (17)
In particular, for X o W = X with W;; =1,
2
P P r
danin () D EBfFFX) SB[ Y fiXD | = hmax (2) - Y _EFHX)). (18)
j=1 j=1 j=1

Equivalently, for W, = I{j), (3) and (4) are given by their linear version,
(X1, X)) = hman(E) — 1 and - pNE (X1, ., Xp) = Ain(2) — 1. (19)

pmax

In the setting of the above corollary, the operator Ky in (11) is given by the Schur product
matrix Ky = Y o W, and for general weights W (18) and (19) are nontrivial with Ayi(X) > 0
and A (X) < p when X' is of full rank.

Finally, we state in the following corollary the implication of Theorem | on Gaussian copula
and other hidden pairwise Gaussian variables.

7
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Corollary 2. Suppose Xi., = (X LX2, ..., X p) follows a hidden Gaussian distribution in the
sense of X; = T,(Z;) for a Gaussian vector Zi., = (Zy, ..., Z,) and some deterministic
Sunctions T; with 0 < Var(T;(Z;)) < oo. Let X* be the covariance matrix of the hidden vector
Z1.p. Then, for the counting measure v and any symmetric W with W; ; > 0,

Amin( 2% 0 W) < pNE(X 1, 0, W), pNE(X ), v, W) < Amax(ZF 0 W),

and the above inequalities become equality when T; are almost surely invertible. In particular,
(18) holds with X' replaced by X*. Moreover, the Gaussian assumption on Zi., can be
weakened to pairwise Gaussian.

Similarly to Corollary 1, the upper and lower bounds in the above corollary are nontrivial
when the covariance matrix of Z;., is of full rank. The above corollary has interesting
implications as it states that the extreme eigenvalues of nonlinear correlation matrix fall into
the spectrum range of the covariance matrix of the underlying generating Gaussian distribution.
This is meaningful in statistical applications, that is, the well conditioning of the covariance
matrix of general nonlinear transformations follows from that of the underlying generating
Gaussian covariance matrix.

2.2. Processes on finite intervals

Our result for a general pairwise Gaussian process with general index set also directly leads
to the same for Gaussian process on finite intervals. As discussed below (7), we take 7 = [0, 1]
and the Lebesgue measure v(dt) = dt without much loss of generality.

Corollary 3. Ler {X,,0 <t < 1} be a Gaussian process with correlation p(X,, X;) and
W, be a nonnegative symmetric square integrable function of (s, t) in [0, 11>. Let Ky(s,t) =
o(Xs, X)Wy ;. Let Ky be the linear operator h(-) — fol Kw(, s)h(s)ds. Then,

ONE = Jax (Kw) s oNE = Anin (Kw)

for the extreme nonlinear correlations in (5) and (6), where Anax (Kw) and Anin (Kw) are the
extreme eigenvalues of the operator Ky in Ly([0, 1]). In particular, for K, with W =1,

1 1
ar ( / f(X,,t)dt) < Amax (K1) / Var(f(X,,1))dt
0 0

for all bounded continuous bivariate functions f(x, t).

In the above corollary, A2 (K;) < fol fol p*(X,, X)dsdt < 1, so that the maximum
eigenvalue of the correlation operator K is nontrivial unless pX(Xs, X)) = 1. As the operator
K, is Hilbert—-Schmidt, the minimum eigenvalue An,i,(K;) = 0 is always trivial. However,
Amin(Kw) may take nontrivial negative values for general W.

The setting here is related to the nested sum problem considered in Section 4 as follows. Let
S; = Z{zl Y;,1 < j < p, where Y; are iid random variables with E[Y;] = 0 and ]E[Yiz] =1.
As the correlation kernel of {X; = S,///P, 0 <t < 1} uniformly converges to the correlation
kernel Ki(s, 1) = (s A1)/ /st of the standard Brownian motion as p — 00,

AL (S1p VP WP 5 d (Kw), Ak (S1p, VP, W) — Anin(Kw),

where VP(A) = |A|/p is the normalized counting measure and Wj(p ) = Wi pksp for
AU{j, k} < {1,..., p}, and Ky is treated as the operator in L,([0, 1]) as in Corollary 3.

8
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2.3. Stationary processes

In this subsection we consider stationary processes on the entire set of integers and the
entire real line. In both cases we consider stationary pairwise Gaussian X, with E[X;] = 0,
IE[X,Z] = 1 and autocorrelation function

p(s, 1) = p(t —s) =E[X,;X,].
We consider weight functions W, = W, ; = W(t — s) > 0 and write the kernel as
Kw(s, 1) = Kw(s —1), Kw()=p()W().

We shall first consider the discrete case.

Corollary 4. Let {X,,t € T}, T = {0,%+1,42,...}, be a pairwise Gaussian stationary
sequence with autocorrelation p(t) = E[X,X¢]. Let v be the counting measure on T, W, =
Wis=W(@t—s5)>0, Ky()=p(t)W(t), and Ky : h — ZseT Kw(- — s)h(s) as an operator
in €. Suppose ), .1 |Kw(t)| < oo. Then, (8) and (11) hold with

P = Mmax (Kw) = Prin = hin (Kw) = inf [ K (@),

lw|<m
where K, () = 2557— Kw(s)cos(ws). In particular, for the autoregression sequence with
p(t) = B |8l < 1 necessarily, we have Ki(w) = (1 — B2/(1 + B% — 2B cos(w)),
Amax (K1) = (1 4+ [BD/(1 — |B]) and Awin (K1) = (1 = |BD/(1 + |B]) for W(1) = 1.

We note that Corollary 4 gives the autoregression and implicitly many other examples in
which v(7) = 0o and Apax (Kw) < 00 and Ay, (Kw) > 0 are both nontrivial. For a pairwise
Gaussian stationary process {X;, t € T}, the process { f;(X,), t € T} is in general non-Gaussian
and non-stationary, and its spectrum is typically not tractable. Still, Corollary 4 shows that the
spectrum of the nonlinear {f;(X,),t € T} is contained within the spectrum of the underlying
process {X;,t € 7} under mild conditions.

Proof. Let F : h — Fh be the mapping from complex & € L,([—m, 7]) to its Fourier series
(Fh)(t) = 2m)~"2 [ e h(w)dw, t € T. For h with finitely many nonzero coefficients,

(Kw Fh)(t) = XTijut —sl) / ot / Gy Kv@h@do.
se
Let K3, be the mapping h(w) — K, (w)h(w) in Ly([—m, w]). As h with finitely many nonzero
Founer coefficients are dense in Lz([ m,w]) and F is isometric from L,([—, 7r]) onto Ez,
the above calculation implies Kw F = F K3,. Moreover, the spectrum decomposition Ky =
f)\dPA is given by projections P, = FP;‘F’ where Pjh(w) = h(w)I{K},(w) < A} gives
the spectrum decomposition K, = [ Ad P;. This gives the main conclusion. For K(t) = BI"l,
Ki(w) =", 7Bl = (1 — p2)/(1 4+ B* — 2B cos(w)) gives the spectrum. [

Next, we consider the continuous case. The spectrum of the Ornstein—Uhlenbeck process
K(t) = el was studied in [15] by directly solving the eigenvalue problem for the restriction
of the kernel K (s, 1) = e~"~* on Ly([a, b]) in the proof of Theorem 5 there.

Corollary 5. Let {X,,t € R} be a stationary pairwise Gaussian process on the entire real
line with autocorrelation p(t) = E[X;X¢]. Let v be the Lebesgue measure on R, Wy, = W, ; =

9
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Wi —s) >0 Ky(i) = p()W(t), and Ky : h — ffcoo Kw(- — s)h(s)ds as an operator in
L>(R). Suppose f_oooo |Kw(t)|dt < oo. Then, (8) and (11) hold with

. Prin = Amin (Kw) = inf K ()

pmax 4

NL — Amax (Kw) = sup |K$V(w)

where K}, (w) = f_oooo Kw(s)cos(ws)ds. In particular, for the Ornstein—Uhlenbeck process with
p(t) = eV, Ki(w) =2/(1 + @), Amax (K1) = 2 and Ayin (K1) = 0 for W(t) = 1.

Proof. Here F is the Fourier transformation (Fh)(t) = 2m)~"/? [* ' h(w)dw, and

e iwt

[} eiws .

This certainly holds for 4 € L,(R) N L;(R) which is dense in L,(R). Again, as F is isometric
in L,(R), KwF = FKj, with the operator Ky, : h(w) — K, (w)h(w). This gives the spectrum
decomposition and spectrum limits of Ky as in the proof of Corollary 4. For K(t) = ¢!,
Ki(w)= [eFleids =1/(1 —iw)+ 1/(1 + iw) gives the spectrum. [J

oo

Our problem is also related to mixing conditions on stochastic processes. For example, when
{X;, —o0 <t < oo} is a Gauss—Markov process, its p-mixing coefficient, given by

p*(n) = sup sup Corr(f, g)
! feF(—o0,1:8€F(14n,00)
with .%, being the set of all nonzero square integrable functions of {X,,t € A}, can be
characterized by p*(n) = sup, Corr(X;, X;1,) by (2). However, as this paper is mainly
motivated by the application in the additive model as discussed in Section 3 and the multivariate
extension of Dembo, Kagan and Shepp (2001) as discussed in Section 4, our results do not yield
a direct extension of the above explicit calculation of the p-mixing condition to more general
processes. We refer to Bradley et al. [2] for a survey of the relationship among different mixing
conditions.

3. Applications to additive models

In this section, we discuss applications of our results to additive models, including jus-
tification of theoretical restricted eigenvalue and compatibility conditions and derivation of
convergence rates for the estimation of individual component functions from prediction error
bounds. In the additive regression model, the relationship between the response variable Y
and design vector Xy, = (Xy,..., X,) is given by ¥ = ;:1 fi(X;)+e, or E[Y|X;.,] =
Zle fi(X;) in terms of the conditional expectation, where f; are assumed to be smooth
functions and ¢ is the noise variable independent of X., with E[¢] = 0.

Additive models have been important tools for practical data analysis [5,8], mainly due
to the fact that it relaxes the stringent model assumption in linear regression and at the
same time mitigates the curse of dimensionality in multiple nonparametric regression with
Y = f(Xi.p) + &. Another advantage of the additive model is the natural interpretation of its
components. For example, the rate of change of the jth function f; represents the effect of the
covariate X; as in linear regression.

Due to its importance, additive models have been extensively investigated in both the
classical low-dimension setting and the more contemporary high-dimensional setting where
only a much smaller number than p of the components f; is actually nonzero. In both cases,
one of the main assumptions is the invertibility condition of the additive model. In the very

10
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special linear regression setting ¥ = Zle X;B; + ¢, this invertibility condition is that the
minimum eigenvalue of the sample covariance matrix of the design vector X, is bounded away
from zero. In the more general additive model, the component functions f; are not necessarily
linear and the invertibility condition is typically imposed on the sample covariance matrix of
certain basis functions of f;. In the following, we connect the invertibility condition to ,0mm
(10) and verify them over a large class of distributions, in both the low- and high-dimensional
settings.

3.1. Implications to low-dimensional additive models

We start with the low-dimensional setting where the number of covariates p is fixed or much
smaller than the diverging sample size n. A useful way of understanding and implementing the
additive models is to consider the projection of the response to the linear span of suitable
bases of the component functions f;. Denote a set of basis functions for f; by B; = B;(x;) =
(Bj1(xj)--- B, M, (x))T € RMj with some positive integer M;, where the basis can be taken
as Fourier, sphne wavelet or other constructions and M; is allowed to grow as the sample size
increases. Under proper smoothness conditions, f;(x;) can be adequately approximated by a
linear combination aJTB ;(x;) of its basis functions, resulting in a d*-dimensional regression
E[Y|Xy,] ~ le ajB;(X;) with very large d* = f M.

When iid copies {(X; 1, ..., Xi p, Yi)}i<i<n of (X1, .. X,,, Y) are observed, the invertibility
condition in this d*-dimensional regression can be written as

2

n P
P —Z ZaB(X,J) %Zza}Bj(xi,j) >kt — 1 (20)

P
>, ||a, 3= o1 =1

with some fixed positive constant xy. While probabilistic methods such as empirical process and
noncommutative Bernstein inequality can be used to verify the above condition, such analysis
invariably requires the following population invertibility condition:

ZozB(X) > Ko,

P ||a 13=1|“=
j=1 2 L(O)(IP)

as || f(X;y. p)llL(O) = Var(f(X.,)) for all functions f : R? — R. This population invertibility

condition can i)e decomposed into a component-wise invertibility condition
2 .
ajTBj(Xj)H o =killajllz, for j=1,..., pand ks >0,
LY ®
and a population predictive invertibility condition

zp:a}Bj(X,-) > KZZ o7 B5x; )H 0 742> 0. @1)

i=1 0 j=1
J L(z)(]p) J

Assume that after proper centering and scaling the support of X ., is [0, 1]7. The component-
wise invertibility condition is fulfilled when B; is orthonormal in L,([0, 1]) and the marginal
density of X; is uniformly greater than «; in [0, 1]. The orthonormal condition on B; can be
further weakened to ||O‘.}BJ(XJ')||§(2°)([0,1]) > ||aj||§ as in the case of B-spline. It is also well

11
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known that the population predictive invertibility condition (21) holds when the joint density
of Xi., is uniformly greater than «o in [0, 1]”. However, while the lower bound assumption
on the individual marginal densities approximately holds after the quantile transformation of
individual samples (X, ;, ..., X, ;), the lower bound assumption on the joint density is much
harder to ascertain. Consequently, it is unclear from the existing literature the extent of the
validity of the largely theoretical assumption (21) beyond the restrictive condition on the lower
bound of the joint density.

Our results provide the validity of (21) in a broad collection of new scenarios as follows.
When X;., = (Tl(Zl), LTy (Z p)) follows a hidden pairwise Gaussian distribution, Corol-
lary 2 provides (21) with k3 = Apin(X*), Thus, the population predictive invertibility condition
is satisfied as long as the covariance matrix X% is well conditioned.

3.2. Implications to high-dimensional additive models

The prediction performance of additive models has also been carefully investigated in the
high-dimensional setting through regularized estimation. In the high-dimensional setting where
d* > n, e.g. p > n, the sample invertibility condition (20) would not hold for any x¢ > 0
as the rank of the matrix ((B]T(X,', i), J < p)T,i < n) cannot be greater than n. A popular
remedy to this impasse is to impose the sparsity condition that only a small unknown subset of
components fi, ..., f, is actually non-zero. This is referred to as the sparse additive model and
has the natural interpretation that the response Y depends on the design variables only through
a small number of them. We use s, the number of non-zero f;, and the smoothness index of
the nonzero f; to measure the complexity of the sparse additive model. A core assumption in
the theory of penalized estimation in the sparse additive model is the restricted eigenvalue and
compatibility conditions. Let Z = {j : f; # 0} be the unknown index set of real signals and «q
and &, be positive constants, the theoretical restricted eigenvalue and compatibility conditions
can be defined as

2

|Z|> HZf:l fj(Xj)HL<20>(P) ‘ ZjezPenj(fj)

¢* = ]]‘lf 3 . > EO 2 Ko (22)
fa " 3. . Pen;(f;)
q C
(ZJEJ ”fj(Xj)”L(z())(P)) JEL Al
with the convention 0/0 = 0, where ¢ = 2 and J = {1, ..., p} for the restricted eigenvalue

condition, ¢ = 1 and J = Z for the compatibility coefficient, and Pen;(f;), typically a certain
norm of f; as a regularizer, is the penalty function.

In high-dimensional linear regression, the sample restricted eigenvalue and compatibility
conditions were respectively proposed in [1] and [9]. Condition (22), which generalizes the
population predictive invertibility condition (21) imposed in the low-dimensional setting, is
comparable to the key invertibility conditions imposed in [13] and [18] for ¢ = 2 and [16]
and [19] for g = 1.

To make the dependence on the compatibility condition more explicit, Theorem 1 of Meier
et al. [16] establishes that, in the case where all the unknown functions are twice differentiable,
the rate of convergence in terms of the in-sample prediction accuracy is s(log p/n)* /¢,, where
¢, is a sample version of ¢* defined in (22). Moreover, Theorem 2 of Meier et al. [16] and its
proof show that as long as the theoretical compatibility condition (22) holds, ¢, and ¢* are of
the same order and the rate of the population prediction error is s(log p/n)*> /¢*. This directly
illustrates the role of ¢* defined in the theoretical compatibility condition (22) on the rate of
convergence.

12
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Despite the importance of (22) in theoretical justification of regularized prediction in sparse
additive models, it has been typically imposed as a condition but without further verification
of its validity other than in some very special cases such as the class of densities of Xi.,
on [0, 117 uniformly bounded away from O and co. The result of the current paper on the
minimum eigenvalue of the nonlinear correlation matrix sheds light on the theoretical restricted
eigenvalue and compatibility conditions for additive models in the sense that condition (22) is
satisfied with k(y being the minimum eigenvalue of the correlation matrix of the latent pairwise
Gaussian vector Z;., as in Corollary 2.

Corollary 6. Suppose (X 1, X2, ..., X ,,) follows a hidden Gaussian distribution with X; =
T,(Z;) for a pairwise Gaussian vector (Zy, ..., Z,) with Corr(Zy, ..., Z,) = X* and some
deterministic functions T; with 0 < Var(T;(Z;)) < oo. Then, condition (22) holds with
Ko = Amin(X7). In particular, the theoretical restricted eigenvalue and compatibility conditions
hold when Amin(X?) is strictly bounded away from zero.

The above corollary implies that condition (22) holds for the Gaussian copula model. To the
best of the authors’ knowledge, this is a new connection of the theoretical restricted eigenvalue
and compatibility conditions to the widely-used model of multivariate dependency.

In addition to verifying the important condition (22), our results also provide the following
connection between the rate of convergence in the estimation of the individual components f;
and the prediction rate [13,16—19].

Corollary 7. Under the same assumption as Corollary 6,

P R 14
Y=Yk
i=1 i=1

p
danin(E) D M = [l 0y <
i=1

L<20) ® —

p
< (Z) Y NS = £I2
i=1

2
= ©0) my*
L(Zo) ®) Ly"(P)

4. Symmetric functions of iid random variables

In this section, we move beyond the pairwise Gaussianity and consider the extreme nonlinear
correlation for symmetric functions of iid random variables. We first consider multiple nested
sums of iid random variables to directly generalize the results for a pair of nested sums
established in Dembo, Kagan and Shepp (2001) and [4]. In Section 4.2, we consider the class
of symmetric functions defined on groups of iid random variables and establish the extreme
nonlinear correlation in the much broader setting.

4.1. Nested sums

In this section, we consider the extreme nonlinear correlation for multiple nested sums of

iid random variables. Specifically, given positive integers m; < my < --- < m, and iid
non-degenerate random variables Yi, Y5, ..., we consider
I7‘I/'
Xj=8,, =Y Y for j=1,...p. (23)
i=1

Here, the non-degeneracy means that the distribution of the random variable is not concentrated
at a single point. In the case of p = 2, Dembo, Kagan and Shepp (2001) proved that the
maximum correlation of S,,, and S, is equal to «/m/m; if Y has finite second moment,

13
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and Bryc et al. [4] proved the same result even without assuming the finite second order moment
by investigating the characteristic functions of sums of Y;. The following theorem extends their
results from p = 2 to general finite p. Further extensions to general symmetric functions of
arbitrary groups of Y; are given in the next subsection.

Theorem 2. Let Y, Y|, Y,, ... be iid non-degenerate random variables and X, X5, ..., X, be
nested sums of Y; with sample sizes 1 <m| < --- < m as defined in (23). Then,
P X1:pi v, W) = Anax (R0 W), plE(X1:p3 v, W) = Amin(R 0 W), (24)

where R = (Rj i) pxp 1s the matrix with elements R, = (m; A my)/ /M ;n, v is taken as the
counting measure for the extreme nonlinear correlations defined in (5) and (6), and o denotes
the Schur product. If Y has a finite second moment, then R € RP*? js the correlation matrix
of the nested sums X; = Sm_/., 1 < j < p, so that (8) holds with X1., for all measures v and
weights W = Wy ; >0,

PNEX1ps v, W) = ph (X1 v, W), pNE(X 13 v, W) = phi (X5 v, W).

As discussed below Corollary 3, for m; = j and large p, Anax(R o W)/p with weight
matrix W, is approximately the maximum eigenvalue of the operator Ky in L»([0, 1]) when
Wjx=Wj,,,, for a W, continuous in (s, 1) € [0, 177

Proof. As f;(X;) = fj(Sw;), mi < --- < m,, are symmetric functions of nested variable
groups {Y;,i € G;} with G; = {1,2,...,m;} and ﬂleGj = G| # 0, it follows from
Theorem 3 in the next subsection that

ONE(X1py v, W) < Amax(R o W), pNE(X1.p, v, W) > Ain(R 0 W).

We note that v is the counting measure here. It remains to prove that An.(RoW) and
Amin(RoW) are attainable by functions f;(X ). This would be simple under the second moment
condition on Y as we may simply set f;(X;) = X; to achieve Corr(X;.,) = R. In the case
of E[Y?] = oo, we prove that R is in the closure of the correlation matrices generated by
(fi(X;), j < p). This will be done below by proving

lim ,o(sin(th —mjc), sin(tX; — mkc,)) =Rj;, 1=5j<k=p, (25)

t—0+
where ¢, € (—m /2, w/2) is the solution of

Elsi valentl E[sin(1Y)]
[sin(zY —¢;)] =0, or equivalently ]E[CT(IY)] = tan(c,).
We shall choose the sequence + — 0+ such that for each ¢, P{sin(z(Y; — Y»)) = 0} < 1 so
that P{sin(rY) = 0} < 1 and P{sin(tY — ¢,) = 0} < 1. This is always feasible when Y is
non-degenerate.
As E[sin(tY)] — 0 and E[cos(tY)] — 1, it suffices to consider small r+ > 0 satisfying
lc;] < 1. LetY =1tY —¢;. As ] sin(y)(1 — cos(y))‘ < sin®(y) + 2| sin(y)|Zjjy|>2;, we have

[E[sin(y") cos(v"y]| = |E[sin(y")(1 - cos(¥"))]|

< E[sin*(Y")] + \/E[sin2(Y’)]IP{|Y| > 1/t}. (26)
14
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Let Y/ =tY; — ¢, and S, = > -, Y/. We shall prove that fora <b <m <n
(m—b+1)

(m—a+1D"2mn—b+1)/2

This implies (25) with @ = b =1, m = m; and n = my, but the more general a and b would

provide the extension to sums of arbitrary subgroups of Y; later in Corollary 8.
Let fum = sin(S,.,,)- As sin(y + z) = sin(y) cos(z) + cos(y) sin(z). We write

. N N
t£151+ ,o(sm(Sa:m), sm(Sb:n)) = (27)

m u—1

fam =Y fomu Where fon, = (]‘[ cos(Y,f)) sin(¥,) cos(S(, 4 1ym)-

Leta < b <m < n. As E[sin(Y)] = 0, we have E[f, ,,] = 0 and E[f; .4 fpn.v] = O for
a<u<borform<v<nForb<unv<uvv<m,

fu,m,ufb,n,v

u—1 v—1

<l_[ cos(Y,-’)) sin(Y, )cos(S(uH) m <1_[ cos(Y; )) sin(Y, )COS(S(UJrl) )

i=b
= sin(Y, ) cos(Y, . )sin(Y,,)g(Y/,a <i <n,i #u Av)

for a certain function g bounded by 1. Thus, as a consequence of (26)
[ fumafon]| = [Efsin(r"y cos(r)][E[ sin(r)]
< E[sin’(Y")] (\/E[sinz(Y’)] +/B{IY| > 1/;})
for b <uAv <uVv<m. Moreover, for b <u < m,

[fa m, ufbn u]

sm (Y ) |:<1_[ cos(Y; )) <1—[ cosz(Y )) cos(S(uH)m) cos(S(u+1)”):|

=b

Thus, as Yi/ =1tY; — ¢, — 0 in probability, we find that foralla <b <m <n

E[sin(S},,) sin(S},,)] " Elfamu fonn]
t~>0+ Z Z N #{b

=0 E[sin*(Y")] 51n2(Y )] Su=vsm}

u=a v=>b

This implies (27) and completes the proof. [

4.2. Symmetric functions of groups of variables

In this section, we consider a broader setting than nested sums considered in Section 4.1. We
use {Y;}i>1 to denote an infinite sequence of iid random variables and define random vectors
X; = (Y;,i € G;) for arbitrary sets of positive integers G; of finite size m; = |G;| < oo.
Again we are interested in the extreme nonlinear correlation among X, ..., X,.

As X ; are vectors, we adjust the definition of the extreme nonlinear correlations in (5) and
(6) as follows: Given a p x p symmetric matrix W = (W, ) with W; ; > 0, define

prIIYziL)( symm — IOmax symm(Xv1 vt Xﬂ’ W) sup )‘-maX (KW fi: p) (28)
Sr:p€F1:p
15
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where Fi., = {(fi,..., fp) : 0 < Var(f;(X;)) < oo, fi(y1,..., Ym;) symmetric V1 < j < p}
and Ky 5, = (Corr(f;(X ;). filX))W;x) ,- Correspondingly, define

pX
NL NL :
lOmin, symm — pmin, symm(X1 L X[” W) = inf )\min (KW«flzp)' (29)
Sr:peFip
We omit v in the notation as it is taken as the counting measure in {1, ..., p} without loss
of generality as discussed below (7). Here, the symmetry of f; means permutation invariance,
fikn, .., ymj) = fiijse-es y,-mj) for all permutations iy, ..., imj of 1,...,m;. To avoid

confusion, we call the above quantities extreme symmetric nonlinear correlations. We extend
Theorem 2 to groups satisfying the following assumption.

Assumption C. There exist certain sets Gg_; of positive integers such that
|Go,j N Goxl = (IG; NGkl — 1)+ Vi<j<k=<p, 1Go;l=I|G;|—-1VI=<j=<p.

Assumption C holds when ﬂ’;:,Gj # ), as we can simply set Go; = G; \ {ig} for a fixed
ip € ﬂ‘;zlGj. Hence, for the Special case that G; are nested with # # G, C G, C --- C G,
Assumption C holds automatically. However, Gg ; do not need to have anything to do with G;
beyond the specified conditions on their size and the size of their intersections.

Theorem 3. Let Y, Y, Y, ... be iid non-degenerate random variables and X ; = (Y;,i € G;)

for arbitrary groups of positive integers G, ..., G, of finite size m; = |G;| < oo. Let
pNL symm and pNL symm De the extreme symmetric nonlinear correlations among Xy, ..., X,

as defined in (28) and (29) with weight matrix W. Let R®© € RP*? be the matrix with elements

20 _ (16N GU (1G\™ (1G\ ™
@ = (30)
¢ ¢ ¢

for 1 < £ < £*, with the convention 0/0 = 0, where £* = maxi<j<p |G |. Then,

pIIXaLX,symm = )“m'dX(ROW)7 pl{r\:]ﬁ symm = 122}* )“min((R(Z) o W)‘](Z)’j@))’ (31)
with R=RD, JO ={1<j<p: |G| = £} and o being the Schur product. If in addition
Assumption C holds, then

L = Amin(RoW). (32)

IOmin, symm

The first part of (31) asserts that the maximum symmetric nonlinear correlation is identical to
its linear version, while the second part gives a formula for the minimum symmetric nonlinear
correlation. Under Assumption C, (32) asserts the equality between the minimum symmetric
nonlinear correlation and its linear version. The connection between Theorems 2 and 3 can
be built under the observation that f 1(2:’;’ . Yi) is a symmetric function of X; = {Yi}ieG_,-
when G; ={1,2,...,m;}, and the corresponding index sets G; satisfy Assumption C due to
the nested structure of {G;}i<j<,. For the case p = 2, Theorem 3 serves as an extension of
Dembo, Kagan and Shepp (2001) from functions f /(Z:’: 1Y) of the two sums to any symmetric
functions of iid random variables and of Yu [21] from two f;(Q_; ;. Yi) with arbitrary G ;.

An interesting aspect of Theorem 3 is that under Assumption C the extreme symmetric
nonlinear correlation is attained by sums of the form

f(X) =Y ho(Y;) forl<j<p, (33)
iEGj

16
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for any function hg with 0 < Var(ho(Y)) < oo, e.g. ho(¥;) = Y; when Y; has finite variance.
That is to say, among symmetric functions, the most extreme multivariate correlations are
achieved by the linear summation of iid random variables. The following corollary, based on
Theorem 3 and (27) in the proof of Theorem 2, asserts that the extreme symmetric nonlinear
correlations for groups of Y; are achieved by functions of the corresponding sums of Y; without
assuming the finite second moment condition.

Corollary 8. Let X; = (Y;,i € G;) and S(;. = ZieG,- Y; with iid non-degenerate Y;. Then,
X1, ... X, W)= pmdx((SGI, 286, v, W) = Amax(RoW),
(Xh cet va W) - pmm ((SGP cet SGp)» U’ W) = }\min(ROW)v

under Assumption C, where v is taken as the counting measure in the extreme nonlinear
correlations in (5) and (6). Consequently, (8) holds for X; = SG]. when E[Y?] < oo.

IOmdx Symm

/Omm symm

The proof of Theorem 3 relies on the Hoeffding [11,12] decomposition of symmetric
functions of random variables, stated as Lemma 3; See Lemma 1 in [12], the decomposition
lemma in [7], and Lemma 1 in [6].

Lemma 3. Let Y = (Yy,...,Y,) with iid components Y; and fo(Y) = fo(Y1,...,Yn)
with a symmetric function fo(y1, ..., Ym)- Suppose E[ fo(Y)] = 0 and E[fOZ(Y)] < 00. Define
Jo1 (1) =E[fo(Y)|Y) = y1] and for k =2, ..., m define

k-1
for) =B | ) =" > fo ;i Yi)Yia = yix

j=11<i; <--<ij=m

Then, the following expansion holds,

m

X =Y" Y foul¥is o Yy, (34)

=1 1<ij<--<ig<m

and that forall s =1,...,Land L =1,...,m
B[ focys o V)|, VY ] = 0. (35)

Consequently,
E[f0)] = Z( ) [0 (36)
=1

Proof of Theorem 3. Assume without generality E[f;(X ;)] =0, E[f jz(X )] =1forall j as
P symm and pNib - are defined through the correlations between f;(X ;) and fi(Xy). Let
GO ={(iy,...,i): 0 <--+ <1y is € G forl <s < £ for all subsets G of positive integers.
Since f;(X ;) are symmetric functions of {Yi}ieg_i, (34) gives

mj

f,-(X,->=Z Z Fieis o, Yy, (37)

We first apply (35) and obtain the following expression for the cross-product,
E[fj,e(Yil, v Yi) e (Yoo 1@2/)] =0

17
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when {iy, ..., i} # {i{,...,i,}. It follows that
G NGyl
Efi(X)fi(X) =E > Fieis o Vi) fieWi o Vi)
=1 (T i[)E(GjﬂGk)“)
e*
|G NGyl
= Z < ! ‘ ¢ ]E[fj,e(lez)fk,z(lez)] (38)
=1
with the convention () = 0 for £ > m. Let R® € RP*? be the matrix defined in (30). Let

12 . )
g = &i.u(Vi) = (" ) / fie(Yie). For u = (uy, ..., u,)7 with |lull, = 1, (38) provides

P oD
uTKw. ., u = ZZ Wi kujur f(X ;) fr(X k)
=1 k=1
P op
|G N Gyl
Zk, Wiku, ”k2< ¢ E [ f.e(Y1:0) fe(Y10)]
o
=2 E Z Z R%l)cWj,k”jngj,z(YL:z)gk,e(lez)
=1 jeI® kes©
[*
< max, )\max((R(f )0, m)) Z Z w385 /(Yie)
T =1 jeJ®
P
= max, )‘f’fl'“‘((R((Z )0, N)) ZE [u5 /(X )]
<t< e

= max )Lmax((R(e) °© W)J(E).](E))’

I<e<e*
where the second to the last equality follows from (36) and the fact that g;, = 0 for
£ > mj;=|G;|. Similarly, for all u = (uy, ..., up)T with [lul, =1,
: ¢
ulKw. g, u = o, )‘min((R( Yo W)J(@J(e))-

Thus, by (28) and (29),

NL

()
Pmax ,symm = 12‘?;* )\max((R ° W)j(é),j(é)) ’

NL £
Iomm ,Symm = 122&* )‘mln((R( ) o W)](@),J(f))' (39)

To prove (39) holds with equality, we pick a specific fi., for each £ as follows. Let sy be a
function satisfying E[¢(Y)] = 0 and E[r3(Y)] = 1. For j € J© define

© G\
ho X =", > JTroro (40)

S|=¢,SCG ieS

as symmetric functions of X ;. For {j, k} C J® we have

G, NG\ (1G;1\ 2 (1G\2
[h(E)(Xf)hg;‘(Xk)] ( IZ k)( ZJ) zk I“SIGmGk\}=R%1)c-

18
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Thus, when f;(X;) = h(\(X;) for j € J®, we have (Kw.p,,) 0 50 = (RO 0 W) 0 .
As this holds for every £ < £*, (39) holds with equality by (28) and (29). We note that
ELf;(X ;) fu(X)] # 0 = RY) typically holds for j ¢ J© or k ¢ J® as E[f}(X )] = 1.

It remains to prove that the extreme eigenvalues in (39) are achieved with £ = 1. For the
maximum eigenvalue, we notice that by (30),

RO _ (16: NG\ (16l 121Gyl _1/21
j,k - K E e {lGjﬂGk‘Ze}

. IG;NGL(IG; NGl = D+ (1G; NGl =1+ D6 ;ncy1=¢1

~ VIGHUG, 1= D= (G,1 =T+ DVIGG = D~ (Gx = + D
|G; NGyl

S V=
VIG;l - 1G]

so that 0 < R Wi < R\UW; for all {j, k} € J©. Thus,

)‘maX((R(D °© W)J(@),N)) = kmaX((R(l) © W)J(@),N)) = )‘max(R(l) °© W)' 41

due to the element-wise positiveness of (R o W) ) . As (39) holds with equality, this
completes the proof of (31).

The remaining of the proof is to characterize minj<y<¢+ Amin((R(Z) o W) J© N)) under
Assumption C. As the result can be of independent interest, we state it in the following lemma
and supply a proof immediately after the lemma.

Lemma 4. Under Assumption C, we have

min_ Apin((R© o W) 0, m) = Amin(R o W)

1<e<e*

where R© are defined in (30), RV = R and €* = maxi<j<p |Gl

Proof of Lemma 4. Under Assumption C, we set
ey - (1611 o e 70 o «
g0 Xp={""_, > Hho(Y,-), jelV2<t=r,
IS|=¢—1,SCGy ; ieS

with the hg in (40). Similar to the proof of the first part of (39) with equality, we have

E|gh "X e (X0

1Go,; N Gox\ (1G;1 — 1\ "? (1G] — 1\ "?
- ¢ —1 ¢ —1 ¢ —1 I{\Go‘jﬂGo,k‘fol}

(IG; NGl — D\ (1G;1 = 1\ (1G — 172
= (1 (-1 01 16 ;nGy =0}

For j =k, Var(g); "(X,)) < 1 as |Go ;| < |G,| — 1. It follows that, for |G; N G| > 1,
=RY), j#kinJO,
<R, j=keJO.

19
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For the case |G; N G| = 0, the above relationship trivially holds with both sides equal to zero.
It follows that when Ay;,(R o W) <0,

Amin (R 0 W) 0. 0)

= min Z ZuukRg,)( ik

Mol S ko

. {—1 -1
= min, >N MjukRj,ij,k]E[g(()] (X )ghs )(Xk)]

27 jed® keg®

2

. {—1

= min dmin(R 0 W)IE[ > (s xp) ]
jeJ®

> Amin(R o W),

where the last inequality holds due to the fact that

1Go 1\ (1G;I =1\
[(g()j l)(Xj))Z] (Z_Jl)( gj_l ) I{|GO./'|2K_1} <1.

In the general case, we notice that Apin(R o (W — ¢l ) < 0 and W — clij—y = 0 for all
1 <j,k<pandc=min<;<, W;;, so that

min - Amin(K —c= min Appp(K o (W —cl
fi:p€F1p mm( W’flip) fip€Fiep mm( Lfiep © PXP))

= Amin(R o (W = clpy)))
= Amin(Ro W) — ¢

as the diagonal of K1,f]:[, and R are both /,,,. O
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Appendix

We prove Lemmas | and 2 in this Appendix.

Proof of Lemma 1. Let g(x) = h(t) f,(x)/{E[ f2(X)]}"* with h satisfying [Ik]3,,, = 1.
As [7Elgl(X)Iv(d1) = ||kl )= 1, fr € Fr implies g7 € Fr, so that by (5)

P = sup  sup / / o (fs(Xs), fi(X1)) Wy ch(s)h(t)v(ds)v(dt)
freFr lhlL,om=1JseT JreT

fseTfreTE[ga(X) &(X, )] ”v(ds)v(dt)
< sup
eTeFT JE[g?(X)]v(dr)
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On the other hand, letting k(1) = {E[ f2(X)]/ [ .7 E[f2(X)]v(dD)}""*, we have

VL > / . / PR, ) W @@y

_ Jer Jier BLAXD), X)Wy, v(ds)v(dr)
Jier E[f2(XD)]v(dr)

for all fr € Fy. Thus, (5) and (14) are equivalent. We omit the proof of the equivalence
between (6) and (15) as it can be established by the same argument. [

Proof of Lemma 2. Let i be a function on T with ||hllz,o) = 1 and B, C T be as
in Assumption A. Let {X’,t € T}i<i<m_1 be iid copies of X7 . Because |E[X,X/]| <
E[|X§i)X,(’)|] <1 and |Kw(s, )| < W,,, by Cauchy—Schwarz

m—1
E/ / (]‘[}x§i>xﬁi)|)‘l<w(s,z)h(s)h(z) Vv(ds)v(dr)
Bn JBn N\

172
< </ Wsz,tv(ds)v(dt)> < 00.
Bn Brl

Thus the exchange of expectation and integration is allowed in the following derivation:

f / (IE[XSXt])m_IKW(s,t)h(s)h(t)v(ds)v(dt)
B, J B,

m—1

— E/ / <]_[(X§i)xfi>))1<w(s,t)h(s)h(;)v(ds)v(d,)
Bu Bn \j—y
m—1 m—1 ]
B Efgn /B KwGs, 1 ){h(” l} XE“Hh(ﬂ ]1 Xﬁ”}v(ds)v(dt)
m—1 \2
= prﬁaX/E[<I{l‘ € B, }h(t) 1_[ Xt(l)) :|V(dl‘)
i=1

L 2
= pmaX/ h=(t)v(dt).
Moreover, as the exchange of expectation and integration is allowed,

/ f (BIX,X,1)" " Kw(s, Oh(s)h(t)v(ds)v(dr)
B, J B,

m—1 m—1

= E/ / Kw(s, t){h(s) 1_[ Xii)}{h(t) 1_[ Xgi)}v(ds)v(dt)
B B i=1 i=1
m—1 ) 2
> Pmin / E[(!{r e B [] XE”) ]v(dr)
i=1

= pk. / 2 (t)v(dr).
Bn

As the operator Ky is bounded by Assumption A, pL —and pL. are both finite, so that the
inequalities still hold as B, — 7. O
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