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This paper studies schemes to de-bias the Lasso in sparse linear regression with Gaussian design where the goal is
to estimate and construct confidence intervals for a low-dimensional projection of the unknown coefficient vector
in a preconceived direction a0. Our analysis reveals that previously analyzed propositions to de-bias the Lasso
require a modification in order to enjoy nominal coverage and asymptotic efficiency in a full range of the level
of sparsity. This modification takes the form of a degrees-of-freedom adjustment that accounts for the dimension
of the model selected by the Lasso. The degrees-of-freedom adjustment (a) preserves the success of de-biasing
methodologies in regimes where previous proposals were successful, and (b) repairs the nominal coverage and
provides efficiency in regimes where previous proposals produce spurious inferences and provably fail to achieve
the nominal coverage. Hence our theoretical and simulation results call for the implementation of this degrees-of-
freedom adjustment in de-biasing methodologies.

Let s0 denote the number of nonzero coefficients of the true coefficient vector and � the population Gram
matrix. The unadjusted de-biasing scheme may fail to achieve the nominal coverage as soon as s0 ≫ n2/3 if
� is known. If � is unknown, the degrees-of-freedom adjustment grants efficiency for the contrast in a general
direction a0 when

s0 logp

n
+ min

{ s� logp

n
,
‖�−1a0‖1

√
logp

‖�−1/2a0‖2
√

n

}
+ min(s�, s0) logp√

n
→ 0

where s� = ‖�−1a0‖0. The dependence in s0, s� and ‖�−1a0‖1 is optimal and closes a gap in previous upper
and lower bounds. Our construction of the estimated score vector provides a novel methodology to handle dense
directions a0.

Beyond the degrees-of-freedom adjustment, our proof techniques yield a sharp �∞ error bound for the Lasso
which is of independent interest.

Keywords: Statistical inference; Lasso; semiparametric model; Fisher information; efficiency; confidence
interval; p-value; regression; high-dimensional data

1. Introduction

Consider a linear regression model

y = Xβ + ε (1.1)

with a sparse coefficient vector β ∈ R
p , a Gaussian noise vector ε ∼ N(0, σ 2In), and a Gaussian

design matrix X ∈ R
n×p with iid N(0,�) rows. The purpose of this paper is to study the sample size

requirement in de-biasing the Lasso for regular statistical inference of a linear contrast

θ = 〈
a0,β

〉
(1.2)

at the n−1/2 rate in the case of p � n for both known and unknown �. As a consequence of regularity,
the n−1/2 rate also corresponds to the length of confidence intervals for θ .

1350-7265 © 2022 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/21-BEJ1348
https://doi.org/10.3150/21-BEJ1348
mailto:pierre.bellec@rutgers.edu
mailto:pierre.bellec@rutgers.edu
mailto:czhang@stat.rutgers.edu
mailto:czhang@stat.rutgers.edu


714 P.C. Bellec and C.-H. Zhang

The problem was considered in [29] in a general semi-low-dimensional (LD) approach where high-
dimensional (HD) models are decomposed as

HD model = LD component + HD component (1.3)

in the same fashion as in semi-parametric inference [6]. For the estimation of a real function θ = θ(β)

of a HD unknown parameter β , the decomposition in (1.3) was written in the vicinity of a given β0 as

β − β0 = u0
(
θ − θ0

)+ Q0
(
β − β0

)
, (1.4)

where u0 specifies the least favorable one-dimensional local sub-model giving the minimum Fisher
information for the estimation of θ , subject to

〈
u0,∇θ(β0)

〉 = 1, and Q0 = Ip×p − u0(∇θ(β0))



projects β − β0 to a space of nuisance parameters. [29] went on to propose a low-dimensional projec-
tion estimator (LDPE) as a one-step maximum likelihood correction of an initial estimator β̂ (init) in the
direction of the least favorable one-dimensional sub-model,

θ̂ = θ
(
β̂ (init)

)+ arg max
φ∈R

log-likelihood
(
β̂ (init) + u0φ

)
, (1.5)

and stated without proof that the asymptotic variance of such a one-step estimator achieves the lower
bound given by the reciprocal of the Fisher information.

For the estimation of a contrast (1.2) in linear regression (1.1), we have ∇θ(β0) = a0, the Fischer
information in the one dimension sub-model {β + φu, φ ∈ R} is 〈u,�u〉σ−2, the least favorable sub-
model is given by

u0 = �−1a0

〈a0,�
−1a0〉

, i.e., the minimizer u0 = arg min
u∈Rp :〈u,a0〉=1

〈u,�u〉
σ 2

(1.6)

and the Fisher information for the estimation of θ is

Fθ = 1
/(

σ 2〈a0,�
−1a0

〉)
. (1.7)

In the linear model (1.1), the log-likelood function is b → −‖y − Xb‖2
2/(2σ 2) up to a constant term

and the one-step log-likelihood correction (1.5) can be explicitly written as a linear bias correction,

θ̂ =
〈
a0, β̂

(init)
〉
+
〈
z0,y − Xβ̂ (init)

〉
‖z0‖2

2

with z0 = Xu0. (1.8)

Here, z0 = Xu0 can be viewed as an efficient score vector for the estimation of θ .
In the case of unknown �, the efficient score vector z0 has to be estimated from the data. For

statistical inference of a preconceived regression coefficient βj or a linear combination of a small
number of βj , such one-step linear bias correction was considered in [4,8,13,15,24,31] among others.
The focus of the present paper is to find sharper sample size requirements, in the case of Gaussian
design, than the typical n � (s0 logp)2 required in the aforementioned previous studies. Here and in
the sequel,

s0 = ∣∣S∣∣ with S = supp(β). (1.9)

Our results study both known �—in that case the ideal score vector z0 can be used—and unknown
� where estimated score vectors ẑ ≈ z0 are used. The results of [10] show that for unknown � with
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bounded condition number, it is impossible to construct confidence intervals for θ = a

0 β with length

of order n−1/2‖a0‖2 in the sparsity regime s0 ≫
√

n. Proposition 4.2 in [15] extends the lower bound
from [10] to account for the sparsity and �1 norm of u0 in (1.6) as follows. Let �(s0, s�,ρ) be the
collection of all pairs (β,�) such that λmin(�)−1 ∨ λmax(�) ≤ c0 for some absolute constant c0 > 1
and

‖�−1ej‖0 ≤ s�, ‖β‖0 ≤ s0, ‖�−1ej‖1 ≤ 1.02 ∨ ρ.

When a0 = ej for a fixed canonical basis vector and s0 ≤ c1 min(p0.49, n/ logp),

sup
(β,�)∈�(s0,s�,ρ)

Eβ,�

[
n1/2σ−1|β̂j − βj |

]
≥ c2 + c3rn(s0, s�,ρ) (1.10)

with rn(s0, s�,ρ) = min
{

min(s0, s�) log(p)n−1/2, (ρ ∨ 1.02)
√

logp
}

for any estimator β̂j as a measurable function of (y,X), where c1, c2, c3 > 0 are absolute constants.
Hence the minimax rate of estimation of βj over �(s0, s�,ρ) is at least σn−1/2(1 + rn(s0, s�,ρ)),

and any (1 − α)-confidence interval1 for βj valid uniformly over �(s0, s�,ρ) must incur a length
of order σn−1/2(1 + rn(s0, s�,ρ)) up to a constant depending on α. Since the focus of the present
paper is on efficiency results and other phenomena for sparsity s0 ≫

√
n, these impossibility results

from [10,15] motivate either the known � assumption (in Sections 2.1 and 3 below) or the sparsity
assumptions on �−1a0 for unknown � in Section 2.2 where we prove that the lower bound (1.10)
is sharp. For known �, our analysis reveals that the de-biasing scheme (1.8) needs to be modified to
enjoy efficiency in the regime s0 ≫ n2/3 when the initial estimator is the Lasso. For unknown �, the
modification of (1.8) is also required for efficiency when s0, s� satisfy the conditions in Theorem 2.6
of Section 2.2.

The required modification of (1.8) takes the form of a multiplicative adjustment to account for the
degrees-of-freedom of the initial estimator. Interestingly, [14] proved that for the Gaussian design
with known � = Ip×p , the sample size n ≥ Cs0 log(p/s0) is sufficient in de-biasing the Lasso for
the estimation of βj at the n−1/2 rate. More recently, [15] extended this result and showed that n ≥
Cs0(logp)2 is sufficient to de-bias the Lasso for the estimation of βj at the n−1/2 rate for Gaussian
designs with known covariance matrices � when the �1 norm of each column of �−1 is bounded, i.e.,
for some constant ρ > 0

max
j=1,...,p

‖�−1ej‖1 ≤ ρ (1.11)

holds, where (e1, . . . , ep) is the canonical basis in R
p . From this perspective, the present paper provides

an extension of these results to more general �: We will see below that for n ≥ Cs0 log(p)2, the
efficiency of the de-biasing scheme (1.8) is specific to assumption (1.11) and that the de-biasing scheme
(1.8) requires a modification to be efficient in cases where (1.11) is violated.

The paper is organized as follows. Section 2 provides a description of our proposed estimator, which
is a modification of the de-biasing scheme (1.8) that accounts for the degrees-of-freedom of the initial
estimator. Section 3 describes our strongest results in linear regression with known covariance ma-
trix for the Lasso. This includes several efficiency results for the de-biasing scheme modified with

1(footnote) Note that (1.10) is stated slightly differently than in [15]: It can be equivalently stated as a lower bound on the
expected length of (1 − α)-confidence intervals for βj valid uniformly over �(s0, s�,ρ) up to constants depending on α. This

follows by picking as β̂j any point in the confidence interval, or by constructing a confidence interval from an estimate β̂j and
its maximal expected length over �(s0, s�,ρ) by Markov’s inequality.
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degrees-of-freedom adjustment and a characterization of the asymptotic regime where this adjustment
is necessary. Section 4 studies the specific situation where bounds on the �1 norm of �−1a0 are avail-
able, similarly to (1.11) when a0 is a canonical basis vector. The additional assumptions on �−1 and
the results of Section 4 explain why the necessity of degrees-of-freedom adjustment did not appear
in some previous works. Section 5 provides a new �∞ bound for estimation of β by the Lasso under
assumptions similar to (1.11). Section 6 discusses efficiency and regularity, and shows that asymp-
totic normality remains unchanged under non-sparse n−1/2-perturbations of β . Section 7 shows that
the degrees-of-freedom adjustment is also needed for certain non-Gaussian designs. The proofs of the
main results are given in Section 8 and in Appendices A, B, C and H of the supplement [2]. The proofs
of intermediary lemmas and propositions can be found in Appendices D to G of the supplement [2].
Our main technical tool is a carefully constructed Gaussian interpolation path described in Section 8.1.

Notation

We use the following notation throughout the paper. Let I d be the identity matrix of size d × d , e.g.
d = n,p. For any p ≥ 1, let [p] be the set {1, . . . , p}. For any vector v = (v1, . . . , vp)
 ∈ R

p and any
set A ⊂ [p], the vector vA ∈ R

|A| is the restriction (vj )j∈A. For any n × p matrix M with columns
(M1, . . . ,Mp) and any subset A ⊂ [p], let MA = (Mj , j ∈ A) be the matrix composed of columns

of M indexed by A, and M
†
A be the Moore-Penrose generalized inverse of MA. If M is a symmetric

matrix of size p × p and A ⊂ [p], then MA,A denotes the sub-matrix of M with rows and columns
in A, and M−1

A,A is the inverse of MA,A. Let ‖ · ‖q denote the �q norm of vectors, ‖ · ‖op the operator
norm (largest singular value) of matrices and ‖ · ‖F the Frobenius norm. We use the notation 〈·, ·〉 for
the canonical scalar product of vectors in R

n or Rp , i.e., 〈a,b〉 = a
b for two vectors a,b of the same
dimension.

Throughout the paper, C0 = ‖�−1/2a0‖2, u0 is as in (1.6) and Fθ as in (1.7). The score vector z0 is
always defined as z0 = Xu0 and Q0 is the matrix Q0 = Ip×p − u0a



0 , so that

X = XQ0 + z0a


0

always holds. As in (1.9), S and s0 are the support and number of nonzero coefficients of the unknown
coefficient vector β . For any event �, denote by I� its indicator function and a+ = max(0, a) for
a ∈R.

2. Degrees of freedom adjustment

2.1. Known �

In addition to the de-biasing scheme (1.8), we consider the following degrees-of-freedom adjusted
version of it. Suppose that the Lasso estimator β̂ (lasso) is used as the initial estimator β̂ (init), where

β̂ (lasso) = arg min
b∈Rp

{
‖y − Xb‖2

2/(2n) + λ‖b‖1

}
. (2.1)

The degrees-of-freedom adjusted LDPE is defined as

θ̂ν =
〈
a0, β̂

(lasso)
〉
+
〈
z0,y − Xβ̂ (lasso)

〉
‖z0‖2

2(1 − ν/n)
, (2.2)
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where z0 is as in (1.8) and ν ∈ [0, n) is a degrees-of-freedom adjustment; ν is allowed to be random.
Our theoretical results will justify the degrees-of-freedom adjustment ν = |Ŝ| where Ŝ = supp(β̂ (lasso)).
The size of the selected model has the interpretation of degrees of freedom for the Lasso estimator in
the context of Stein’s Unbiased Risk Estimate (SURE) [20,28,37].

We still retain other possibilities for ν such as ν = 0 in order to analyse the unadjusted de-biasing
scheme (1.8). With some abuse of notation, in order to avoid any ambiguity we may sometimes use the
notation θ̂ν=0 for the unadjusted (1.8) and θ̂ ν=|Ŝ| for (2.2) with |Ŝ| being the size of the support of the
Lasso.

Our main results will be developed in Section 3. Here is a simpler version of the story.

Theorem 2.1. Let s0, n and p be positive integers satisfying p/s0 → ∞ and (s0/n) log(p/s0) → 0.
Assume that �jj ≤ 1 for all j ∈ [p] and that the spectrum of � is uniformly bounded away from 0 and
∞; e.g. max(‖�‖op,‖�−1‖op) ≤ 2. Let λ = 1.01σ

√
2 log(8p/s0)/n.

(i) Then |Ŝ| = OP(s0) = oP(n) and for ν = |Ŝ| we have for every a0√
nFθ

(
1 − |Ŝ|/n

)(
θ̂ν=|Ŝ| − θ

)
= Tn + oP(1) (2.3)

where Tn = √
nFθ 〈z0,ε〉/‖z0‖2

2 has the t -distribution with n degrees of freedom. Thus the estimator
(2.2) enjoys asymptotic efficiency when ν = |Ŝ|.

(ii) The quantity
√

nFθ(θ̂ν=0 − θ)−Tn is unbounded for certain β satisfying n/ log(p/s0) ≫ s0 ≫
n2/3/ log(p/s0)

1/3 and a0 depending on S and � only. Consequently, the unadjusted (1.8) cannot be
efficient.

Theorem 2.1(ii) implies that with ν = 0, the unadjusted (1.8) cannot be efficient in the whole range
{s0 : s0 log(p/s0) ≪ n} of sparsity levels unless extra assumptions are made on the covariance matrix
� such as (1.11). Theorem 2.1(i) shows that using the adjustment ν = |Ŝ| repairs this: The efficiency in
(2.3) then holds in the whole range {s0 : s0 log(p/s0)≪ n} of sparsity levels. Theorem 2.1(i) is proved
after Corollary 3.2 below while (ii) is a consequence of the following proposition.

Proposition 2.2. Let the setting and assumptions of Theorem 2.1 be fulfilled and let ν be a random
variable with ν ∈ [0, n) almost surely. Then√

nFθ (θ̂ν − θ) = Tn + oP(1) + n−1(ν − |Ŝ|)
ν (2.4)

where 
ν = √
nFθ (1 − ν/n)−1(1 − |Ŝ|/n)−1‖z0‖−2〈z0,y − Xβ̂ (lasso)〉. Furthermore for any (s�, s0)

with s� ≤ s0 = o(n/ log(p/s0)), and any a0 with ‖�−1/2a0‖2 = 1 and ‖�−1a0‖0 = s�, there exists β

with ‖β‖0 = s0 such that

P
[|
ν | ≥ ‖�−1a0‖1

√
log(8p/s0)

]→ 1, P
[|Ŝ| ≥ s0

]→ 1. (2.5)

In particular, it is possible to pick a0 satisfying in addition ‖�−1a0‖1 ≥ s
1/2
� /‖�‖1/2

op .

Proposition 2.2 is proved in Appendix C of the supplement [2]. Theorem 2.1(ii) is implied by Propo-
sition 2.2 with s� = s0: If s

3/2
0

√
log(8p/s0)/n → +∞ then n−1|Ŝ|
ν=0 is unbounded with probability

approaching one by (2.5), while the other terms in (2.4) are stochastically bounded.

Example 2.1. It is informative to unpack from the proof of Proposition 2.2 how (a0,u0,β) is con-
structed so that (2.5) holds. Theorem 2.1 and Proposition 2.2 apply to any � with bounded spectrum
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and �ii ≤ 1. Let β be an s0-sparse vector with large enough non-zero coefficients and βj > 0 for some
index j = 1, . . . , p that is fixed throughout this example. Then let v ∈ {−1,0,1}p be an s�-sparse
vector with supp(v) ⊂ supp(β) and vk = sgn(βk) for all k ∈ supp(v). Consider

� = Ip + (1/4)s
−1/2
� [ejv


 + ve

j ].

which has bounded spectrum since ‖� − Ip‖op ≤ 1/2 and set � = �−1κ for some constant κ > 0
such that maxj=1,...,p �jj = 1. Since � has bounded spectrum, κ is also bounded and the spectrum of
� is bounded as required. From the proof of Proposition 2.2, we see that the requirement for u0 is that

〈u0, sgn(β)〉 = ‖u0‖1 (2.6)

must hold. For the � just defined, set u0 = �ej = (
1 + (1/4)s

−1/2
� vj

)
ej + (1/4)s

−1/2
� v. Since β

was chosen with βj > 0, we have vj ≥ 0 by definition of v and u0 satisfies (2.6). These quantities
(�,β,u0), when β has large enough coefficients, satisfy (2.5) by the proof of Proposition 2.2. Finally,
from (1.6) there is a one-to-one correspondence between u0 and a0 given by a0 = �u0/〈u0,�u0〉.
This implies a0 = �−1u0/〈u0,�

−1u0〉 and since u0 = �ej , the direction a0 for this example is pro-
portional to the canonical basis vector ej . Proposition 2.2 thus proves the necessity of the degrees-
of-freedom adjustment with a0 proportional to ej . Figure 2 illustrates this phenomenon on simulated
data.

The adjustment in (2.2) was proposed by [14] in the form of

β̂ = β̂ (lasso) + �−1X
(y − Xβ̂ (lasso))

n − ν
(2.7)

based on heuristics of the replica method from statistical physics and a theoretical justification in the
case of � = Ip . As z0 = Xu0 with u0 = �−1a0/

〈
a0,�

−1a0
〉
in (1.8), E‖z0‖2

2/n = 1/
〈
a0,�

−1a0
〉
and〈

z0,y − Xβ̂ (init)

〉
(
E‖z0‖2

2

)
(1 − ν/n)

=
〈
a0,

�−1X
(y − Xβ̂ (lasso))

n − ν

〉
.

Thus, the plug-in estimator

θ̂ν =
〈
a0, β̂

〉
with the β̂ in (2.7), (2.8)

is equivalent to replacing ‖z0‖2
2 with its expectation in the denominator of the bias correction term in

(2.2). Another version of the estimator, akin to the version of the LDPE proposed in [31], is

θ̂ν =
〈
a0, β̂

(lasso)
〉
+

〈
z0,y − Xβ̂ (lasso)

〉
〈
z0,Xu

〉
(1 − ν/n)

(2.9)

with a vector u ∈ R
p satisfying 〈u,a0〉 = 1. Since E

〈
z0,Xu

〉 = E‖z0‖2
2, the estimator (2.7) also cor-

responds to (2.9) with 〈z0,Xu〉 replaced by its expectation in the denominator of the bias correction
term.

Let h(lasso) = (β̂ (lasso) − β). It is worthwhile to mention here that when ‖Xh(lasso)‖2/
√

n = oP(1) based
on existing results on the Lasso, the asymptotic distribution of (2.2) adjusted at the n−1/2 rate does not
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change when ‖z0‖2
2 is replaced by a quantity of type ‖z0‖2

2(1 + O(n−1/2)) in the denominator of the
bias correction term. Indeed,

√
nFθ

∣∣∣∣
〈
z0,y − Xβ̂ (lasso)

〉
‖z0‖2

2(1 − ν/n)
−

〈
z0,y − Xβ̂ (lasso)

〉
‖z0‖2

2(1 + O(n1/2))(1 − ν/n)

∣∣∣∣ (2.10)

≤ O(1)(1 − ν/n)−1
(
|Tn|n−1/2 + ‖Xh(lasso)‖2/(σC0‖z0‖2)

)
.

The right-hand side converges to 0 in probability if (1 − ν/n)−1 = OP(1) and ‖Xh(lasso)‖2/
√

n = oP(1)

since Tn has the t -distribution with n degrees of freedom. Thus, as (2.2), (2.8) and (2.9) are asymp-
totically equivalent, the most notable feature of these estimators is the degrees-of-freedom adjustment
with the choice ν = |Ŝ|, as proposed in [14], compared with earlier proposals with ν = 0. While the
properties of these estimators for general β and � will be studied in the next section, we highlight in the
following theorem the requirement of either a degrees-of-freedom adjustment or some extra condition
on the bias of the Lasso in the special case where the Lasso is sign consistent.

Theorem 2.3. Suppose that the Lasso is sign consistent in the sense of

P

{
sgn(β̂ (lasso)) = sgn(β)

}
→ 1. (2.11)

LetC0 = ‖�−1/2a0‖2 andCβ = ‖�−1/2
S,S sgn(βS)‖2/

√
s0. Suppose that

√
(1 ∨ s0)/n+Cβ

√
s0(λ/σ )

)≤
ηn for a sufficiently small ηn < 1. Let Fθ = 1/(σC0)

2 be the Fisher information as in (1.7), and
Tn = √

nFθ 〈z0,ε〉/‖z0‖2
2 so that Tn has the t -distribution with n degrees of freedom. Let θ̂ν be as in

(2.2) or (2.8). Then,

(1 − ν/n)
√

nFθ

(
θ̂ν − θ

)= Tn + OP(ηn) (2.12)

for a random variable ν ∈ [0, s0] if and only if√
Fθ/n

(
s0 − ν

)〈
a0, β̂

(lasso) − β
〉= OP(ηn), (2.13)

if and only if √
Fθ/n

(
s0 − ν

)〈
(a0)S, λ(X


S XS/n)−1sgn(βS)
〉= OP(ηn). (2.14)

The conclusion also holds for the θ̂ν in (2.9) when C0‖�1/2u‖2 = O(1).

The proof is given in Appendix H of the supplement [2]. Theorem 2.3 provides an alternative nega-
tive result, similar in flavor to Theorem 2.1(ii) and Proposition 2.2 above. The settings may not match
exactly since the tuning parameter λ required for sign consistency is larger than the one featured in
Theorem 2.1. Compared with Proposition 2.2, the sign consistency lets us derive the two explicit con-
ditions (2.13)-(2.14) for efficiency that are useful to pinpoint situations, such as those described in the
next two paragraphs, where efficiency does not hold.

Theorem 2.3 implies that for efficient statistical inference of θ at the n−1/2 rate, the unadjusted
de-biasing scheme (1.8) requires either a degrees-of-freedom adjustment or the extra condition that
the bias of the initial Lasso estimator of θ , given by

〈
(a0)S, λ(X


S XS/n)−1sgn(βS)
〉
, is of order

oP(n1/2/s0), even when the initial Lasso estimator is sign-consistent. For example, if (a0)Sc = 0
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and (a0)S = sgn(βS)/‖�−1/2sgn(βS)‖2, then a0 is standardized with ‖�−1/2a0‖2 = 1 and condition
(2.14) on the bias can be written as

(λ/σ )n−1/2(s0 − ν)‖�−1/2
S,S sgn(βS)‖2 = OP(ηn)

because the singular values of the Wishart matrix �
−1/2
S,S (X


S XS/n)�
−1/2
S,S are bounded away from 0

and +∞ with high probability. For ν = 0, this is equivalent to Cβ(λ/σ )s
3/2
0 /

√
n = O(ηn). If Cβ is

of order of a constant and ηn < 1, this implies that the unadjusted de-biasing scheme (1.8) cannot be
efficient in the asymptotic regime when

(λ/σ )s
3/2
0 /

√
n≫ 1. (2.15)

Interestingly, the condition (λ/σ )s
3/2
0 /

√
n = O(1) is weaker than the typical sample size requirement

n � (s0 logp)2 in the case of unknown �.
Another enlightening situation is a0 = ej the j -th canonical basis vector for some j ∈ S, S =

{1, . . . , s0} and �−1 diagonal by block with two blocks

�−1 =
(

I |S| + (1/4)|S|−1/2[sgn(βS)e

j + ej sgn(βS)
] 0|S|,p−|S|

0p−|S|,|S| Ip−|S|

)
.

The eigenvalues of �−1/2 belong to [1/2,3/2] by construction since (|S|)−1/2sgn(βS)e

j has op-

erator norm equal to one. Again using properties of the singular values of the Wishart matrix
�

−1/2
S,S (X


S XS/n)�
−1/2
S,S , the left hand-side of condition (2.14) is of order√
Fθ/n(s0 − ν)λe


j (�S,S)−1sgn(βS) � (λ/σ )n−1/2(s0 − ν)
√

s0.

Similarly to the previous paragraph, this implies that with ν = 0 the unadjusted de-biasing scheme
(1.8) cannot be efficient if (2.15) holds. Up to a multiplicative constant in �, this example is similar to
Example 2.1 with s� = s0.

The novelty of our contributions resides in the s2
0 ≫ n regime up to logarithmic factor, in the sparsity

range where the transition (2.15) happens. The necessity of the degrees-of-freedom adjustment can be
seen in simulated data as follows. Figure 1 presents the distribution of

√
n(θ̂ν −θ) with and without the

adjustment for � = Ip,σ = 1 for (n,p) = (4000,6000) and s0 = 20,40,80,120. Although classical
results on de-biasing in the regime s2

0 ≪ n proves that
√

n(θ̂ν − θ) ≈ N(0,1) [13,24,31] with ν = 0,
simulations reveal that

√
n(θ̂ν − θ) is substantially biased (downward in Figure 1), and any confidence

interval constructed from
√

n(θ̂ν − θ) ≈ N(0,1) would not correctly control Type-I error due to this
substantial bias. This substantial bias is present for sparsity as small as s0 = 20 (for which s2

0/n = 0.1).
On the other hand, the adjustment ν = |Ŝ| repairs this, as shown both in the simulation in Figure 1
and by the theory in Theorem 2.1 and in the next sections. Thus our novel results on the necessity of
the degrees-of-freedom adjustment is not only theoretical; It also explains the gap between simulations
and the predictions from the early literature on de-biasing [13,24,31] where the degrees-of-freedom
adjustment is absent.

Guided by Theorem 2.3, one can easily exhibit situations with correlated � and a0 proportional to
ej (a canonical basis vector), such that the unadjusted estimate leads to spurious inference: One just
needs to find problem instances such that (2.14) is large. As an example, Figure 2 shows boxplots of
the situation with a0 = ej /(�

−1)
1/2
jj sparsity s0 = ‖β‖0 = 120, p = 6000, n = 4000, σ = 1 and � is

correlated of the form �−1 = Ip + 0.07(sgn(β)e

j + ej sgn(β)
). In the un-adjusted case, the pivotal
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Figure 1. Distribution of
√

n(θ̂ν − θ) in the adjusted (ν = |Ŝ|) and unadjusted ν = 0 cases. For comparison, Tn has the t-distribution with n

degrees-of-freedom. Here a0 is proportional to sgn(β) normalized with ‖�−1/2a0‖2 = 1. Experiments were replicated 200 times. A two-sided

t-test rejects that the mean of
√

n(θ̂ν − θ) is zero in the unadjusted case (ν = 0) with p-value 0.0048 for s0 = 20, p-value 0.00028 for s0 = 40,

p-value 7 · 10−22 for s0 = 80 and p-value 2 · 10−31 for s0 = 120.

quantity n1/2(θ̂ν=0 − θ) is biased downward and would produce misleading confidence intervals with
incorrect coverage. The adjustment ν = |Ŝ| exactly repairs this.

Theorem 2.3 requires sign consistency of the Lasso in (2.11). Sufficient conditions for the sign
consistency of the Lasso were given in [17,21,26,33]. In particular, [26] gave the following sufficient
conditions for (2.11) in the case of linear regression (1.1) with Gaussian design: For certain positive γ ,
δ and φp ≥ 2, ∥∥�Sc,S�−1

S,Ssgn(βS)
∥∥∞ ≤ 1 − γ,

λ = γ −1σ

√
φpρ(2/n) logp,

ρ(Cminγ
2)−1(2s0/n) log(p − s0) + (φp logp)−1 log(p − s0) < 1 − δ,

with ρ = maxj∈Sc

(
�j,j − �j,S�−1

S,S�S,j

)
and Cmin = min‖u‖2=1

∥∥�−1/2
S,S u

∥∥
2, and

min
j∈S

|βj | ≥
(
1 + n−1/2cn

)
λ max

‖u‖∞=1

∥∥�−1/2
S,S u

∥∥2
∞ + 20

(
σ 2(Cminn)−1 log s0

)1/2
,

for some cn → ∞.
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Figure 2. Boxplots of pivotal random variables
√

n(θ̂n − θ) for ν = 0 (unadjusted) and ν = |Ŝ| (adjusted) when a0 = ej /(�−1)
1/2
jj

,

s0 = ‖β‖0 = 120, p = 6000, n = 4000, σ = 1 and �−1 = Ip + 0.07(sgn(β)e

j

+ ej sgn(β)
). For comparison, Tn has the t-distribution with

n degrees-of-freedom.

2.2. Unknown �

In the case of unknown u0, one needs to estimate the ideal score vector z0 = Xu0 as well as the
variance level ‖z0‖2/n in (1.8). In view of (1.6), we consider

z = Xu, Q = Ip − ua

0 with u satisfying 〈u,a0〉 = 1. (2.16)

As Q2 = Q, by algebra and the definitions of u0 and z0 in (1.6) and (1.8),

z = −XQu0 + z0 = XQγ + z0 (2.17)

with γ = −Qu0 and E
[
(XQ)
z0

] = Q
�u0 = 0. Hence, (2.17) is a linear model with response
vector z ∈ R

n, Gaussian design matrix XQ ∈ R
n×p with n independent rows, true coefficient vector

γ , and Gaussian noise z0 ∼ N(0,C−2
0 In) independent of XQ, where C0 = ‖�−1/2a0‖2. Note that

since Q is rank deficient, the linear model (2.17) is unidentifiable: For both γ̃ = −u0 and γ = −Qu0
we have XQγ̃ = XQγ so that both γ̃ ,γ can be regarded as the true coefficient vector in the model
(2.17). To solve this identifiability issue, we view the parameter space of (2.17) as the image of Q and
the true coefficient vector as γ = −Qu0.

It is thus natural to estimate z0 in the linear model (2.17), as was already suggested previously for
a0 = ej [15,24,31]. Given an estimator γ̂ of γ , we define the estimated score vector

ẑ = z − XQγ̂ (2.18)

and the corresponding de-biased estimate

θ̂ν,̂z = 〈a0, β̂
(lasso)〉 + 〈̂z,y − Xβ̂ (lasso)〉

(1 − ν/n)〈̂z,z〉 . (2.19)

This corresponds to (2.9) with the ideal score vector z0 replaced by ẑ.
The vector u in (2.16) that defines the linear model (2.17) should be picked carefully to yield small

prediction error ‖z0 − ẑ‖2
2/n = ‖XQ(γ̂ − γ )‖2

2/n in the linear model (2.16). As z0 = Xu0 with a
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high-dimensional u0, it would be reasonable to expect that a sparsity condition on u0 would ensure
proper convergence of ẑ to z0. However, this requires a connection between the sparsity of γ = −Qu0
to that of u0. To this end, we pick

u = ej0/(a0)j0 with j0 = arg max
j=1,...,p

∣∣(a0)j
∣∣. (2.20)

For the above choice of u,

〈u,a0〉 = 1, ‖Qh‖0 ≤ 1 + ‖h‖0, ‖Qh‖1 ≤ 2‖h‖1, ∀ h ∈ R
p, (2.21)

so that the sparsity of u0 implies that of γ . This leads to the Lasso estimator

γ̂ = Qb̂ with b̂ = arg min
b∈Rp

{
‖z − XQb‖2

2/(2n) + τ̂Aλuniv‖Qb‖1

}
(2.22)

where λuniv =√
(2/n) logp, A is an upper bound for maxj=1,...,p ‖XQej‖2/n1/2 and τ̂ is an estimate

of the noise level C−1
0 in the regression model (2.17). We note the delicate difference between (2.22)

and the usual Lasso as the estimator and penalty are both restricted to the image of Q. To the best
of our knowledge, the regression model (2.17) in the direction (2.20), which plays a crucial role in
our analysis, provides a new way of dealing with dense direction a0 in de-biasing the Lasso. We note
that the natural choice ũ = a0‖a0‖−2

2 satisfies 〈a0, ũ〉 = 1, but for certain dense a0 the corresponding
projection matrix Q̃ = Ip − ũa


0 does not preserve sparsity as in (2.21).
For the purpose of the asymptotic normality result in Theorem 2.5 below, we will consider estimators

γ̂ satisfying

‖Q(γ̂ − γ )‖1 = OP(C−1
0 )min

{‖γ ‖0λuniv,C0‖γ ‖1
}
, (2.23)

sup
{〈̂z,XQh〉/n : ‖Qh‖1 = 1

}= OP(C−1
0 λuniv). (2.24)

Inequality (2.23) is the usual �1 estimation rate when γ is sparse or γ has small �1 norm. Condition
(2.24) holds automatically for the Lasso estimator (2.22) when C0τ̂ = OP(1) as a consequence of the
KKT conditions as explained in the following proposition.

Proposition 2.4. Let z = Xu and Q = Ip − ua

0 be as in (2.16) with the u in (2.20). Assume that

�j,j ≤ 1∀j , φmin(�) is bounded away from 0, and min{‖Qu0‖0 log(p)/n,C0‖Qu0‖1
√

log(p)/n} =
o(1). Let Qγ̂ be as in (2.22) with a constant A > 2 and τ̂ satisfying one of the following conditions:

(i) τ̂ = ‖z − XQγ̂ ‖2/n1/2 is the recursive solution of (2.22) as scaled Lasso [19],
(ii) or τ̂ is any estimator satisfying 1 + oP(1) ≤ C0τ̂ ≤ OP(1).

Then, the requirements (2.23)-(2.24) are satisfied.

Proposition 2.4 is proved in Appendix C of the supplement [2]. The following is our main result for
unknown �.

Theorem 2.5. Assume that �jj ≤ 1 for all j ∈ [p] and that the spectrum of � is uniformly bounded
away from 0 and ∞; e.g. max(‖�‖op,‖�−1‖op) ≤ 2. Let λ = 1.01σ

√
2 log(8p/s0)/n for the Lasso

(2.1) in the linear model (1.1). Let εn > 0 with εn = o(1) and Bn be the class of (β,a0) ∈ R
p×2

satisfying

‖β‖0 logp

n
+ min

{‖u0‖0 logp

n
,
C0‖u0‖1

√
logp√

n

}
≤ εn (2.25)
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and a0 �= 0, where u0 is as in (1.6). Given a0 �= 0, let u be as in (2.20), Q = Ip − ua

0 , Qγ̂ an

estimator of γ = −Qu0 in the linear model (2.17) satisfying (2.23)-(2.24), ẑ the estimated score vector
in (2.18), and θ̂ν,̂z the de-biased estimate in (2.19). If ν = ‖β̂ (lasso)‖0, then uniformly for (β,a0) ∈ Bn√

nFθ(θ̂ν=|Ŝ|,̂z − θ) = Zn + OP(rn)

holds, where Zn →d N(0,1) and

rn = rn,p(β,a0) = min
{ (‖β‖0 ∧ ‖u0‖0) log(p)√

n
,C0‖u0‖1

√
logp

}
. (2.26)

Consequently, for all (β,a0) ∈ Bn satisfying rn → 0,√
nFθ(θ̂ν=|Ŝ|,̂z − θ) →d N(0,1).

Theorem 2.5 is proved in Appendix C the supplement [2]. The sparsity condition (2.25) is mild:
it only requires that the squared prediction rate for β and γ converge to 0. Under this condition,
Theorem 2.5 shows that estimation of θ is possible, for general directions a0 �= 0, at the rate n−1/2(1 +
rn) where rn is given by (2.26). The rate n−1/2(1 + rn) is optimal as it matches the lower bound in
Proposition 4.2 of [15] for the estimation of θ = βj in the canonical basis directions a0 = ej stated in
(1.10). Before Theorem 2.5, it was unknown whether the lower bound (1.10) can be attained (cf. for
instance the discussion in Remark 4.3 of [15]). Theorem 2.5 closes this gap, extends the upper bound
to general direction a0, and relaxes the �1 bound on � imposed in [15].

The recent work [9] proposes an alternative construction of a score vector for general direction a0
based on a quadratic program. This quadratic program is similar to the construction in [13,31], with a
modification to handle general direction a0, see [9], equation (7), (8) and (10). The upper bounds in
[9], Corollaries 3 and 4, require ‖β‖0 �

√
n/ logp in contrast with Theorem 2.5 where ‖β‖0 ≫

√
n

is allowed.
Another recent line of research [34–36] consider the construction of confidence intervals for a


0 β for
general directions a0 without sparsity assumption on β . These works consider the setting where β is
arbitrary but bounded in the sense that ‖�1/2β‖2

2 ≤ C for some constant C � σ 2 independent of n,p.
In this setting, ‖β‖0 log(p)/n → 0 is violated and consistent estimation of β or Q0β is not possible.
Assuming ‖�1/2β‖2

2 ≤ C instead of a sparsity assumption on β leads to different minimax rates: The
rate in [34], Corollary 5, does not depend on ‖β‖0 but depends implicitly on ‖�1/2β‖2 instead; hence
the rate in Theorem 2.5 and (1.10) is not directly comparable to theirs. On a higher level, this line of
research is fundamentally different than the present work: [34–36] leverage the assumption that the
nuisance part of the signal, XQ0β , is bounded with componentwise variance of the same order as that
of the noise, without attempting to estimate the nuisance part of the signal. In contrast, Theorem 2.5
attemps to estimate the nuisance parameter and the nuisance part of the signal XQ0β is allowed to
have arbitrarily large componentwise variance.

Next, we prove that the de-biased estimator in Theorem 2.5 for unknown �, and the ideal θ̂ν in (2.2)
for known � as well, would not achieve the same rate without the degrees-of-freedom adjustment.
Compared with Theorem 2.3, Theorem 2.6 below is somewhat less explicit but the sign consistency of
the Lasso is no longer required.

Theorem 2.6. Let �, εn, Bn, rn, ẑ and θ̂ν,̂z be as in Theorem 2.5. Let s0 and s� be positive integers
satisfying s0 log(p)/n ≤ εn, s� ≤ s0 and

n−1s0s
1/2
�

√
log(8p/s0) ≫ 1 + s� log(p)/n1/2. (2.27)
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If ν = 0, which means no degrees-of-freedom adjustment in (2.19), then there exist (β,a0) ∈ Bn such
that ‖β‖0 = s0, ‖u0‖0 = ‖�−1a0‖0 = s�, and

√
nFθ(θ̂ν,̂z − θ)/(1 + rn) is stochastically unbounded.

Moreover, the above statement also holds when θ̂ν,̂z is replaced by θ̂ν in (2.2).

Theorem 2.6 is proved in Appendix C of the supplement [2]. As an example, if s� = εn

√
n/ log(p)

and s0 ≥ ε−1
n n3/4 for some εn → 0, then

• (2.27) holds so that, without adjustment,
√

nFθ(θ̂ν=0,̂z − θ) is unbounded by Theorem 2.6 for
some (β,a0) ∈ Bn with ‖β‖0 = s0 and ‖u0‖0 = s�.

• rn → 0 hence
√

nFθ(θ̂ν=|Ŝ|,̂z − θ) →d N(0,1) by Theorem 2.5 and the de-biased estimate ad-

justed with ν = ‖β̂ (lasso)‖0 is efficient for all (β,a0) ∈ Bn with ‖β‖0 ≤ s0,‖u0‖0 ≤ s�.

2.3. Unknown � and canonical basis directions a0 = ej

For convenience we provide here the notation and corollary of Theorem 2.5 in the case of canonical
basis vector a0 = ej for some j ∈ {1, . . . , p}. We denote (u0,z0, ẑ) by (uj ,zj , ẑj ) and write the linear
model (2.17) as

Xej = X(−j) γ (j) + zj (2.28)

where X(−j) ∈R
n×(p−1) is the matrix X with j -th column removed, γ (j) ∈R

p−1. The corresponding
vector u0 is uj = (�−1)−1

jj �−1ej which is related to γ (j) by (uj )j = 1 and (uj )(−j) = −γ (j). The

ideal score vector z0 becomes zj = (�−1)−1
jj X�−1ej and has iid N(0, (�−1)−1

jj ) entries independent

of X(−j). For a given estimator γ̂ (j) of γ (j), the score vector (2.18) is then ẑj = Xej − X(−j)γ̂ (j) and
the de-biased estimate (2.19) reduces to

β̂
(de-biased)

j = (β̂ (lasso))j + 〈̂zj ,y − Xβ̂ (lasso)〉
(1 − ν/n)〈̂zj ,Xej 〉 . (2.29)

which corresponds to the proposal in [31] modified with the degrees-of-freedom adjustment (1− ν/n).
For a0 = ej , the Lasso estimator (2.22) becomes

γ̂ (j) = arg min
γ∈Rp−1

{
1

2n
‖Xej − X(−j)γ ‖2

2 + τ̂j λ‖γ ‖1

}
. (2.30)

with recursive solution τ̂j = ‖Xej − X(−j)γ ‖2/n1/2 in the scaled Lasso [19] or any estimate τ̂j satis-
fying 1 + oP(1) ≤ (�−1)j,j τ̂

2
j ≤ OP(1). As the choice of u in (2.20) for a0 = ej is u = ej , the proof

of Theorem 2.5 can be modified to allow λ = Aλuniv with A > 1, since in this case E‖XQa0‖2
2/n is

bounded from the above by 1.

Corollary 2.7. Assume that �jj ≤ 1 for all j ∈ [p] and that the spectrum of � is uniformly bounded
away from 0 and ∞; e.g. max(‖�‖op,‖�−1‖op) ≤ 2. Let λ = 1.01σ

√
2 log(8p/s0)/n for the Lasso

(2.1). Consider the Scaled Lasso in (2.30) with λ = 1.01
√

2 log(p)/n, the corresponding score vector

ẑj and de-biased estimate β̂
(de-biased)

j in (2.29) with ν = ‖β̂ (lasso)‖0. Then for any j ,

(‖β‖0 ∨ ‖�−1ej‖0) log(p)

n
→ 0 and

(‖β‖0 ∧ ‖�−1ej‖0) log(p)√
n

→ 0 (2.31)

implies
√

n(�−1)
−1/2
jj (β̂

(de-biased)

j − βj ) →d N(0, σ 2).
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Remark 2.1. The tuning parameters of the present section are chosen as λ = 1.01σ
√

2 log(8p/s0)/n

for simplicity of the presentation. As the results of the present section are consequences of Theorem 3.1
in the next section, more general tuning parameters of the form (3.4) are also allowed and the resulting
constants in the theorems would then depend on certain constants η2 ∈ (0,1), η3 > 0.

3. Theoretical results for known �

In this section, we prove that the degrees-of-freedom adjusted LDPE in (2.2) indeed removes the bias
of the Lasso for the estimation of a general linear functional θ = 〈a0,β〉 when (s0/n) log(p/s0) is
sufficiently small and a sparse Riesz condition (SRC) [30] holds on the population covariance matrix
� of the Gaussian design.

The SRC is closely related to the restricted isometry property (RIP) [11,12]. While the RIP is spe-
cialized for nearly uncorrelated design variables in the context of compressed sensing, the SRC is
more suitable in analysis of data from observational studies or experiments with higher correlation in
the design. For example, the SRC allows an upper sparse eigenvalue greater than 2. For p × p positive
semi-definite matrices M , integers 1 ≤ m ≤ p and a support set B ⊂ {1, . . . , p}, define a lower sparse
eigenvalue as

φmin(m,B;M) = min
A⊂[p]:|A\B|=m

φmin

(
MA,A

)
(3.1)

and an upper sparse eigenvalue as

φmax(m,B;M) = max
A⊂[p]:|A\B|=m

φmax

(
MA,A

)
, (3.2)

where φmin(M) and φmax(M) are respectively the smallest and largest eigenvalues of symmetric matrix
M . Define similarly the sparse condition number by

φcond(m;B,M) = max
A⊂[p]:|A\B|≤(1∨m)

{
φmax(MA,A)/φmin(MA,A)

}
. (3.3)

Recall that S is the support of β and s0 = |S|. For a precise statement of the sample size requirement
for our main results, we will assume the following.

Assumption 3.1. Assume that � is invertible with diagonal elements at most 1, i.e., maxj=1,...,p �jj ≤
1. Consider positive integers {m,n,p, k} and positive constants {ρ∗, η2, η3, ε1, ε2, ε3, ε4} with η2, η3 ∈
(0,1). Set the tuning parameter of the Lasso by

λ = η−1
2 (1 + η3)σλ0, where λ0 =√

(2/n) log(8p/k). (3.4)

Define {τ∗, τ ∗} by τ∗ = (1 − ε1 − ε2)
2, τ ∗ = (1 + ε1 + ε2)

2 and assume that

s0 + k <
(1 − η2)

22m

(1 + η2)2
{
(τ ∗/τ∗)φcond(m + k;S,�) − 1

} (3.5)

and ρ∗ ≤ φmin(m + k,S;�) hold. Assume that λ0
√

s∗ ≤ 1 where s∗ = s0 + m + k, as well as

2(m + k) + s0 + 1 ≤ (n − 1) ∧ (p + 1), (3.6)

ε1 + ε2 < 1, ε3 + ε4 = ε2
2/8, (3.7)
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s0 + m + k + 1 ≤ min(p + 1, ε2
1n/2), log

(
p − s0
m + k

)
≤ ε3n. (3.8)

Typical values of k,m and {ρ∗, η2, η3, ε1, ε2, ε3, ε4} are given after Corollary 3.2 below. As will
become clear in the proofs in Appendix A of the supplement [2], the integer k above is an upper bound
on the cardinality of the set

B = {j ∈ [p] : |ε
xj |/n ≥ η2λ}, (3.9)

i.e., the set of covariates that correlate highly with the noise. If k = 1 then λ = η−1
2 (1 + η3) ×

σ
√

(2/n) log(8p) and the set B is empty with high probability. The integer m is, with high proba-

bility, an upper bound on the cardinality of the set supp(β̂ (lasso)) \ (S ∪ B). In other words, the support
of β̂ (lasso) contains at most m variables that are neither in the true support S nor in the set B of highly
correlated covariates. These statements are made rigorous in Appendices A.1 and A.2 of the supple-
ment [2]. Results of the form |Ŝ| = OP(s0) have appeared before for the Lasso, see for instances [30],
Theorem 1, [7], Eq. (7.9), [32], Corollary 2 (ii), and [5], Theorem 3. Among these existing bounds,
the theory derived in the present paper is closest to [32], Corollary 2 (ii), where a bound of the form
|Ŝ| = OP(s0) is derived under a condition on the upper sparse eigenvalue (3.2) after a prediction error
bound under a weak restricted eigenvalue condition. They depart from other existing bounds of the
form |Ŝ| = OP(s0) in several ways. The bounds in [30], Theorem 1, requires the tuning parameter to
be set as a function of the sparse eigenvalues of X
X/n. The bound from [7] involves φmax(X


X/n)

which is unbounded if p/n → +∞ for Gaussian designs. The bound [5], Theorem 3, tackles tuning
parameters larger than σ

√
2 log(p)/n but does not provide guarantees for smaller tuning parameters

of order σ
√

2 log(8p/k)/n. The theory developed for the present paper in Appendix A of the supple-
ment [2] improves upon these aforementioned references: The theory only requires bounds on sparse
condition number (cf. the SRC condition (3.5)), the tuning parameters need not depend on the sparse
eigenvalues, and small tuning parameters of order σ

√
2 log(8p/k)/n are allowed. Furthermore, the

theory in Appendix A of the supplement [2] clearly separates the roles of s0, k and m: k is an upper
bound on the cardinality of the set (3.9) of covariates highly correlated with the noise, m is an upper
bound on supp(β̂ (lasso)) \ (S ∪ B), and consequently ‖β̂ (lasso)‖0 ≤ s0 + k + m.

Stochastically bounded OP(·) notation. In the following results, we consider an asymptotic regime
with growing {s0,m, k,n,p} such that

p/k → +∞, s∗λ2
0 → 0 (3.10)

where s∗ = s0 + m + k. This means that we consider a sequence of regression problems (1.1) indexed
by n and {s0,m, k,p} are functions of n such that (3.10) holds and Assumption 3.1 is satisfied for all
n with constants {ρ∗, η2, η3, ε1, ε2, ε3, ε4} independent of n. For a deterministic sequence an, we write
Wn = OP(an) if the sequence of random variables (Wn) is such that for any arbitrarily small γ > 0,
there exists constants K,N depending on γ and {ρ∗, η2, η3, ε1, ε2, ε3, ε4} such that for all n ≥ N ,
P(Wn > K) ≤ γ . We also write Wn = oP(1) if Wn = OP(an) for some an → 0. Under the above
Assumption 3.1, our main result is the following.

Theorem 3.1. Let (3.10) and Assumption 3.1 be fulfilled. Let Fθ = 1/(σC0)
2 be the Fisher information

as in (1.7), and Tn = √
nFθ 〈z0,ε〉/‖z0‖2

2 so that Tn has the t -distribution with n degrees of freedom.
For any random degrees-of-freedom adjustment ν ∈ [0, n] we have√

nFθ (1 − ν/n)(θ̂ν − θ) = Tn +√
Fθ/n

〈
a0, β̂

(lasso) − β
〉 (|Ŝ| − ν

)+ OP

(
λ0

√
s∗
)
.
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If the condition number φcond(p;∅,�) = ‖�‖op‖�−1‖op of the population covariance matrix �

is bounded, then OP

(
λ0

√
s∗
)
above can be replaced by OP

(
λ0

√
s0 + k

)
[by OP

(
λ0

√
s0
)
when the

penalty is chosen with k � s0 in (3.4)].

The result is proved in Section 8.4. If λ0
√

s∗ → 0 and k/p → 0, the above result implies that√
nFθ(1 − ν/n)(θ̂ν − θ) is within oP(1) of Tn of the t -distribution with n degrees of freedom if and

only if √
Fθ/n

〈
a0, β̂

(lasso) − β
〉 (|Ŝ| − ν

)= oP(1). (3.11)

The left hand side of (3.11) is negligible either because the modified de-biasing scheme (2.2) is cor-
rectly adjusted with ν = |Ŝ| (or ν ≈ |Ŝ|) to account for the degrees of freedom of the initial estimator
β̂ (lasso), or because the estimation error of the initial estimator 〈a0, β̂

(lasso) − β〉 is significantly small.
The choice of degrees-of-freedom adjustment ν = |Ŝ| ensures that the quantity (3.11) is always equal

to 0. This leads to the following corollary.

Corollary 3.2. Let (3.10) and Assumption 3.1 be fulfilled. With the notation from Theorem 3.1, if
ν = |Ŝ| then √

nFθ

(
1 − |Ŝ|/n

)(
θ̂ν=|Ŝ| − θ

)
= Tn + OP

(
λ0

√
s∗
)
. (3.12)

Hence if λ0
√

s∗ → 0 and k/p → 0, the de-biasing scheme (2.2) correctly adjusted with ν = |Ŝ|
enjoys asymptotic efficiency. To highlight this fact and give an example of typical values for m,k

and {ρ∗, η2, η3, ε1, ε2, ε3, ε4} in Assumption 3.1, let us explain how Corollary 3.2 implies (2.3) of
Theorem 2.1. Set η−1

2 = √
1.01, η3 = √

1.01 − 1 and k = s0, so that the tuning parameter (3.4) is
equal to λ defined in Theorem 2.1. Set also ε1 = ε2 = 1/4 so that τ∗ = 1/4, τ ∗ = 9/4. Under the
assumptions of Theorem 2.1, the spectrum of � is bounded away from 0 and ∞ (e.g. a subset of
[1/2,2]) and the sparse condition number appearing in (3.5) is bounded (e.g. at most 4 respectively).
Next, set m = Cs0 for some large enough absolute constant C > 0 chosen so that (3.5) holds; this gives
s∗ = s0 +m+ k = (C + 2)s0. The conditions in Assumption 3.1 are satisfied thanks to λ0

√
s∗ → 0 and

k/p → 0. By Lemma 8.1 we get |Ŝ| = OP(s0). Then (2.3) is a direct consequence of (3.12).
By Theorem 3.1, the unadjusted de-biasing scheme (1.8) enjoys asymptotic efficiency for all fixed

a0 and β with ‖β‖0 ≤ s0 if and only if (3.11) holds with ν = 0, i.e., if√
Fθ/n

〈
a0, β̂

(lasso) − β
〉
|Ŝ| = oP(1). (3.13)

By the Cauchy-Schwarz inequality, |〈a0, β̂
(lasso) − β〉| ≤ C0‖�1/2(β̂ (lasso) − β)‖2. Under Assumption 3.1

or other typical conditions on the restricted eigenvalues of � and the sample size, the population risk
‖�1/2(β̂ (lasso) − β)‖2 is of order OP(σλ0

√
s∗) which grants (3.13) if λ0

√
s∗s∗/

√
n → 0. This is the

content of the following corollary which is formally proved in Section 8.5.

Corollary 3.3 (Unadjusted LDPE). Let (3.10) and Assumption 3.1 be fulfilled. With the notation from
Theorem 3.1, if ν = 0 then

√
nFθ(θ̂ν=0 − θ) = Tn + OP

(
λ0

√
s∗
(

1 + s∗√
n

))
. (3.14)
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If λ2
0(s∗)3/n → 0 then the right hand side of (3.14) converges in probability to Tn. In this asymptotic

regime, the degrees-of-freedom adjustment is not necessary and the unadjusted (1.8) enjoys asymptotic
efficiency. Note that although the adjustment ν = |Ŝ| that leads to the efficiency of θ̂ν in Corollary 3.2
is not necessary in this particular asymptotic regime, such adjustment does not harm either. Since the
practitioner cannot establish whether the asymptotic regime λ2

0(s∗)3/n → 0 actually occurs because s0

and s∗ are unknown, it is still recommended to use the adjustment ν = |Ŝ| as in Corollary 3.2 to ensure
efficiency for the whole range of sparsity.

An outcome of Theorem 2.3 is that the unadjusted de-biasing scheme (1.8) cannot be efficient in
the regime (2.15). By Theorem 2.3 and the discussion surrounding (2.15) on the one hand, and Corol-
lary 3.3 and the discussion of the previous paragraph on the other hand, we have established the fol-
lowing phase transition:

• If λ2
0(s∗)3/n ≪ 1, the unadjusted de-biasing scheme (1.8) is efficient for every a0, by Corol-

lary 3.3.
• If λ2

0s
3
0/n ≫ 1, the unadjusted de-biasing scheme (1.8) cannot be efficient for certain specific a0.

In other words, there is a phase transition at s∗ � n2/3 (up to a logarithmic factor) where degrees-of-
freedom adjustment becomes necessary to achieve asymptotic efficiency for all preconceived directions
a0. Condition s∗ ≪ n2/3 is a weaker requirement than the assumption s∗ ≪

√
n commonly made in

the literature on de-biasing.

4. De-biasing without degrees of freedom adjustment under
additional assumptions on �

The left hand side of (3.13) quantifies the remaining bias of the unadjusted de-biasing scheme (1.8).
Under an additional assumption on �, namely a bound on ‖�−1a0‖1, the initial bias of the Lasso
〈a0, β̂

(lasso) − β〉 is small enough to grant asymptotic efficiency to the unadjusted de-biasing scheme
(1.8). The following theorem makes this precise.

Theorem 4.1. Let (3.10) and Assumption 3.1 be fulfilled. Suppose

‖�−1a0‖1/‖�−1/2a0‖2 ≤ K0,n,p = K1,n,p

√
n/s∗ (4.1)

for some quantities K0,n,p and K1,n,p . Then,
√

Fθ |〈a0, β̂
(lasso) − β〉| = OP(λ0K0,n,p) and√

nFθ(θ̂ν=0 − θ) = Tn + OP

(
(1 + K1,n,p)λ0

√
s∗ + s∗/n

)
.

This implies that
√

nFθ (θ̂ν=0 − θ) = Tn + oP(1) when K1,n,p = O(1).

The proof is given in Appendix B of the supplement [2]. In other words, the unadjusted de-biasing
scheme (1.8) is efficient and degrees-of-freedom adjustment is not needed for efficiency if the �1 norm
of �−1a0 is bounded from above as in

‖�−1a0‖1/‖�−1/2a0‖2 = O(
√

n/s∗)

with s∗/p → 0 and (s∗/n) log(p/s∗) → 0. This improves by a logarithmic factor the condition
‖�−1a0‖1/‖�−1/2a0‖2 = O(1) required for efficiency in [15].

The above result explains why the necessity of degrees-of-freedom adjustment did not appear in
previous analysis such as [15];

√
Fθ |〈a0, β̂

(lasso) − β〉| = OP(λ0) when K0,n,p = O(1) in (4.1), and the
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unadjusted de-biasing scheme (1.8) is efficient when K1,n,p = O(1) in (4.1). However, by Theorem 2.3
and the discussion surrounding (2.15), there exist certain a0 with large ‖�−1a0‖1/‖�−1/2a0‖2 such
that the unadjusted de-biasing scheme cannot be efficient. For such a0, degrees-of-freedom adjustments
are necessary to achieve efficiency.

5. An �∞ error bound for the lasso

The idea of the previous section can be applied to a0 = ej simultaneously for all vectors ej of the
canonical basis (e1, . . . , ep). This yields the following �∞ bound on the error of the Lasso.

Theorem 5.1. Let Assumption 3.1 be fulfilled, and further assume that logp < n. Then the Lasso
satisfies simultaneously for all j = 1, . . . , p∣∣∣β̂ (lasso)

j − βj

∣∣∣≤ M2
5‖�−1ej‖1λ + σ‖�−1/2ej‖2

√
logp/n

(
2M5 + 3M̄λ0

√
s∗
)

1 − s∗/n
(5.1)

on an event ��∞ such that P(�c
�∞) → 0 when (3.10) holds, where s∗ = s0 + m + k, M5 = 1/(1 − η3)

and M̄ is a constant that depends on {ρ∗, η2, η3, ε1, ε2, ε3, ε4} only. Consequently, since ‖�−1/2ej‖2 ≤
‖�−1ej‖1, on the same event we have

‖β̂ (lasso) − β‖∞ ≤ ρ(�)

(
M2

5 + 2M5 + 4M̄λ0
√

s∗
1 − s∗/n

)
max

(
λ,σ

√
logp

n

)

where ρ(�) = maxj=1,...,p ‖�−1ej‖1.

The proof is given in Appendix B of the supplement [2]. The above result asserts that if the �1-norms
of the columns of �−1 are bounded from above by some constant ρ(�) > 0 then

‖β̂ (lasso) − β‖∞ ≤ C(�)max(λ,σ
√

log(p)/n)

holds with overwhelming probability for some constant C(�) � ρ(�).
Although some �∞ bounds for the lasso have appeared previously in the literature, we are not aware

of previous results comparable to Theorem 5.1 for s0 ≫ √
n. The result of [16] and [3], Theorem

2(2), requires incoherence conditions on the design, i.e., that non-diagonal elements of X
X/n are
smaller than 1/s0 up to a constant. This assumption is strong and cannot be satisfied in the regime
s0 ≫ √

n, even for the favorable � = Ip: for � = Ip the standard deviation of the i, j -th entry
is E[(X
X/n)2

ij ]1/2 = 1/
√

n. In a random design setting comparable to ours, Section 4.4 of [22]

explains that ‖β̂ (lasso) − β‖∞ � maxj ‖�−1ej‖1σ
√

log(p)/n(1 + ‖β̂ (lasso) − β‖1/σ). This bound is only

comparable to our �∞ bound in the regime ‖β̂ (lasso) − β‖1 = OP (1), i.e., in the regime s0 �
√

n (up to
logarithmic factors) since ‖β̂ (lasso) − β‖1 ≈ λs0 ≈ σs0

√
log(p)/n. Again this result is not applicable (or

substantially worse than Theorem 5.1) in the more challenging regime s0 ≫
√

n of interest here.

6. Regularity and asymptotic efficiency

Theorem 2.1(i) shows that the test statistic
√

nFθ(1 − |Ŝ|/n)(θ̂ν − a

0 β), properly adjusted with

ν = |Ŝ|, converges in distribution to N(0,1), where Fθ = 1/{σ 2C2
0} and C0 = ‖�−1/2a0‖. This
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holds under any sequence of distributions {Pn
0}n≥1 defined by ‖β‖ = s0, s0 log(p/s0)/n → 0,

max(‖�‖op,‖�−1‖op) ≤ K for some constant K independent of n,p, and

X has iid rows N(0,�), y|X ∼ N(Xβ, σ 2In).

Here, we denote the unknown parameter a

0 β by θ(P n

0) to avoid confusion with the probability mea-
sures defined in the next paragraph. By Slutsky’s theorem, since |Ŝ|/n converges to 0 in probability by
Theorem 2.1(i), we have

L
(√

nFθ(θ̂ν − θ(Pn
0)) ; P

n
0

)
→ N(0,1). (6.1)

Given a0 ∈ R
p , a positive-definite matrix � ∈ R

p×p and Bn ⊂ R
p as a parameter space, let Fθ be

as in (1.7),

Un ⊆
{
u ⊂R

p : u
a0 = 1, β + tu/
√

nFθ ∈ Bn ∀t ∈ [0, tu], tu → ∞
}

as a collection of directions of univariate sub-models {β + tu/
√

nFθ : 0 ≤ t ≤ tu}. For t > 0 and u ∈ Un

let Pn
t,u be probabilities under which

y|X ∼ N
(
X(β + tu/

√
nFθ ), σ

2In

)
(6.2)

(for either deterministic or possibly non-Gaussian random X) and

θ(Pn
t,u) =

〈
a0,β + tu/

√
nFθ

〉
= 〈a0,β〉 + t/

√
nFθ .

That is, under Pn
t,u the vector β is perturbed with the additive term tu/

√
nFθ , resulting a perturbation

of the parameter of interest with t/
√

nFθ . In the above framework, an estimator θ̃ is regular (in the
directions u ∈ Un) if

L
(√

nFθ(θ̃ − θ(Pn
t,u)) ; P

n
t,u

)
→ G (6.3)

for all fixed t > 0 and u ∈ Un and some distribution G not depending on t and u. That is, the limiting
distribution is stable under the small perturbation as defined above.

Our first task is to show that θ̂ν is regular in all directions with the same limiting distribution as in
(6.1), i.e. (6.3) holds with Un = R

p and G ∼ N(0,1). For t = 0, (6.1) is implied by Theorem 2.1(i).
However Theorem 2.1(i) does not directly imply (6.3) for t �= 0 because u ∈ Un, as well as the unknown
regression vector β + tu/

√
nFθ under Pn

t,u, may not be sparse. The following device due to Le Cam
shows that (6.3) still holds with the perturbation tu/

√
nFθ for any fixed t �= 0 independent of n,p.

The likelihood-ratio Ln between P
n
t,u and P

n
0 is given by

logLn = {−‖y − X(β + tu/
√

nFθ)‖2 + ‖y − Xβ‖2}/(2σ 2).

= −t2C2
0‖Xu‖2/(2n) − 〈ε,Xu〉tC0/(σ

√
n).

Under Pn
0 , the random variable

√
nFθ (θ̂ν − θ(Pn

0)) can be written as 〈ε,z0〉C0/(
√

nσ) + oP(1) so that
the vector (

√
nFθ(θ̂ν −θ(Pn

0)), logLn)

 converges in distribution under Pn

0 to a bivariate normal vector
with mean (0,−t2C2

0〈u,�u〉/2)
 and covariance(
1 tC2

0 〈u0,�u〉
tC2

0 〈u0,�u〉 t2C2
0 〈u,�u〉

)
=
(

1 t

t t2C2
0 〈u,�u〉

)
,
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where the equality is due to u0 = C−2
0 �−1a0 and 〈a0,u〉 = 1. It directly follows by Le Cam’s third

lemma (see, for instance, [25], Example 6.7) that
√

nFθ(θ̂ν − θ(Pn
0)) converges to N(t,1) under

{Pn
t,u}n≥1 and that (6.3) holds. For more details, see also [25], Section 7.5, about situations where

the log-likelihood ratio converges to normal distributions of the form N(−a2/2, a2).
Hence, properly adjusted with ν = |Ŝ|, the estimator θ̂ν is regular and asymptotic normality still

holds if the sparse coefficient vector β is replaced by β + tu/
√

nFθ for constant t ∈R, even if the per-
turbation u is non-sparse. By the Le Cam-Hayek convolution theorem (see, for instance, [25], Theorem
8.8), the asymptotic variance of

√
n(θ̂ν − θ) must be at least 1/Fθ and our estimator θ̂ν is efficient, i.e.,

it achieves the smallest possible asymptotic variance among regular estimators.
Note that the above reasoning does not inherently rely on the Gaussian design assumption. As soon

as the second moment of the row of X exists, ‖Xu‖2/(n〈u,�u〉) → 1 and 〈Xu,Xu0〉/(n〈u0,�u〉) →
1 almost surely by the law of large numbers. If additionally ε ∼ N(0, σ 2In) and X is such that√

nFθ(θ̂ν − a

0 β) = 〈ε,z0〉C0/(σ

√
n) + oPn

0
(1) for sparse β , the argument of the previous paragraph

is applicable and θ̂ν is regular in the sense of (6.3). For instance, if a0 is a canonical basis vector, equa-
tion

√
nFθ(θ̂ν=0 − a


0 β) = 〈ε,z0〉C0/(σ
√

n) + oPn
0
(1) can be obtained for sub-gaussian design and

s0 ≪
√

n using an �1/�∞ duality inequality, cf. [13,24,31]. In such asymptotic regime, the argument
of the previous paragraph shows that θ̂ν=0 is stable for non-sparse perturbations of the form tu/

√
nFθ .

We formally state the above analysis and existing lower bounds,

Proposition 6.1. Let Vn be the linear span of Un as a tangent space. Suppose

P
n
0

{∣∣∣‖Xu‖2
2/(nu
�u) − 1

∣∣∣> ε
}

= o(1), u ∈ Un,

and dim(Vn) = O(1). Let u0 be as in (1.6) and τ = τ(Vn) = ũ

0 �ũ0/Fθ with

ũ0 = arg min
{
u
�u : u ∈ Vn, 〈a0,u〉 = 1

}
.

(i) Let θ̃ be a regular estimator in the sense of (6.3) with a limiting distribution G. Let ξ ∼ G. Then, (a)
Var(ξ) ≥ 1/τ ; (b) If Var(ξ) = 1/τ , then ξ ∼ N(0,1/τ); (c) If ũ0 = a1u1 + a2u2 for two u1,u2 ∈ Un

and {au1 + (1 − a)u2 : 0 ≤ a ≤ 1} ⊆ Un, then ξ = ξ1 + ξ2 where ξ1 ∼ N(0,1/τ) and ξ2 is independent
of ξ1.

(ii) If u0 ∈ Vn, then ũ0 = u0 and τ = τ(Vn) = 1.
(iii) If (6.1) holds, then θ̂ν is regular and locally asymptotically efficient in the sense of (6.3) with

Bn = Un =R
p .

The above statement is somewhat more general than the usual version as we wish to accommodate
general parameter space Bn, cf. [25], Theorem 8.8, for Un = {u ∈ Vn : 〈a0,u〉 = 1} and [18] and [27],
Theorem 6.1, for general Un. We note that the condition on ũ0 in Proposition 6.1(i)(c), known as the
convolution theorem, is equivalent to the convexity of Un and ũ0 ∈ Vn. The minimum Fisher informa-
tion is sometimes defined as min{σ−2u
�u : 〈a0,u〉 = 1,u ∈ Un}. However, when this minimum over
Un is strictly larger than the minimum over its linear span Vn, the larger minimum information is not
attainable by estimators regular with respect to Un in virtue of (i)(a) above.

In Proposition 6.1, the parameter τ = τ(Vn) can be viewed as the relative efficiency for the tangent
space Vn generated by the collection Un of directions of univariate sub-models. As the minimization
for ũ0 is taken over no greater a space compared with (1.6), τ ≥ 1 always holds. When the parameter
space Bn is strictly smaller than R

p or the regularity (stability of the limiting distribution) is required
only for deviations from the true β in a small collection of directions, τ > 1 may materialize and
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an estimator regular and efficient relative to Un would become super-efficient in the full model with
Bn = Vn = R

p . According to Le Cam’s local asymptotic minimax theorem, in the full model, such a
super-efficient estimator would perform strictly worse than a regular efficient estimator when the true
β is slightly perturbed in a certain direction.

The super-efficiency was observed in [23] where an estimator, also based on the de-biased lasso,
achieves asymptotic variance strictly smaller than 1/Fθ . The construction of [23], Theorem 2.1, goes
as follows: Consider a sequence λ

�
n and a sequence of sub-regions Bn ⊂ R

p of the parameter space
such that the Lasso satisfies uniformly over all β ∈ Bn both

‖�1/2(β̂ (lasso) − β)‖2 = oP(1),
√

nλ�
n‖β̂ (lasso) − β‖1 = oP(1).

Then [23] constructs an asymptotically normal estimator of the first component β1 of β . However, this
estimator depends on a fixed sub-region Bn that achieves a particular �1 convergence rate given by λ

�
n,

and the estimator would need to be changed to satisfy asymptotic normality on a superset of Bn. Hence
this construction is a super-efficiency phenomenon: it is possible to achieve a strictly smaller variance
than the Fisher information lower bound with the Fθ in (1.7) as the estimators are only required to
perform well on a specific parameter space Bn. Additionally, the estimator from [23] cannot be regular
on perturbations of the form β + tu0/

√
nFθ for non-sparse u0, otherwise that estimator would not be

able to achieve an asymptotic variance smaller than 1/Fθ according to Proposition 6.1.

7. Necessity of the degrees-of-freedom adjustment in a more general
setting

This section extends Theorem 2.3 to subgaussian designs. It shows that the degrees-of-freedom adjust-
ment is necessary when the Lasso is sign-consistent.

Theorem 7.1. Let S be a support of size s0 = o(n) and assume that XS�
−1/2
S,S has iid entries from a

mean-zero, variance one and subgaussian distribution. Assume that (β,a0) follows a prior independent
of (X,ε) with supp(β) = S, β has iid random signs on S and fixed amplitudes {|βj |, j ∈ S}, and set

a0 = �sgn(β)S/
√

s0. Then on the selection event {Ŝ = S, sgn(β̂ (lasso)) = sgn(β)}, the de-biased estimate
θ̂ν in (2.8) with adjustment ν satisfies

√
n(1 − ν/n)(θ̂ν − θ) − √

n(1 − ν/n)〈a0, (X


S XS)−1X


S ε〉
= −(s0 − ν)

(
λ
√

na

0 (X


S XS)−1sgn(β)S

)
+OP

(
λ
√

s0 log s0 + φcond(�S,S)1/2λ
√

s0

)
.

Furthermore, λ
√

na

0

[
(X


S XS)−1
]

sgn(β)S = λ
√

s0/n(1 − oP (1)) when φcond(�S,S) ≤ C for some

constant C > 0 independent of n,p, s0. Consequently, if ν = 0 and s
3/2
0 ≥ n, the right-hand side above

is unbounded.

The proof is given in Appendix I of the supplement [2]. In conclusion, for designs with subgaussian
independent entries and under sign-consistency for the Lasso, the unadjusted θ̂ν with ν = 0 is not
asymptotically normal as soon as s0 ≫ n2/3, similarly to the Gaussian design case and the conclusion
of Theorem 2.3.
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8. Outline of the proof

8.1. The interpolation path

Throughout the sequel, let h(lasso) = β̂ (lasso) − β . It follows from the definition of θ̂ν in (2.2) that

(1 − ν/n)
(
θ̂ν − θ

)=
〈
z0,ε

〉
‖z0‖2

2

− (ν/n)
〈
a0,h

(lasso)
〉− 〈

z0,XQ0h
(lasso)
〉

‖z0‖2
2

with z0 = Xu0 and Q0 = Ip×p − u0a


0 , where u0 = �−1a0/〈a0,�

−1a0〉.
In the above expression, z0 is independent of (XQ0,ε) but not of β̂ (lasso). If z0 were independent of

XQ0h
(lasso), we would have

L
(〈

z0,XQ0h
(lasso)
〉∣∣∣XQ0h

(lasso)
)

∼ N
(

0,C−2
0 ‖XQ0h

(lasso)‖2
2

)
= OP(1/C0)‖XQ0h

(lasso)‖2, (8.1)

where L (ξ |ζ ) denotes the conditional distribution of ξ given ζ and C0 = ‖�−1/2a0‖2. Our idea is to
decouple z0 and β̂ (lasso) by replacing z0 with an almost independent copy of itself in the definition of
β̂ (lasso).

We proceed as follows. Let g ∼ N(0,E[z0z


0 ]) be a random vector independent of (ε,z0,X) such

that g and z0 have the same distribution. Next, define the random vector

z̃0 = P εz0 + P ⊥
ε g, where P ε = ‖ε‖−2εε
 and P ⊥

ε = In − P ε.

Conditionally on ε, the random vectors z0 and z̃0 are identically distributed, so that z̃0 is independent
of (XQ0,ε).

Next, let X̃ = XQ0 + z̃0a


0 and let β̃ (lasso) be the Lasso solution with (X,y) replaced by (X̃, X̃β +ε).

Conditionally on ε, the random vector P ⊥
ε z0 is normally distributed and independent of XQ0h̃

(lasso) by
construction, so that∣∣〈z0,XQ0h̃

(lasso)
〉∣∣ ≤ ∣∣∣〈P ⊥

ε z0,XQ0h̃
(lasso)
〉∣∣∣+ ‖P εz0‖ ‖P εXQ0h̃

(lasso)‖,

≤ OP(1/C0)
(
‖P ⊥

ε XQ0h̃
(lasso)‖ + ‖P εXQ0h̃

(lasso)‖
)

,

where the last inequality is a consequence of E‖P εz0‖2
2 = E‖z0‖2

2/n = 1/C2
0 . The above inequalities

are formally proved in Lemma 8.9. Although z̃0 and z0 are not independent, conditionally on ε, their
(n − 1)-dimensional projections P ⊥

ε z0 and P ⊥
ε z̃0 are independent and the quantity

〈
z0,XQ0h̃

(lasso)
〉

is
of the same order as in (8.1) where XQ0h

(lasso) and z0 were assumed independent.
This motivates the expansion

(1 − ν/n)
(
θ̂ν − θ

)=
〈
z0,ε

〉
‖z0‖2

2

−
〈
z0,XQ0h̃

(lasso)
〉

‖z0‖2
2

+ Remν, (8.2)

with Remν = ‖z0‖−2
2

〈
z0,XQ0(β̃

(lasso) − β̂ (lasso))
〉− (ν/n)

〈
a0,h

(lasso)
〉
.
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The key to our analysis is to bound Remν by differentiating a continuous solution path of the Lasso
from β̂ (lasso) to β̃ (lasso). To this end, define for any t ∈R

z0(t) = P εz0 + P ⊥
ε

[
(cos t)z0 + (sin t)g

]
, (8.3)

X(t) = XQ0 + z0(t)a


0 ,

and the Lasso solution corresponding to the design X(t) and noise ε,

β̂(t) = arg min
b∈Rp

{
‖ε + X(t)β − X(t)b‖2

2/(2n) + λ‖b‖1

}
. (8.4)

For each t , by construction, (z0(t),X(t), β̂(t)) has the same distribution as (z0,X, β̂ (lasso)). The
above construction defines a continuous path of Lasso solutions along which the distribution of
(z0(t),X(t), β̂(t)) is invariant. Furthermore,

at t = 0, z0(0) = z0 and β̂(0) = β̂ (lasso),

while at t = π
2 , z0(

π
2 ) = z̃0 and β̂(π

2 ) = β̃ (lasso).

Thus, with ż0(t) = (∂/∂t)z0(t) = P ⊥
ε [(− sin t)z0 + (cos t)g] and D(t) = (∂/∂z0(t))β̂(t)
 ∈ R

n×p , an
application of the chain rule yields

Remν =
∫ π/2

0

〈
z0,XQ0D


(t)P ⊥
ε ż0(t)

〉
‖z0‖2

2

dt − (ν/n)
〈
a0,h

(lasso)
〉
. (8.5)

We will prove in Lemma 8.5 below that the above calculus is legitimate with

XQ0D

(t)P ⊥

ε (8.6)

= −
{
w0(t) − z0(t)

∥∥w0(t)‖2
2

}(
P ⊥

ε X(t)h(t)
)


−
{
P̂ (t) − z0(t)

(
w0(t)

)
}
P ⊥

ε

〈
a0,h(t)

〉
,

where Ŝ(t) = supp(β̂(t)), P̂ (t) is the orthogonal projection onto the linear span of {Xj (t), j ∈ Ŝ(t)},
w0(t) = XŜ(t)(t)

(
X
̂

S(t)
(t)XŜ(t)(t)

)−1
(a0)Ŝ(t), and h(t) = β̂(t) − β . We note that the n × n matrix in

(8.6) is a function of (X(t),ε) and

z0 = P εz0 + P ⊥
ε

[
(cos t)z0(t) − (sin t)ż(t)

]
with z0(t) = X(t)u0. Thus, as ż0(t) is a N(0,P ⊥

ε /C2
0) vector given (X(t),ε), the mean and variance

of the integrand
〈
z0,XQ0D


(t)P ⊥
ε ż0(t)

〉
in (8.5) can be readily computed conditionally on (X(t),ε)

as a quadratic form in ż0(t). This would provide an upper bound for the remainder in (8.5) based on
the size of Ŝ(t) and the prediction error X(t)h(t). For example, the main term in this calculation is(

E‖z0‖2
2

)−1
∫ π/2

0
E

[〈
z0,−P̂ (t)P ⊥

ε ż0(t)
〉〈
a0,h(t)

〉∣∣∣X(t),ε
]
dt

= 1

n

∫ π/2

0
(sin t)

{∣∣Ŝ(t)
∣∣− trace

(
P εP̂ (t)P ε

)}〈
a0,h(t)

〉
dt,

which has approximately the same mean as (ν/n)
〈
a0,h

(lasso)
〉

when ν = ∣∣Ŝ(0)
∣∣= ∣∣Ŝ∣∣.
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Remark 8.1. For a fixed j -th column the leave-one-out technique explained in [15], Section 6.1,
studies the modified estimate

θ̂
(j) = arg min

b∈Rp :bj =βj

‖Xb − y‖2
2/(2n) + g(b) (8.7)

with the constraint bj = βj , so that the design matrix in the quadratic term is replaced by X−j . The

study of this perturbed θ̂
(j)

allows [15] to prove efficiency under the condition maxj=1,...,p ‖�−1ej‖1 ≤
ρ. This differs from our construction in at least three major ways:

(i) The θ̂
(j)

of [15] does not have the same distribution as β̂ (lasso), while with our construction β̃ (lasso)

as well as β̂(t) for each t ∈ [0,π/2] all have the same distribution as the Lasso β̂ itself;
(ii) In our construction the decomposition X = XQ0 + z0a



0 has two independent terms XQ0 and

z0a


0 , while in the construction (8.7) above, X = X−j + Xej but X−j is not independent of

the j -th column Xej ;
(iii) Our construction allows for general direction a0, while the analogue of (8.7) with constraint

a

0 b for dense a0, namely θ̂ (0) = arg minb∈Rp :a


0 (β−b)=0 ‖Xb − y‖2
2/(2n) + g(b), leads to an

estimator that is not a Lasso estimator, and its analysis would not be straightforward.

8.2. The lasso prediction error and model size

Our next task is to show that with high probability, simultaneously for all t along the path, the Lasso
solutions β̂(t) enjoy guarantees in terms of prediction error and model size similar to the bounds
available for a single Lasso problem. Define the event �1 by

�1 =
{

0 < inf
t,t ′≥0

φmin

(
1

n

(
X(t)
X(t)

)
Ŝ(t ′)∪Ŝ(t),Ŝ(t ′)∪Ŝ(t)

)
.

}
(8.8)

Define also h(noiseless)(t) = β(noiseless)(t) − β where β(noiseless)(t) is the Lasso solution for design
matrix X(t) in the absence of noise, that is,

β(noiseless)(t) = arg min
b∈Rp

{
‖X(t)(β − b)‖2

2/(2n) + λ‖b‖1

}
. (8.9)

Consider the following conditions: For a certain s∗ ∈ [s0 ∨ 1, n] and positive λ0,

‖X(t)h(t)‖2 ≤ M1
√

ns∗σλ0,

‖X(t)h(noiseless)(t)‖2 ≤ M1
√

ns∗σλ0,

‖�1/2h(t)‖2 ≤ M2
√

s∗σλ0,

|Ŝ(t)| ≤ s∗ ≤ M3(s0 + k),∥∥∥(�−1/2
Ŝ(t),Ŝ(t)

X
̂
S(t)

(t)XŜ(t)(t)�
−1/2
Ŝ(t),Ŝ(t)

/n
)−1∥∥∥

op
≤ M4,

(‖ε‖2/σ) ∨ (C0‖z0(t)‖2) ∨ (n/(C0‖z0(t)‖2)) ≤ M5
√

n,

(8.10)

where M1,M2,M3,M4,M5 > 0 are constants to be specified. Define the event �2 by

�2(t) = {
(8.10) holds for t

}
and �2 = ∩t≥0�2(t). (8.11)
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For a single and fixed value of t , the fact that the Lasso enjoys the inequalities (8.10) under conditions
on the design � can be obtained using known techniques. For instance, the first and third inequalities in
(8.10) describe the prediction rate of the Lasso with respect to the empirical covariance matrix and the
population covariance matrix when the tuning parameter of the Lasso is proportional to σλ0. For the
purpose of the present paper, however, we require the above inequalities to hold with high probability
simultaneously for all t . The following lemma shows that this is the case: �1 ∩ �2 has overwhelming
probability under Assumption 3.1.

Lemma 8.1. Let the setting and conditions of Assumption 3.1 be fulfilled. Set M1 = (1 + η2)η
−1
2 (1 +

η3)/
√

ρ∗τ∗, M2 = M1/
√

τ∗,

M3 = 1 + (τ ∗/τ∗)φcond(p;∅,�) − 1

2(1 − η2)2/(1 + η2)2
,

M4 = 1/τ∗, M5 = 1/(1 − η3). Then the events �1,�2 defined in (8.8) and (8.11) satisfy

1 − P(�1 ∩ �2) ≤ 2e−nε4 + 2e−(η3−√
2/n)2+n/2

+ e−nη2
3/2 + 4(2πL2

k + 4)−1/2 + (Lk + (L2
k + 2)−1/2)−2.

(8.12)

where Lk =√
2 log(p/k).

Lemma 8.1 is proved in Appendix A of the supplement [2]. Equipped with the result that the events
�1 and �2 have overwhelming probability, we are now ready to bound Remν in (8.2).

8.3. An intermediate result

Before proving the main result (Theorem 3.1) in the next subsections, we now prove the following
intermediate result.

Theorem 8.2. There exists a constant M̄ > 0 that depends on M1,M2,M4,M5 only such that the fol-
lowing holds. Let Fθ = 1/(σC0)

2 be the Fisher information as in (1.7), and Tn = √
nFθ 〈z0,ε〉/‖z0‖2

2
so that Tn has the t -distribution with n degrees of freedom. Let �1 and �2 be the events defined in
(8.8) and (8.11). Define random variables RemI and RemII by

RemI =√
nFθ(θ̂ν=0 − θ) − Tn −√

Fθ/n

∫ π/2

0
(sin t)

(|Ŝ(t)|〈a0,h(t)〉)dt,

RemII =√
nFθ(θ̂ν=0 − θ) − Tn −√

Fθ/n
〈
a0,h

(lasso)
〉 ∫ π/2

0
(sin t)

(|Ŝ(t)|)dt.

Then for any u ∈R such that |u| ≤ √
n/M̄ ,

max

{
E

[
I�1∩�2 exp

(
uRemI

λ0
√

s∗

)]
,E

[
I�1∩�2 exp

(
uRemII

λ0
√

s∗

)]}
≤ 2 exp

(
M̄2u2

)
.

We now gather some notation and lemmas to prove Theorem 8.2. Recall that the degrees-of-freedom
adjusted LDPE is

θ̂ν =
〈
a0, β̂

(lasso)
〉
+
〈
z0,y − Xβ̂ (lasso)

〉
(1 − ν/n)‖z0‖2

2

,
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with z0 = Xu0, where u0 = �−1a0/〈a0,�
−1a0〉 is the direction of the least favorable one-dimensional

sub-model for the estimation of 〈a0,β〉. Recall that the Fisher information for the estimation of 〈a0,β〉
is Fθ = σ−2/〈a0,�

−1a0〉, and that E‖z0‖2
2/n = σ 2Fθ = 1/C2

0 . We note that the estimation of θ =
〈a0,β〉 is scale equi-variant under the transformation{

a0, θ, θ̂ν,u0,z0,Fθ

}→ {
ca0, cθ, cθ̂ν,u0/c,z0/c,Fθ/c

2}. (8.13)

Thus, without loss of generality, we may take the scale 〈a0,�
−1a0〉 = 1 in which

u0 = �−1a0, z0 = Xu0 ∼ N(0, In), Fθ = σ−2, C0 = 1. (8.14)

Furthermore, for any subset A ⊂ {1, . . . , p} we have∥∥�−1/2
A,A (a0)A

∥∥2
2 = ∥∥�−1/2

A,A (�1/2)A,∗�−1/2a0
∥∥2

2

≤ C2
0φmax

(
�

−1/2
A,A (�1/2)A,∗(�1/2)∗,A�

−1/2
A,A

)
≤ C2

0φmax

(
�

−1/2
A,A �A,A�

−1/2
A,A

)
= C2

0 . (8.15)

Let ḟ (t) = (∂/∂t)f (t) for all functions of t . By construction of the interpolation path (8.3), we have

ż0(t) = P ⊥
ε

[
(− sin t)z0 + (cos t)g

]
, (8.16)

so that 〈ε, ż0(t)〉 = 0 holds for every t . Conditionally on ε, the random vector (X(t), ż0(t)) is jointly
normal and ż0(t) is independent of X(t), so that the conditional distribution of ż0(t) given (X(t),ε) is

L
(
ż0(t)

∣∣X(t),ε
)= N

(
0, (1/C0)

2P ⊥
ε

)
. (8.17)

Here is an outline of the proof of Theorem 8.2.

(i) Starting from the expansion (8.2), the key to our analysis is to bound the remainder in (8.2) by
differentiating the continuous solution path (8.3)-(8.4) from β̂ (lasso) to β̃ (lasso).

(ii) Lemma 8.3 shows that the function t → β̂(t) is Lipschitz in t , hence differentiable almost
everywhere along the path.

(iii) Next, Lemma 8.5 computes the gradient of t → β̂(t) along the path. To compute the gradient,
we make use of Lemma 8.4 which shows that the KKT conditions of the Lasso hold strictly
almost everywhere.

(iv) Finally, we write 〈z0,XQ0(β̃
(lasso) − β̂ (lasso))〉 as an integral from 0 to π/2 of the derivative of the

function t → 〈z0,XQ0β̂(t)〉 and the Lemmas 8.6, 8.7 and 8.8 bound from above this derivative
on the event �1 ∩ �2, thanks to the conditional distribution (8.17) of ż0(t) given (X(t),ε).

Lemma 8.3 (Lipschitzness of regularized least-squares with respect to the design). Let ε ∈R
n and

β ∈ R
p . Let X and X̃ be two design matrices of size n×p in a compact convex set K̃ . Let h be a norm

in R
p . Let β̂ and β̃ be the minimizers

β̂ = arg min
b∈Rp

{L(X,b) + h(b)} , β̃ = arg min
b∈Rp

{
L(X̃,b) + h(b)

}
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where L(M,b) = ‖ε + Mβ − Mb‖2
2/(2n) for all M ∈R

n×p and b ∈R
p . Then

‖X(β̂ − β̃)‖2 + ‖X̃(β̂ − β̃)‖2 ≤ C(K̃,h,ε,β)‖X − X̃‖op‖β̂ − β̃‖2,

where C(K̃,h,ε,β) is a quantity that depends on K̃, h,ε,β only.

Lemma 8.4. Consider a random design matrix X ∈ R
n×p and independent random noise ε such that

both X and ε admit a density with respect to the Lebesgue measure. Then with probability one, the
KKT conditions of the Lasso hold strictly, that is, P(∀j ∈ Ŝ, |x


j (y − Xβ̂ (lasso))| < 1) = 1.

Proof. Since the distribution of X is continuous, the assumption of [1], Proposition 4.1, is satisfied
almost surely with respect to X and the result follows by conditionaning on X. �

Lemma 8.5. Let h(t) = β̂(t) − β . In the event �1 defined by (8.8),

β̃ (lasso) − β̂ (lasso) =
∫ π/2

0
D
(t)ż0(t)dt (8.18)

almost surely, where D(t) is an n × p matrix given by DŜc(t)(t) = 0 and

D
̂
S(t)

(t)

=
(
X
(t)X(t)

)−1

Ŝ(t),Ŝ(t)

(
(a0)Ŝ(t)

(
ε − X(t)h(t)

)
 − X
̂
S(t)

(t)
〈
a0,h(t)

〉)
.

It follows from (8.3) and (8.16) that conditionally on ε, the random vector ż0(t) is indepen-
dent of (X(t),h(t),D(t), I�2(t)) and the conditional distribution of ż0(t) given (ε,X(t)) is given
by (8.17). Furthermore, by (8.16) we always have 〈ż0(t),ε〉 = 0 so that (ε − X(t)h(t))
ż0(t) =
−(X(t)h(t))
ż0(t) which simplifies the expression D
̂

S(t)
(t)ż0(t). Furthermore on �2(t) defined in

(8.11), by the Cauchy-Schwarz inequality,

|〈a0,h(t)〉| ≤ C0‖�1/2h(t)‖|2 ≤ C0M1σλ0
√

s∗,

‖XQ0h(t)‖2/
√

n ≤ (M1 + M5M2)σλ0
√

s∗,

‖w0(t)‖2
2 ≤ (M4/n)‖�−1/2

Ŝ(t),Ŝ(t)
(a0)Ŝ(t)‖2

2 ≤ (M4/n)C2
0

(8.19)

with w0(t) = XŜ(t)(t)
(
X
̂

S(t)
(t)XŜ(t)(t)

)−1
(a0)Ŝ(t), thanks to (8.10) and (8.15). We will use these prop-

erties several times in the following lemmas in order to bound Remν in (8.2).

Lemma 8.6. The quantity

W = C0
√

n

(〈
z0,XQ0(β̃

(lasso) − β̂ (lasso))
〉

C2
0‖z0‖2

2

−
〈
z0,XQ0(β̃

(lasso) − β̂ (lasso))
〉

n

)
(8.20)

satisfies for any u ∈ R

E

[
I�1∩�2 exp

(
uW

σλ0
√

s∗

)]
≤ exp(C|u| + Cu2) (8.21)

for some constant C = C(M1,M2,M5) > 0 that depends on M1,M2,M5 only.
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Lemma 8.7. The quantity

W ′ = C0
〈
z0,XQ0(β̃

(lasso) − β̂ (lasso))
〉

√
n

−
∫ π/2

0
(sin t)

|Ŝ(t)|〈a0,h(t)
〉

C0
√

n
dt (8.22)

satisfies

E

[
I�1∩�2 exp

(
uW ′

σλ0
√

s∗

)]
≤ exp

(
|u|C′/

√
n + u2C′

1 − |u|C′/
√

n

)
(8.23)

for any u ∈ R such that |u| <
√

n/C′, for some constant C′ = C′(M1,M2,M4,M5) > 0 that depends
on M1,M2,M4,M5 only.

Lemma 8.8. The quantity

W ′′ = 1

C0
√

n

∫ π/2

0
(sin t)|Ŝ(t)|〈a0,h(t)

〉
dt −

〈
a0,h

(lasso)
〉

C0
√

n

∫ π/2

0
(sin t)|Ŝ(t)|dt (8.24)

satisfies for all u ∈ R

E

[
exp

(
uW ′′

σλ0
√

s∗

)]
≤ 2 exp(C′′u2) (8.25)

for some constant C′′ = C′′(M1,M2,M4,M5) > 0 that depends on M1,M2,M4,M5 only.

Lemma 8.9. The quantity

W ′′′ = −
√

nC0〈z0,XQ0h̃
(lasso)〉

C2
0‖z0‖2

2

(8.26)

satisfies for all u ∈ R

E

[
I�1∩�2 exp

(
uW ′′′

σλ0
√

s∗

)]
≤ 2 exp(C′′′u2) (8.27)

for some constant C′′′ = C′′′(M1,M2,M5) that depends on M1,M2,M5 only.

We are now ready to combine the above lemmas to prove Theorem 8.2.

Proof of Theorem 8.2. The random variables RemI and RemII in Theorem 8.2 satisfy

σRemI = W ′′′ + W + W ′, σRemII = σRemI + W ′′ = W ′′′ + W + W ′ + W ′′.

where W,W ′,W ′′ and W ′′′ are defined in (8.20), (8.22), (8.24) and (8.26). By Lemmas 8.6 to 8.9
, there exists a constant M̄ > 0 that depends only on M1,M2,M4,M5 such that for all u ∈ R with
|u| < √

n/M̄ ,

max
V ∈{W,W ′,W ′′,W ′′′}

E

[
I�1∩�2 exp

(
uV

σλ0
√

s∗

)]
≤ 2 exp

(
M̄2u2

)
(8.28)
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because one can always increase M̄ so that the right hand side of the previous display is larger than the
right hand side of (8.21), (8.23) (8.25) and (8.27). By Jensen’s inequality,

E

[
I�1∩�2 exp(

uRemI

λ0
√

s∗
)

]
≤ 1

3
E

[
I�1∩�2

(
e

3uW ′′′
σλ0

√
s∗ + e

3uW
σλ0

√
s∗ + e

3uW ′
σλ0

√
s∗
)]

.

The right hand side is bounded from above thanks to (8.28). We apply the same technique to obtain the
desired bound on RemII , using Lemma 8.8 for W ′′. �

8.4. Proof of Theorem 3.1

From Theorem 8.2, in order to complete prove Theorem 3.1 we will need the following additional
lemma.

Lemma 8.10. The upper bound

E

⎡⎣I�1∩�2

(∫ π/2

0
(sin t)(|Ŝ(t)| − |Ŝ(0)|)dt

)2
⎤⎦ ≤ n

(
λ2

0s∗C′′′′ + 6(3 + 2M2
1λ2

0s∗)
)

holds, where C′′′′ = 3(M5M1 + M2M5M4)
2.

Proof of Theorem 3.1. Thanks to the scale equivariance (8.13), we take the scale C0 = ‖�−1/2a0‖2 =
1 without loss of generality, so that (8.14) holds. Let RemII be defined in Theorem 8.2. Then for any
degrees-of-freedom adjustment ν we have√

Fθn(1 − ν/n)(θ̂ν − θ) − Tn +√
Fθ/n〈a0,h

(lasso)〉(ν − |Ŝ|)

=√
Fθ/n〈a0,h

(lasso)〉
∫ π/2

0
(sin t)(|Ŝ(t)| − |Ŝ|)dt + RemII .

Denote by Remf inal the above quantity. Then

E

[
I�1∩�2

∣∣∣∣Remf inal

λ0
√

s∗

∣∣∣∣2
]

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2M2

2E

⎡⎣I�1∩�2

(∫ π/2

0
(sin t)(|Ŝ(t)| − |Ŝ|)n−1/2dt

)2
⎤⎦

+2E
[
I�1∩�2

{
RemII /(λ

√
s∗)
}2
]
.

By Theorem 8.2, E
[
I�1∩�2RemII

2
]

is bounded by a constant that depends on M1,M2,M4,M5 only.
By Lemma E.1 of the supplement [2] and the assumption λ0

√
s∗ ≤ 1 in Assumption 3.1, the same

holds for the first term. Observe that since P(�1 ∩ �2) → 1, any random variable Y such that
E[I�1∩�2Y

2] ≤ Cλ2
0s∗ for some constant C satisfies Y = OP(

√
s∗λ0) by Markov’s inequality. This

shows that Remf inal = OP(λ0
√

s∗) and the proof is complete. �

8.5. Proof of Corollary 3.3

On �2 we have |Ŝ| ≤ s∗ and |〈a0,h
(lasso)〉| ≤ M2σλ0

√
s∗ so the claim of Corollary 3.3 follows from the

same argument as the previous subsection.
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