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Abstract: Factor model is an appealing and effective analytic tool for
high-dimensional time series, with a wide range of applications in eco-
nomics, finance and statistics. This paper develops two criteria for the de-
termination of the number of factors for tensor factor models where the
signal part of an observed tensor time series assumes a Tucker decompo-
sition with the core tensor as the factor tensor. The task is to determine
the dimensions of the core tensor. One of the proposed criteria is similar to
information based criteria of model selection, and the other is an extension
of the approaches based on the ratios of consecutive eigenvalues often used
in factor analysis for panel time series. Theoretically results, including suffi-
cient conditions and convergence rates, are established. The results include
the vector factor models as special cases, with an additional convergence
rates. Simulation studies provide promising finite sample performance for
the two criteria.
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1. Introduction

Factor models have become a popular dimensional reduction tool in economics
and statistics, especially for analyzing high dimensional time series. In prac-
tice a few common factors can often capture a large amount of variations and
dynamics among a large pool of variables and time series. In the finance liter-
ature, Chamberlain and Rothschild (1983) exploited factor analysis to extend
classical arbitrage pricing theory. In macroeconomics, Bai (2003), Bai and Ng
(2002), Stock and Watson (2002) considered static factor models for model-
ing macroeconomic time series. Forni et al. (2005) studied the identification of
economy-wide and global shocks using generalized dynamic factor models. Fan,
Liao and Mincheva (2011, 2013), Fan, Wang and Zhong (2019) established large
covariance matrix estimation based on the static factor model. Factor models
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are also used to evaluate the impacts of various policies; see, e.g., Bai, Li and
Ouyang (2014), Ouyang and Peng (2015) and Li and Bell (2017). Recently, large
matrix or tensor (multi-dimensional array) data has become ubiquitous. Wang,
Liu and Chen (2019) proposed a matrix factor model and applied it to matrix-
valued financial data. Chen, Yang and Zhang (2021) analyzed the multi-category
import-export network data via tensor factor model.

A critical step in building a factor model is to correctly specify the number
of factors used in the model. Estimation and forecasting procedures are all de-
pended on the number of factors. Moreover, in some cases the number of factors
may have some crucial economic interpretations and important theoretical con-
sequences. For example, in finance and macroeconomics, it provides the number
of sources of nondiversifiable risk or the fundamental shocks driving the macroe-
conomic dynamics. See, Forni and Reichlin (1998), Stock and Watson (2016),
Giannone and Reichlin (2006), Forni et al. (2009), among others.

Over the past decades, many methods have been developed to determine
the number of common factors needed for modelling high dimensional vector
time series. The most widely studied approach is to utilize the behavior of
the eigenvalues of the covariance matrix (see, e.g., Bai and Ng (2002)), or the
singular values of the autocovariance matrix (see, e.g., Lam and Yao (2012)).
By the definition of factor models, the eigenvalues or the singular values cor-
responding to the systematic components must increase with the number of
cross-sectional units. The rest of the eigenvalues, which represents idiosyncratic
components, stay bounded or remain to be zero. In the static factor model,
Bai and Ng (2002) proposed to estimate the number of factors by separating
diverging eigenvalues from the rest using threshold functions, in the form of
an information criterion. Alternative criteria based on random matrix theory
have been studied in Kapetanios (2010) and Onatski (2010) for the static factor
model. Specifically Kapetanios (2010) developed sequential tests and employed
a subsampling method to obtain an approximation of the asymptotic distribu-
tion of the estimated eigenvalues. Onatski (2010) constructed tests based on the
empirical distribution of the eigenvalues. In addition, Onatski (2012) proposed
an alternative estimator using the difference of consecutive eigenvalues. Bai and
Ng (2007) and Amengual and Watson (2007) extended the work of Bai and
Ng (2002) to the restricted dynamic factor model. Hallin and Lǐska (2007) fur-
ther extended the framework to the generalized dynamic factor model through
thresholding eigenvalues of the spectral density matrix. They also proposed a
data-dependent method to adjust the multiplicative constant of the penalty
function. Alessi, Barigozzi and Capasso (2010) introduced a tuning multiplica-
tive constant in the penalty for dealing with approximate factor models. Kong
(2017) employed similar ideas to study continuous time factor model with high
frequency data. Li, Li and Shi (2017) modified Bai and Ng (2002)’s procedure to
the case that the number of factors is allowed to increase with the sample size.
Trapani (2018) proposed a randomized sequential test procedure to determine
the number of factors.

An alternative approach is to study the ratio of each pair of adjacent eigen-
values, with the insight that ratio of the smallest eigenvalue among these cor-



1728 Y. Han et al.

responding to the system component and the largest eigenvalue among these
corresponding to the idiosyncratic component goes to infinity. Under stationary
conditions, Ahn and Horenstein (2013) developed such an estimator based on
the sample covariance matrix. Lam and Yao (2012) used such a ratio based esti-
mator based on singular values of the aucovariance matrix, under an alternative
definition of factor models proposed in Pan and Yao (2008) and Lam, Yao and
Bathia (2011).

Other than the eigenvalue-based methods, Ye and Weiss (2003) developed
an eigenvector based order determination procedure. Luo and Li (2016) pro-
posed a new estimator that combines both the eigenvalues and the bootstrap
eigenvector variability. Jung, Lee and Ahn (2018) suggested to sequentially test
skewness of the squared lengths of residual scores that are obtained by removing
leading principal components. However, these works assumed that the data are
temporally independent, which are unlikely to hold for economic data.

These studies all focus on panel (vector) time series. Recently there is a
growing interest in analyzing matrix- or tensor-valued time series, as such time
series is encountered more and more frequently in applications, including Fama-
French 10 by 10 series (Wang, Liu and Chen, 2019), a set of economic indicator
series among a set of countries (Chen, Xiao and Yang, 2021), multi-category
international trading volume series (Chen and Chen, 2019, Hoff, 2011), multi-
type international action counts among a group of countries (Hoff, 2015), se-
quence of realized covariance matrices (Kim and Fan, 2019, Lunde, Shephard
and Sheppard, 2016), sequence of gray-scale face recognition images (Chen and
Fan, 2021), dynamic networks (Barabási and Albert, 1999, Jiang, Li and Yao,
2020), dynamic human brain transcriptome data (Liu, Yuan and Zhao, 2017),
multivariate spatial-temporal climate series (Chen et al., 2020), neuroimaging
data (Zhang, 2019, Zhou, Li and Zhu, 2013). Factor model is again developed as
an effective dimension reduction tool (Chen, Yang and Zhang, 2021, Han et al.,
2020, Wang, Liu and Chen, 2019). Same as for the vector factor models, it is
important to determine the number of factors in these models.

In this paper, we consider the determination of the dimension of the core
tensor factor in the tensor factor model in Chen, Yang and Zhang (2021) and
Han et al. (2020), which assumes the form

Xt = Mt + Et = Ft ×1 A1 ×2 . . .×K AK + Et.

Similar to Lam and Yao (2012), the noise tensor Et is assumed to be a white
tensor process with potentially strong contemporary correlations among the
elements of the noise tensor, and all common dynamics is absorbed in the signal
process Mt. This model setting is different from the approximate factor model
in Bai and Ng (2002) and the dynamic factor model in Hallin and Lǐska (2007),
in which the noise process is allowed to have weak auto-correlations, but with
strong restriction on the contemporary correlation.

Chen, Yang and Zhang (2021) and Han et al. (2020) studied the estimation
procedures of the tensor factor model, assuming the ranks of the core tensor
Ft is given, with some ad hoc rank determination suggestions. In this paper we
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formally propose two criteria for specifying the ranks of the core factor process,
which we name “the information criterion” (IC) and “the eigenvalue ratio”
(ER). They are all based on examining the eigenvalues of the sample cross-auto-
moment of the observed tensor time series, utilizing the whiteness property of the
noise process. The IC estimators aim at truncating eigenvalues, which is similar
to the information criteria in vector factor models (e.g., Bai and Ng (2002) and
Hallin and Lǐska (2007)). The ER estimators are obtained by minimizing the
ratio of two adjacent eigenvalues arranged in ascending order, extending the
standard ER estimator in Lam and Yao (2012) and Wang, Liu and Chen (2019)
with an added small penalty term in both the numerator and denominator of
the ratio. The penalty term behaves like a lower bound correction to the true
zero eigenvalues. We adopt similar ideas of the TOPUP and TIPUP procedures
of Chen, Yang and Zhang (2021), and their corresponding iterative versions,
iTOPUP and iTIPUP, of Han et al. (2020), to construct sample auto-cross-
moments. Our theoretical and empirical investigations show that estimators
based on the iterative algorithms are much better than that based on the non-
iterative ones, as the iterative algorithms significantly improve the estimation
accuracy of the eigenvalues. The finite sample properties of the IC and ER
criteria are also good. The empirical evidences show that the best estimators in
tensor factor model are the IC and ER estimators based on iTIPUP, under some
mild conditions on the level of signal cancellation typically associated with the
TIPUP based procedures.

This paper is organized as follows. Section 3.1 briefly describes the tensor
factor model and the corresponding estimation procedures proposed in Chen,
Yang and Zhang (2021) and Han et al. (2020). Section 3.2 introduces the criteria
for determining the ranks of the core tensor factor process, and their iterative
versions. Section 4 investigates theoretical properties of the proposed estima-
tors. Section 5 presents simulation studies of the finite sample properties of
the proposed methods. Real data analysis is given in Section 6. Discussions are
provided in Section 7. All technical details are relegated to the Supplementary
Material.

2. General order determination criteria of semipositive definite
matrices

In this section, we first propose two general order determination criteria based
on the properties of the estimated eigenvalues of a semipositive matrix.

Let Ŵ be a p × p symmetric and non-negative definite matrix, which is a
sample version of a true p× p symmetric and non-negative definite matrix. We
assume W = EŴ . Also let λ̂j be the eigenvalues of Ŵ such that λ̂1 ≥ λ̂2 ≥
. . . ≥ λ̂p. Let λ1 ≥ . . . ≥ λr > λr+1 = . . . = λp = 0 be the eigenvalues of W .
Note that the rank of W is r.

Let m∗ < p be a predefined upper bound and functions G(Ŵ ) and H(Ŵ )
be some appropriate positive penalty functions. We propose the following two
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quantities

IC(Ŵ ) = argmin
0≤m≤m∗

⎧⎨⎩
p∑

j=m+1

λ̂j +mG(Ŵ )

⎫⎬⎭ (1)

ER(Ŵ ) = argmin
1≤m≤m∗

λ̂m+1 +H(Ŵ )

λ̂m +H(Ŵ )
. (2)

The first criterion in (1) is similar to an information criterion as its first term
mimics the residual sum of squares of using a rank m matrix to approximate the
matrix Ŵ while the second term mG(Ŵ ) penalizes the model complexity m.
We will call it the information criterion (IC). The second criterion in (2) uses

the ratio of two adjacent eigenvalues of Ŵ , with a small penalty term H(Ŵ )
added to both the numerator and denominator. We will call it the eigen-ratio
criterion (ER).

Remark 1 (The information criterion). Note that, for a given m, the principle
components can be viewed as solutions of an optimization problem in which the
“sum of squared residuals” is minimized,

Ûm = argmin
Um

tr
{(

I − UmU�
m

)
Ŵ
}
. (3)

Note that tr
{(

I − ÛmÛ�
m

)
Ŵ
}
=
∑p

j=m+1 λ̂k. It plays the role of residual sum

of squares classically appearing in information criterion methods. Criterion (1)
has a structure comparable to that of Bai and Ng (2002) and Hallin and Lǐska
(2007). For vector factor models, the method proposed in Bai and Ng (2002)

is the same of the IC criterion with Ŵ being the sample covariance matrix,
while that in Hallin and Lǐska (2007) used spectral density matrix estimation.

The penalty mG(Ŵ ) is intimately related to the rate of convergence of the non-

divergent eigenvalues, when Ŵ is estimated from a set of data with diverging
dimensions, and balances between overestimation and underestimation.

Remark 2 (Eigen-ratio criterion). Different from the standard ER estimator

in Lam and Yao (2012), we add a penalty term H(Ŵ ) to both the numerator

and denominator. The intuition behind H(Ŵ ) is as follows. Since Ŵ is a noisy

version (an estimator) ofW of rank r, all estimated eigenvalues λ̂j (r+1 ≤ j ≤ p)

correspond to the zero eigenvalues of W . Hence the ratio λ̂j+1/λ̂j (j > r)

theoretically can be arbitrary small. The penalty H(Ŵ ) provides a lower bound

correction to λ̂j (r+1 ≤ j ≤ p). When it is of a proper order, we can ensure that

the ratio (λ̂m+1+H(Ŵ ))/(λ̂m+H(Ŵ )) goes to zero whenm = r (the true rank),
while all other such ratios are asymptotically bounded from below. In vector
factor models, Ahn and Horenstein (2013) exploited the ratio of eigenvalues of
sample covariance matrix to determine the number of factors. Non-divergent
eigenvalues therein are bounded below by a positive number asymptotically, as
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long as the eigenvalues of covariance matrix of idiosyncratic noises are bounded
away from zero. Our criterion (2) has a similar flavor.

Here we show a consistency result for the general estimator. To be more pre-
cise, let Ŵ (n) and W (n) be two sequences of semi-positive symmetric matrices,
with W (n) = EŴ (n) and n be an index associated with the sample size and

dimension. Also let λ̂
(n)
j be the eigenvalues of Ŵ (n) such that λ̂

(n)
1 ≥ λ̂

(n)
2 ≥

. . . ≥ λ̂
(n)
p . Let λ

(n)
1 ≥ . . . ≥ λ

(n)
r > λ

(n)
r+1 = . . . = λ

(n)
p = 0 be the eigenvalues

of W . We assume λ
(n)
r → ∞ as n → ∞. The following proposition provides the

sufficient conditions for the consistency of the IC and ER estimators in (1) and
(2), respectively. It provides a guideline of choosing proper penalty functions

G(·) and H(·) in order determination for any generic Ŵ (n).

Proposition 1. Assume |λ̂(n)
1 − λ

(n)
1 | = oP(λ

(n)
1 ) +OP(γn) and |λ̂(n)

r − λ
(n)
r | =

oP(λ
(n)
r ) +OP(γn), and |λ̂(n)

j − λ
(n)
j | = OP(βn) for all j > r. Then,

(i) P(IC(Ŵ (n)) = r) → 1, provided that (G(Ŵ (n)) + γn)/λ
(n)
r → 0 and

G(Ŵ (n))/βn → ∞;

(ii) P(ER(Ŵ (n)) = r) → 1, provided that (H(Ŵ (n)) + βn)/((λ
(n)
r )2/λ

(n)
1 ) →

0, γn/λ
(n)
r → 0 and H(Ŵ (n))/(β2

n/λ
(n)
r ) → ∞.

In the conditions of Proposition 1, γn represents the convergence rate of the
sample eigenvalues corresponding to the non-zero eigenvalues of W (n), and βn

represents the rate of the sample eigenvalues corresponding to the zero eigen-
values of W (n). For example, under the strong factor model of Lam and Yao
(2012)’s setting, γn = p2T−1/2 and βn = p2T−1, where T is the sample size.

Remark 3. In our model setting, λ
(n)
r+1 = . . . = λ

(n)
p = 0 and our objective is

to separate the zero and non-zero eigenvalues. The proposition holds for general

spiked eigenvalue detection as well. Specifically, let λ
(n)
1 ≥ . . . ≥ λ

(n)
r > γn >

λ
(n)
r+1 ≥ . . . ≥ λ

(n)
p ≥ 0 be the eigenvalues of W (n), where λ

(n)
r+1, . . . , λ

(n)
p are

called non-spiked eigenvalues (Cai, Han and Pan, 2020). Again it is assumed

that λ
(n)
r → ∞ as n → ∞. Then Proposition 1 holds when γn and βn are

the convergence rate of the sample eigenvalues corresponding to the spiked and
non-spiked eigenvalues of W (n), respectively. Note that the approaches of Bai
and Ng (2002), Amengual and Watson (2007), Hallin and Lǐska (2007), Lam
and Yao (2012) and Ahn and Horenstein (2013) all fit in this generic setting

or its variants, with various forms of the penalty functions G(Ŵ ) and H(Ŵ )

to distinguish λ̂
(n)
r from λ̂

(n)
r+1. For example, Bai and Ng (2002) suggest to use

G1 = p−1T−1(p+ T ) log(pT (p+ T )−1), G2 = p−1T−1(p+ T ) log(min{p, T}), or
G3 = max{p−1, T−1} log(min{p, T}), where T is the sample size and p is the
number of variables.

Remark 4. When the dimensions dk are large, estimating eigenvalues of a ma-
trix using its sample version is in general very difficult and potentially inaccu-
rate. However, to determine the number of factors, only the leading eigenvalues
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need to be estimated relatively accurately to achieve the purpose, which requires
relatively mild conditions on the sample version of the matrix.

For the specific problems such as the tensor factor model problem we focus
there, a detailed analysis of the rates γn and βn is needed to construct the
penalty functions G(·) and H(·) and to establish the consistency of the rank
estimators. In fact one can establish the convergence rate with a more detailed
analysis beyond the simple consistency results in Proposition 1, as we will do
for the tensor factor model.

3. Order determination criteria for tensor factor models

3.1. The model

Here we briefly introduce the tensor factor model setup in Chen, Yang and
Zhang (2021) and Han et al. (2020). A tensor factor model can be written as

Xt = Mt + Et = Ft ×1 A1 ×2 . . .×K AK + Et, (4)

where Xt ∈ Rd1×···×dK is the observed tensor at time t, the core tensor Ft is
the unobserved latent tensor factor process of dimension r1 × . . .× rK , Ak are
the deterministic loading matrix of size dk × rk and rk � dk, and Et is the
idiosyncratic noise components of Xt, which is assumed to be a white process.
Here the k-mode product of X ∈ R

d1×d2×···×dK with a matrix U ∈ R
d′
k×dk ,

denoted as X×kU , is an orderK-tensor of size d1×· · ·×dk−1×d′k×dk+1×· · ·×dK
such that

(X ×k U)i1,...,ik−1,j,ik+1,...,iK =

dk∑
ik=1

Xi1,i2,...,iKUj,ik .

The core tensor Ft is usually much smaller than Xt in dimension. We also assume
that the rank of Ak is rk. Otherwise Xt in (4) may be expressed equivalently
with a lower-dimensional factor process. The parameters r1, ..., rK are assumed
to be fixed but unknown. For more details of the tensor factor model (4), see
Chen, Yang and Zhang (2021) and Han et al. (2020).

It is obvious that the loading matrices Ak are not identifiable in Model
(4). Model (4) is unchanged if we replace (A1, ..., AK ,Ft) by (A1H1, ..., AKHK ,
Ft ×K

k=1 H
−1
k ) for any invertible rk × rk matrix Hk. However, the linear space

spanned by the columns of Ak, called the factor loading space, is uniquely de-
fined. Assume Ak has a SVD representation Ak = UkΛkV

�
k . Then, the factor

loading space of Ak can be represented by the orthogonal projection Pk,

Pk = PAk
:= Ak(A

�
k Ak)

−1A�
k = UkU

�
k . (5)

3.2. Rank selection criteria for tensor factor models

The two criteria introduced in Section 2 can be used to estimate the number of
factors in the tensor factor model (4), using properly constructed matrices W

and Ŵ . Particularly, we will study the following four constructions.
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Since they have been proposed and used for loading space estimation in Chen,
Yang and Zhang (2021) and Han et al. (2020), we adopt the same names to
represent them.

(I) TOPUP: Let

TOPUPk(X1:T ) = mat1

(
T∑

t=h+1

matk(Xt−h)⊗matk(Xt)

T − h
, h = 1, ..., h0

)
,

and

Ŵk = Ŵk(X1:T ) := TOPUPk(X1:T )(TOPUPk(X1:T ))
�,

where ⊗ is the tensor product such that, for any A ∈ R
m1×m2×···×mK and

B ∈ R
r1×r2×···×rN ,

(A⊗ B)i1,...,iK ,j1,...,jN = (A)i1,...,iK (B)j1,...,jN ,

and matk is the tensor unfolding (into a matrix) operation along mode-k of a

tensor. Here we emphasize that Ŵk is constructed using X1:T = (X1, . . . ,XT ).

The constant h0 is a (small) predetermined integer and the sum over h in Ŵk

is to accumulate the information from different time lags h. The rank of its
population version can be shown to be rk under certain conditions, hence we
can use the IC and ER estimators presented in Section 2 to determine rk.

(II) TIPUP: Define a dk × (dkh0) matrix as

TIPUPk(X1:T ) = mat1

(
T∑

t=h+1

matk(Xt−h)mat�k (Xt)

T − h
, h = 1, ..., h0

)
,

which replaces the tensor product in mat1(TOPUPk(X1:T ) by the inner product.
Let

Ŵ ∗
k = Ŵ ∗

k (X1:T ) := (TIPUPk(X1:T ))(TIPUPk(X1:T )
�.

(III and IV) iTOPUP and iTIPUP: Han et al. (2020) proposed an iterative
procedure to estimate Uk, k = 1, ...,K in (5), based on either TOPUP or TIPUP
procedure. Briefly, at i-th iteration, suppose we have obtained an estimate of

the ranks r̂
(i−1)
k (k = 1, . . . ,K) and their corresponding Û

(i−1)

k,r̂
(i−1)
k

at (i − 1)-th

iteration, we calculate the orthogonal projections of Xt, 1 ≤ t ≤ T , to obtain

Z(i)
k,t = Xt ×1 (Û

(i)

1,r̂
(i)
1

)� ×2 · · · ×k−1 (Û
(i)

k−1,r̂
(i)
k−1

)�

×k+1(Û
(i−1)

k+1,r̂
(i−1)
k+1

)� ×k+2 · · · ×K (Û
(i−1)

K,r̂
(i−1)
K

)�. (6)

Note that Z(i)
k,t uses projection of Xt on all modes, except mode-k. The ini-

tial ranks r̂
(0)
k (k = 1, . . . ,K) and their corresponding Û

(0)

k,r̂
(0)
k

can be obtained
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Table 1

Estimation criteria

Estimation method used IC ER

non-iterative TOPUP r̂k(IC) = r̂
(0)
k (IC) = IC(Ŵk) r̂k(ER) = r̂

(0)
k (ER) = ER(Ŵk)

non-iterative TIPUP r̂∗k(IC) = r̂
∗(0)
k (IC) = IC(Ŵ ∗

k ) r̂∗k(ER) = r̂
∗(0)
k (ER) = ER(Ŵ ∗

k )

i-th iteration of iTOPUP r̂
(i)
k (IC) = IC(Ŵ

(i)
k ) r̂

(i)
k (ER) = ER(Ŵ

(i)
k )

i-th iteration of iTIPUP r̂
∗(i)
k (IC) = IC(Ŵ

∗(i)
k ) r̂

∗(i)
k (ER) = ER(Ŵ

∗(i)
k )

through the non-iterative TOPUP and TIPUP procedure. Let Z(i)
k,1:T = (Z(i)

k,1, . . . ,

Z(i)
k,T ), and define

Ŵ
(i)
k = Ŵk(Z(i)

k,1:T ) := TOPUPk(Z(i)
k,1:T ))(TOPUPk(Z(i)

k,1:T ))
�,

Ŵ
∗(i)
k = Ŵ ∗

k (Z
(i)
k,1:T ) := TIPUPk(Z(i)

k,1:T ))(TIPUPk(Z(i)
k,1:T ))

�.

The iterative procedure is motivated by the observation that Z(j)
k,t is a r1 . . .

rk−1dkrk+1 . . . rK tensor, much smaller than Xt, which is d1 . . . dk tensor. Hence
Ak can be estimated more accurately if all Aj(j 
= k) are given in advance
or can be estimated accurately, since the convergence rate now depends on
(dk/rk)

∏K
i=1 ri rather than

∏K
i=1 di.

The IC and ER estimators are constructed by replacing Ŵ in (1) and (2)

with Ŵk, Ŵ
∗
k , Ŵ

(i)
k and Ŵ

∗(i)
k . This yields eight different criteria, summarized in

Table 1. Again, we use the same names of the procedures as that in Chen, Yang
and Zhang (2021) and Han et al. (2020) to represent the various constructions

of Ŵ . For the iterative procedures, we start with an initial rank estimate r
(0)
k ,

k = 1, . . . ,K and estimate the ranks through iteration until convergence. See
remark below for setting the initial ranks and the stopping criteria.

Remark 5. In our theories, we fix m∗ in (1) and (2) as a finite constant.
However, in practice, we may use, for example,m∗ = p/2. We do not recommend
to extend the search up to p, as the minimum eigenvalue is likely to be practically
0, especially when T is small and dk is large.

The choice of the penalty function G(·) and H(·): Both criteria essentially
try to distinguish the smallest (true) non-zero eigenvalue from the true zero
eigenvalue using noisy estimators of the eigenvalues. Hence the penalty function
is closely related to the amount of error in the eigenvalue estimation and the
strength of the smallest (true) non-zero eigenvalue. We consider the following
penalty functions G(·) = gk(d, T ):

gk,1(d, T ) =
h0d

2−2ν

T
log

(
dT

d+ T

)
,

gk,2(d, T ) = h0d
2−2ν

(
1

T
+

1

d

)
log

(
dT

d+ T

)
,
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gk,3(d, T ) =
h0d

2−2ν

T
log (min{d, T}) ,

gk,4(d, T ) = h0d
2−2ν

(
1

T
+

1

d

)
log (min{d, T}) ,

gk,5(d, T ) = h0d
2−2ν

(
1

T
+

1

d

)
log (min{dk, T}) , (7)

where d = ΠK
k=1dk and ν is a tuning parameter. Ideally ν should be chosen to be

the strength of the weakest factor (see Assumption IV in Section 4.1), though in
practice we usually do not know its precise value. A more thorough discussion
on this issue will be given later in Remark 10. Note that only gk,5 involves k.

For the eigen-ratio criterion, we consider the following penalty functionH(·) =
hk(d, T ):

hk,1(d, T ) = c0h0, hk,2(d, T ) =
h0d

2

T 2
, hk,3(d, T ) =

h0d
2

T 2d2k

hk,4(d, T ) =
h0d

2

T 2d2k
+

h0d
2
k

T 2
, hk,5(d, T ) =

h0d
2

T 2dk
+

h0ddk
T 2

. (8)

where c0 is a small constant, e.g. c0 = 0.1. Note that the penalty functions
scale with h0, because the strength of divergent eigenvalues increases with h0.
Our theoretical analysis indicates that a better penalty function H(·) should
also involve the strengths of the factors, similar to G(·). However, the function
G(·) has a much wider allowable range, and in most of the situations a simple
constant function hk,1 is sufficient. A more detailed discussion will be given later
in Remark 10.

More considerations of the iterative procedure: The non-iterative pro-
cedures estimate rk (k = 1, . . . ,K) individually. The accuracy of r̂k does not
depend on the accuracy of the estimation of the ranks in other directions. On
the other hand, the iterative procedures estimate all the ranks simultaneously,
hence the accuracy of estimated rank in one direction depends on that in all
other directions. The iterative algorithm improves the estimation accuracy of

the eigenvalues and the principal subspace because the projected tensor Z(i)
k,t in

(6) is of lower dimensional than Xt. Figure 1 numerically shows that the iter-
ative algorithms improve the accuracy of estimated true zero eigenvalues over
the non-iterative algorithms. In iterative algorithms, one would need to specify

all the ranks r̂
(i)
k (k = 1, . . . ,K) in each iteration. Intuitively, an overestimated

r̂
(i)
k > rk would still produce consistent estimators, since the non-iterative proce-

dure, using r̂
(i)
k = dk for all other directions, is consistent. Our theoretical results

shown later confirm that, if r̂
(i−1)
k used is larger than the true rk, the iterative

algorithm warrant the consistency of the IC and ER estimators at i-th iteration.

However, an underestimated r̂
(i)
k < rk would potentially result in loss of signal

strength hence negatively impacting the estimation in other dimensions. A pre-
cise quantification of the impact requires a more detailed investigation. But the
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Fig 1. Histogram of 6th largest estimated eigenvalue for the row factor (k = 1) in Model M2
(see Section 5) with T = 200 and d1 = d2 = 40 for initial estimator, one step estimator and
final estimator over 1000 replications. The true value is 0.

numerical studies show that for iteration i > 1, the performance is relative ro-
bust by using the order obtained by the IC or ER criteria. This is partially due
to the theoretical justification that, for fixed ranks rk, iterative algorithm only
needs one iteration to achieve the ideal convergence rate for the estimation of
the eigenvalues (see Theorem 2 later). In fact, if one has a priori information
about a possible maximum (fixed) ranks of the core factor process, one could
use such ranks in the iterative algorithms accordingly.

For iTOPUP procedure, we use r̂
(i)
k = r̂

(i)
k (IC) or r̂

(i)
k = r̂

(i)
k (ER) after

the initial iteration i ≥ 1. However, one needs to use a more conservative

estimator of the rank for the initial step since r̂
(0)
k (IC) and r̂

(0)
k (ER) tend

to be inaccurate. We suggest to use r̂
(0)
k = min{2r̂(0)k (IC), r̂

(0)
k (IC) + 3} or

r̂
(0)
k = min{2r̂(0)k (ER), r̂

(0)
k (ER) + 3} by default, unless one has prior knowl-

edge of the number of the factors. iTIPUP procedure is similar. Although it is

safer to use larger initial ranks r
(0)
k , it is often not necessary to be extremely

conservative, as the initial loss of signal strength of using a rank too small can
be corrected later through iterations.

In the iterative algorithms, iteration is not stopped until the convergence of
both the rank estimators and the loading space estimators. Theoretical prop-
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erties in Section 4 only state consistency results in each iteration step. This
stopping rule is mainly suggested by simulation study. In practice, we may stop
the algorithm when the estimated number of factors in current iteration is the
same as that in previous iteration.

3.3. Some discussions

Remark 6. When the means of the factor processes deviate from zeros by a
large margin, there is often one or several dominating factors corresponding to
these non-zero means, as observed by Brown (1989), while the factors associated
with the covariances become weak factors and are more difficult to identify.
Assuming that the factor tensor process does not change its dimension after the
deterministic means are removed, i.e. the factor tensor process is not a constant
in any of its dimensions, then one should always demean the data in practice
for the determination of the dimension of the factors, though not necessary
for the estimation of the loading spaces, as shown by Chen and Fan (2021)
that aggregating the first and second moments of the data may improve the
estimation accuracy of the factor loading matrices.

Remark 7. When some rk = 1, although the factor process has a reduced
number of tensor modes, the proposed IC and ER methods should work well
in identifying rk = 1 cases. If there is no factor structure (r1 = ... = rK = 0),
the proposed IC methods still can select the zero rank. But the ER methods
need a slight modification, by constructing a new mock eigenvalue λ̂k,0 using
the rate of the spiked eigenvalues. In the current paper, we focus on the case
that rk is fixed and dk diverges. If rk = dk along one (or even all) dimension(s),
the theoretical results in Section 4 can be extended. In this case we will need to
modify the IC and ER methods using the developed convergence rates of zero
eigenvalues.

Remark 8 (Improved penalization for IC approaches). The information
criterion (1) has the property, exploited by Hallin and Lǐska (2007) in the con-
text of dynamic factor models, that a penalty function G(·) = gk(d, T ) leads to
a consistent estimate of rk if and only if cgk(d, T ) does, where c is an arbitrary
positive real number. Thus, multiplying the penalty by c has no influence on
the asymptotic performance of the identification method. However, for given
finite d and T , the value of a penalty function gk(d, T ) satisfying (1) can be
arbitrarily small or arbitrarily large, and this indeterminacy can affect the ac-
tual result quite dramatically. The procedures in Hallin and Lǐska (2007) and
Alessi, Barigozzi and Capasso (2010) can also be used in tensor factor model to
robustify the IC approach with an empirically optimal choice of c.

Specifically, following Hallin and Lǐska (2007) and Alessi, Barigozzi and Ca-
passo (2010), we generate a sequence of subsamples of sizes (d1,j , ..., dK,j , Tj)
with j = 0, ..., J such that dk,0 = 0 < dk,1 < dk,2 < · · · < dk,J = dk and
T0 = 0 < T1 ≤ T2 ≤ · · · ≤ TJ = T , where dk is the original data dimension
of tensor mode k and T is the original sample size, 1 ≤ k ≤ K. For any j, we
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obtain an estimated rank r̂k,c,j of rk, which is a non-increasing function of c.
Assume rk > 0. The behavior of r̂k,c,j , as a function of j, is different for different
values of c. If c > 0 and small, in practice, as j increases, r̂k,c,j would increase
to the maximum rank m∗ considered in (1), and we tends to overestimate rk.
On the other hand, when c is very large, r̂k,c,j tends to zero for any j, and rk
is underestimated. Due to the monotonicity of r̂k,c,j as a function of c, there
must exist a range of “moderate” values of c such that r̂k,c,j is a stable function
of the subsample size (d1,j , ..., dK,j , Tj). The stability can be measured by the
empirical variance of r̂k,c,j as a function of j,

Sk,c =
1

J

J∑
j=1

⎛⎝r̂k,c,j −
1

J

J∑
j=1

r̂k,c,j

⎞⎠2

.

The optimal c is then chosen to minimizes Sk,c.

4. Assumptions and asymptotic properties

4.1. Assumptions and notation

We introduce some notations first. Let d =
∏K

k=1 dk and d−k = d/dk. For
a matrix A = (aij) ∈ Rm×n, write the SVD as A = UΣV �, where Σ =
diag(σ1(A), σ2(A), ..., σmin{m,n}(A)), with the singular values σ1(A) ≥ σ2(A) ≥
· · · ≥ σmin{m,n}(A) ≥ 0 in descending order. The matrix Frobenius norm can be

denoted as ‖A‖F = (
∑

ij a
2
ij)

1/2 = (
∑min{m,n}

i=1 σ2
i (A))1/2. Define the spectral

norm

‖A‖2 = max
‖x‖2=1,‖y‖2=1

‖x�Ay‖2 = σ1(A).

The tensor Hilbert Schmidt norm for a tensor A ∈ R
m1×m2×···×mK is defined

as

‖A‖HS =

√√√√ m1∑
i1=1

· · ·
mK∑
iK=1

(A)2i1,...,iK .

Define the tensor operator norm for an order-4 tensor A ∈ R
m1×m2×m3×m4 ,

‖A‖op = max

⎧⎨⎩ ∑
i1,i2,i3,i4

ui1,i2 · ui3,i4 · (A)i1,i2,i3,i4 : ‖U1‖F = ‖U2‖F = 1

⎫⎬⎭ ,

where U1 = (ui1,i2) ∈ R
m1×m2 and U2 = (ui3,i4) ∈ R

m3×m4 . Define order-4
tensors

Θk,h =

T∑
t=h+1

matk(Mt−h)⊗matk(Mt)

T − h
∈ R

dk×d−k×dk×d−k ,
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Φk,h =

T∑
t=h+1

matk(Ft−h)⊗matk(Ft)

T − h
∈ R

rk×r−k×rk×r−k ,

Φ
(cano)
k,h =

T∑
t=h+1

matk(Mt−h ×K
k=1 U

�
k )⊗matk(Mt−h ×K

k=1 U
�
k )

T − h

∈ R
rk×r−k×rk×r−k ,

where ⊗ is the tensor product and Uk is from the SVD form of Ak = UkΛkV
�
k .

We view Φ
(cano)
k,h as the canonical version of the auto-covariance of the factor

process. Similarly define

Θ∗
k,h =

T∑
t=h+1

matk(Mt−h)mat�k (Mt)

T − h
∈ R

dk×dk ,

Φ∗
k,h =

T∑
t=h+1

matk(Ft−h)mat�k (Ft)

T − h
∈ R

rk×rk ,

Φ
∗(cano)
k,h = U�

k Θ∗
k,hUk

=

T∑
t=h+1

matk(Mt−h ×K
k=1 U

�
k )mat�k (Mt ×K

k=1 U
�
k )

T − h
∈ R

rk×rk .

Write Φk,1:h0 = (Φk,h, h = 1, . . . , h0) and Φ∗
k,1:h0

= (Φ∗
k,h, h = 1, . . . , h0). De-

note E(·) = E(·|{F1, ...,FT }). Let τk,m be the m-th largest singular value of
E(TOPUPk(X1:T )),

τk,m = σm(E(TOPUPk(X1:T ))) = σm

(
mat1(Θk,1:h0)

)
.

Similarly, let

τ∗k,m = σm(E(TIPUPk(X1:T ))) = σm

(
mat1(Θ

∗
k,1:h0

)
)
.

For simplicity, we write Uk = Uk,rk and Ûk = Ûk,rk .
To facilitate consistency properties of the proposed procedures, we impose

the following assumptions.

Assumption I. The error process Et are independent Gaussian tensors, condi-
tion on the factor process {Ft, t ∈ Z}. In addition, there exists some constant
σ > 0, such that

E(u�vec(Et))2 ≤ σ2‖u‖22, u ∈ R
d.

Assumption II. Assume the factor process Ft satisfies the strong α-mixing
condition such that

α(h) ≤ exp
(
−c0h

θ1
)

(9)

for some constant c0 > 0 and 0 < θ1 ≤ 1, where

α(h) = sup
t

{∣∣∣P(A ∩B)− P(A)P(B)
∣∣∣ : A ∈ σ(Fs, s ≤ t), B ∈ σ(Fs, s ≥ t+ h)

}
.
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Assumption III. For any uk ∈ R
rk with ‖uk‖2 = 1 and 1 ≤ k ≤ K,

max
t

P (|Ft ×1 u1 ×2 · · · ×K uK | ≥ x) ≤ c1 exp
{
−c2x

θ2
}
, (10)

where c1, c2 are some positive constants and 0 < θ2 ≤ 2.

Assumption IV. Assume r1, ..., rK are fixed. There exist some constants δ0, δ1
with 0 ≤ δ0 ≤ δ1 ≤ 1, such that ‖Ak‖2 
 d

(1−δ0)/2
k and σrk(Ak) 
 d

(1−δ1)/2
k for

all 1 ≤ k ≤ K.

Assumption V. Assume that h0 is fixed, and
(a) (TOPUP related): E[mat1(Φk,1:h0)] is of rank rk for 1 ≤ k ≤ K.

(b) (TIPUP related): E[mat1(Φ
∗(cano)
k,1:h0

)] is of rank rk for 1 ≤ k ≤ K.

Assumption I is the same assumption used in Chen, Yang and Zhang (2021)
and Han et al. (2020). This assumption corresponds to the white noise assump-
tion of Lam, Yao and Bathia (2011), Lam and Yao (2012). It allows substantial
contemporaneous correlation among the entries of Et. Note that the normality
assumption, which ensures fast convergence rates in our analysis, is imposed
for technical convenience. In fact we only need to impose the sub-Gaussian
condition. Assumption II allows a very general class of time series models, in-
cluding causal ARMA processes with continuously distributed innovations; see
also Bradley (2005), Fan and Yao (2003), Rosenblatt (2012), Tong (1990), Tsay
(2005), Tsay and Chen (2018), among others. The restriction θ1 ≤ 1 is intro-
duced only for presentation convenience. Assumption III requires that the tail
probability of any orthonormal projection of Ft decay exponentially fast. In
particular, when θ2 = 2, Ft is sub-Gaussian.

Assumption IV is similar to the signal strength condition of Lam and Yao
(2012), and the pervasive condition on the factor loadings (e.g., Stock and Wat-
son (2002) and Bai (2003)). It plays a key role in identifying the common factors
and idiosyncratic noises in (4). Indices δ0, δ1 are measures of the strength of fac-
tors, or the rate of signal strength growth as the dimension dk grows. When
δ0 = δ1 = 0, the factors are called strong factors; otherwise, the factors are
called weak factors. In particular, δ0 represents the strength of the strongest
factors and δ1 the strength of the weakest factors.

Remark 9 (Signal cancellation). Assumption V guarantees that there is no
redundant tensor direction in Ft when combined with Ak’s. It is related to
certain signal cancellation phenomenon which is rare for TOPUP procedures
but may occur among TIPUP related procedures. Consider the case of k = 1

and K = 2. We write the factor process in the canonical form as F (cano)
t =

U�
1 MtU2 = (f∗

i,j,t)d1×d2 , and φ
(cano)
i1,j1,i2,j2,h

=
∑T

t=h+1 f
∗
i1,j1,t−hf

∗
i2,j2,t

/(T − h)
as the time average cross product between fibers f∗

i1,j1,1:T
and f∗

i2,j2,1:T
of the

factor process (in canonical form). Then ‖Θ1,h‖2HS =
∑

i1,j1,i2,j2

(
φ
(cano)
i1,j1,i2,j2,h

)2
and ‖Θ∗

1,h‖2F = ‖Φ∗(cano)
k ‖2F =

∑
i1,i2

(∑r2
j=1 φ

(cano)
i1,j,i2,j,h

)2
. Note that the sum-

mation
∑r2

j=1 φ
(cano)
i1,j,i2,j,h

is subject to potential cancellation among its terms for



Determining the number of factors 1741

h > 0. In the extreme cases, E[mat1(Φ
∗(cano)
k,1:h0

)] may not have full rank rk and

thus the signal strength τ∗k,rk can be much smaller than the order d1−δ1 . In
Assumption V(b), we rule out the possibility of such severe signal cancellation.
In practice, Han et al. (2020) suggest to examine the patterns of the estimated
singular values under different lag h values. If there is no severe signal cancel-

lation, we would expect that the pattern of h
−1/2
0 τk,rk,h0 would be similar to

that of h
−1/2
0 τ∗k,rk,h0

under different h0. Here we emphasize that τk,rk,h0 and
τ∗k,rk,h0

depend on h0, though in other places when h0 is fixed we will omit h0

in the notation. Severe signal cancellation would make the patterns different,

since h
−1/2
0 τ∗k,rk,h0

suffers signal cancellation but h
−1/2
0 τk,rk,h0 does not. See the

discussion in Han et al. (2020). On the other hand, Assumption V(a) is sufficient
to guarantee that E[Θk,1:h0] and Ak have the same rank rk.

Instead of Assumptions II to V, Chen, Yang and Zhang (2021) and Han
et al. (2020) imposed conditions on ‖Θk,0‖op, ‖Θ∗

k,0‖2, τk,rk and τ∗k,rk in order to
allow rk to increase with dk. The following proposition establishes a connection
between these two types of assumptions when the rank rk is fixed.

Proposition 2. Suppose that Assumptions I to V hold. Let 1/ϑ = 1/θ1 +2/θ2.
Then, in an event Ω0 with probability at least 1− T exp(−C1T

ϑ)− exp(−C2T ),

‖Θk,0‖op 
 ‖Θ∗
k,0‖2 
 d1−δ0 and τk,rk 
 τ∗k,rk 
 d1−δ1 ,

where C1, C2 > 0.

4.2. Theoretical properties for IC and ER estimators

In this section, we shall present theoretical properties of the IC and ER estima-
tors using non-iterative TOPUP, non-iterative TIPUP, iTOPUP and iTIPUP.
We first introduce some quantities related to the estimation errors of the es-
timated eigenvalues of the four different methods. For non-iterative TOPUP,
define

βk = (d2d−1
k + d3/2−3δ0/2+δ1 + d

1/2
k d3/2−2δ0+δ1 + dkd

1−δ0)T−1, (11)

γk = d3/2−3δ0/2T−1/2 + (d2−δ0 + d2d−1
k + d3/2−3δ0/2+δ1 + d

1/2
k d3/2−2δ0+δ1)T−1,

(12)

For non-iterative TIPUP, define

β∗
k = (d1−δ0+δ1 + dkd

1−2δ0+δ1)T−1, (13)

γ∗
k = (d3/2−3δ0/2 + d3/2−δ0d

−1/2
k )T−1/2 + (d1−δ0+δ1 + dkd

1−2δ0+δ1)T−1, (14)

Similarly, we use β̃k, γ̃k and β̃∗
k , γ̃

∗
k for iTOPUP and iTIPUP, respectively,

where

β̃k = (dkd
1−δ0/2 + dkd

1−2δ0+δ1)T−1, (15)
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γ̃k = d3/2−3δ0/2T−1/2 + dkd
1−2δ0+δ1T−1, (16)

β̃∗
k = dkd

1−2δ0+δ1T−1, (17)

γ̃∗
k = d3/2−3δ0/2T−1/2 + dkd

1−2δ0+δ1T−1. (18)

It is clear that βk, γk, β
∗
k and γ∗

k dominate β̃k, γ̃k, β̃
∗
k and γ̃∗

k , respectively.

Actually, βk and γk (resp. β∗
k , γ

∗
k , or β̃k, γ̃k, or β̃

∗
k , γ̃

∗
k) correspond to the βn and

γn sequence in Proposition 1.
We impose the following set of conditions to ensure that the estimation error

of the divergent eigenvalue is much smaller than the true smallest non-zero
eigenvalue, and the estimation error of the zero eigenvalues is relatively small.
The γ’s above are part of the estimation errors of the divergent eigenvalues,
and the β’s are the estimation errors of the (true) zero eigenvalues, for the four
different estimation method. Note that d2−2δ1 is the growth rate of the smallest
non-zero eigenvalues corresponding to the weakest factors. See also Theorem 2
below.

Assumption VI (Rate condition).

(a) max1≤k≤K {ak} = o(d2−2δ1)
(b) max1≤k≤K {bk} = o(d2+2δ0−4δ1),

The sequences ak and bk will be one of the γk and βk sequences defined above,
respectively, based on the estimators.

We will impose the following sufficient conditions on the penalty function
gk(·) and hk(·).
Assumption VII (Sufficient condition on the penalty functions).

(a) bk ≺ mink{gk(d, T )} ≤ maxk{gk(d, T )} ≺ d2−2δ1 ,
(b) d2δ1−2b2k ≺≺ mink{hk(d, T )}) ≤ maxk{hk(d, T )} ≺≺ d2+2δ0−4δ1 ,

where 
n ≺ �n indicates that there is a constant C such that 
n < C�n
uniformly, and
n ≺≺ �n indicates
n = o(�n). The sequence bk will be specified
for different estimators.

Remark 10 (Penalty functions). The penalty functions gk and hk enter the
consistency theorem below through Assumption VII. They do not have direct
impact on the convergence rate of the rank estimators, as long as the condition
is satisfied. Indirectly their choice interacts with the required sample size T and
dimension d. Roughly speaking, Assumption VII(a) dictates that the penalty
gk(d, T ) should be less than the smallest diverging eigenvalue, but large enough
to correctly truncate the estimated true zero eigenvalues. The bk sequence in the
assumption is taken to be one of the βk, β

∗
k , β̃k and β̃∗

k defined above, according
to the procedure used. In practice we generally do not know the the factor
strengths δ0 and δ1, hence may not always be able to specify a gk(d, T ) that
satisfies the condition. However, the range between the upper and lower bounds
is quite wide in most of the cases, especially with the additional T−1 term in the
lower bound. All of the suggested gk(d, T ) listed in (7) satisfy the condition, if
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ν = δ1. Our experiments shows that setting ν = 0 in (7) is sufficient in most of
the cases. Only when the true δ1 is very large (extreme weak factors), the results
become sensitive to the selection of ν. In such cases, a data driven procedure
similar to that in Hallin and Lǐska (2007) for vector factor models may be used to
estimate δ1. Its property for tensor factor model may need further investigation.
One can also study the pattern of the rank estimates under different ν.

The condition imposed on the penalty function hk(d, T ) in Assumption VII(b)
is even weaker. The upper bound goes to infinity but the lower bound goes to
zero, except when both δ0 and δ1 are large, and T is of smaller order than d.
Hence in most of the cases a (small) constant function is sufficient. If rk is the
true rank, the function hk(d, T ) is designed to adjust the ratio of eigenvalues

λ̂k,j+1/λ̂k,j , j > rk to be bounded below and to be around 1 (as we add hk(d, T )
on both the numerator and denominator) so that they do not accidentally be

smaller than λ̂k,rk+1/λ̂k,rk (a number that goes to 0). Hence intuitively we do
not expect the impact of hk(d, T ) to be large, which is confirmed by our empirical
study. The suggested functions in (8) all satisfy the Assumption VII(b), except
the extreme weak factor cases, for which the ER estimators do not perform well
under any penalty function.

Assumption VII only provides broard guidance asymptotically. There is no
general unique optimal penalty function. Note that if gk(d, T ) is an appropriate
penalty function, then cgk(d, T ) is appropriate as well asymptotically. The same
property holds for the approaches of Bai and Ng (2002, 2007), Amengual and
Watson (2007), Hallin and Lǐska (2007) and Li, Li and Shi (2017). This creates
potential problems in practice with given d and T . Under certain circumstances,
the empirical performance of IC estimators may heavily depend on the threshold
function chosen among many alternatives; see the discussion in Hallin and Lǐska
(2007).

The following is a set of different sample size conditions for different settings.
They ensure sufficiently large sample size T so that the non-iterative (true rank)
factor loading space estimator based on TOPUP or TIPUP is consistent (for
(a) and (b)), or has a relatively small error (for (c) and (d)).

Assumption VIII (Condition on the sample size).

(a) (dδ1−δ0/2 + dδ1d
−1/2
k )T−1/2 = o(1), 1 ≤ k ≤ K.

(b) (d
1/2
k dδ1−δ0/2−1/2 + dδ1−1/2)T−1/2 = o(1), 1 ≤ k ≤ K.

(c) (dδ1−δ0/2 + dδ1d
−1/2
k )T−1/2 + d

1/2
k dδ1−1/2T−1 ≤ C, 1 ≤ k ≤ K.

(d) (d
1/2
k d3δ1−5δ0/2−1/2 + d3δ1−2δ0−1/2)T−1/2 ≤ C, 1 ≤ k ≤ K.

Theorem 1 presents the asymptotic properties of the IC and ER estimators
in (1) and (2) based on non-iterative TOPUP, non-iterative TIPUP, iTOPUP
and iTIPUP.

Theorem 1. Let 1/ϑ = 1/θ1+2/θ2 as in Proposition 2. For the various rank de-
termination estimators, if their corresponding conditions listed in Table 2 hold,
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Table 2

Summary of conditions needed for Theorem 1

Assumptions
IC Estimator r̂k Model Rank Rate 1 Rate 2 Penalty gk(·) Size

(I)-(IV) (V) (VI)(a) (VI)(b) (VII)(a) (VIII)
TOPUP r̂(IC) yes (a) ak = γk - bk = βk (a)
TIPUP r̂∗(IC) yes (b) γ∗

k - β∗
k (b)

iTOPUP r̂(i)(IC) yes (a) γ̃k - β̃k (c)

iTIPUP r̂∗(i)(IC) yes (b) γ̃∗
k - β̃∗

k (d)

ER Estimator Model Rank Rate 1 Rate 2 Penalty hk(·) Size
(I)-(IV) (V) (VI)(a) (VI)(b) (VII)(b) (VIII)

TOPUP r̂(ER) yes (a) ak = γk bk = βk bk = βk (a)
TIPUP r̂∗(ER) yes (b) γ∗

k β∗
k β∗

k (b)

iTOPUP r̂(i)(ER) yes (a) γ̃k β̃k β̃k (c)

iTIPUP r̂∗(i)(ER) yes (b) γ̃∗
k β̃∗

k β̃∗
k (d)

then

P(r̂k = rk, 1 ≤ k ≤ K) ≥ 1−
K∑

k=1

e−dk − T exp(−C1T
ϑ)− exp(−C2T ),

with C1, C2 > 0.

In addition to the consistency of the rank estimators, we also have the fol-
lowing more detailed properties of the estimated eigenvalues. Let λ̂k,j be the

eigenvalues of Ŵk (defined in Section 3.1) such that λ̂k,1 ≥ λ̂k,2 ≥ ... ≥ λ̂k,dk
,

1 ≤ k ≤ K. Also let λk,j be the eigenvalues of population version EŴk such

that λk,1 ≥ ... ≥ λk,rk > λk,rk+1 = ... = λk,dk
= 0. Similarly, define λ̂∗

k,j , λ
∗
k,j ,

λ̂
(i)
k,j , λ

(i)
k,j , λ̂

∗(i)
k,j and λ

∗(i)
k,j as the eigenvalues of Ŵ ∗

k , EŴ
∗
k , Ŵ

(i)
k , EŴ

(i)
k , Ŵ

∗(i)
k ,

EŴ
∗(i)
k , i ≥ 1, respectively.

Theorem 2. Suppose the same conditions (I-V, VIII) in Theorem 1 hold. In
an event with probability approaching 1 (as T → ∞ and d → ∞), the following
holds.

(i). For estimating the true zero eigenvalues, we have, for j ≥ rk and i ≥ 1,

λ̂k,j = O(βk), λ̂∗
k,j = O(β∗

k), λ̂
(i)
k,j = O(β̃k), and λ̂

∗(i)
k,j = O(β̃∗

k)

(ii). For estimating the non-zero eigenvalues, we have, for all 1 ≤ j ≤ rk and
i ≥ 1,

|λ̂k,j − λk,j | = O(T−1/2d2+δ1−5δ0/2 + T−1/2d
−1/2
k d2+δ1−2δ0 + γk),

|λ̂∗
k,j − λ∗

k,j | = O(T−1/2d
1/2
k d3/2+δ1−5δ0/2 + T−1/2d3/2+δ1−2δ0 + γ∗

k),

|λ̂(i)
k,j − λ

(i)
k,j | = O(T−1/2d

1/2
k d3/2+δ1−5δ0/2 + γ̃k),

|λ̂∗(i)
k,j − λ

∗(i)
k,j | = O(T−1/2d

1/2
k d3/2+δ1−5δ0/2 + γ̃∗

k).
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Remark 11 (Strong factor cases). To illustrate the theorem, we consider the
strong factor case δ0 = δ1 = 0. Here the quantities (11)-(18) can be simplified
to

βk 
 T−1d−1
k d2 + T−1d

1/2
k d3/2, γk 
 T−1d2 + T−1/2d3/2,

β∗
k 
 β̃k 
 β̃∗

k 
 T−1dkd, γ∗
k 
 γ̃k 
 γ̃∗

k 
 T−1dkd+ T−1/2d3/2.

The sample size conditions in Assumption VIII all reduces to T → ∞. And
the penalty function conditions (Assumption VII) is equivalent to (a) bk ≺
gk(d, T ) ≺ d2, (b) d−2b2k ≺≺ hk(d, T ) ≺≺ d2, 1 ≤ k ≤ K. Thus, we shall expect
similar performance for non-iterative TIPUP, iTOPUP and iTIPUP, but the
non-iterative TOPUP may be worse.

Remark 12 (The vector factor models). Theorem 1 and 2 hold for vector
factor models by setting K = 1 and d = d1. In such a case, TOPUP is the
same as TIPUP. More specifically, assuming all factors have the same strength
(δ0 = δ1), a common assumption used in the literature, Theorem 2 reduces to

|λ̂k,j − λk,j | = OP(T
−1/2d2−3δ0/2) for 1 ≤ j ≤ r1 and λ̂k,j = OP(T

−1d2−δ0) for
j > r1 for the vector factor model case. This is the same as the convergence
rate of the estimated eigenvalues derived in Lam and Yao (2012), though our
improved technical proof removed the restrictive conditions that T = O(d) and
all the non-zero eigenvalues are distinct. In addition, Theorem 1 provides the
rate of convergence of the rank estimators.

Remark 13. Note that our model setting is different from that used in Bai
and Ng (2002) and Hallin and Lǐska (2007) where covariance matrix or spectral
density matrix are used, instead of the auto-co-moment we use here. It is possible
to extend our approach to identify the number of factors in these models, by
setting h0 = 0 in the construction of Ŵ and using an extension of Proposition
1 discussed in Remark 3. The main difference is that, in our model and with
auto-co-moments, we are trying to separate non-zero and zero eigenvalues in
the underlying W , while in approximate factor model and h0 = 0, one would be
trying to separate spiked and non-spiked eigenvalues. Hence a detailed analysis
of the corresponding γn and βn in Proposition 1 will be needed.

Remark 14 (Sample size requirement comparison). The sample size required
for the non-iterative estimators as shown in Assumptions VIII(a,b) is of higher
order than that for the iterative estimators as in Assumptions VIII(c,d). This is
because, when the true ranks are used, TOPUP and TIPUP require a larger sam-
ple size to consistently estimate the true loading spaces Ak than the iTOPUP
and iTIPUP procedures which require only a sufficiently “good” initial estima-
tor of the loading space, but not necessarily a consistent one (Han et al., 2020).
Similarly, the required sample size condition for TIPUP in Assumption VIII(b)
is much weaker than that for TOPUP in Assumption VIII(a). In this regard,
iterative procedures are better than the non-iterative ones, and TIPUP based
procedures are better than TOPUP based ones.

Remark 15 (Convergence rate comparison). The convergence rates of the es-
timated eigenvalues in the iterative methods are faster than that in the non-
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Table 3

Comparison of convergence rate for estimating the true zero eigenvalues

δ0 condition δ1 condition comparison

δ0 > 1/K

δ1 ≥ 3δ0/2 β̃∗
k � β̃k ≺≺ β∗

k ≺≺ βk

δ0/2 + 1/K < δ1 < 3δ0/2 β̃∗
k ≺≺ β̃k ≺≺ β∗

k ≺≺ βk

δ1 = δ0/2 + 1/K ≥ δ0 β̃∗
k ≺≺ β̃k � β∗

k ≺≺ βk

δ0 ≤ δ1 < δ0/2 + 1/K β̃∗
k ≺≺ β∗

k ≺≺ β̃k ≺≺ βk

δ0 ≤ 1/K
δ1 ≥ 3δ0/2 β̃∗

k � β̃k � β∗
k ≺≺ βk

δ1 < 3δ0/2 β̃∗
k � β∗

k ≺≺ β̃k ≺≺ βk

Table 4

Comparison of the γ’s in the convergence rate for estimating the true non-zero eigenvalues,
under Assumption VIII(a)-(d).

δ0 condition δ1 and T condition comparison

δ0 > 1/K
d1+2δ0−1/K + d2δ1−δ0+1/K ≺ T γ̃∗

k � γ̃k � γk ≺≺ γ∗
k

T ≺≺ d1+2δ0−1/K or T ≺≺ d2δ1−δ0+1/K γ̃∗
k � γ̃k ≺≺ γ∗

k ≺≺ γk

δ0 ≤ 1/K
d1+2δ0 + d2δ1−δ0+1/K ≺ T γ̃∗

k � γ̃k � γ∗
k � γk

T ≺≺ d1+2δ0 or T ≺≺ d2δ1−δ0+1/K γ̃∗
k � γ̃k � γ∗

k ≺≺ γk

iterative methods, especially when there are weak factors in the model. More-
over, the rate of TIPUP related procedures is also faster than that of TOPUP
related procedures. This can be seen by comparing βk, γk, β

∗
k , γ

∗
k with β̃k, γ̃k,

β̃∗
k , γ̃

∗
k .

For example, consider the case that all dk are of the same order and K > 1.
The following table shows the comparison of the convergence rate (β’s) of the
estimated true zero eigenvalues, where ≺ and ≺≺ are defined in Assumption VII.

From Tables 3, it is clear that β̃∗
k is always the smallest, and βk is the largest.

Similarly, Table 4 shows that γ̃∗
k and γ̃k are always the smallest among these

four γ’s.
For the IC estimators with a fixed penalty functions gk(d, T ), a faster conver-

gence rate of the eigenvalue estimators make the sufficient condition Assump-
tion VII(a) easier to satisfy with smaller sample size T and/or dimension dk,
1 ≤ k ≤ K. Similarly, for the ER estimators, faster rates for estimating the true
zero eigenvalue increase the gap between the estimated divergent eigenvalues
and the estimated true zero eigenvalue, leading to better performance of the ER
estimators.

Combining the discussion in Remarks 14 and 15, we can conclude that in
general the iterative procedues are better than the non-iterative ones and the
TIPUP based procedures are better than the TOPUP ones, assuming no signal
cancellation when TIPUP is used (see Remark 9).
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5. Simulation Study

In this section, we compare the empirical performance of the proposed methods
and their variants under various simulation setups. We consider the identifica-
tion of the number of factors based on the non-iterative TIPUP and TOPUP
methods (denoted as initial estimators), the one step iterative methods (denoted
as one-step estimators) and the iterative procedures after convergence (denoted
as final estimator). In the iterative algorithm, at i-th iteration (i > 1), we use
the order obtained by the IC or ER criteria. Iteration is stopped when both
the rank estimators and the loading space estimators converge. We also check
the performance of different choices of penalty function gk(d, T ) and hk(d, T ).
Specifically, we consider penalty functions (7) and (8), and denote them as
IC1-IC5, ER1-ER5, respectively. The empirical performance of IC1-IC5 (resp.
ER1-ER5) are very similar, thus we only present IC2 and ER1 in this section.
The detailed comparison are shown in Appendix B.

The simulation study consists of three parts. The first part is designed to
investigate the overall performance of our methods and their comparisons under
models with different factor strength. As the strength of the weakest factors is
unknown, we by default set ν = 0 for all the penalty function gk(d, T ) in (7). In
the second part, we investigate the case in which some factors have a dominantly
strong explanatory power. The third part is the case in which we use ν = δ1 in
(7) for all IC estimators, when some factors are weak. For each case, we compute
the proportion of correct identification of the rank of the factor processes or the
root mean squared errors (RMSEs) of the rank estimates from 1000 simulated
data sets. In Section 5.4, we study the selection of the optimal constant c in IC
criteria, using the method proposed in Remark 8.

The simulation uses the following matrix factor model:

Xt = A1FtA
�
2 + Et.

Here, Et is white and is generated according to Et = Ψ
1/2
1 ZtΨ

1/2
2 , where Ψ1, Ψ2

are the column and row covariance matrices with the diagonal elements being 1
and all off diagonal elements being 0.2. All of the elements in the d1×d2 matrix
Zt are i.i.d N(0, 1). This type of model of Et has been proposed and studied
in the literature, see, for example Hafner, Linton and Tang (2020), Hoff (2011),
Linton and Tang (2020). The entries fijt in the factor matrix Ft were drawn
from independent univariate AR(1) model fijt = φijfij(t−1)+εijt with standard
N(0, 1) innovation.

5.1. Part I: Determining strong and weak factors, using ν = 0 in
gk(·)

In the first part, the following three models are studied:

(M1). Set r1 = r2 = 5. The univariate fijt follows AR(1) with AR coefficient
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Table 5

Proportion of correct identification of rank r using IC2 and ER1 estimators based on both
TOPUP and TIPUP procedures for Model M1, over 1000 replications

initial estimator one step estimator final estimator
IC ER IC ER IC ER

T TOP TIP TOP TIP TOP TIP TOP TIP TOP TIP TOP TIP
d1 = d2 = 20

100 0.10 1 1 1 0.75 1 1 1 0.85 1 1 1
300 0.99 1 1 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1

d1 = d2 = 40
100 0 1 1 1 0.47 1 1 1 0.48 1 1 1
300 0.03 1 1 1 0.98 1 1 1 1 1 1 1
500 0.46 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1

d1 = d2 = 80
100 0 1 1 1 0.66 1 1 1 0.98 1 1 1
300 0 1 1 1 0.98 1 1 1 1 1 1 1
500 0.03 1 1 1 1 1 1 1 1 1 1 1
1000 0.70 1 1 1 1 1 1 1 1 1 1 1

φij , where

(φij) =

⎛⎜⎜⎜⎜⎝
0.8 0.5 0.5 0.3 0.3
0.5 0.8 0.5 0.3 0.3
0.3 0.5 0.8 0.5 0.3
0.3 0.3 0.5 0.8 0.5
0.3 0.3 0.5 0.5 0.8

⎞⎟⎟⎟⎟⎠ ; (19)

All elements of A1 and A2 are i.i.d N(0,1).
(M2). Set r1 = r2 = 5. The univariate fijt follows AR(1) with AR coefficient

φij , where φij is defined in (19). The elements of the first two columns of
A1 and A2 are i.i.d N(0,1) and the elements of the last three columns of
A1 and A2 are i.i.d N(0.1)/d0.21 and N(0.1)/d0.22 , respectively.

(M3). Same setting as in Model M2, except the elements of A1 and A2 are i.i.d
N(0, 1)/d0.31 and N(0.1)/d0.32 .

All the factors in Models M1 are strong factors. Model M2 is the case in
which four (2 × 2) factors are strong (δ0 = 0), twelve factors are weak fac-
tor with strength 0.2 and the rest nine factors are weak factor with strength
δ1 = 0.4. Model M3 is the case in which all the factors are very weak fac-
tors with strength δ0 = δ1 = 0.6. Models M2 and M3 are designed to ex-
amine the effects of weak factors on the estimators. We choose a set of data
dimensions to be (d1, d2) = (20, 20), (40, 40), (80, 80) and the sample size to be
T = 100, 300, 500, 1000. Again, in this first part of simulation, we fix h0 = 1 and
set ν = 0 in the penalty function in (7), under the assumption that all factors
are strong, even though some of factors simulated are weak (e.g., true δ1 = 0.4
in Model M2).

For Model M1, the results in Table 5 show clearly that, using TOPUP and
IC, the initial estimator behaves very poorly even for large sample sizes. On
the other hand, the one step estimator uniformly and significantly outperforms
the non-iterative initial estimator. In addition, the final estimator performs the
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Table 6

Proportion of correct identification of rank r using IC2 and ER1 estimators based on both
TOPUP and TIPUP procedures for Model M2, over 1000 replications

initial estimator one step estimator final estimator
IC ER IC ER IC ER

T TOP TIP TOP TIP TOP TIP TOP TIP TOP TIP TOP TIP
d1 = d2 = 20

100 0.80 0.01 0.29 1 0.73 0.01 0.68 1 0.60 0 0.79 1
300 0.73 0.35 0.01 1 0.66 0.34 0.74 1 0.66 0.20 0.78 1
500 0.58 0.79 0 1 0.51 0.79 0.80 1 0.38 0.71 0.88 1
1000 0.46 1 0 1 0.41 1 0.87 1 0.29 1 0.99 1

d1 = d2 = 40
100 0.95 0.01 0 0.99 0.90 0.01 0.74 1 0.87 0.01 0.81 1
300 0.96 0.64 0 1 0.93 0.64 0.42 1 0.90 0.64 0.48 1
500 0.98 1 0 1 0.96 1 0.34 1 0.95 1 0.40 1
1000 0.99 1 0 1 0.99 1 0.37 1 0.99 1 0.43 1

d1 = d2 = 80
100 0.57 0 0 0.97 0.45 0 0.77 1 0.35 0 0.84 1
300 0.75 0.71 0 1 0.61 0.71 0.51 1 0.56 0.71 0.61 1
500 0.90 1 0 1 0.84 1 0.50 1 0.81 1 0.59 1
1000 1 1 0 1 1 1 0.61 1 1 1 0.71 1

best over all choices of d1, d2 and T . We also observe that the performance
improves as the dimension increases, except that d1 = 40 is not as good as
d1 = 20 when T = 100. This improvement is due to the fact that when with
strong factors (δ0 = δ1 = 0), larger dimension (d1, d2) provides more data points
and information on the rank rk. With the same settings, IC criterion based on
TIPUP determines the ranks perfectly, indicating that it is uniformly better
than IC criterion based on TOPUP. This is partially due to the fact that non-
iterative and iterative TIPUP procedures estimate the loading matrices and the
eigenvalues more accurately than the corresponding TOPUP procedures. More
interestingly, with the same setting, the ER estimators based on both TOPUP
and TIPUP procedures perform perfectly.

For Model M2, Tables 6 reports the proportion of correct rank identification
using IC and ER estimators based on TOPUP and TIPUP procedures. It is
seen that, for small sample sizes (T = 100 and 300), the performance of IC
estimators deteriorate when we use iterative procedures, which may indicate
that the sample size T and dimension d do not meet the required Assumption
VII(a) in Theorem 1. In addition, for T = 100, the IC estimators using TIPUP
procedures do not work at all, though they are better when T = 300. This
is due to the existence of weak factors and the fact that we use the default
ν = 0 in (7). When the sample size is small, the estimators tend to identify the
strong factors while miss the weak factors as their corresponding eigenvalues are
relatively small and comparable to the penalty function gk(·). The IC estimators
using TOPUP procedures performed much better for small sample sizes. The
performance also becomes worse as d1 and d2 increases, also due to the existence
of weak factors. The ER estimators based on TIPUP procedures show almost
perfect accuracy, even there are weak factors in the model. We note that, even
with weak factors, the performance remains almost the same with larger (d1, d2).
Again, accuracy improves by using the iterative procedure. The ER estimator
based on TIPUP procedures are much better than all the other estimators for
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Table 7

Proportion of estimated rank pair (r̂1, r̂2) for the IC2 and ER1 estimators for Model M2
over 1000 replications, based on TOPUP and TIPUP procedures. T = 300 and

(d1, d2) = (80, 80). The true rank pair is (5,5).

initial estimator one step estimator final estimator

(r̂1, r̂2) IC2-TOP IC2-TIP IC2-TOP IC2-TIP IC2-TOP IC2-TIP

(4,4) 0 0 0.02 0 0.15 0
(4,5) 0.01 0 0.02 0 0.02 0
(5,4) 0.24 0.29 0.35 0.29 0.27 0.29
(5,5) 0.75 0.71 0.61 0.71 0.56 0.71

(r̂1, r̂2) ER1-TOP ER1-TIP ER1-TOP ER1-TIP ER1-TOP ER1-TIP

(2,2) 1 0 0.15 0 0.19 0
(2,5) 0 0 0.20 0 0.13 0
(5,2) 0 0 0.14 0 0.07 0
(5,5) 0 1 0.51 1 0.61 1

Model M2.

Table 7 shows the more detailed identification results using IC2 and ER1
estimators for Model M2 over 1000 replications, based on TOPUP and TIPUP
procedures. The sample size is T = 300 and the data dimension is (d1, d2) =
(80, 80). The true rank pair is (5,5) for Model M3. From the table, it is seen
that the IC procedures tend to under-estimate the number of factors, with the
correspoding iterative procedures perform the worst. The ER estimators using
the TOPUP procedures are likely to pick up only the strong factors, as the gap
between strong factors (δ1 = 0) and weak factors (δ1 = 0.4) may be larger than
that between weak factors and true zero eigenvalue estimations. We note that
the outstanding performance of the ER estimators using the TIPUP procedures
is quite different from the performance of a similar ER estimator in vector factor
models under similar mixed strong and week factor cases (see e.g. Lam and Yao
(2012)). The main reason is that the other tensor modes provide additional
information and in certain sense serve as additional samples. Then, for each
k ≤ K, the signals of all divergent eigenvalues depend on d instead of dk, leading
to larger gap between weak factors and true zero eigenvalue estimations.

For Model M3 with all very weak factors (δ0 = δ1 = 0.6), Table 8 reports RM-
SEs of the ER1 estimators. The results of using IC estimators (not shown here)
are significantly worse than that of the ER estimators due to the difficulty of IC
estimators in dealing with weak factors when ν = 0 is used. It is seen from the
table that ER estimators based on TIPUP procedure outperform that based on
TOPUP procedure. We also see that the iterative algorithms improves the per-
formance very significantly under this very weak factor case. The performance
varies with the change of (d1, d2) in a non-standard way, as the performance
with (40, 40) seems to be better than that with (20, 20) and (80, 80). We note
that in weak factor cases, a large dk will potentially reduce the accuracy of the
estimator of rk, since the signal level on the k-th dimension becomes weaker. On
the other hand, a larger di (i 
= k) in the other dimension potentially improves
the estimation of rk, since we have more “repeated” observations to be used for
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Table 8

Root mean squared errors (RMSEs) of the ER1 estimators based on TOPUP and TIPUP
procedures for Model M3, averaging over 1000 replications

initial estimator one step estimator final estimator

T ER1-TOP ER1-TIP ER1-TOP ER1-TIP ER1-TOP ER1-TIP

d1 = d2 = 20

100 2.15 1.50 1.84 1.14 1.66 0.45
300 1.17 0.60 1.07 0.43 0.86 0.12
500 1.02 0.30 1.04 0.17 0.60 0.04
1000 1.00 0.07 0.95 0.04 0.19 0.03

d1 = d2 = 40

100 1.01 1.19 1.03 0.86 1.02 0.35
300 1.00 0.27 1.00 0.23 0.76 0.13
500 1.00 0.17 1.00 0.14 0.49 0.04
1000 1.00 0.04 0.99 0 0.11 0

d1 = d2 = 80

100 2.71 2.78 2.06 2.45 1.90 1.37
300 1.00 0.99 1.01 0.65 0.95 0.40
500 1.00 0.32 1.00 0.27 0.90 0.23
1000 1.00 0.15 1.00 0.13 0.61 0.11

Table 9

Proportion of the estimated rank pair (r̂1, r̂2) of the ER1 estimators for Model M3 over
1000 replications, when T = 300 and (d1, d2) = (80, 80). The true rank pair is (5,5).

initial estimator one step estimator final estimator

(r̂1, r̂2) ER1-TOP ER1-TIP ER1-TOP ER1-TIP ER1-TOP ER1-TIP

(5,5) 0 0.51 0 0.72 0.07 0.83
(6,5) 0 0.07 0 0.05 0 0.05
(6,6) 1 0.09 0.98 0.11 0.84 0.11
(7,5) 0 0.15 0 0.06 0 0
Others 0 0.18 0.02 0.06 0.09 0.01

estimating rk.

Table 9 shows the relative frequency of different estimated ranks of the ER1
estimator based on both TIPUP and TOPUP procedures, for the case of T =
300 and (d1, d2) = (80, 80) under Model M3 with the true rank (5, 5). It is
seen that the ER estimators tend to overestimate the number of factors, when
all the factors are weak. All ER1-TOPUP estimators essentially identify (6, 6)
as the rank. The non-iterative ER1 estimator based on TIPUP procedure can
overestimate the ranks by a large margin. However, the iterations can gradually
correct the over-estimation.

In summary, the first part of simulation shows that the ER estimators and
IC estimator based on TIPUP procedures perform very well when all the fac-
tors are strong. The ER estimators significantly outperform the IC estimators
when some or all factors are weak. Different from the results shown in Lam
and Yao (2012) for vector factor models with both strong and weak factors,
in tensor factor models, the ER estimators (based on TIPUP procedure) are



1752 Y. Han et al.

able to determine the correct number of factors in many cases. The results also
show that the iterative procedure significantly improves the performance except
the IC estimators based on TOPUP in Model M2, which may due to that the
sample size T and dimension d do not meet the required Assumption VII(a) in
Theorem 1. It also shows that the estimators based on TIPUP perform better
than that based on TOPUP in general. Hence, when some factors are weak, the
iterative ER estimators based on TIPUP are the choice.

5.2. Part II: The case of dominating strong factors

The second part of our simulation examines the effects of dominate strong factors
on the IC and ER estimators. The data are generated from the following model,

(M4). Set r1 = r2 = 2. The univariate fijt follows AR(1) with AR coefficient
φ11 = 0.98 and φ12 = φ21 = φ22 = 0.15; The elements of the loading
matrices A1 and A2 are i.i.d N(0, 1).

We fix d1 = d2 = 40 and T = 200. Again, we use IC2 and ER1 for demonstration,
and assume ν = 0 in the penalty function in (7). Although all of the four factors
are strong factors, the strongly imbalanced signal strength in Ft makes one of
factors dominating the others in explanatory power. Table 10 reports the relative
frequencies of estimated rank pairs over 1000 replications. It is seem that the
ER estimators are very likely to pick up only the dominate factor, although
iterations significantly improves the accuracy. The IC estimators performs much
better in this case. And over all, estimators based on TIPUP perform better than
the corresponding estimators using TOPUP. Overall, IC-TIPUP performs the
best in this case.

Table 10

Proportion of estimated rank pair (r̂1, r̂2) for the IC2 and ER1 estimators for Model M4
over 1000 replications, based on TOPUP and TIPUP procedures, T = 200 and

(d1, d2) = (40, 40). The true rank pair is (2,2).

initial estimator one step estimator final estimator

(r̂1, r̂2) IC2-TOP IC2-TIP IC2-TOP IC2-TIP IC2-TOP IC2-TIP

(1,1) 0 0.02 0 0.02 0 0.04
(1,2) 0.05 0.08 0.02 0.08 0 0.06
(2,1) 0.01 0.05 0.01 0.05 0 0.03
(2,2) 0.22 0.85 0.31 0.85 0.46 0.87
(3,3) 0.54 0 0.54 0 0.47 0
Others 0.18 0 0.12 0 0.07 0

(r̂1, r̂2) ER1-TOP ER1-TIP ER1-TOP ER1-TIP ER1-TOP ER1-TIP

(1,1) 1 0.878 0.88 0.26 0.53 0.39
(1,2) 0 0.065 0 0.17 0.33 0.09
(2,1) 0 0.017 0.04 0.14 0.06 0.06
(2,2) 0 0.040 0.08 0.43 0.08 0.46
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5.3. Part III: Using the correct penalty function in the IC
estimators

The third part of the simulation considers the impact of penalty function selec-
tion. We consider Model M2 and M3 again, with d1 = d2 = 40, but use the true
weakest factor strength δ1 as ν in the penalty function gk(T, d) in (7) instead
assuming strong factor and use ν = 0 as in Section 5.1. To compare with Tables
6 for M2 and 8 for M3, we report the proportion of correct rank identification
using IC2 estimators in Table 11 for M2 and RMSEs of the IC2 estimators in
Table 12 for M3.

Comparing Tables 6 and 11, it is seen that the performance of IC2 estimators
using TIPUP improve by using the correct ν in the penalty function. We notice
that the initial and one step IC estimators using TOPUP with the correct ν
in the penalty term actually under-perform the ones with the incorrect ν. The
reason for this unusual behavior of TOPUP is unclear. It might be that the
magnitude of the estimation of true zero eigenvalue is much larger in this mixed
weak and strong factor case, as shown in Figure 1. Hence, reducing the penalty
term by using ν = δ1 = 0.4 resulting in severe over-estimation. However, the
TIPUP estimators estimate the true zero eigenvalues more accurately, hence are
able to take advantage of the more accurate penalty term.

For Model M3 with all weak factors (δ0 = δ1 = 0.6), all IC estimators using
the wrong penalty function gk(T, d) with ν = 0 in (7) identified (1, 1) rank
pair in all 1000 simulations for all sample sizes. Comparing it with the result
shown in Table 12, the importance of using the right ν in the penalty function
is obvious in this all-weak factor case. Table 12 also shows that IC estimator

Table 11

Proportion of correct identification of rank r using IC2 estimators based on TOPUP and
TIPUP procedures for Model M2, over 1000 replications, when δ1 is given and

(d1, d2) = (40, 40)

initial estimator one step estimator final estimator

T IC2-TOP IC2-TIP IC2-TOP IC2-TIP IC2-TOP IC2-TIP

100 0 1 0.01 1 0.65 1
300 0 1 0.29 1 0.90 1
500 0 1 0.62 1 0.96 1
1000 0.43 1 0.95 1 1 1

Table 12

Root mean squared errors (RMSEs) of the IC estimators based on TOPUP and TIPUP
procedures for Model M3, averaging over 1000 replications, when δ1 is given and

(d1, d2) = (40, 40)

initial estimator one step estimator final estimator

T IC2-TOP IC2-TIP IC2-TOP IC2-TIP IC2-TOP IC2-TIP

100 1.01 0.91 0.91 0.92 0.98 0.92
300 1.00 0.03 0.87 0.03 0.23 0.03
500 1.00 0 0.43 0 0 0
1000 1.00 0 0.05 0 0 0
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using TIPUP outperforms that using TOPUP, when the right penalty function
is used. Comparing Tables 8 and 12, the iterative IC estimators out-perform
the ER estimators when T = 300, 500, 1000. It shows the great potential of IC
estimators using a proper ν in the penalty function under the weak factor cases.
As mentioned earlier, more investigation is needed to determine the proper value
for ν.

5.4. Selection of the optimal c in IC criteria

To study the empirical property of the optimal constant c discussed in Remark
8, we simulate data from Model M1 with r1 = r2 = 5, and set d1 = d2 = 80,
T = 300 and set the upper bound of the rank as m∗ = 10. In Figure 2, we show

Fig 2. Robustified IC criterion using iTOPUP related methods
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respectively the behavior of r̂k,c,j as a function of (d1,j , d2,j), and of r̂k,c,J and
of Sk,c as functions of c, when setting T1 = T2 = · · · = TJ = T and d1,j = d2,j .
The rank rk of the factor process can be determined by considering the mapping
c → Sk,c and choosing r̂k,c,J = r̂k,ĉ,J , where ĉ belongs to an interval of c implying
Sk,c ≈ 0 and therefore the value of r̂k,c,J is a constant function of c. Similar to
Hallin and Lǐska (2007) and Alessi, Barigozzi and Capasso (2010), we see that
the second stability interval always delivers an estimated number r̂k,c,J which is
closer to the true rk = 5 than the number suggested by the other intervals. That
is, the smallest values of c for which r̂k,c,j is also close to a constant function of j,
j ≤ J . Note that the first stability interval always corresponds to the predefined
upper bound m∗ and it is thus a non-admissible solution.

6. Real data analysis

In this section, we illustrate the proposed procedures using the Fama–French 10
by 10 monthly return series as an example. According to ten levels of market
capital (size) and ten levels of book to equity ratio (BE), stocks are grouped into
100 portfolios. The sampling period used in this excises is from January 1964
to December 2015 for a total of 624 months. There are overall 62,400 observed
monthly returns used in this analysis. The data is from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
Similar to Wang, Liu and Chen (2019), we subtract from each of the series

their corresponding monthly excess market return.
The data was used by Wang, Liu and Chen (2019) to demonstrate the es-

timation of a matrix factor model using a non-iterative TOPUP procedure.
They used an estimator similar to our non-iterative TOPUP based ER estima-
tor without a penalty term to estimate the number of factors and found the
estimator suggested (1, 1) as the rank – a single factor in the model. In the end
they demonstrate the model using (2, 2) as the ranks for demonstration of the
estimation procedures.

Figure 3 shows the 1st to 3rd largest eigenvalues of using the non-iterative
TIPUP and TOPUP procedures, h−1

0 τ̂∗2k,mk
and h−1

0 τ̂2k,mk
(mk ≤ 3), under dif-

ferent lag values h0. The pattern of eigenvalues using the iterative TIPUP and
TOPUP are similar, thus is omitted. It can be seen from panel (a) of Figure 3
that, using TIPUP procedure, the 1st and 2nd largest eigenvalues reach their
maximum value at h0 = 1, and tends to decrease as h0 increases. However,
the 3nd largest eigenvalue reaches its maximum at h0 = 2. In contrast, from
panel (b) of Figure 3, using TOPUP procedure, the 1st to 3nd largest eigenval-
ues reach the maximum at h0 = 1. The difference of the patterns of estimated
singular values indicates possible severe signal cancellation when using h0 = 1,
according to the suggestions in Han et al. (2020). Hence, we choose h0 = 2, and
consider IC and ER estimators based on the iterative TIPUP procedure.

Figure 4 shows the estimated rank r̂k of the core factor process with dif-
ferent number of iterations, using IC2(TIPUP) with ν = 0 (left figure) and
ER1(TIPUP) (right figure). It is seen that the iterative algorithms converge
very quickly.
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Fig 3. The 1st to 3rd largest estimated eigenvalues using the non-iterative TIPUP and
TOPUP procedures, h−1

0 τ̂∗2k,mk
and h−1

0 τ̂2k,mk
(mk ≤ 3, k ≤ 2), under different maximum

lag values h0. The line marked as size is for the row factors, corresponding to the levels of
market capital (size), and the line marked as BE is for the column factors, corresponding to
the levels of book to equity ratio (BE)

Fig 4. Estimated rank r̂k of the core factor process against the number of iterations for the
Fama-French 10 by 10 series, using IC2 (left) and ER1 (right) estimator based on TIPUP
procedure.
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Table 13

Estimated ranks using different IC criteria and ν for the Fama-French return series

ν 0 0.05 0.1 0.15 0.2 0.25
IC1, IC3 (3,3) (4,3) (4,3) (4,4) (4,4) (4,4)

IC2, IC4, IC5 (2,2) (2,2) (2,2) (2,2) (3,3) (3,3)

Fig 5. The eigenvalues τ∗2k,mk
, 1 ≤ mk ≤ dk, for each 1 ≤ k ≤ 2, using initial TIPUP

procedure

Table 13 shows the estimated rank pairs using different IC(TIPUP) estima-
tors and different ν parameter for the penalty function. It is seem that IC1 and
IC3 tend to select larger models. These rank estimates do not change when we
use h0 = 3 and 4.

On the other hand, ER1-ER5 in (8) produce exactly the same rank estimate
(1, 3) using h0 = 2. But these rank estimates change to (1, 1) when we use h0 = 3
and 4. Figure 5 shows the estimated eigenvalues τ∗2k,mk

, 1 ≤ mk ≤ dk, using the
non-iterative initial TIPUP procedure, for k = 1 (size factor) and k = 2 (BE
factor). It is seen that for the size factor, the largest eigenvalue is more than 20
folds larger than the second largest eigenvalue. As simulation results in Section
5.2 show, in such an unbalanced case, the ER estimator may find it difficult to
find the gap between the true non-zero eigenvalues and the true zero eigenvalues,
based on the ratio of the eigenvalues. On the other hand, the IC estimator may
fare better in such cases since it is based on the level of estimation error of the
true zero eigenvalue.

Overall, it seems that (2, 2) or (3, 3) are possibly good choices. More detailed
analysis, include goodness-of-fit measures, prediction performance and result
interpretation, is needed.

7. Discussions

In this paper, we develop two rank identification estimators, in an attempt to fill
a gap on modelling tensor factor model in the literature. Non-iterative and iter-
ative IC and ER estimators, based on similar ideas of the TOPUP and TIPUP
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procedures of Chen, Yang and Zhang (2021) and Han et al. (2020) are consid-
ered. Theoretical analysis shows that the iterative estimators are much better
than the non-iterative estimators. We show that in general the estimators based
on TIPUP procedures are better than that based on the TOPUP procedure, due
to its fast convergence rate of the estimated eigenvalues under proper conditions.
However, in situations when TIPUP procedures also lead to significant signal
cancellation, extra care needs to be taken, including increasing the maximum
lag h0 in the procedure.

Simulation studies are conducted to compare the finite sample performance
of the estimators using the non-iterative and iterative estimation procedures.
The results show that the ER estimators based on both TIPUP and TOPUP
procedures, and the IC estimators based on TIPUP procedures generally per-
form very well when all the factors are strong. The ER estimators are better
than the IC estimators when some factors are weak, unless one chooses the pre-
cise tuning parameter ν in the IC penalty function, which is a difficult task.
When some dominant factors have unrealistically high explanatory power, the
ER estimators may not perform well. But the IC estimators still work very well,
since the factors are strong. In summary, IC estimator based on iTIPUP shall
be used to estimate the number of strong factors, while ER estimators based on
iTIPUP are likely to capture weak factors.

Appendix A: Proofs

It suffices to consider K = 2 as the TOPUP and TIPUP begin with mode-k
matrix unfolding. We observe a matrix time series with Xt = A1FtA

�
2 + Et =

Gt + Et ∈ Rd1×d2 . Let U1, U2 be the left r1, r2 singular vectors of A1 and A2,
respectively. Recall� is kronecker product and⊗ is tensor product. Without loss
of generality, we only consider the case k = 1. Denote E(·) = E(·|{F1, ..., FT }).
For simplicity, write

M(m, Û1,m) =
1

d2
tr
{(

I − Û1,mÛ�
1,m

)
Ŵk

}
, (20)

M∗(m, Û1,m) =
1

d2
tr
{(

I − Û1,mÛ�
1,m

)
Ŵ ∗

k

}
, (21)

M(i)(m, Û1,m) =
1

d2
tr
{(

I − Û1,mÛ�
1,m

)
Ŵ

(i)
k

}
, (22)

M∗(i)(m, Û1,m) =
1

d2
tr
{(

I − Û1,mÛ�
1,m

)
Ŵ

∗(i)
k

}
. (23)

Although we present Theorem 1 for the IC and ER estimators together, the
proofs of the IC and ER estimators using the same estimation procedure are
very similar. Thus, we first prove Theorem 1 based on TOPUP, and then move
to iTOPUP, TIPUP and iTIPUP in sequence.
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A.1. Proof of Theorem 1 for non-iterative TOPUP

Lemma 1.∥∥∥∥∥ 1

T

T∑
t=h+1

mat1
(
A1Ft−hA

�
2 ⊗A1FtA

�
2

)∥∥∥∥∥
2

2

≤ ‖Θ∗
1,0‖2 · ‖Θ1,0‖op (24)

Proof. Note that U1U
�
1 A1 = A1, U2U

�
2 A2 = A2 and ‖U1‖2 = ‖U2‖2 = 1. It

follows that∥∥∥∥∥ 1

T

T∑
t=h+1

mat1
(
A1Ft−hA

�
2 ⊗A1FtA

�
2

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1

T

T∑
t=h+1

U1U
�
1 mat1

(
A1Ft−hA

�
2 U2 ⊗ U�

1 A1FtA
�
2 U2

)
·
(
U�
2 � U�

1 � U�
2

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1

T

T∑
t=h+1

U�
1 mat1

(
A1Ft−hA

�
2 U2 ⊗ U�

1 A1FtA
�
2 U2
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2

There exist u ∈ R
r1 and W ∈ R

r2×r1×r2 with ‖u‖22 = ‖ vec(W)‖22 = 1, such that∥∥∥∥∥ 1

T

T∑
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(
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�
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�
2 U2
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2

=
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T 2
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ui1(U
�
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�
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�
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�
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(
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T
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Then (24) follows.
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Lemma 2. Let U1⊥ ∈ R
d1×(d1−r1) be the orthonormal complement of U1.

Denote U1⊥ = (U1j)r1+1≤j≤d1 and U1 = (U1j)1≤j≤r1 , where U1j ∈ R
d1 . De-

note ηd = dδ1−δ0/2 + dδ1d
−1/2
1 . Define Û1 be the estimated top r1 left sin-

gular space of TOPUP1(X1:T ). Suppose Assumptions I, II, III, IV and V(a)
hold. Then, in an event Ω11 ∩ Ω0 with P(Ω11) ≥ 1 − e−d2/2 and P(Ω0) ≥
1−T exp(−C1T

ϑ)− exp(−C2T ) with C1, C2 > 0, 1/ϑ = 1/θ1+2/θ2, there exist
a matrix Ũ1 ∈ R

d1×r1 with Ũ1Ũ
�
1 = Û1Û

�
1 , such that

‖Û1 − U1Ũ
�
1 Û1‖2 ≤ C

(
ηd√
T

)
, (25)

‖U1U
�
1 Û1j‖2 ≤ C

(
ηd√
T

)
, (26)

for all r1 + 1 ≤ j ≤ d1 and some C > 0.

Proof. Under Assumptions I, II, III, IV, V(a) and Proposition 2, as the deriva-
tion of Theorem 1 in Han et al. (2020), in an event Ω11 ∩ Ω0 with P(Ω11) ≥
1− e−d2/2 and P(Ω0) ≥ 1− T exp(−C1T

ϑ)− exp(−C2T ),

‖Û1Û
�
1 − U1U

�
1 ‖2 ≤ C

(
ηd√
T

)
. (27)

Applying Lemma 17 and Theorem 1 in Chen, Yang and Zhang (2021), for suf-
ficient large T , there exists a matrix Q ∈ R

(d1−r1)×r1 such that

‖Q‖2 ≤ ‖Û1Û
�
1 − U1U

�
1 ‖2

and Ũ1 = (U1 + U1⊥Q)(I + Q�Q)−1/2 ∈ Rd1×r1 is an estimator for U1 with
Ũ1Ũ

�
1 = Û1Û

�
1 . Elementary calculation shows that

‖Ũ1 − U1‖2 = ‖(U1(I − (I +Q�Q)1/2) + U1⊥Q)(I +Q�Q)−1/2‖2
≤ ‖I − (I +Q�Q)1/2‖2 + ‖Q‖2 ≤ 2‖Q‖2.

It follows that

‖Û1 − U1Ũ
�
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�
1 Û1 − U1Ũ

�
1 Û1‖2

≤ ‖Ũ1 − U1‖2‖Ũ�
1 Û1‖2 ≤ 2‖Û1Û

�
1 − U1U

�
1 ‖2.

In view of (27), we have (25).

For (26), notice that in the event Ω11 ∩ Ω0, for all r1 + 1 ≤ j ≤ d1,

‖U1U
�
1 Û1j‖2 = ‖Û1⊥Û

�
1⊥Û1j − U1⊥U

�
1⊥Û1j‖2

≤ ‖Û1⊥Û
�
1⊥ − U1⊥U

�
1⊥‖2 ≤ C

(
ηd√
T

)
.
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Lemma 3. Suppose Assumptions I, II, III, IV and V(a) hold. Then, in an event
Ω12∩Ω0 with P(Ω12) ≥ 1−e−d2/2 and P(Ω0) ≥ 1−T exp(−C1T

ϑ)−exp(−C2T )
with C1, C2 > 0, 1/ϑ = 1/θ1 + 2/θ2, we have∥∥∥∥∥ 1
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for some constant positive C depending on K only.

Proof. Note that U1U
�
1 A1 = A1 and U2U

�
2 A2 = A2. Let

‖Δ1‖2 :=

∥∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(A1Ft−hA
�
2 ⊗ Et)

∥∥∥∥∥
2



1762 Y. Han et al.
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By Theorem 1 in Chen, Yang and Zhang (2021),
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where C0 > 0 depends on K only. Then, using Proposition 2, in the event
Ωa ∩ Ω0, (28) follows. Similar arguments yield (29) in the event Ωa ∩ Ω0.
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Let

‖Δ2‖2 :=

∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(Et−h ⊗A1FtA
�
2 )

∥∥∥∥
2

=

∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(Et−h ⊗ U�
1 A1FtA

�
2 U2)

∥∥∥∥
2

.

By Theorem 1 in Chen, Yang and Zhang (2021),

E‖Δ2‖2 ≤ σ
√
2T (

√
d1 +

√
d2r1r2)

T − h
‖Θ∗

1,0‖1/2op .

Then, using Proposition 2, in an event Ωb ∩ Ω0 with P(Ωb) ≥ 1 − e−d2/6, (30)
follows from the same argument as the above step. Similarly, in the event Ωb∩Ω0,
we can obtain (31) and (32).

We split the sum into two terms over the index sets, S1 = {(h, 2h]∪(3h, 4h]∪
· · · }∩ (h, T ] and its complement S2 in (h, T ], so that {Et−h, t ∈ Sa} is indepen-
dent of {Et, t ∈ Sa} for each a = 1, 2. Let na = |Sa|. By Lemma 19(ii), for any
x > 0,

P

(∥∥∥∥∥∑
t∈Sa

mat1(Et−h ⊗ Et)

∥∥∥∥∥
S

≥ d1
√

d2 + 2d2
√
d1na + x2 +

√
nax+ 3

√
d1d2x

)
≤ 2e−x2/2.

With x 

√
d2 and some constant C1 depending on K only, we have

P

(
‖Δ3‖2 ≥ C1d1

√
d2 + C1d2

√
d1T

T

)
≤ e−d2/6. (40)

Then, as in the derivation of ‖Δ3‖2 in the proof of Theorem 1 in Chen, Yang
and Zhang (2021), in an event Ωc with P(Ωc) ≥ 1−e−d2/6, (33) follows. Similar
arguments yield (34), (35), (36), (37) and (38) in the event Ωc. Set Ω12 =
Ωa ∩ Ωb ∩ Ωc, then P(Ω12) ≥ 1− e−d2/2.

Lemma 4. Suppose Assumptions I, II, III, IV and V(a) hold. In an event Ω1

with P(Ω1) ≥ 1 − e−d2 − T exp(−C1T
ϑ) − exp(−C2T ) with C1, C2 > 0, 1/ϑ =

1/θ1 + 2/θ2, for any fixed m with m > r1, M(r1, Û1) −M(m, Û1,m) ≤ Cβd,T ,
where C > 0,

βd,T =
1

Td1
+

d1
Td1+δ0

+
d
1/2
1 ηd

Td1/2+3δ0/2
+

ηd
T 3/2d1/2+δ0/2

,

and ηd = dδ1−δ0/2 + dδ1d
−1/2
1 .
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Proof. Let Ω1 = Ω11 ∩Ω12 ∩Ω0, where Ω11,Ω12 are defined in Lemma 2 and 3,
respectively, and Ω0 is the event in Proposition 2. Let U1,r1 = U1 and U1,m =
(U11, U12, ..., U1m).∣∣∣M(m, Û1,m)−M(r1, Û1)

∣∣∣ ≤ ∣∣∣M(m, Û1,m)−M(r1, U1)
∣∣∣

+
∣∣∣M(r1, Û1)−M(r1, U1)

∣∣∣
≤ 2 max

r1<m≤m1

∣∣∣M(m, Û1,m)−M(r1, U1)
∣∣∣ .

As m1 is fixed, it is sufficient to prove for each m with m > r1, in the event Ω1,∣∣∣M(m, Û1,m)−M(r1, U1)
∣∣∣ ≤ Cβd,T . (41)

In the following, we shall only work on Ω1.
Elementary calculation shows that

d2 · M(m, Û1,m)− d2 · M(r1, U1)

=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{(

U1U
�
1 − Û1,mÛ�

1,m

)
mat1(Xt−h ⊗Xt)

·mat1
�(Xs−h ⊗Xs)

}
=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗Xs)

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(A1Ft−hA

�
2 ⊗Xt)

}
+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗Xs)
(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗Xt)

}
+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗Xs)

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗Xt)

}
+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗Xs)
(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(A1Ft−hA

�
2 ⊗Xt)

}
:= I + II + III + IV.

Note that III = IV.
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We first consider II.

II =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗Xs)
(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗Xt)

}
=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ Es)
(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗ Et)

}
+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗A1FtA

�
2 )
}

+ 2

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗ Et)

}
:= II1 + II2 + 2II3.

We consider each term in turn. Note that

Û1Û
�
1 − U1U

�
1 =

(
Û1 − U1Ũ

�
1 Û1

)(
Û1 − U1Ũ

�
1 Û1

)�

+ U1Ũ
�
1 Û1

(
Û1 − U1Ũ

�
1 Û1

)�

+
(
Û1 − U1Ũ

�
1 Û1

)(
U1Ũ

�
1 Û1

)�
, (42)

where Ũ1 is defined in Lemma 2. Then, by Lemma 2 and 3,

II1 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ Es)
(
U1U

�
1 − Û1Û

�
1

)
·mat1(Et−h ⊗ Et)

}
+

h0∑
h=1

m∑
j=r1+1

1

(T − h)2
tr
{
mat1

�(Es−h ⊗ Es)Û1jÛ
�
1j

·mat1(Et−h ⊗ Et)
}

≤ r1

h0∑
h=1

∥∥∥∥∥ 1

(T − h)

T∑
t=h+1

mat1(Et−h ⊗ Et)

∥∥∥∥∥
2

2
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·
(∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥2
2
+
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥
2
·
∥∥∥U1Ũ

�
1 Û1

∥∥∥
2

)

+ (m− r1)

h0∑
h=1

∥∥∥∥∥ 1

(T − h)

T∑
t=h+1

mat1(Et−h ⊗ Et)

∥∥∥∥∥
2

2

= O

(
d2

d1T

)
,

by the fact ηd = o(
√
T ).

II2 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )

(
U1U

�
1 − Û1Û

�
1

)
·mat1(Et−h ⊗A1FtA

�
2 )
}

+

h0∑
h=1

m∑
j=r1+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )Û1jÛ

�
1j

·mat1(Et−h ⊗A1FtA
�
2 )
}

= O

(
(d1 + d/d1)d

1−δ0

T

)
.

II3 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ U�
1 A1FsA

�
2 U2)

(
U1U

�
1 − Û1Û

�
1

)
·mat1(Et−h ⊗ U�

1 EtU2)
}

+

h0∑
h=1

m∑
j=r1+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ U�
1 A1FsA

�
2 U2)Û1jÛ

�
1j

·mat1(Et−h ⊗ U�
1 EtU2)

}
≤ (m+OP(1))

h0∑
h=1

1

(T − h)2

∥∥∥∥∥
T∑

s=h+1

mat1(Es−h ⊗ U�
1 A1FsA

�
2 U2)

∥∥∥∥∥
2

·
∥∥∥ T∑

s,t=h+1

mat1(Et−h ⊗ U�
1 EtU2)

∥∥∥
2

= O

(
(
√
d1 +

√
d/d1)d

1/2−δ0/2

√
T

·
√
d√
T

)
= O

(
(
√
d1 +

√
d/d1)d

1−δ0/2

T

)
by Lemma 2 and 3. Combing the bounds of II1, II2 and II3, we have

II = O

(
d2

d1T
+

d1d
1−δ0

T

)
. (43)
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Next, we consider III.

III =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗Xs)

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗Xt)

}
=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )

·
(
U1U

�
1 − Û1,mÛ�

1,m

)
mat1(Et−h ⊗A1FtA

�
2 )
}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ Es)

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗ Et)

}
+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ Es)

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−h ⊗A1FtA

�
2 )
}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )

·
(
U1U

�
1 − Û1,mÛ�

1,m

)
mat1(Et−h ⊗ Et)

}
:= III1 + III2 + III3 + III4.

Again, we bound each term in turn. By Lemma 1, 2, 3,

III1

=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 U2 ⊗A1FsA

�
2 )

(
U1U

�
1 − Û1Û

�
1

)
·mat1(Et−hU2 ⊗A1FtA

�
2 )
}

+

h0∑
h=1

m∑
j=r1+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 U2 ⊗A1FsA

�
2 )Û1jÛ

�
1j

·mat1(Et−hU2 ⊗A1FtA
�
2 )
}

≤
h0∑
h=1

r1
(T − h)2

T∑
s,t=h+1

∥∥mat1(A1Fs−hA
�
2 U2 ⊗A1FsA

�
2 )
∥∥
2

·
∥∥mat1(Et−hU2 ⊗A1FtA

�
2 )
∥∥
2

∥∥∥U1U
�
1 − Û1Û

�
1

∥∥∥
2



1768 Y. Han et al.

+

h0∑
h=1

m− r1
(T − h)2

T∑
s,t=h+1

∥∥mat1(A1Fs−hA
�
2 U2 ⊗A1FsA

�
2 )
∥∥
2

·
∥∥mat1(Et−hU2 ⊗A1FtA

�
2 )
∥∥
2

∥∥∥U1U
�
1 Û1j

∥∥∥
2

= O

(
d
1/2
1 d3/2−3δ0/2ηd

T

)
,

where ηd = dδ1−δ0/2 + dδ1d
−1/2
1 .

III2 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 U2 ⊗ Es)

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−hU2 ⊗ Et)

}
≤

h0∑
h=1

r1
(T − h)2

T∑
s,t=h+1

∥∥mat1(A1Fs−hA
�
2 U2 ⊗ Es)

∥∥
2

· ‖mat1(Et−hU2 ⊗ Et)‖2
∥∥∥U�

1 (U1U
�
1 − Û1,mÛ�

1,m)
∥∥∥
2

= O

(
d1−δ0/2

√
T

·
√
d√
T

· ηd√
T

)
= O

(
d3/2−δ0/2ηd

T 3/2

)
.

Similarly,

III3 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 U2 ⊗ U�

1 EsU2)

·
(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−hU2 ⊗ U�

1 A1FtA
�
2 U2)

}
= O

(
d
1/2
1 d1−δ0ηd

T 3/2

)
,

and

III4 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 U2 ⊗ U�

1 A1FsA
�
2 U2)

·
(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(Et−hU2 ⊗ U�

1 EtU2)
}

= O

(
d
1/2
1 d1−δ0ηd

T

)
.
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Combing the bounds of III1, III2, III3 and III4, we have

III = O

(
d
1/2
1 d3/2−3δ0/2ηd

T
+

d3/2−δ0/2ηd
T 3/2

)
. (44)

In view of (43) and (44),

|II + III + IV| ≤ C1

(
d2

d1T
+

d1d
1−δ0

T
+

d
1/2
1 d3/2−3δ0/2ηd

T
+

d3/2−δ0/2ηd
T 3/2

)
≤ C2

(
d2βd,T

)
. (45)

Next, we consider I.

I =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗Xs)

(
U1U

�
1 − Û1,mÛ�

1,m

)
·mat1(A1Ft−hA

�
2 ⊗Xt)

}
=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗Xs)

(
I − Û1,mÛ�

1,m

)
·mat1(A1Ft−hA

�
2 ⊗Xt)

}
=

h0∑
h=1

1

(T − h)2
tr
{ T∑

s=h+1

mat1
�(A1Fs−hA

�
2 ⊗Xs)

(
I − Û1,mÛ�

1,m

)

·
T∑

t=h+1

mat1(A1Ft−hA
�
2 ⊗Xt)

}
≥ 0,

using the fact that I− Û1,mÛ�
1,m is positive semi-definite, x�Û1,mÛ�

1,mx ≤ x�x.

Using the definition of our optimization target, we have M(m, Û1,m) <

M(r1, Û1) ≤ M(r1, U1). It follows that I + II + III + IV ≤ 0. As I ≥ 0, by
(45), I = O(d2βd,T ). In summary,∣∣∣M(m, Û1,m)−M(r1, U1)

∣∣∣ ≤ C (βd,T ) .

Lemma 5. Suppose Assumptions I, II, III, IV and V(a) hold. In an event Ω1

with P(Ω1) ≥ 1 − e−d2 − T exp(−C1T
ϑ) − exp(−C2T ) with C1, C2 > 0, 1/ϑ =

1/θ1 + 2/θ2, for any m with m < r1, there exist constant cm > 0 and C > 0,
such that M(m, Û1,m)−M(r1, Û1) ≥ (cm + o(1))d−2δ1 + Cγd,T , where

γd,T =
1

Tdδ0
+

1

Td1
+

1

T 1/2d1/2+3δ0/2
+

d
1/2
1 ηd

Td1/2+3δ0/2
,

and ηd = dδ1−δ0/2 + dδ1d
−1/2
1 .
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Proof. Let Ω1 = Ω11 ∩ Ω12 ∩ Ω0, where Ω11,Ω12 are defined in Lemma 2 and
3, respectively, and Ω0 is the event in Proposition 2. In the following, we shall
only work on Ω1.

Let U1,r1 = U1 and U1,m = (U11, U12, ..., U1m).

d2 · M(m, Û1,m)− d2 · M(r1, Û1)

=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{(

Û1Û
�
1 − Û1,mÛ�

1,m

)
·mat1(Xt−h ⊗Xt)mat1

�(Xs−h ⊗Xs)
}

=

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗Xs)Û1jÛ

�
1j

·mat1(A1Ft−hA
�
2 ⊗Xt)

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗Xs)Û1jÛ
�
1j

·mat1(Et−h ⊗Xt)
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗Xs)Û1jÛ

�
1j

·mat1(Et−h ⊗Xt)
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗Xs)Û1jÛ
�
1j

·mat1(A1Ft−hA
�
2 ⊗Xt)

}
:= I + II + III + IV.

Note that III = IV.

We first consider I.

I =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )Û1jÛ

�
1j

·mat1(A1Ft−hA
�
2 ⊗A1FtA

�
2 )
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ Es)Û1jÛ

�
1j

·mat1(A1Ft−hA
�
2 ⊗ Et)

}
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+ 2

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ Es)Û1jÛ

�
1j

·mat1(A1Ft−hA
�
2 ⊗A1FtA

�
2 )
}

:= I1 + I2 + 2I3.

For I1,

I1 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
Û�
1j mat1(A1Ft−hA

�
2 ⊗A1FtA

�
2 )

·mat1
�(A1Fs−hA

�
2 ⊗A1FsA

�
2 )Û1j

}
=

h0∑
h=1

r1∑
j=m+1

tr
{
Û�
1jU1U

�
1 mat1 (Θ1,h)mat1

� (Θ1,h)U1U
�
1 Û1j

}

≥
r1∑

j=m+1

λmin

(
h0∑
h=1

U�
1 mat1 (Θ1,h)mat1

� (Θ1,h)U1

)
tr(Û�

1jU1U
�
1 Û1j)

= σ2
r1

(
U�
1 Emat1(TOPUP1)

) r1∑
j=m+1

Û�
1jU1U

�
1 Û1j .

Let W1Λ0W
�
2 be singular value decomposition of U�

1 Û1, where

Λ0 =

⎛⎜⎝φ1

. . .

φr1

⎞⎟⎠ ,

with φ1 ≥ φ2 ≥ ... ≥ φr1 . Note that W1W
�
1 = W�

1 W1 = W2W
�
2 = W�

2 W2 =
Ir1 . By Lemma 16,

φ2
r1 = σmin(U

�
1 Û1) = 1− ‖ sinΘ(Û1, U1)‖22 ≥ 1− ‖Û1Û

�
1 − U1U

�
1 ‖22.

It follows that

Û�
1jU1U

�
1 Û1j = e�j Û

�
1 U1U

�
1 Û1ej = e�j W2Λ0W

�
1 W1Λ0W

�
2 ej = e�j W2Λ

2
0W

�
2 ej

≥ λmin(Λ
2
0)e

�
j W2W

�
2 ej = φ2

r1

≥ 1− ‖Û1Û
�
1 − U1U

�
1 ‖22, (46)

where ej is a r1×1 vector with 1 at j-th element and 0 otherwise. Thus, we can
obtain

I1 ≥ σ2
r1

(
U�
1 Emat1(TOPUP1)

)
(r1 −m)(1− ‖Û1Û

�
1 − U1U

�
1 ‖22). (47)

By Proposition 2, in the event Ω0, σr1

(
U�
1 Emat1(TOPUP1)

)
= τ1,r1 
 d1−δ1 ,

with 0 ≤ δ0 ≤ δ1 < 1. Hence, there exists a constant cm > 0 such that in the
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event Ω1,

I1 ≥ (cm + o(1))d2−2δ1 . (48)

By Lemma 3,

I2 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ Es)Û1jÛ

�
1j

·mat1(A1Ft−hA
�
2 ⊗ Et)

}
= O

(
d2−δ0

T

)
,

and

I3 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ U�

1 EsU2)Û1jÛ
�
1j

·mat1(A1Ft−hA
�
2 ⊗ U�

1 A1FtA
�
2 U2)

}
= O

(
d3/2−3δ0/2

T 1/2

)
.

This implies that

I2 + I3 = O

(
d2−δ0

T
+

d3/2−3δ0/2

T 1/2

)
. (49)

Next, we consider II.

II =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ Es)Û1jÛ
�
1j

·mat1(Et−h ⊗ Et)
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )Û1jÛ

�
1j

·mat1(Et−h ⊗A1FtA
�
2 )
}

+ 2

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )Û1jÛ

�
1j

·mat1(Et−h ⊗ Et)
}

:= II1 + II2 + 2II3.
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By Lemma 3,

II1 = O

(
d2

Td1

)
Using the same decomposition (42),

II2 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )

·
(
Û1j − U1Ũ

�
1 Û1j

)(
Û1j − U1Ũ

�
1 Û1j

)�

·mat1(Et−h ⊗A1FtA
�
2 )
}

+ 2

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )

·
(
Û1j − U1Ũ

�
1 Û1j

)(
U1Ũ

�
1 Û1j

)�

·mat1(Et−h ⊗A1FtA
�
2 )
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗A1FsA
�
2 )

·
(
U1Ũ

�
1 Û1j

)(
U1Ũ

�
1 Û1j

)�

·mat1(Et−h ⊗A1FtA
�
2 )
}

= O

(
d1d

1−δ0η2d
T 2

+
d2−δ0

Td1

)
Similarly,

II3 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ U�
1 A1FsA

�
2 U2)

·
(
Û1j − U1Ũ

�
1 Û1j

)(
Û1j − U1Ũ

�
1 Û1j

)�

·mat1(Et−h ⊗ U�
1 EtU2)

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ U�
1 A1FsA

�
2 U2)

·
(
Û1j − U1Ũ

�
1 Û1j

)(
U1Ũ

�
1 Û1j

)�

·mat1(Et−h ⊗ U�
1 EtU2)

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ U�
1 A1FsA

�
2 U2)
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·
(
U1Ũ

�
1 Û1j

)(
Û1j − U1Ũ

�
1 Û1j

)�

·mat1(Et−h ⊗ U�
1 EtU2)

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(Es−h ⊗ U�
1 A1FsA

�
2 U2)

·
(
U1Ũ

�
1 Û1j

)(
U1Ũ

�
1 Û1j

)�

·mat1(Et−h ⊗ U�
1 EtU2)

}
= O

(
d3/2−δ0/2

Td
1/2
1

+
d
1/2
1 d1−δ0/2η2d

T 2

)
Combing II1, II2 and II3, we have

II = O

(
d2

Td1
+

d1d
1−δ0η2d
T 2

)
. (50)

Next, we consider III.

III =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ Es)Û1jÛ

�
1j

·mat1(Et−h ⊗ Et)
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )Û1jÛ

�
1j

·mat1(Et−h ⊗A1FtA
�
2 )
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗ Es)Û1jÛ

�
1j

·mat1(Et−h ⊗A1FtA
�
2 )
}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )Û1jÛ

�
1j

·mat1(Et−h ⊗ Et)
}

:= III1 + III2 + III3 + III4.

Again, we bound each term in turn. Using the decomposition (42), adopting
same arguments in the proof of II, we have,

III1 = O

(
d3/2−δ0/2

T

)
,
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III2 = O

(
d3/2−3δ0/2

T 1/2
+

d
1/2
1 d3/2−3δ0/2ηd

T

)
,

III3 = O

(
d1−δ0

T
+

d
1/2
1 d1−δ0ηd

T 3/2

)
,

III4 = O

(
d1−δ0

T 1/2
+

d
1/2
1 d1−δ0ηd

T

)
.

This implies that

III = O

(
d3/2−δ0/2

T 1/2
+

d
1/2
1 d3/2−δ0/2ηd

T

)
. (51)

Employing (48), (49), (50) and (51), in the event Ω1, there exists a constant
cm > 0,

M(m, Û1,m)−M(r1, Û1)

≥ (cm + o(1))d−2δ1 + C

(
1

Tdδ0
+

1

Td1
+

1

T 1/2d1/2+3δ0/2
+

d
1/2
1 ηd

Td1/2+3δ0/2

)
.

(52)

Proof of Theorem 1 for non-iterative TOPUP. Let Ω1 = Ω11 ∩Ω12 ∩Ω0, where
Ω11,Ω12 are defined in Lemma 2 and 3, respectively, and Ω0 is the event in
Proposition 2. Then Ω1 is the same event in Lemma 4 and 5, with P(Ω1) ≥
1− e−d2 − T exp(−C1T

ϑ)− exp(−C2T ) and C1, C2 > 0, 1/ϑ = 1/θ1 + 2/θ2. In
the following, we shall only work on Ω1.

(i) (IC estimator using non-iterative TOPUP) We shall prove in the event
Ω1, M(m, Û1,m) +m · d−2g1(d, T ) ≥ M(r1, Û1) + r1 · d−2g1(d, T ) for all m 
= r1
and m ≤ m1. For m < r1, It is sufficient to show M(m, Û1,m) − M(r1, Û1) ≥
(r1 −m)d−2g1(d, T ) > 0. This is followed by Lemma 5 and the second part of
Assumption VII(a). For m > r1, as M(m, Û1,m) ≤ M(r1, Û1), it is sufficient to

proveM(r1, Û1)−M(m, Û1,m) ≤ (m−r1)d
−2g1(d, T ). By Lemma 4,M(r1, Û1)−

M(m, Û1,m) ≤ C (βd,T ). Then the first case is followed by the second part of
Assumption VII(a).

(ii) (ER estimator using non-iterative TOPUP) By Lemma 4, for all j > r1,

λ̂j ≤ C11(d
2βd,T ). Lemma 5 implies that λ̂j ≥ (cm + o(1))d2−2δ1 + C12(d

2γd,T )
for all 1 ≤ j ≤ r1. Employing similar arguments in the proof of Lemma 5, we
can obtain λ̂1 ≤ (c∗m + o(1))d2−2δ0 + C13(d

2γd,T ), for some constant c∗m > 0.
Provided that h1(d, T ) = o(d2+2δ0−4δ1) = o(d2−2δ1) and γd,T = o(d−2δ1),

λ̂j+1 + h1(d, T )

λ̂j + h1(d, T )
≥ h1(d, T )

h1(d, T ) + C14(d2βd,T )
, for j > r1,
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λ̂j+1 + h1(d, T )

λ̂j + h1(d, T )
≥ (c1 + o(1))d2δ0−2δ1 , for 1 ≤ j < r1,

λ̂j+1 + h1(d, T )

λ̂j + h1(d, T )
≤ c2d

2δ1(d−2h1(d, T ) + C15(βd,T )), for j = r1,

where c1 and c2 are some positive constants. Under the condition that βd,T +
d−2h1(d, T ) = o(d2δ0−4δ1), we have d2δ1(d−2h1(d, T )+βd,T ) = o(d2δ0−2δ1). Fur-
thermore, under the condition that h1(d, T ) � d2+2δ1β2

d,T , we can show that

d2δ1(d−2h1(d, T ) + βd,T ) �
h1(d, T )

h1(d, T ) + d2βd,T
.

Thus, (ii) is followed by Assumption VII(b).

A.2. Proof of Theorem 1 for iTOPUP

Lemma 6. Suppose Assumptions I, II, III, IV and V(a) hold. Assume that
‖Û2Û

�
2 −U2U

�
2 ‖2 ≤ c0

√
d1/d2 for some positive constant c0. Then, in an event

Ω22∩Ω0 with P(Ω22) ≥ 1−e−d2/2 and P(Ω0) ≥ 1−T exp(−C1T
ϑ)−exp(−C2T )

with C1, C2 > 0, 1/ϑ = 1/θ1 + 2/θ2, for all fixed m such that m ≥ r2, we have∥∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(A1Ft−hA
�
2 Û2,m ⊗ EtÛ2,m)

∥∥∥∥∥
2

≤ C

(
d
1/2
1 d1/2−δ0/2

√
T

)
, (53)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(A1Ft−hA
�
2 Û2,m ⊗ U�

1 EtÛ2,m)

∥∥∥∥∥
2

≤ C

(
d1/2−δ0/2

√
T

)
, (54)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(Et−hÛ2,m ⊗A1FtA
�
2 Û2,m)

∥∥∥∥∥
2

≤ C

(
d
1/2
1 d1/2−δ0/2

√
T

)
, (55)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

U�
1 mat1(Et−hÛ2,m ⊗A1FtA

�
2 Û2,m)

∥∥∥∥∥
2

≤ C

(
d1/2−δ0/2

√
T

)
, (56)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(Et−hÛ2,m ⊗ EtÛ2,m)

∥∥∥∥∥
2

≤ C

(
d
1/2
1√
T

)
, (57)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

mat1(Et−hÛ2,m ⊗ U�
1 EtÛ2,m)

∥∥∥∥∥
2

≤ C

(
d
1/2
1√
T

)
, (58)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

U�
1 mat1(Et−hÛ2,m ⊗ U�

1 EtÛ2,m)

∥∥∥∥∥
2

≤ C

(
1√
T

)
, (59)

for some constant positive C depending on K only.

Proof. Recall Û2 = Û2,r2 = [Û21, ..., Û2r2 ]. Write U2,m = [U2, U
c
2 ] for m > r2.

Let U2⊥ be complement part of U2, namely [U2, U2⊥] ∈ Od2 . If m ≤ r2, then
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‖Û�
2,mU2⊥‖2 ≤ ‖Û�

2 U2⊥‖2 = ‖Û2Û
�
2 − U2U

�
2 ‖2. If m > r2, then Û2,mÛ�

2,m =

Û2Û
�
2 +

∑m
j=r2+1 Û2jÛ

�
2j = Û2Û

�
2 + Û c

2 Û
c�
2 . Furthermore, for any matrix B ∈

R
a×d2 ,

‖BÛ2,m‖2 = ‖[BÛ2, BÛ c
2 ]‖2 ≤

√
2
(
‖BÛ2‖2 + ‖BÛ c

2‖2
)
.

Note that

‖U2U
�
2 Û c

2‖2 = ‖U�
2 Û c

2‖2 ≤ ‖U�
2 Û2⊥‖2 = ‖Û2Û

�
2 − U2U

�
2 ‖2.

Adopting similar procedures in the proof of Theorem 1 in Han et al. (2020), we
can show Lemma 6.

Lemma 7. Suppose Assumptions I, II, III, IV and V(a) hold. Let r1 ≤ r
(j)
1 ≤

m1 < d1 for all 1 ≤ j ≤ i− 1, and m1 = O(r1). There exists an event Ω2 such
that P(Ω2) ≥ 1− e−d2 −T exp(−C1T

ϑ)− exp(−C2T ), C1, C2 > 0, 1/ϑ = 1/θ1+
2/θ2 and Ω2 is independent of iteration number i. Then, at i-th iteration, in the
event Ω2, for any fixed m with m > r1, M(i)(r1, Û1)−M(i)(m, Û1,m) ≤ Cβd,T ,
where C > 0,

βd,T =
d1

Td1+δ0/2
+

d
1/2
1 η

(i)
1

Td1/2+3δ0/2
,

and η
(i)
k = d

1/2
k dδ1−δ0/2−1/2 + d

1/2
k dδ1−1.

Proof. Note that by Han et al. (2020), in the event Ω2, at i-th iteration (i ≥ 1),

for the iTOPUP estimator, assume that ‖Û (i)
k,rk

Û
(i)�
k,rk

−UkU
�
k )‖2 ≤ C0(η

(i)
k T−1/2),

1 ≤ k ≤ K, for some C0 > 0. The proof is similar to Lemma 4. Thus, it is omit-
ted.

Lemma 8. Suppose Assumptions I, II, III, IV and V(a) hold. Let r1 ≤ r
(j)
1 ≤

m1 < d1 for all 1 ≤ j ≤ i − 1, and m1 = O(r1). There exists an event Ω2

such that P(Ω2) ≥ 1 − e−d2 − T exp(−C1T
ϑ) − exp(−C2T ), C1, C2 > 0, 1/ϑ =

1/θ1+2/θ2 and Ω2 is independent of iteration number i. Then, at i-th iteration,
in the event Ω2, for any m with m < r1, there exist constants cm > 0 and C > 0,
such that M(i)(m, Û1,m)−M(i)(r1, Û1) ≥ (cm + o(1))d−2δ1 + Cγd,T , where

γd,T =
d1

Td1+δ0
+

1

T 1/2d1/2+3δ0/2
+

d
1/2
1 η

(i)
1

Td1/2+3δ0/2
,

and η
(i)
k = d

1/2
k dδ1−δ0/2−1/2 + d

1/2
k dδ1−1.

Proof. Note that by Han et al. (2020), in the event Ω2, at i-th iteration (i ≥ 1),

for the iTOPUP estimator, assume that ‖Û (i)
k,rk

Û
(i)�
k,rk

−UkU
�
k )‖2 ≤ C0(η

(i)
k T−1/2),

1 ≤ k ≤ K, for some C0 > 0. The proof is omitted, as it is similar to Lemma
5.

Proof of Theorem 1 for iTOPUP. Employing similar arguments in the proofs of
Theorem 1 for non-iterative TOPUP we can show Theorem 1 for iTOPUP.
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A.3. Proof of Theorem 1 for non-iterative TIPUP

Lemma 9. Let U1⊥ ∈ R
d1×(d1−r1) be the orthonormal complement of U1. De-

note U1⊥ = (U1j)r1+1≤j≤d1 and U1 = (U1j)1≤j≤r1 , where U1j ∈ R
d1 . Denote

η∗d = d
1/2
k dδ1−δ0/2−1/2 + dδ1−1/2. Define Û1 be the estimated top r1 left sin-

gular space of TIPUP1(X1:T ). Suppose Assumptions I, II, III, IV and V(b)
hold. Then, in an event Ω31 ∩ Ω0 with P(Ω31) ≥ 1 − e−d2/2 and P(Ω0) ≥
1−T exp(−C1T

ϑ)− exp(−C2T ) with C1, C2 > 0, 1/ϑ = 1/θ1+2/θ2, there exist
a matrix Ũ1 ∈ R

d1×r1 with Ũ1Ũ
�
1 = Û1Û

�
1 , such that

‖Û1 − U1Ũ
�
1 Û1‖2 ≤ C

(
η∗d√
T

)
, (60)

‖U1U
�
1 Û1j‖2 ≤ C

(
η∗d√
T

)
, (61)

for all r1 + 1 ≤ j ≤ d1 and C > 0.

The proof is similar to Lemma 2, thus is omitted.

Lemma 10. Suppose Assumptions I, II, III, IV and V(b) hold. Then, in an
event Ω32 ∩ Ω0 with P(Ω32) ≥ 1 − e−d1/2 and P(Ω0) ≥ 1 − T exp(−C1T

ϑ) −
exp(−C2T ) with C1, C2 > 0, 1/ϑ = 1/θ1 + 2/θ2, we have∥∥∥∥∥ 1

T − h

T∑
t=h+1

A1Ft−hA
�
2 E

�
t

∥∥∥∥∥
2

≤ C

(
d
1/2
1 d1/2−δ0/2

√
T

)
, (62)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1

∥∥∥∥∥
2

≤ C

(
d
1/2
1 d1/2−δ0/2

√
T

)
, (63)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

A1Ft−hA
�
2 E

�
t U1

∥∥∥∥∥
2

≤ C

(
d1/2−δ0/2

√
T

)
, (64)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

U�
1 Et−hA

�
2 F

�
t A�

1

∥∥∥∥∥
2

≤ C

(
d1/2−δ0/2

√
T

)
, (65)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

≤ C

(
d1/2√
T

)
, (66)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

U�
1 Et−hE

�
t U1

∥∥∥∥∥
2

≤ C

(
d1/2√
d1T

)
, (67)

for some constant positive C depending on K only.

Proof. By Theorem 2 in Chen, Yang and Zhang (2021), under Assumption I,

E

∥∥∥∥∥ 1

T − h

T∑
t=h+1

A1Ft−hA
�
2 E

�
t

∥∥∥∥∥
2

≤ σ
√
8Td1

T − h
‖Θ∗

1,0‖
1/2
2 .
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Elementary calculation shows that∣∣∣∣∣∣
∥∥∥∥∥

T∑
t=h+1

A1Ft−hA
�
2 E

�
t

∥∥∥∥∥
2

−
∥∥∥∥∥

T∑
t=h+1

A1Ft−hA
�
2 E

∗�
t

∥∥∥∥∥
2

∣∣∣∣∣∣
≤

∥∥∥∥∥∥∥(A1F1A
�
2 , ..., A1FT−hA

�
2 )

⎛⎜⎝E�
h+1 − E∗�

h+1
...

E�
T − E∗�

T

⎞⎟⎠
∥∥∥∥∥∥∥
2

≤
∥∥(A1F1A

�
2 , ..., A1FT−hA

�
2 )
∥∥1/2
2

∥∥∥∥∥∥∥
⎛⎜⎝E�

h+1 − E∗�
h+1

...
E�

T − E∗�
T

⎞⎟⎠
∥∥∥∥∥∥∥
2

≤
√
T‖Θ∗

1,0‖
1/2
2

∥∥∥∥∥∥∥
⎛⎜⎝E�

h+1 − E∗�
h+1

...
E�

T − E∗�
T

⎞⎟⎠
∥∥∥∥∥∥∥
F

.

That is,
∥∥∥∑T

t=h+1 A1Ft−hA
�
2 E

�
t

∥∥∥
2
is a σ

√
T‖Θ∗

1,0‖
1/2
2 Lipschitz function in

(E1, . . . , ET ). Then, by Gaussian concentration inequalities for Lipschitz func-
tions,

P

⎛⎝∥∥∥∥∥
T∑

t=h+1

A1Ft−hA
�
2 E

�
t

T − h

∥∥∥∥∥
2

− σ(8Td1)
1/2

T − h
‖Θ∗

1,0‖
1/2
2 ≥ σ

√
T

T − h
‖Θ∗

1,0‖
1/2
2 x

⎞⎠
≤ 2e−

x2

2 .

As T ≥ 4h0 and K = 2, this implies with x 

√
d1 that in an event Ωa with at

least probability 1− e−d1/6,∥∥∥∥∥ 1

T − h

T∑
t=h+1

A1Ft−hA
�
2 E

�
t

∥∥∥∥∥
2

≤ C0

√
Td1

T − h
‖Θ∗

1,0‖
1/2
2 , (68)

with a constant C0 depending on K only. Then, by Proposition 2, in the event
Ωa ∩ Ω0, (62) follows. Similar arguments yield (63), (64) and (65) in the event
Ωa ∩ Ω0.

We split the sum into two terms over the index sets, S1 = {(h, 2h]∪(3h, 4h]∪
· · · } ∩ (h, T ] and its complement S2 in (h, T ], so that {Et−h, t ∈ Sa} is in-
dependent of {Et, t ∈ Sa} for each a = 1, 2. Let na = |Sa|d2. Define Ga =
(Et−h, t ∈ Sa) ∈ R

d1×na and Ha = (Et, t ∈ Sa) ∈ R
d1×na . Then, Ga, Ha are

two independent Gaussian matrices. Note that∥∥∥∥∥∑
t∈Sa

Et−hE
�
t

T − h

∥∥∥∥∥
2

=

∥∥∥∥GaH
�
a

T − h

∥∥∥∥
2

.
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Moreover, by Assumption I, Var(u�vec(Ga)) ≤ σ2 and Var(u�vec(Ha)) ≤ σ2

for all unit vectors u ∈ R
d1na , so that by Lemme 19(i)

P

{
‖GaH

�
a ‖2/σ2 ≥ d1 + 2

√
d1na + x(x+ 2

√
na + 2

√
d1)

}
≤ 2e−x2/2, x > 0.

Thus, as
∑2

a=1 na = d2(T − h), it follows from the above inequality that with
h0 ≤ T/4, x 


√
d1 and some constant C ′

0 depending on K only,∥∥∥∥∥
T∑

t=h+1

Et−hE
�
t

T − h

∥∥∥∥∥
2

≤ C ′
0(d1 +

√
d1d2T )

T − h
, (69)

in an event Ωc with at least probability 1−e−d1/6. Then, as in the derivation of
‖Δ∗

3‖2 in the proof of Theorem 2 in Chen, Yang and Zhang (2021), in the event
Ωc, (66) follows. Similar arguments yield (67) in the event Ωc. Set Ω32 = Ωa∩Ωc,
then P(Ω32) ≥ 1− e−d1/2.

Lemma 11. Suppose Assumptions I, II, III, IV and V(b) hold. In an event
Ω3 with P(Ω3) ≥ 1− e−d1 − e−d2 − T exp(−C1T

ϑ)− exp(−C2T ) with C1, C2 >
0, 1/ϑ = 1/θ1+2/θ2, for any fixed m with m > r1, M∗(r1, Û1)−M∗(m, Û1,m) ≤
Cβ∗

d,T , where C > 0,

β∗
d,T =

1

Td
+

d1
Td1+δ0

+
d
1/2
1 η∗d

Td1/2+3δ0/2
+

η∗d
Td1/2+δ0

,

and η∗d = d
1/2
k dδ1−δ0/2−1/2 + dδ1−1/2.

Proof. Let Ω3 = Ω31 ∩ Ω32 ∩ Ω0, where Ω31,Ω32 are defined in Lemma 9 and
10, respectively, and Ω0 is the event in Proposition 2. Let U1,r1 = U1 and
U1,m = (U11, U12, ..., U1m).∣∣∣M∗(m, Û1,m)−M∗(r1, Û1)

∣∣∣ ≤ ∣∣∣M∗(m, Û1,m)−M∗(r1, U1)
∣∣∣

+
∣∣∣M∗(r1, Û1)−M∗(r1, U1)

∣∣∣
≤ 2 max

r1<m≤m1

∣∣∣M∗(m, Û1,m)−M∗(r1, U1)
∣∣∣ .

As m1 is fixed, it is sufficient to prove for each m with m > r1,∣∣∣M∗(m, Û1,m)−M∗(r1, U1)
∣∣∣ ≤ Cβ∗

d,T . (70)

In the following, we shall only work on Ω3.
Elementary calculation shows that

d2 · M∗(m, Û1,m)− d2 · M∗(r1, U1)

=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{(

U1U
�
1 − Û1,mÛ�

1,m

)
Xt−hX

�
t XsX

�
s−h

}
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=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsA2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ�

1,m

)
A1Ft−hA

�
2 X

�
t

}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsE

�
s−h

(
U1U

�
1 − Û1,mÛ�

1,m

)
Et−hX

�
t

}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsA2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ�

1,m

)
Et−hX

�
t

}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsE

�
s−h

(
U1U

�
1 − Û1,mÛ�

1,m

)
A1Ft−hA

�
2 X

�
t

}
:= I + II + III + IV.

Note that III = IV.

We first consider II.

II =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsE

�
s−h

(
U1U

�
1 − Û1,mÛ�

1,m

)
Et−hX

�
t

}

=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsE

�
s−h

(
U1U

�
1 − Û1,mÛ�

1,m

)
Et−hE

�
t

}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−h

(
U1U

�
1 − Û1,mÛ�

1,m

)

· Et−hA2F
�
t A�

1

}

+ 2

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−h

(
U1U

�
1 − Û1,mÛ�

1,m

)
Et−hE

�
t

}
:= II1 + II2 + 2II3.

By (42), Lemma 9 and 10,

II1 ≤ r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

2

·
(∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥2
2
+
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥
2

∥∥∥U1Ũ
�
1 Û1

∥∥∥
2

)
+ (m− r1)

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

2

= O

(
d

T

)
,
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using the fact η∗d = o(
√
T ).

II2 ≤ r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1

∥∥∥∥∥
2

2

∥∥∥Û1 − U1Ũ
�
1 Û1

∥∥∥2
2

+ 2r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1

∥∥∥∥∥
2

∥∥∥∥∥ 1

T − h

T∑
s=h+1

U�
1 Es−hA2F

�
s A�

1

∥∥∥∥∥
2

·
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥
2

+ (m− r1)

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1

∥∥∥∥∥
2

2

= O

(
d1d

1−δ0

T

)
.

II3 ≤ r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

Es−hA2F
�
s A�

1

∥∥∥∥∥
2

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

·
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥2
2

+ r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

Es−hA2F
�
s A�

1

∥∥∥∥∥
2

∥∥∥∥∥ 1

T − h

T∑
t=h+1

U�
1 Et−hE

�
t

∥∥∥∥∥
2

·
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥
2

+ r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

∥∥∥∥∥ 1

T − h

T∑
s=h+1

U�
1 Es−hA2F

�
s A�

1

∥∥∥∥∥
2

·
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥
2

+ (m− r1)

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

Es−hA2F
�
s A�

1

∥∥∥∥∥
2

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

= O

(
d
1/2
1 d1−δ0/2

T

)
.

Combing the bounds of II1, II2 and II3, we have

II = O

(
d

T
+

d1d
1−δ0

T

)
. (71)

Next, we consider III.

III =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsA2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ1,m1�

)
Et−hX

�
t

}
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=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 A2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ�

1,m

)
· Et−hA2F

�
t A�

1

}
+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsA2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ�

1,m

)
Et−hE

�
t

}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsA2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ�

1,m

)
· Et−hA2F

�
t A�

1

}
+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 A2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ�

1,m

)
· Et−hE

�
t

}
:= III1 + III2 + III3 + III4.

Note that A�
1 U1U

�
1 = A�

1 . Similarly, by (42), Lemma 9 and 10,

III1 ≤ 3r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

A1FsA
�
2 A2F

�
s−hA

�
1

∥∥∥∥∥
2

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1

∥∥∥∥∥
2

·
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥
2

+ (m− r1)

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

A1FsA
�
2 A2F

�
s−hA

�
1

∥∥∥∥∥
2

·
∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1

∥∥∥∥∥
2

∥∥∥U1U
�
1 Û1j

∥∥∥
2

= O

(
d
1/2
1 d3/2−3δ0/2η∗d

T

)
.

Moreover,

III2 ≤ 3r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

EsA2F
�
s−hA

�
1

∥∥∥∥∥
2

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

·
∥∥∥Û1 − U1Ũ

�
1 Û1

∥∥∥
2

+ r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

EsA2F
�
s−hA

�
1

∥∥∥∥∥
2
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·
∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

∥∥∥U1U
�
1 Û1j

∥∥∥
2

= O

(
d
1/2
1 d1−δ0/2η∗d

T 3/2

)
.

III3 ≤ 3r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

U�
1 EsA2F

�
s−hA

�
1

∥∥∥∥∥
2

·
∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1 U1

∥∥∥∥∥
2

∥∥∥Û1 − U1Ũ
�
1 Û1

∥∥∥
2

+ (m− r1)

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

U�
1 EsA2F

�
s−hA

�
1

∥∥∥∥∥
2

·
∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hA2F
�
t A�

1 U1

∥∥∥∥∥
2

∥∥∥U1U
�
1 Û1j

∥∥∥
2

= O

(
d
1/2
1 d1−δ0η∗d

T 3/2

)
.

III4 ≤ r1

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

U�
1 A1FsA

�
2 A2F

�
s−hA

�
1

∥∥∥∥∥
2

·
∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t U1

∥∥∥∥∥
2

∥∥∥Û1 − U1Ũ
�
1 Û1

∥∥∥
2

+ (m− r1)

h0∑
h=1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

A1FsA
�
2 A2F

�
s−hA

�
1

∥∥∥∥∥
2

·
∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hE
�
t

∥∥∥∥∥
2

∥∥∥U1U
�
1 Û1j

∥∥∥
2

= O

(
d3/2−δ0η∗d

T

)
.

Combing III1, III2, III3 and III4, we have

III = O

(
d
1/2
1 d3/2−3δ0/2η∗d

T
+

d
1/2
1 d1−δ0/2η∗d

T 3/2
+

d3/2−δ0η∗d
T

)
. (72)

In view of (71) and (72),

II + III + IV = O

(
d

T
+

d1d
1−δ0

T
+

d
1/2
1 d3/2−3δ0/2η∗d

T
+

d3/2−δ0η∗d
T

)
. (73)
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Next, we consider I.

I =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsA2F

�
s−hA

�
1

(
U1U

�
1 − Û1,mÛ�

1,m

)
A1Ft−hA

�
2 X

�
t

}

=

h0∑
h=1

1

(T − h)2
tr

{
T∑

s=h+1

XsA2F
�
s−hA

�
1

(
I − Û1,mÛ�

1,m

) T∑
t=h+1

A1Ft−hA
�
2 X

�
t

}
≥0,

using the fact that I− Û1,mÛ�
1,m is positive semi-definite, x�Û1,mÛ�

1,mx ≤ x�x.

Using the definition of our optimization target, we have M∗(m, Û1,m) <

M∗(r1, Û1) ≤ M∗(r1, U1). It follows that I + II + III + IV ≤ 0. As I ≥ 0, by
(73), I = O(d2β∗

d,T ). In summary,∣∣∣M∗(m, Û1,m)−M∗(r1, U1)
∣∣∣ ≤ Cβ∗

d,T .

Lemma 12. Suppose Assumptions I, II, III, IV and V(b) hold. In an event
Ω3 with P(Ω3) ≥ 1− e−d1 − e−d2 − T exp(−C1T

ϑ)− exp(−C2T ) with C1, C2 >
0, 1/ϑ = 1/θ1 + 2/θ2, for any m with m < r1, there exist constants cm > 0 and
C > 0, such that M∗(m, Û1,m)−M∗(r1, Û1) ≥ (cm+o(1))d−2δ1 +Cγ∗

d,T , where

γ∗
d,T =

d1
Td1+δ0

+
1

Td
+

1

T 1/2d1/2+3δ0/2
+

1

T 1/2d1/2+δ0d
1/2
1

+
d
1/2
1 η∗d

Td1/2+3δ0/2
+

η∗d
Td1/2+δ0

,

and η∗d = d
1/2
k dδ1−δ0/2−1/2 + dδ1−1/2.

Proof. Let Ω3 = Ω31 ∩ Ω32 ∩ Ω0, where Ω31,Ω32 are defined in Lemma 9 and
10, respectively, and Ω0 is the event in Proposition 2. In the following, we shall
only work on Ω3.

Let U1,r1 = U1 and U1,m = (U11, U12, ..., U1m).

d2 · M∗(m, Û1,m)− d2 · M∗(r1, Û1)

=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{(

Û1Û
�
1 − Û1,mÛ�

1,m

)
Xt−hX

�
t Xs−hX

�
s

}

=

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsA2F

�
s−hA

�
1 Û1jÛ

�
1jA1Ft−hA

�
2 X

�
t

}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsE

�
s−hÛ1jÛ

�
1jEt−hX

�
t

}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsA2F

�
s−hA

�
1 Û1jÛ

�
1jEt−hX

�
t

}
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+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
XsE

�
s−hÛ1jÛ

�
1jA1Ft−hA

�
2 X

�
t

}
:= I + II + III + IV.

Note that III = IV.
We first consider I.

I =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 A2F

�
s−hA

�
1 Û1jÛ

�
1j

·A1Ft−hA
�
2 A2F

�
t A�

1

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsA2F

�
s−hA

�
1 Û1jÛ

�
1jA1Ft−hA

�
2 E

�
t

}

+ 2

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsA2F

�
s−hA

�
1 Û1jÛ

�
1jA1Ft−hA

�
2 A2F

�
t A�

1

}
:= I1 + I2 + I3.

For I1,

I1 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
Û�
1jA1Ft−hA

�
2 A2F

�
t A�

1 A1FsA
�
2

·A2F
�
s−hA

�
1 Û1j

}
=

h0∑
h=1

r1∑
j=m+1

tr
{
Û�
1jU1U

�
1 Θ∗

1,hΘ
∗�
1,hU1U

�
1 Û1j

}

≥ λmin

(
h0∑
h=1

U�
1 Θ∗

1,hΘ
∗�
1,hU1

)
tr

⎧⎨⎩
r1∑

j=m+1

Û�
1jU1U

�
1 Û1j

⎫⎬⎭
= σ2

r1

(
U�
1 E(TIPUP1)

) r1∑
j=m+1

Û�
1jU1U

�
1 Û1j

≥ σ2
r1

(
U�
1 E(TIPUP1)

)
(r1 −m)(1− ‖Û1Û

�
1 − U1U

�
1 ‖22),

where the last step follows from (46). By Proposition 2, in the event Ω0, σr1(
U�
1 E(TIPUP1)

)
= τ∗1,r1 
 d1−δ1 , with 0 ≤ δ0 ≤ δ1 ≤ 1. Hence, there exists a

constant cm > 0 such that in the event Ω3,

I1 ≥ (cm + o(1))d2−2δ1 . (74)

By Lemma 10,

I2 =

h0∑
h=1

r1∑
j=m+1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

EsA2F
�
s−hA

�
1

∥∥∥∥∥
2

2

= O

(
d1d

1−δ0

T

)
.
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I3 =

h0∑
h=1

r1∑
j=m+1

∥∥∥∥∥ 1

T − h

T∑
s=h+1

U�
1 EsA2F

�
s−hA

�
1

∥∥∥∥∥
2

·
∥∥∥∥∥ 1

T − h

T∑
t=h+1

A1Ft−hA
�
2 A2F

�
t A�

1 U1

∥∥∥∥∥
2

= O

(
d3/2−3δ0/2

T 1/2

)
.

This implies that

I2 + I3 = O

(
d1d

1−δ0

T
+

d3/2−3δ0/2

T 1/2

)
. (75)

Next, we consider II.

II =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsE

�
s−hÛ1jÛ

�
1jEt−hE

�
t

}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−hÛ1jÛ

�
1jEt−hA2F

�
t A�

1

}

+ 2

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−hÛ1jÛ

�
1jEt−hE

�
t

}
:= II1 + II2 + 2II3.

By Lemma 10,

II1 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsE

�
s−hÛ1jÛ

�
1jEt−hE

�
t

}
= O

(
d

T

)
.

Applying (42),

II2 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−h(Û1j − U1Ũ

�
1 Û1j)

· (Û1j − U1Ũ
�
1 Û1j)

�Et−hA2F
�
t A�

1

}
+ 2

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−h(Û1j − U1Ũ

�
1 Û1j)

· (U1Ũ
�
1 Û1j)

�Et−hA2F
�
t A�

1

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−h(U1Ũ

�
1 Û1j)

· (U1Ũ
�
1 Û1j)

�Et−hA2F
�
t A�

1

}
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= O

(
d1d

1−δ0η∗2d
T 2

+
d1−δ0

T

)
.

II3 =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−h(Û1j − U1Ũ

�
1 Û1j)

· (Û1j − U1Ũ
�
1 Û1j)

�Et−hE
�
t

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 E

�
s−h(U1Ũ

�
1 Û1j)

· (Û1j − U1Ũ
�
1 Û1j)

�Et−hE
�
t

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
U�
1 A1FsA

�
2 E

�
s−h(Û1j − U1Ũ

�
1 Û1j)

· (U1Ũ
�
1 Û1j)

�Et−hE
�
t U1

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
U�
1 A1FsA

�
2 E

�
s−h(U1Ũ

�
1 Û1j)

· (U1Ũ
�
1 Û1j)

�Et−hE
�
t U1

}
= O

(
d
1/2
1 d1−δ0/2η∗2d

T 2
+

d1−δ0/2η∗d
T 3/2

+
d1−δ0/2

Td
1/2
1

)
.

Combing II1, II2 and II3,

II = O

(
d

T
+

d1d
1−δ0η∗2d
T 2

)
. (76)

Next, we consider III.

III =

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsA2F

�
s−hA

�
1 Û1jÛ

�
1jEt−hE

�
t

}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 A2F

�
s−hA

�
1 Û1j

· Û�
1jEt−hA2F

�
t A�

1

}
+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
EsA2F

�
s−hA

�
1 Û1jÛ

�
1jEt−hA2F

�
t A�

1

}

+

h0∑
h=1

r1∑
j=m+1

1

(T − h)2

T∑
s,t=h+1

tr
{
A1FsA

�
2 A2F

�
s−hA

�
1 Û1jÛ

�
1jEt−hE

�
t

}
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:= III1 + III2 + III3 + III4.

We bound each term in turn. Applying (42), using same arguments in the proof
of II, we have,

III1 = O

(
d
1/2
1 d1−δ0/2

T

)
,

III2 = O

(
d
1/2
1 d3/2−3δ0/2η∗d

T
+

d3/2−3δ0/2

T 1/2

)
,

III3 = O

(
d
1/2
1 d1−δ0η∗d

T 3/2
+

d1−δ0

T

)
,

III4 = O

(
d3/2−δ0η∗d

T
+

d3/2−δ0

T 1/2d
1/2
1

)
.

This implies that

III = O

(
d
1/2
1 d1−δ0/2

T
+

d
1/2
1 d3/2−3δ0/2η∗d

T
+

d3/2−3δ0/2

T 1/2
+

d1−δ0

T

+
d3/2−δ0η∗d

T
+

d3/2−δ0

T 1/2d
1/2
1

)
. (77)

Employing (74), (75), (76) and (77), in the event Ω3, there exist constants
cm > 0 and C > 0, such that

M∗(m, Û1,m)−M∗(r1, Û1)

≥ (cm + o(1))d−2δ1 + C

(
d1

Td1+δ0
+

1

Td
+

1

T 1/2d1/2+3δ0/2
+

1

T 1/2d1/2+δ0d
1/2
1

+
d
1/2
1 η∗d

Td1/2+3δ0/2
+

η∗d
Td1/2+δ0

)
. (78)

Proof of Theorem 1 for non-iterative TIPUP. The proof is similar to Theorem
1 for non-iterative TOPUP. For the IC estimators base on non-iterative TIPUP,
it is followed by Lemma 11, 12 and Assumption VII(a).

Applying similar arguments in the proof of Theorem 1 for non-iterative
TOPUP, the IC estimators base on non-iterative TIPUP in Theorem 1 follow
from Lemma 11, 12 and Assumption VII(b).

A.4. Proof of Theorem 1 for iTIPUP

Lemma 13. Suppose Assumptions I, II, III, IV and V(b) hold. Assume that
‖Û2Û

�
2 −U2U

�
2 ‖2 ≤ c0

√
d1/d2 for some positive constant c0. Then, in an event
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Ω42∩Ω0 with P(Ω42) ≥ 1−e−d1/2 and P(Ω0) ≥ 1−T exp(−C1T
ϑ)−exp(−C2T )

with C1, C2 > 0, 1/ϑ = 1/θ1 + 2/θ2, we have∥∥∥∥∥ 1

T − h

T∑
t=h+1

A1Ft−hA
�
2 Û2Û

�
2 E�

t

∥∥∥∥∥
2

≤ C

(
d
1/2
1 d1/2−δ0/2

√
T

)
, (79)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hÛ2Û
�
2 A2F

�
t A�

1

∥∥∥∥∥
2

≤ C

(
d
1/2
1 d1/2−δ0/2

√
T

)
, (80)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

A1Ft−hA
�
2 Û2Û

�
2 E�

t U1

∥∥∥∥∥
2

≤ C

(
d1/2−δ0/2

√
T

)
, (81)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

U�
1 Et−hÛ2Û

�
2 A�

2 F
�
t A�

1

∥∥∥∥∥
2

≤ C

(
d1/2−δ0/2

√
T

)
, (82)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Et−hÛ2Û
�
2 E�

t

∥∥∥∥∥
2

≤ C

(
d
1/2
1√
T

)
, (83)

∥∥∥∥∥ 1

T − h

T∑
t=h+1

U�
1 Et−hÛ2Û

�
2 E�

t U1

∥∥∥∥∥
2

≤ C

(
1√
T

)
, (84)

for some constant positive C depending on K only.

Lemma 14. Suppose Assumptions I, II, III, IV and V(b) hold. Let r1 ≤ r
(j)
1 ≤

m1 < d1 for all 1 ≤ j ≤ i− 1, and m1 = O(r1). There exists an event Ω4 such
that P(Ω4) ≥ 1− e−d1 − e−d2 −T exp(−C1T

ϑ)− exp(−C2T ), C1, C2 > 0, 1/ϑ =
1/θ1+2/θ2 and Ω4 is independent of iteration number i. Then, in the event Ω4,
at i-th iteration, for any fixed m with m > r1, M∗(i)(r1, Û1)−M∗(i)(m, Û1,m) ≤
Cβ∗

d,T , where C > 0,

β∗
d,T =

d1
Td1+δ0

+
d
1/2
1 η

∗(i)
k

Td1/2+3δ0/2
,

and η
∗(i)
k = d

1/2
k dδ1−δ0/2−1/2 + d

1/2
k dδ1−1.

Lemma 15. Suppose Assumptions I, II, III, IV and V(b) hold. Let r1 ≤ r
(j)
1 ≤

m1 < d1 for all 1 ≤ j ≤ i− 1, and m1 = O(r1). There exists an event Ω4 such
that P(Ω4) ≥ 1− e−d1 − e−d2 −T exp(−C1T

ϑ)− exp(−C2T ), C1, C2 > 0, 1/ϑ =
1/θ1 + 2/θ2 and Ω4 is independent of iteration number i. Then, in the event
Ω4, at i-th iteration, for any m with m < r1, there exist constants cm > 0 and
C > 0, such that M∗(i)(m, Û1,m) −M∗(i)(r1, Û1) ≥ (cm + o(1))d−2δ1 + Cγ∗

d,T ,
where

γ∗
d,T =

d1
Td1+δ0

+
1

T 1/2d1/2+3δ0/2
+

d
1/2
1 η

∗(i)
k

Td1/2+3δ0/2
,

and η
∗(i)
k = d

1/2
k dδ1−δ0/2−1/2 + d

1/2
k dδ1−1.
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Note that by Han et al. (2020), in the event Ω4, at i-th iteration (i ≥ 1), for

the iTIPUP estimator, assume that ‖Û (i)
k,rk

Û
(i)�
k,rk

− UkU
�
k ‖2 ≤ C0(η

∗(i)
k T−1/2),

1 ≤ k ≤ K, for some C0 > 0. The proofs of Lemma 13, 14 and 15 are omitted,
since they are similar to Lemma 6, 7 and 8.

Proof of Theorem 1 for iTIPUP . Theorem 1 for iTIPUP part follows by simi-
lar arguments in the proofs of Theorem 1 for non-iterative iTIPUP.

A.5. Proof of propositions and Theorem 2

Proof of Proposition 2. Let Ak has SVD Ak = UkΛkV
�
k . As |P(A∩B)−P(A)P

(B)| ≤ 1/4 ≤ e−1 for all event pairs {A,B},

sup
t

{∣∣∣P(A ∩B)− P(A)P(B)
∣∣∣ : A ∈ σ(Fs+τ ⊗ Fs, s ≤ t, τ ≤ τ0),

B ∈ σ(Fs, s ≥ t+ h)
}

≤ sup
t

{∣∣∣P(A ∩B)− P(A)P(B)
∣∣∣ : A ∈ σ(Fs, s ≤ t+ τ0), B ∈ σ(Fs, s ≥ t+ h)

}
≤ exp

{
−max{1, c0(h− τ0)

θ1}
}

≤ exp
{
− c0(1 + c

1/θ1
0 τ0)

−θ1hθ1
}
= exp

{
− c′0h

θ1
}
.

where c′0 = c0(1 + c
1/θ1
0 τ0)

−θ1 .
Since rk is fixed, E(Fi,k,t−hFj,l,t) = O(1) for any 0 ≤ h ≤ T/4, 1 ≤ i, j ≤ r1,

1 ≤ k, l ≤ r2. Pick a > 0, x > E(Fi,k,t−hFj,l,t), then

P (|Fi,k,t−hFj,l,t − EFi,k,t−hFj,l,t| > x)

= P (|Fi,k,t−hFj,l,t − EFi,k,t−hFj,l,t| > x, |Fi,k,t−h| > xa)

+ P (|Fi,k,t−hFj,l,t − EFi,k,t−hFj,l,t| > x, |Fi,k,t−h| ≤ xa)

≤P (|Fi,k,t−h| > xa) + P
(
|Fj,l,t| > x1−a

)
≤c1 exp

(
−c2x

aθ2
)
+ c1 exp

(
−c2x

(1−a)θ2
)

≤2c1 exp
(
−c2x

θ2/2
)
.

Let 1/ϑ = 1/θ1 + 2/θ2. Hence, by Theorem 1 in Merlevède, Peligrad and Rio
(2011), for any ‖u‖2 = ‖v‖2 = 1,

P

(∣∣∣∣∣ 1

T − h

T∑
t=h+1

u� (
Ft−hF

�
t − EFt−hF

�
t

)
v

∣∣∣∣∣ > x

)
≤(T − h) exp

(
−c3(T − h)ϑxϑ

)
+ exp

(
−c4(T − h)x2

)
.

By Lemma 18(i),

P

⎛⎝∥∥∥∥∥ 1

T − h

T∑
t=h+1

(
Ft−hF

�
t − EFt−hF

�
t

)∥∥∥∥∥
2

> x

⎞⎠
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≤5r1 · P
(∣∣∣∣∣ 1

T − h

T∑
t=h+1

u� (
Ft−hF

�
t − EFt−hF

�
t

)
v

∣∣∣∣∣ > x/2

)
≤5r1(T − h) exp

(
−c3(T − h)ϑ(x/2)ϑ

)
+ 5r1 exp

(
−c4(T − h)x2/4

)
.

As h ≤ T/4, choosing x = 2−1σr1

(
(T − h)−1

∑T
t=h+1 EFt−hF

�
t

)
∨ 1, in an

event Ω0 with probability at least 1− T exp(−C1T
ϑ)− exp(−C2T ),∥∥∥∥∥ 1

T − h

T∑
t=h+1

(
Ft−hF

�
t − EFt−hF

�
t

)∥∥∥∥∥
2

≤ 1

2
σr1

(
1

T − h

T∑
t=h+1

EFt−hF
�
t

)
∨ 1.

(85)

By triangle inequality,∥∥∥∥∥ 1

T − h

T∑
t=h+1

EMt−hM
�
t

∥∥∥∥∥
2

−
∥∥∥∥∥ 1

T − h

T∑
t=h+1

(
Mt−hM

�
t − EMt−hM

�
t

)∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

T − h

T∑
t=h+1

Mt−hM
�
t

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

T − h

T∑
t=h+1

EMt−hM
�
t

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

T − h

T∑
t=h+1

(
Mt−hM

�
t − EMt−hM

�
t

)∥∥∥∥∥
2

.

In the event Ω0, by (85) and Assumption V(b),∥∥∥∥∥ 1

T − h

T∑
t=h+1

(
Mt−hM

�
t − EMt−hM

�
t

)∥∥∥∥∥
2

≤ d1−δ0

∥∥∥∥∥ 1

T − h

T∑
t=h+1

(
Ft−hF

�
t − EFt−hF

�
t

)∥∥∥∥∥
2

≤ 1

2
σr1

(
1

T − h

T∑
t=h+1

EMt−hM
�
t

)
.

It follows that

‖Θ∗
1,h‖2 =

∥∥∥∥∥ 1

T − h

T∑
t=h+1

Mt−hM
�
t

∥∥∥∥∥
2



∥∥∥∥∥ 1

T − h

T∑
t=h+1

EMt−hM
�
t

∥∥∥∥∥
2


 d1−δ0 ,

for h = 0 and some 1 ≤ h ≤ h0 ≤ T/4. Similarly, by (85) and Assumption V(b),
for some 1 ≤ h ≤ h0 ≤ T/4,

σr1

(
1

T − h

T∑
t=h+1

Mt−hM
�
t

)

 d1−δ1 ,
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Then,

τ∗1,r1 
 d1−δ1 .

Hence, in the event Ω0 with probability at least 1 − C1 exp(−C2T
ϑ) − C3

exp(−C4T ),

‖Θ∗
1,0‖2 
 d1−δ0 , τ∗1,r1 
 d1−δ1 . (86)

Similarly, applying arguments of proving Lemma 5 in Wang, Liu and Chen
(2019), we can show, in an event with probability at least 1− T exp(−C1T

ϑ)−
exp(−C2T ),

‖Θ1,0‖op 
 d1−δ0 , τ1,r1 
 d1−δ1 . (87)

Proof of Theorem 2. We only consider the case of non-iterative TOPUP, as the

other cases will be similar. Let ηd = dδ1−δ0/2 + dδ1d
−1/2
1 . For any 0 ≤ m < n <

d1,

n∑
j=m+1

λ̂1,j = d2M(m, Û1,m)− d2M(n, Ûn). (88)

By Lemma 4, in the same event Ω1, λ̂r1+1 = O(d2βd,T ). As λ̂r1+1 ≥ λ̂r1+2 ≥
... ≥ λ̂d1 , part (i) follows.

Set n = m + 1 ≤ r1 in (88). Employing the same arguments in the proof of
Lemma 5, we can show I2 + I3 + II + III = O(d2γd,T ) in the same event Ω1. For
I1,

I1 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )Û1mÛ�

1m

·mat1(A1Ft−hA
�
2 ⊗A1FtA

�
2 )
}

=

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )(U1mU�

1m − Û1mÛ�
1m)

·mat1(A1Ft−hA
�
2 ⊗A1FtA

�
2 )
}

+

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
mat1

�(A1Fs−hA
�
2 ⊗A1FsA

�
2 )U1mU�

1m

·mat1(A1Ft−hA
�
2 ⊗A1FtA

�
2 )
}

:= I11 + I12.

By (42),

I11 ≤ ‖U1mU�
1m − Û1mÛ�

1m‖2

∥∥∥∥∥
h0∑
h=1

U�
1 mat1 (Θ1,h)mat1

� (Θ1,h)U1

∥∥∥∥∥
2
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= ‖U1mU�
1m − Û1mÛ�

1m‖2 · σ2
1

(
U�
1 Emat1(TOPUP1)

)
Followed by Lemma 2 and Proposition 2, I11 = O(d2−2δ0T−1/2ηd) in the event
Ω1. For I12

I12 =

h0∑
h=1

1

(T − h)2

T∑
s,t=h+1

tr
{
U�
1n mat1(A1Ft−hA

�
2 ⊗A1FtA

�
2 )

·mat1
�(A1Fs−hA

�
2 ⊗A1FsA

�
2 )U1n

}
=

h0∑
h=1

U�
1nU1U

�
1 mat1 (Θ1,h)mat1

� (Θ1,h)U1U
�
1 U1n

= σ2
n

(
Emat1(TOPUP1)

)
= τ21,n.

Applying similar arguments in the proof of Proposition 2, we can show, in
an event with probability at least 1 − T exp(−C1T

ϑ/2ηϑd ) − exp(−C2η
2
d) with

1/ϑ = 1/θ1 + 2/θ2 and C1, C2 > 0,

I12 = τ21,n = λ1,n +O(T−1/2d2−2δ0ηd).

Then part (ii) follows by combing the bounds for I2+I3+II+III, I11 and I12.

Appendix B: Techinical lemmas

Lemma 16. Let V̂ , V ∈ Od,r, and V⊥ be complement part of V , namely
[V, V⊥] ∈ Od. Then, the following equivalent forms hold

‖V̂ V̂ � − V V �‖2 =

√
1− σmin(V̂ �V⊥) = ‖V̂ �V⊥‖2.

Proof. The singular values σj of V̂ �V correspond to eigenvalues ±
√
1− σ2

j for

V̂ V̂ � − V V �.

Lemma 17. Suppose A and A+ E are n× n symmetric matrices and that

Q = [Q1 Q2]

is an orthogonal matrix such that span(Q1) is an invariant subspace for A, where
Q1 ∈ R

n×r and Q2 ∈ R
n×(n−r). Partition the matrices Q�AQ and Q�EQ as

follows:

Q�AQ =

(
D1 0
0 D2

)
Q�EQ =

(
E11 E�

21

E21 E22

)
.

If sep(D1, D2) = minλ∈λ(D1),μ∈λ(D2) |λ − μ| > 0, where λ(M) denotes the set
of eigenvalues of the matrix M , and ‖E‖2 ≤sep(D1, D2)/5, then there exists a
matrix P ∈ R

(n−r)×r with

‖P‖2 ≤ 4

sep(D1, D2)
‖E21‖2
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such that the columns of Q̂1 = (Q1+Q2P )(I+P�P )−1/2 define an orthonormal
basis for a subspace that is invariant for A+ E.

Proof. See Theorem 8.1.10 in Golub and Van Loan (2012).

Lemma 18. Let d, dj , d∗, r ≤ d ∧ dj be positive integers, ε > 0 and Nd,ε =
�(1 + 2/ε)d�.

(i) For any norm ‖ · ‖ in R
d, there exist Mj ∈ Rd with ‖Mj‖ ≤ 1, j =

1, . . . , Nd,ε, such that max‖M‖≤1 min1≤j≤Nd,ε
‖M −Mj‖ ≤ ε. Consequently, for

any linear mapping f and norm ‖ · ‖∗,

sup
M∈Rd,‖M‖≤1

‖f(M)‖∗ ≤ 2 max
1≤j≤Nd,1/2

‖f(Mj)‖∗.

(ii) Given ε > 0, there exist Uj ∈ R
d×r and Vj′ ∈ R

d′×r with ‖Uj‖2∨‖Vj′‖2 ≤ 1
such that

max
M∈Rd×d′ ,‖M‖2≤1,rank(M)≤r

min
j≤Ndr,ε/2,j′≤Nd′r,ε/2

‖M − UjV
�
j′ ‖2 ≤ ε.

Consequently, for any linear mapping f and norm ‖ · ‖∗ in the range of f ,

sup
M,M̃∈Rd×d′ ,‖M−M̃‖2≤ε

‖M‖2∨‖M̃‖2≤1

rank(M)∨rank(M̃)≤r

‖f(M − M̃)‖∗
ε2Ir<d∧d′

≤ sup
‖M‖2≤1

rank(M)≤r

‖f(M)‖∗≤2 max
1≤j≤Ndr,1/8

1≤j′≤N
d′r,1/8

‖f(UjV
�
j′ )‖∗.

(89)
(iii) Given ε > 0, there exist Uj,k ∈ R

dk×rk and Vj′,k ∈ R
d′
k×rk with ‖Uj,k‖2 ∨

‖Vj′,k‖2 ≤ 1 such that

max
Mk∈R

dk×d′
k ,‖Mk‖2≤1

rank(Mk)≤rk,∀k≤K

min
jk≤Ndkrk,ε/2

j′
k
≤N

d′
k
rk,ε/2

,∀k≤K

∥∥∥�K
k=2Mk−�K

k=2(Ujk,kV
�
j′k,k

)
∥∥∥
2
≤ ε(K−1).

For any linear mapping f and norm ‖ · ‖∗ in the range of f ,

sup
Mk,M̃k∈R

dk×d′
k ,‖Mk−M̃k‖2≤ε

rank(Mk)∨rank(M̃k)≤rk
‖Mk‖2∨‖M̃k‖2≤1 ∀k≤K

‖f(�K
k=2Mk −�K

k=2M̃k)‖∗
ε(2K − 2)

≤ sup
Mk∈R

dk×d′
k

rank(Mk)≤rk
‖Mk‖2≤1,∀k

∥∥∥f(�K
k=2Mk

)∥∥∥
∗

(90)
and

sup
Mk∈R

dk×d′
k ,‖Mk‖2≤1

rank(Mk)≤rk ∀k≤K

∥∥∥f(�K
k=2Mk

)∥∥∥
∗
≤ 2 max

1≤jk≤Ndkrk,1/(8K−8)

1≤j′
k
≤N

d′
k
rk,1/(8K−8)

∥∥∥f(�K
k=2Ujk,kV

�
j′k,k

)∥∥∥
∗
.

(91)

Proof. See Lemma 1 in Han et al. (2020).

Lemma 19. (i) Let G ∈ R
d1×n and H ∈ R

d2×n be two centered independent
Gaussian matrices such that E(u�vec(G))2 ≤ σ2 ∀ u ∈ R

d1n and E(v�vec(H))2

≤ σ2 ∀ v ∈ R
d2n. Then,



1796 Y. Han et al.

‖GH�‖S ≤ σ2
(√

d1d2 +
√
d1n+

√
d2n

)
+ σ2x(x+ 2

√
n+

√
d1 +

√
d2) (92)

with at least probability 1− 2e−x2/2 for all x ≥ 0.
(ii) Let Gi ∈ R

d1×d2 , Hi ∈ R
d3×d4 , i = 1, . . . , n, be independent centered

Gaussian matrices such that E(u�vec(Gi))
2 ≤ σ2 ∀ u ∈ R

d1d2 and E(v�

vec(Hi))
2 ≤ σ2 ∀ v ∈ Rd3d4 . Then,∥∥∥∥mat1

( n∑
i=1

Gi ⊗Hi

)∥∥∥∥
2

≤σ2
(√

d1n+
√

d1d3d4 +
√

nd2d3d4
)

+ σ2x
(
x+

√
n+

√
d1 +

√
d2 +

√
d3d4

)
(93)

with at least probability 1− 2e−x2/2 for all x ≥ 0.

Proof. See Lemma 2 in Han et al. (2020).

Appendix C: Additional simulation results

In this section, we show detailed comparison among IC1-IC5, and ER1-ER5 for
the first part and third part simulation in Section 5. We also study a strong
factor model with r1 = r2 = 2.

(M0). Set r1 = r2 = 2. The univariate fijt follows AR(1) with AR coefficient
φ11 = φ22 = 0.8 and φ12 = φ21 = 0.3; All elements of A1 and A2 are i.i.d
N(0,1).

For Model M0 with small r1 = r2 = 2 and all strong factors, all versions of
our methods show perfect accuracy for all sample sizes except T = 100 when
some versions show error rates less than 1%. For Model M1, the results in Table
14 show clearly that, among all five penalty functions, IC2 and IC4 seem to be
slightly better than the others. With the same settings, the determination of

Table 14

Proportion of correct identification of rank r using IC estimators based on TOPUP
procedures for Model M1, over 1000 replications

initial estimator one step estimator final estimator
T IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5

d1 = d2 = 20
100 0 0.096 0.005 0.203 0 0.313 0.753 0.421 0.841 0.094 0.437 0.853 0.544 0.903 0.154
200 0.009 0.051 0.881 0.957 0.001 0.757 0.863 0.994 0.999 0.561 0.997 0.997 1 1 0.997
300 0.022 0.995 0.155 1 0.033 0.853 1 0.943 1 0.872 1 1 1 1 1
500 0.064 1 0.292 1 0.673 0.917 1 0.969 1 0.995 1 1 1 1 1
1000 0.127 1 0.268 1 1 0.949 1 0.976 1 1 1 1 1 1 1

d1 = d2 = 40
100 0 0 0 0 0 0.314 0.467 0.339 0.491 0.073 0.337 0.482 0.366 0.510 0.080
200 0 0 0 0.002 0 0.684 0.736 0.900 0.916 0.170 0.989 0.991 0.998 1.000 0.936
300 0 0.025 0 0.067 0 0.858 0.979 0.891 0.988 0.302 0.994 0.999 0.995 0.999 0.981
500 0 0.457 0.001 0.654 0 0.939 0.999 0.967 0.999 0.689 0.999 1 0.999 1 0.999
1000 0.004 1 0.048 1 0 0.996 1 1 1 0.988 1 1 1 1 1

d1 = d2 = 80
100 0 0 0 0 0 0.626 0.659 0.628 0.667 0.567 0.973 0.977 0.974 0.977 0.967
200 0 0 0 0 0 0.913 0.918 0.938 0.939 0.681 0.998 0.998 0.999 0.999 0.992
300 0 0 0 0.001 0 0.969 0.982 0.970 0.983 0.787 1 1 1 1 0.997
500 0.001 0.025 0.001 0.038 0 0.993 0.996 0.993 0.998 0.883 1 1 1 1 0.999
1000 0.058 0.698 0.100 0.780 0 1 1 1 1 0.954 1 1 1 1 1
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the ranks are perfect using IC and TIPUP, or using ER estimators. Thus, we
omitted the tables.

For Model M2, Tables 15 and 16 report the proportion of correct rank identi-
fication using IC estimators based on TOPUP and TIPUP procedures, respec-
tively. Tables 17 and 18 report the proportion of correct rank identification using
ER estimators based on TOPUP and TIPUP procedures, respectively.

Table 15

Proportion of correct identification of rank r using IC estimators based on TOPUP
procedures for Model M2, over 1000 replications

initial estimator one step estimator final estimator
T IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5

d1 = d2 = 20
100 0.956 0.800 0.939 0.748 0.983 0.911 0.727 0.885 0.668 0.970 0.758 0.595 0.730 0.528 0.875
200 0.990 0.979 0.746 0.641 0.997 0.979 0.962 0.675 0.557 0.990 0.883 0.822 0.546 0.453 0.934
300 1 0.734 0.998 0.565 1 0.999 0.664 0.993 0.485 0.998 0.999 0.664 0.993 0.485 0.998
500 1 0.582 1 0.383 1 1 0.511 1 0.326 1 0.999 0.378 0.996 0.241 0.982
1000 1 0.459 1 0.329 1 1 0.408 1 0.277 1 1 0.289 1 0.198 0.999

d1 = d2 = 40
100 0.970 0.946 0.963 0.945 0.974 0.936 0.901 0.931 0.895 0.981 0.912 0.873 0.903 0.862 0.970
200 0.981 0.972 0.936 0.925 0.992 0.955 0.942 0.883 0.860 0.998 0.937 0.931 0.854 0.833 0.994
300 0.998 0.960 0.995 0.943 0.998 0.991 0.931 0.985 0.892 1 0.986 0.897 0.978 0.866 0.999
500 1 0.978 1 0.960 0.999 1 0.955 0.999 0.927 1 1 0.948 0.999 0.908 1
1000 1 0.992 1 0.979 1 1 0.987 1 0.963 1 1 0.985 1 0.955 1

d1 = d2 = 80
100 0.595 0.570 0.591 0.565 0.635 0.466 0.445 0.462 0.438 0.508 0.370 0.350 0.364 0.348 0.405
200 0.673 0.663 0.623 0.612 0.889 0.553 0.546 0.489 0.478 0.794 0.458 0.447 0.415 0.405 0.598
300 0.815 0.747 0.803 0.735 0.971 0.719 0.613 0.700 0.594 0.950 0.651 0.560 0.627 0.549 0.903
500 0.965 0.900 0.958 0.892 0.998 0.915 0.836 0.907 0.823 0.997 0.892 0.813 0.884 0.790 0.984
1000 1 0.998 1 0.998 1 1 0.996 1 0.995 1 1 0.995 1 0.993 1

Table 16

Proportion of correct identification of rank r using IC estimators based on TIPUP
procedures for Model M2, over 1000 replications

initial estimator one step estimator final estimator
T IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5

d1 = d2 = 20
100 0.050 0.010 0.038 0.005 0.115 0.050 0.009 0.037 0.005 0.118 0.008 0.001 0.007 0.000 0.029
200 0.612 0.488 0.111 0.071 0.715 0.608 0.489 0.111 0.071 0.717 0.311 0.225 0.038 0.018 0.413
300 0.980 0.347 0.940 0.193 0.974 0.981 0.344 0.940 0.195 0.974 0.891 0.200 0.789 0.104 0.879
500 1 0.792 1 0.602 1 1 0.792 1 0.605 1 1 0.705 1 0.509 1
1000 1 1 1 0.991 1 1 1 1 0.991 1 1 0.999 1 0.990 1

d1 = d2 = 40
100 0.012 0.005 0.010 0.005 0.034 0.011 0.006 0.009 0.005 0.034 0.007 0.005 0.006 0.005 0.015
200 0.965 0.961 0.914 0.898 0.991 0.964 0.961 0.912 0.896 0.991 0.843 0.824 0.731 0.708 0.952
300 0.876 0.636 0.848 0.585 0.986 0.877 0.637 0.846 0.583 0.987 0.877 0.637 0.846 0.583 0.987
500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d1 = d2 = 80
100 0.003 0.002 0.003 0.002 0.003 0.003 0.002 0.003 0.002 0.003 0 0 0 0 0
200 0.193 0.192 0.166 0.157 0.381 0.192 0.191 0.166 0.158 0.381 0.163 0.163 0.139 0.133 0.309
300 0.795 0.710 0.780 0.698 0.959 0.796 0.709 0.779 0.697 0.959 0.796 0.709 0.779 0.697 0.959
500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

For Model M3 with all very weak factors (δ0 = δ1 = 0.6), Tables 19 and 20
report RMSEs of the ER estimators. The results of using IC estimators are not
shown, as it is impossible to detect weak factors if we set δ1 = 0 in gk.

In summary, the first part of simulation shows that in IC estimators, IC2 and
IC4 seem to perform slightly better than IC1, IC3 and IC5 in Table 14, while
it is reversed in Tables 15 and 16. The difference is not significant though. In
ER estimators, the choice of the penalty function also seems to have a limited
impact on the results. In most cases, ER1 and ER2 are slightly better.
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Table 17

Proportion of correct identification of rank r using ER estimators based on TOPUP
procedures for Model M2, over 1000 replications

initial estimator one step estimator final estimator
T ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5

d1 = d2 = 20
100 0.029 0.027 0.029 0.029 0.029 0.677 0.663 0.677 0.676 0.676 0.788 0.765 0.788 0.788 0.783
200 0.008 0.007 0.008 0.008 0.007 0.706 0.694 0.706 0.706 0.705 0.761 0.757 0.761 0.761 0.760
300 0.006 0.006 0.006 0.006 0.006 0.743 0.739 0.743 0.743 0.743 0.781 0.779 0.781 0.781 0.781
500 0.003 0.003 0.003 0.003 0.003 0.802 0.799 0.802 0.802 0.802 0.881 0.879 0.881 0.881 0.881
1000 0.004 0.004 0.004 0.004 0.004 0.866 0.864 0.866 0.866 0.866 0.986 0.986 0.986 0.986 0.986

d1 = d2 = 40
100 0 0 0 0 0 0.744 0.727 0.744 0.744 0.744 0.811 0.804 0.811 0.811 0.811
200 0 0 0 0 0 0.554 0.543 0.554 0.554 0.554 0.588 0.578 0.588 0.588 0.587
300 0 0 0 0 0 0.422 0.412 0.422 0.422 0.421 0.476 0.467 0.476 0.476 0.476
500 0 0 0 0 0 0.344 0.338 0.344 0.344 0.344 0.401 0.396 0.401 0.401 0.400
1000 0 0 0 0 0 0.367 0.362 0.367 0.367 0.366 0.434 0.432 0.434 0.434 0.434

d1 = d2 = 80
100 0 0 0 0 0 0.770 0.725 0.770 0.770 0.770 0.840 0.818 0.840 0.840 0.839
200 0 0 0 0 0 0.599 0.565 0.599 0.599 0.598 0.662 0.639 0.662 0.662 0.662
300 0 0 0 0 0 0.507 0.480 0.507 0.507 0.506 0.610 0.584 0.610 0.610 0.609
500 0 0 0 0 0 0.497 0.468 0.497 0.497 0.497 0.585 0.573 0.585 0.585 0.585
1000 0 0 0 0 0 0.614 0.603 0.614 0.614 0.614 0.712 0.702 0.712 0.712 0.711

Table 18

Proportion of correct identification of rank r using ER estimators based on TIPUP
procedures for Model M2, over 1000 replications

initial estimator one step estimator final estimator
T ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5

d1 = d2 = 20
100 0.999 0.994 0.999 0.999 0.998 1 0.998 1 1 1 1 0.999 1 1 1
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d1 = d2 = 40
100 0.986 0.958 0.986 0.986 0.985 0.992 0.979 0.992 0.992 0.992 1 0.997 1 1 1
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d1 = d2 = 80
100 0.967 0.870 0.967 0.967 0.965 0.990 0.902 0.990 0.990 0.989 1 0.979 1 1 1
200 0.999 0.999 0.999 0.999 0.999 1 1 1 1 1 1 1 1 1 1
300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 19

Root mean squared errors (RMSEs) of the ER estimators based on TOPUP procedures for
Model M3, averaging over 1000 replications

initial estimator one step estimator final estimator
T ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5

d1 = d2 = 20
100 2.15 2.29 2.15 2.15 2.17 1.84 2.13 1.84 1.84 1.89 1.66 2.00 1.67 1.68 1.77
200 1.68 1.76 1.68 1.68 1.69 1.23 1.33 1.23 1.23 1.24 1.13 1.29 1.13 1.13 1.16
300 1.17 1.21 1.17 1.17 1.19 1.07 1.10 1.07 1.07 1.08 0.86 0.92 0.86 0.86 0.86
500 1.02 1.02 1.02 1.02 1.02 1.04 1.04 1.04 1.04 1.04 0.60 0.60 0.60 0.60 0.60
1000 1.00 1.00 1.00 1.00 1.00 0.95 0.95 0.95 0.95 0.95 0.19 0.19 0.19 0.19 0.19

d1 = d2 = 40
100 1.01 1.01 1.01 1.01 1.01 1.03 1.16 1.03 1.03 1.04 1.02 1.26 1.02 1.03 1.07
200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.93 0.89 0.89 0.90
300 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.76 0.74 0.76 0.76 0.75
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.49 0.48 0.49 0.49 0.49
1000 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.99 0.99 0.11 0.11 0.11 0.11 0.11

d1 = d2 = 80
100 2.71 3.38 2.71 2.71 2.74 2.06 2.51 2.06 2.06 2.09 1.90 2.78 1.92 1.93 2.29
200 1.10 1.26 1.10 1.10 1.10 1.09 1.14 1.09 1.09 1.09 1.01 1.68 1.02 1.02 1.19
300 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.01 1.01 0.95 1.36 0.95 0.95 0.97
500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.90 0.90 0.90
1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.61 0.59 0.61 0.61 0.61
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Table 20

Root mean squared errors (RMSEs) of the ER estimators based on TIPUP procedures for
Model M3, averaging over 1000 replications

initial estimator one step estimator final estimator
T ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5 ER1 ER2 ER3 ER4 ER5

d1 = d2 = 20
100 1.50 1.76 1.50 1.50 1.53 1.14 1.65 1.15 1.15 1.20 0.45 1.19 0.45 0.45 0.52
200 0.84 1.00 0.84 0.84 0.86 0.61 0.84 0.61 0.61 0.65 0.20 0.35 0.20 0.20 0.20
300 0.60 0.66 0.60 0.60 0.61 0.43 0.50 0.43 0.43 0.44 0.12 0.14 0.12 0.12 0.12
500 0.30 0.33 0.30 0.30 0.30 0.17 0.18 0.17 0.18 0.17 0.04 0.04 0.04 0.04 0.04
1000 0.07 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03

d1 = d2 = 40
100 1.19 1.73 1.19 1.19 1.21 0.86 1.55 0.86 0.86 0.89 0.35 0.97 0.35 0.35 0.37
200 0.50 0.56 0.50 0.50 0.50 0.37 0.38 0.37 0.37 0.36 0.19 0.15 0.19 0.19 0.18
300 0.27 0.25 0.27 0.27 0.27 0.23 0.18 0.23 0.23 0.23 0.13 0.10 0.13 0.13 0.13
500 0.17 0.11 0.17 0.17 0.17 0.14 0.05 0.14 0.14 0.13 0.04 0.04 0.04 0.04 0.04
1000 0.04 0.03 0.04 0.04 0.04 0 0 0 0 0 0 0 0 0 0

d1 = d2 = 80
100 2.78 3.75 2.78 2.78 2.90 2.45 3.72 2.45 2.45 2.59 1.37 3.53 1.38 1.38 1.49
200 1.90 2.83 1.90 1.90 1.94 1.47 2.52 1.47 1.46 1.51 0.78 1.43 0.78 0.78 0.76
300 0.99 0.42 0.99 0.99 0.94 0.65 0.41 0.65 0.65 0.60 0.40 0.37 0.40 0.40 0.40
500 0.32 0.23 0.32 0.32 0.32 0.27 0.18 0.27 0.27 0.26 0.23 0.22 0.23 0.23 0.23
1000 0.15 0.12 0.15 0.15 0.15 0.13 0.11 0.13 0.13 0.12 0.11 0.10 0.11 0.11 0.11

In the third part of simulation, Table 21 shows the proportion of correct rank
identification of the IC estimators in (7) with known δ1 for Model M2. Moreover,
table 22 reports the RMSEs of the IC estimators in (7) with known δ1 for Model
M3. Again, given δ1, the performance of all IC1-IC5 is also very similar. In some
cases, IC2 and IC4 are slightly better.

Table 21

Proportion of correct identification of rank r using IC estimators with given δ1 based on
TOPUP and TIPUP procedures for Model M2, over 1000 replications

initial estimator one step estimator final estimator
T IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5

d1 = d2 = 40 and TOPUP
100 0 0 0 0 0 0.002 0.010 0.004 0.012 0.001 0.650 0.650 0.650 0.651 0.650
300 0 0 0 0 0 0.048 0.286 0.074 0.358 0 0.894 0.895 0.894 0.898 0.894
500 0 0.001 0 0.005 0 0.106 0.619 0.168 0.689 0.006 0.960 0.962 0.960 0.962 0.958
1000 0 0.428 0 0.676 0 0.352 0.947 0.494 0.974 0.226 0.990 0.997 0.993 0.998 0.989

d1 = d2 = 40 and TIPUP
100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 22

Root mean squared errors (RMSEs) of the IC estimators with given δ1 based on TOPUP
and TIPUP procedures for Model M3, averaging over 1000 replications

initial estimator one step estimator final estimator
T IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5 IC1 IC2 IC3 IC4 IC5

d1 = d2 = 40 and TOPUP
100 1.02 1.01 1.01 1.01 1.39 0.95 0.91 0.94 0.90 0.99 0.97 0.98 0.97 0.99 0.92
300 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.99 0.80 1.00 0.18 0.23 0.18 0.26 0.15
500 1.00 1.00 1.00 1.00 1.00 0.99 0.43 0.96 0.33 1.00 0 0 0 0 0
1000 1.00 1.00 1.00 1.00 1.00 0.92 0.05 0.76 0.03 0.98 0 0 0 0 0

d1 = d2 = 40 and TIPUP
100 0.86 0.91 0.88 0.91 0.74 0.89 0.92 0.89 0.93 0.77 0.88 0.92 0.89 0.92 0.76
300 0 0.03 0 0.03 0.03 0 0.03 0 0.04 0 0 0.03 0 0.07 0
500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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