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Abstract—User purchasing prediction with multi-behavior
information remains a challenging problem for current recom-
mendation systems. Various methods have been proposed to
address it via leveraging the advantages of graph neural net-
works (GNNs) or multi-task learning. However, most existing
works do not take the complex dependencies among different
behaviors of users into consideration. They utilize simple and
fixed schemes, like neighborhood information aggregation or
mathematical calculation of vectors, to fuse the embeddings
of different user behaviors to obtain a unified embedding to
represent a user’s behavioral patterns which will be used in
downstream recommendation tasks. To tackle the challenge,
in this paper, we first propose the concept of hyper meta-
path to construct hyper meta-paths or hyper meta-graphs to
explicitly illustrate the dependencies among different behaviors
of a user. How to obtain a unified embedding for a user
from hyper meta-paths and avoid the previously mentioned
limitations simultaneously is critical. Thanks to the recent
success of graph contrastive learning, we leverage it to learn
embeddings of user behavior patterns adaptively instead of
assigning a fixed scheme to understand the dependencies
among different behaviors. A new graph contrastive learning
based framework is proposed by coupling with hyper meta-
paths, namely HMG-CR, which consistently and significantly
outperforms all baselines in extensive comparison experiments.

Keywords-Hyper Meta-Path; Graph Contrastive Learning;
Recommendation Systems;

I. INTRODUCTION

Online shopping is becoming more and more essential

nowadays, which generates a large volume of user behavioral

data depicting users’ purchasing motivations, interests, be-

havioral patterns, etc. However, many traditional recommen-

dation systems [1], [2] pay significant attention to purchasing

alone, leaving other associated behavioral data unexploited.

Though recent works [3]–[7] reveal the gap and try to

leverage multi-behavior information to improve recommen-

dation quality, there are still limitations. For instance, some

path-based works [3], [8] leverage meta-paths [9], [10] to

extract recommendation context to better characterise users’

multiple behaviors. However, there exist many meta-path

schemes observed in heterogeneous graphs, resulting in the

∗: Equal contribution†: Corresponding author

difficulty of finding out the best one from multiple meta-

path schemes via exhaustive search or learning a specific

rule or scheme from the heterogeneous graphs to construct

meta-paths [8]. Selecting effective and meaningful meta-path

scheme in this case is time-consuming, and the reasons of

the selection are usually unknown.

(a) Meta-paths of a user

Behavior Sequence in 
Chronological Order

(b) A hyper meta-path of a user

Figure 1. (a) Meta-paths of a user in the recommendation system
denotes the user’s different behaviors. (b) A hyper meta-path constructed
by previous meta-paths denotes the user’s behavior pattern when he is
purchasing a smartphone.

To overcome the above limitation of existing path-based

approaches, we propose a new concept of hyper meta-path

that consolidates multiple paths in a well-organised and

holistic way. Similar to hyperedge in hypergraph [11]–[14]

where an edge can connect more than two nodes, a hyper

meta-path is a composition of multiple meta-paths between

specified two end nodes in a heterogeneous network. As

shown in Figure 1, let us assume that before purchasing

a phone, the user had viewed the item twice. If meta-

path based approaches are adopted to model the different

shopping-related behaviors, three independent meta-path in-

stances (Fig. 1.(a)) can be discovered to characterise this

purchasing context. Though from these three meta-paths we

can learn the user has viewed and purchased the item, it dose

not explicitly reflect the exact behavioral pattern of the user.

That is, it is unclear whether the user purchased the item

directly or viewed the item carefully before purchasing.

In contrast, the proposed hyper meta-path is capable of

achieving such a goal. As shown in part (b) of Fig. 1, a

hyper meta-path between the user and the phone consolidates

all three behaviors in a sequential order, which explicitly

shows that the user carefully viewed the phone twice before

the final purchasing action. Note that the way of consol-

idating related meta-paths into a hyper meta-path can be
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flexible and generalized to any reasonable rule depending

on particular application scenario. Besides, the concept of

hyper meta-path is also useful for differentiating different

behavior patterns between different users or when facing

various categories of items presented to a user. For instance,

normally technical people may research on different substi-

tutable electronic products and take longer time to compare

them, while non-technical people are not keen on investi-

gating them and would probably directly buy one based

on someone’s recommendation. Even for the same user

no matter their age and gender, they usually exhibit quite

diverged buying patterns when facing different categories

of products. For example, a user may have totally different

buying patterns when purchasing large items (e.g., white

goods like fridge or TV) and small fast-moving consumers

goods (e.g., periodically buying tissues from online market

without viewing again and again).

Nevertheless, it is not straightforward to incorporate

the modelling of hyper meta-path into existing learning

frameworks. Currently, graph-based unsupervised learning

approaches are mainly used for path-based recommendation.

For example, GNNs based approaches [4] are a popular

means for multi-behavior recommendation via aggregating

information passed from different types of edges or nodes

in heterogeneous information networks [15]. Despite its

popularity, these methods usually fuse the learned features

of different behaviors independently, which is too naive

to reflect hyper meta-path context for recommendation.

Moreover, multi-task learning based models [5], [6] are

also possible ways that introduce additional supervision

signals from the observed multiple behavior data to improve

recommendation quality. However, extra efforts on well-

elaborated tasks are tricky, and researchers have to carefully

work out the effective dependencies among related tasks.

For example, taking purchasing prediction as a primary task

while modelling the add-to-cart behavior prediction as an

auxiliary task might not be always right as some users may

buy some items directly without putting them into the cart.

Thus, to further reveal and capture the differences be-

tween buying patterns, together with hyper meta-paths, we

innovatively leverage graph contrastive learning [16], [17]

paradigm for the multi-behavior recommendation problem.

The main idea of graph contrastive learning is to distinguish

the differences among graphs to obtain the useful structure

information of each graph, raising a recent surge of inter-

est [16], [17]. The rationale of incorporating contrasitive

learning with our proposed hyper meta-paths is that, a user

may have multiple hyper meta-paths explicitly illustrating

his/her behavioral patterns when facing different products.

Since hyper meta-path explicitly describes users’ behaviors

towards purchasing different items, graph contrastive learn-

ing becomes a best fit for comparing and extracting the key

structures in the graph consisting of hyper meta-paths.

More specifically, we combine multiple hyper meta-paths

of a user to construct several hyper meta-graphs. Each

hyper meta-graph contains different number of types of

behaviors, For example, the first hyper meta-graph contains

buy and the second hyper meta-graph contains buy and

page view. In this case, different hyper meta-graphs reflect

different behavioral patterns regarding different products of

the user. Then, we conduct graph contrastive learning among

the constructed hyper meta-graphs to adaptively obtain the

complex dependencies among different behaviors and the

embeddings representing different behavioral patterns. For

instance, in HMG-CR, we first build the target contrastive

graph that only contains buy interactions between users

and items as it is the target behavior for recommendation

systems, and the other contrastive hyper meta-graphs are

added for comparison by incrementally introducing auxiliary

behaviors to the precedent hyper meta-graph. After that, we

conduct graph contrastive learning between the constructed

contrastive hyper meta-graphs to successively obtain pro-

gressive and comprehensive representations for each types

of behaviors. Finally, the recommendation will be performed

based on those discovered behavior patterns and features.

The contributions of this paper can be summarized into

three aspects:

• We propose the concept of hyper meta-path explicitly

illustrating the logical relations among a collection of

meta-paths, which tackles the limitation of meta-path

that is insufficient to model the interactions among

meta-paths. Hyper meta-path can be regarded as an

approach to enrich graph structures.

• We innovatively utilize graph contrastive learning to

capture the complex behavior patterns of users adap-

tively, alleviating existing methods’ limitation.

• We propose a novel and flexible recommendation

framework coupling graph contrastive learning with

hyper meta-path, which achieves the superior perfor-

mances in the comprehensive comparison experiments.

II. PRELIMINARIES

This section will introduce some preliminaries regarding

the proposed concept of hyper meta-path.

A. Meta-Path

Heterogeneous networks have been intensively studied by

a lot of researchers due to its ability of utilizing multi-model

multi-typed graph data. To illustrate the power of heterge-

neous networks, Sun et al. [9] proposed the concept of meta-

path, which is widely used by many existing works [10], [18]

in the research area of heterogeneous networks modeling.

Each meta-path captures the features among the nodes on

the meta-path from a particular semantic perspective. Due to

the diversity of meta-paths in a heterogeneous graph, for the

target (e.g., a node or an edge), there exist multiple meta-

paths. Thus, the informative meta-paths give heterogeneous
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network models the chance to obtain the multi-model multi-

typed features of nodes and their relations. This kind of data

structure indeed shows the advantage in many real-world

graph data mining applications [19], [20]. However, there

are limitations existing in meta-paths mentioned in Section I,

failing to capture the interaction information among multiple

meta-paths.

B. Hyper Meta-Path

Though we can build extra meta-paths based on the

interactions among existing meta-paths, we cannot take an

exhaustive method to compute on every meta-paths since

the computation complexity is unaffordable. Inspired by the

concepts of hyperedge and hypergraph, we find a way to

integrate interaction information among meta-paths into the

target. According to the limitation of conventional meta-

path mentioned above and advantages of hyperedge and

hypergraph, we propose the concept of hyper meta-path

to capture meta-path features and interaction information

among them simultaneously.

Definition 1: Hyper meta-path. A hyper meta-path is a

logical composition of multiple meta-path schemas connect-

ing two end nodes in a heterogenous information network.

Hyper meta-path has the following properties:

• It describes the logical relations (e.g., chronological

order, spatial order and topological order) among a sort

of meta-paths with the same end nodes.

• Multiple hyper meta-paths, which have the same start

node, compose a hyper meta-graph.

III. METHODOLOGY

In this section, we will introduce details of our pro-

posed framework as shown in Figure 2, Hyper Meta-Graph

Contrastive learning for Recommendations, namely HMG-

CR.

A. Hyper Meta-Graph Generation

GNNs based recommendation methods [21] have recently

achieved tremendous success due to the power of GNNs.

Data is critical to neural network models’ performances. One

way to leverage GNN based recommendation models is to

construct proper graphs for them. The most common way

to construct graphs in recommendation systems is building

bipartite graphs via user-item interaction history. Since user-

item interaction graphs are bipartite graphs, they are lack of

semantic information because of their simple structure. To

tackle this limitation, researchers have taken measures to

further enrich semantic information carried by graphs. For

example, adding side information into the graph [22], uti-

lizing meta-paths existing in the graph [8], and constructing

more complex graph structures (e.g., hypergraph) [23], [24].

To improve recommendation results, in our work, we

utilize the proposed concept of hyper meta-path to construct

hyper meta-graphs carrying rich semantic information. Next

we will introduce details to construct hyper meta-graphs for

our proposed recommendation framework.

Given a set of interaction records in a recommenda-

tion system, {(uj , rk, iq)|uj ∈ U, iq ∈ I, rk ∈ R},
where U = {u0, u1, · · · , un} denotes the set of all users,

I = {i0, i1, · · · , im} denotes the set of all items, and

R = {r0, r1, · · · , rl} denotes the set of all different kinds of
user behaviors. According to the number of types of different

user behaviors, we construct |R| = l + 1 hyper meta-

graphs for each user. For the t-th hyper meta-graph of user

uj , it is defined as HGj
t = {(uj , (ra, rb, · · · , rc), iq)|iq ∈

I, ∀r ∈ {r0, r1, · · · , rt−2, rl}}, where behavior sequence

(ra, rb, · · · , rc) is sorted in chronological order, and each

behavior r in the sequence solely bridges user uj and

item iq . Hence, we will have a set of hyper meta-graphs

HGj = {HGj
0,HGj

1, · · · ,HGj
l } to illustrate user-item

interactions of user uj in the recommendation system. Note

that the order among different behaviors inR is based on the

distance between behaviors and behavior buy in the semantic

space. For example, four types of common user behaviors,

page view, favorite, add to cart, buy. Behavior page view
is farthest from behavior buy, we can define a sorted set of

behaviors here, {rpv, rfav, rcart, rbuy}. So, the first hyper

meta-graph of a user solely contains the behavior of buy,
the second one contains page view and buy, the third one

contains all the behaviors except add to cart, and the last

hyper meta-graph of the user contains all of four types of

behaviors.

B. Graph Encoders

Graph encoder is the essential part of the whole frame-

work since it determines whether the framework can learn

representative embeddings for users’ behavior patterns from

hyper meta-graphs. GNN models are widely used graph

encoders, e.g., GCN [25] and GAT [26]. Technically, any

GNN models can be used in our framework with sufficient

information (e.g., edge types and node features). Note that

we do not need exquisite GNN models since we have built

hyper meta-graphs which carry rich semantic information

(e.g., geometric information, topological structures). In the

practice of our framework, we could apply geometric or

topoloy based GNNs, like GIN [27] and TAG [28], as the

graph encoder because of their simplicity and effectiveness.

Further more, they can leverage the structure information

from proposed hyper meta-path and advantages of structure-

level contrastive learning [16].

As mentioned in the previous section, each user in the

recommendation system have |R| hyper meta-graphs. We

assign |R| independent graph encoders to process these hy-

per meta-graphs accordingly, note that these graph encoders

are shared among different users. Given the t-th hyper meta-

graph of user uj and a graph encoder gt(·), where · denotes
a hyper meta-graph, we will have the embedding of the t-th

789

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on January 29,2022 at 00:26:04 UTC from IEEE Xplore.  Restrictions apply. 



Users Items Categories

Graph
Encoders

User Behavior 
Embeddings

Contrastive Learning

Contrastive Learning

Contrastive Learning

Graph Contrastive Learning Part

Maximize Dissmilarity

Maximize Dissmilarity

Maximize Dissmilarity

Fusion Layer

Unified User 
Behavior Embedding

Recommendation
Model

User's Behavior Embeddings Fusion Part

Hyper Meta-
Graphs

User Behavior 
Embeddings

Figure 2. The overview of hyper meta-graph contrastive learning framework for recommedantions.

hyper meta-graph of user uj :

hj
t = gt(HGj

t ), (1)

where hj
t ∈ Rh and h denotes the hidden dimension of the

user behavior pattern embeddings and item embeddings.

C. Hyper Meta-Graph Contrastive Learning

For each user, we build several hyper meta-graphs. The

graphs carry the interaction records of the user. We can

capture this information via graph encoders learning on

the hyper meta-graphs separately. However, the behavior

patterns of a user would be complicated. According to the

example mentioned in the previous section, we have four

different hyper meta-graphs for each user. The complexity

of the hyper meta-graph is increasing following the number

of behavior types it contains. For example, the first hyper

meta-graph solely includes buy, and the second hyper meta-

graph includes page view and buy. The second hyper meta-

graph contains at least two purchasing patterns: buying the

item directly, which is also contained in the first hyper

meta-graph, and buying the item after viewing. Suppose

we adopt graph encoders to learn on each hyper meta-

graph separately. In that case, different behavior patterns in

the same hyper meta-graph will be fused. This result may

neglect the performances when using the learned behavior

patterns for the recommendation. It is critical to extract

different behavior patterns from a sequence of hyper meta-

graphs whose complexities are cascadingly increasing. A

potential solution is to contrast the hyper meta-graph with

its previous one to obtain the differences (e.g., different

behavior patterns) between these two adjacent hyper meta-

graphs.

Thanks to the recent success of contrastive learning in

graph learning, we propose to utilize hyper meta-graphs

discrimination as the solution to obtain different behavior

patterns and InfoNCE as the contrastive learning objective.
We give an example here. For the user uj , we give out

two adjacent hyper meta-graphs of uj , which areHGj
t−1 and

HGj
t . We assign gt−1(·) and gt(·) as their graph encoders,

respectively. Hence, we will have embeddings of two hyper

meta-graphs:

hj
t−1 = gt−1(HGj

t−1), (2)

hj
t = gt(HGj

t ). (3)

In this example, hj
t−1 and hj

t compose the negative pair. To

satisfy the setting of InfoNCE, we must construct the posi-

tive pair to fulfill the contrastive learning process. Following

the graph contrastive learning settings in GCC [16], we use

gt−1(·) to encode HGj
t to obtain ĥj

t :

ĥj
t = gt−1(HGj

t ), (4)

which is together with hj
t to compose the positive pair. In

our work, we adopt InfoNCE such that:

Lj
t−1,t = − ln

exp (d(hj
t , ĥ

j
t ))

exp (d(hj
t , ĥ

j
t )) + exp (d(hj

t ,h
j
t−1))

, (5)

where d(·, ·) denotes the metrics measuring the distance

between two vectors. For the recommendation system having

n+ 1 users and l + 1 different types of user behaviors, we

will have a total contrastive learning objective:

Lcontra =
1

n+ 1

n∑

j=0

l∑

t=1

Lj
t−1,t. (6)

The intuitions of adopting such a strategy are twofold:

• Avoid generating the negative pair via graph aug-
mentation. Some works [17] utilize graph augmenta-

tion to generate negative pairs. But in the recommen-

dation scenario, graph augmentation would disturb the
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users’ interaction records and affect behavior pattern

generation, which may cause misleading results in the

downstream recommendation tasks. Such a strategy is

an alternative solution for us to generate the negative

pair without disturbing original semantics.

• Bridge two contrasting hyper meta-graphs. It is hard
for us to link the embeddings generated from different

graph encoders with different graphs in semantic space.

However, with such a strategy, we can build an implicit

connection between contrasting hyper meta-graphs in

the contrastive learning process.

We will have |R| user behavior embeddings for a user after

contrastive learning process, which will be fed into fusion

layer and downstream recommendation tasks.

D. Users’ Multi-behavior Patterns Fusion

After obtaining |R| different embeddings which denote

different behavior patterns of a user, we have to fuse

them and obtain a unified embedding to conduct recom-

mendations. There is a sort of widely used linear fusion

methods, like sum and mean. And there is another type of

fusion method, which is neural network-based methods (e.g.,

Multi-Layer Perceptron (MLP) and Personalized Non-Linear

Fusion (PNLF) [29]). Given a fusion function f(∗), we can

have a unified behavior pattern embedding for the user:

hj
uni = f(hj

0,h
j
1, · · · ,hj

l ) ∈ Rh. (7)

E. Recommendation Task

There are plenty of collaborative filtering-based recom-

mendation frameworks, which leverage the explicit or im-

plicit feedback of users, like [1]. To fully demonstrate the

ability of the proposed model, we use vector product to

make prediction instead of those complex and state-of-

the-art models to avoid the improvement brought by the

recommendation model.

Let hk denotes the embedding of item ik. With the unified

behavior pattern embedding of user uj , we can obtain the

predicted score between the item and the user via:

p̂uj ,ik = hj
uni

T
Whk, (8)

where the trainable weight matrix W ∈ Rh. The matrix

W is used to map the unified behavior pattern to the space

where item embeddings in for score prediction.

To train model parameters, we take the negative logarithm

[1] of the likelihood function:

Lrec =−
∑

(uj ,ik)∈Y∪Y−
puj ,ik log p̂uj ,ik

+ (1− puj ,ik) log(1− p̂uj ,ik),

(9)

to normalize the loss value of loss function on recommen-

dation tasks, we take

Lave_rec =
Lrec

|{(uj , ik)|(uj , ik) ∈ Y ∪ Y−}| (10)

Table I
STATISTICS OF DATASETS

Dataset Taobao Tmall

#users 48946 9368
#items 1500839 302722

#pv (percentage) 7723217 (85.17%) 1510303 (92.14%)
#fav (percentage) 436715 (4.82%) 102419 (6.25%)
#cart (percentage) 527221 (5.81%) 24557 (1.50%)
#buy (percentage) 380877 (4.20%) 104360 (6.37%)

#total 9068030 1639220

#ave_pv 157.79 161.22
#ave_fav 8.92 10.93
#ave_cart 10.77 2.62
#ave_buy 7.78 11.14
#ave_total 185.27 174.98

as the objective, where Y and Y− denote postive interaction

records and sampled negative interaction records, puj ,ik ∈
{0, 1} represents if there is an interaction between user uj

and item ik.
To train the model from end to end, we couple two

objectives as the total loss function:

L = (1− β) · Lcontra + β · Lave_rec, (11)

where β is a hyperparameter contoling the significance of

two objectives in the total training objective.

IV. EXPERIMENTS

This section evaluates HMG-CR on recommendation tasks

with two real-world datasets. We will first report the com-

parison experiment results of HMG-CR and baselines. Then,

we analyze how the graph contrastive learning works in our

model. Lastly, we conduct ablation studies on graph encoder

and fusion layer in the model.

A. Datasets

We evaluate the proposed framework on two real-world

datasets, which have high quality and are widely used.

including Taobao1 and Tmall2. To ensure the quality of the

datasets, we follow the customary practice [30] to discard

users and items with less than five interactions of buy. We

also filter users with too much interactions of page view in

Tmall to discard noise. The statistics of the filtered datasets

are shown in Table I.

B. Baselines

To verify the effectiveness of the proposed framework,

we compare it with three categories of baselines. The first

category is conventional GNNs including GCN [25] and

GraphSAGE [2], which cannot distinguish different types

of edges in the graph, they treat different user behaviors

as the same. The second category is edge types-aware

GNNs including GAT [26] and RGCN [4], which can

process various types of edges in the graph explicitly or

implicitly to capture the features of different user behaviors.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=47
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The last category is novel multi-behavior recommendation

frameworks, NMTR [5] and EHCF [6] which achieve state-

of-the-art performances on multi-behavior recommendation

tasks.

C. Experiment Settings

For reproducibility, we introduce the details of the hyper-

parameter settings of the proposed framework. We train our

model on dataset Taobao with learning rate lr = 0.0001,
weight decay wd = 0.000001, hidden dimension h = 16
advised by [31], and 3-layer TAG as graph encoder. As to

dataset Tmall, we tune our model with the same learning

rate, weight decay and hidden dimension. We take 3-layer

GIN as graph encoder for dataset Tmall. To ensure the

fairness in the comparison studies, we follow the widely

used leave-one-out strategy [1] to conduct comparison. The

metrics we adopt are Recall@K and NDCG@K, which show

the recommendation quality of top-K recommended items.

For more details, you can refer to the source code of this

project via this link3. All experiments are conducted on

NVIDIA TITAN Xp.

D. Comparison Experiment Results

Table II lists the comparison experiment results for all

methods on two datasets. Overall, the proposed framework

HMG-CR with different graph encoders consistently and

significantly outperforms all baselines in terms of all metrics.

Particularly, our proposed framework has more significant

improvement on the metric NDCG, which shows that our

proposed framework pays more attention to sorting rec-

ommended items. Note that HMG-CR on dataset Taobao

slightly outperforms that on dataset Tmall. According to the

statistics of the two datasets, as shown in Table I, we note

that the average numbers of total interactions for each user

are close in two datasets, but there are differences among

the distribution of numbers of different user behaviors. The

ratio of add to cart in dataset Tmall is much less than

that in dataset Taobao. Each user in both datasets has four

hyper meta-graphs since there are four different types of

user behaviors. Due to lack of add to cart in dataset Tmall,

the third hyper meta-graph for a user, including page view,
add to cart, and buy, is similar to the second hyper meta-

graph for the user, including page view and buy. Under

such a scenario, it is hard for graph contrastive learning

to maximize the dissimilarities between the second hyper

meta-graph and the third hyper meta-graph. Hence, the user

behavior pattern embedding generated in this part would

be misleading for unified user behavior pattern embedding

generation.

Graph neural network-based methods have unsatisfying

performances in our experiment. The interaction graphs for

each user in the recommendation systems have simple struc-

tures (e.g., bipartite graphs). Conventional GNN models,

3https://github.com/Haoran-Young/HMG-CR

like GCN and GraphSAGE, may be insufficient to capture

user behavior pattern embeddings on such simple graph

structures. Edge types-aware GNN models, like GAT and

RGCN, slightly outperform GCN and GraphSAGE since

they integrate fruitful side information regarding different

types of user behaviors. Overall, two categories of GNN

models have no significant gaps, because page view takes

the most of place in the datasets. Message passing and

aggregation are not capable to capture sophisticated relations

among different types of user behaviors, since semantics of

page view would conceal other information.

NMTR and EHCF are state-of-the-art multi-behavior rec-

ommendation frameworks. They leverage the well-designed

recommendation models and multi-task learning strategy

to utilize the supervision signals from all types of user

behaviors. However, there is a limitation for both frame-

works. Both of them have an assumption that each type of

user behaviors has strong connections with precedent types

of user behaviors. This assumption is not solid, because

users’ behavioral patterns are complex as shown in a toy

example in Section II-B. The proposed HMG-CR adopts a

more flexible manner to utilize graph contrastive learning

to capture the dependencies among different types of user

behaviors instead of assuming there are strong connections

between a behavior and the precedent one. Because of

it, even without multi-task supervision signals and well-

designed recommendation models, the proposed HMG-CR

still outperforms NMTR and EHCF with leveraging the

advantages of hyper meta-graphs and graph contrastive

learning.

E. Analysis of Graph Contrastive Learning

Figure 3. The contrastive loss and recommendation loss of HMG-CR on
both datasets in training process

In this section, we will introduce to you the detailed

mechanism of graph contrastive learning in our proposed

framework. First, as shown in the Figure 3, we demonstrate

the training loss of the proposed framework on two datasets

during the training process. The training loss is twofold,

contrastive loss and recommendation loss. We observe a
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Table II
COMPARISON EXPERIMENT RESULTS OF HMG-CR AND BASELINES

Dataset Taobao Tmall

Methods
Metrics Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

GCN 0.2577 0.3589 0.1842 0.2167 0.2544 0.3775 0.1763 0.2163
GraphSAGE 0.2751 0.3826 0.1965 0.2312 0.2588 0.3695 0.1813 0.2170

GAT 0.2782 0.3921 0.1972 0.2339 0.2561 0.3735 0.1777 0.2158
RGCN 0.2714 0.3767 0.1946 0.2285 0.2725 0.4144 0.1749 0.2215
NMTR 0.2215 0.3781 0.1513 0.2012 0.2780 0.4230 0.1798 0.2265
EHCF 0.2882 0.4166 0.1945 0.2359 0.2451 0.4115 0.1581 0.2113

HMG-CR(SG) 0.3050 0.4417 0.2162 0.2608 0.2943 0.4329 0.1863 0.2321
HMG-CR(GCN) 0.3039 0.4441 0.2154 0.2613 0.2954 0.4332 0.1869 0.2324

HMG-CR(GAT) 0.3460 0.4390 0.2443 0.2746 0.3163 0.4320 0.2224 0.2604

HMG-CR(GIN) 0.3141 0.3627 0.2029 0.2191 0.3547 0.4313 0.2642 0.2891
HMG-CR(TAG) 0.3588 0.4464 0.2639 0.2926 0.2964 0.4350 0.1902 0.2359

Improvement 24.50% 7.15% 33.82% 24.04% 27.59% 2.84% 45.73% 27.64%

clear tendency that contrastive loss drops first and re-

mains stabilized, and then the recommendation loss starts

to decrease. This phenomenon reflects that our proposed

framework first maximizes the dissimilarity among hyper

meta-graphs to obtain user behavior pattern embeddings and

updates parameters on the recommendation task. And the

contrast among hyper meta-graphs is maintained within the

whole training process.

(a) (b)

Figure 4. (a) Values of Recall@K and NDCG@K on dataset Taobao
variation trend with different β. (b) Values of Recall@K and NDCG@K
on dataset Tmall variation trend with different β. (Graph encoder and fusion
layer of HMG-CR here are GAT and MEAN, respectively.)

To further illustrate the impact of graph contrastive learn-

ing on our proposed framework, we conduct hyperparam-

eter studies on β, which controls the relative significance

of graph contrastive learning tasks and recommendation

tasks. The experimental results of hyperparameter studies are

shown in the Figure 4. Overall, our proposed framework is

not that sensitive to β as long as β is not too small. However,

we note that the proposed framework has worse results when

β takes the boundary values (e.g., β = 0.1). When β is too

low, the model pays less attention to the recommendation

tasks. The model cannot acquire sufficient supervision sig-

nals from training data to update the parameters. Under this

scenario, it is difficult for our model to converge quickly

and precisely on recommendation tasks. With β increasing,

the performances of the proposed framework increase ac-

cordingly. When β is larger than some specific values, e.g.,

β = 0.4 for dataset Taobao and β = 0.2 for dataset Tmall,

the performances start to decrease slightly. Large β values

will neglect graph contrastive learning tasks, which would

undermine the ability of the model to acquire user behavior

pattern embeddings from sophisticated hyper meta-graphs.

This phenomenon also verifies that graph contrastive learn-

ing is helpful to our proposed framework. In summary, graph

contrastive learning tasks and recommendation tasks should

have a relatively balanced significance and β should not be

too large in our proposed framework to avoid decreasing

model performances and cannot be too small in which case

the framework may not work.

F. Ablation Studies

Graph Encoder Choosing a proper graph encoder for

the framework determines whether it can achieve good

performances. We select three common categories GNNs,

conventional message passing based GNNs including SG

[32] and GCN, attention mechanism based GNNs including

GAT, and graph topological or geometric structure aware

GNNs including TAG [28] and GIN [27]. The experiment

results are shown in the Table II. According to the results, the

proposed HMG-CR with any graph encoders outperforms all

baselines. Specifically, HMG-CR with SG or GCN slightly

outperforms baselines since conventional message passing

based GNNs are insufficient to capture complex user behav-

ior features from the constructed hyper meta-graphs. Despite

the user-item interactions in the hyper meta-graphs, there

are also chronological dependencies among different user

behaviors. With such sophisticated relations in the hyper

meta-graphs, GAT leverages attention mechanism to learn

user behavior embeddings via adaptively distinguish differ-

ent relations (edges) in the hyper-meta graphs. However,

we replaced different types of edges, which represent user

behaviors, with different types of nodes in the hyper meta-

graphs. We explicitly add the information of interactions

among users and items into the hyper meta-graph. It means

that the improvement brought by attention mechanism, dis-

tinguishing different edges is limited. Note that the hyper

meta-graphs have a structure which is similar to tree topol-

ogy. Hence, the hyper meta-graphs have not only fruitful

semantic information but also excellent structure. HMG-CR
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Table III
SUPPLEMENTARY EXPERIMENT RESULTS OF GIN AND TAG

Dataset Taobao Tmall

Methods
Metrics Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

GIN 0.2682 0.3779 0.1892 0.2246 0.2817 0.4236 0.1878 0.2340
TAG 0.2784 0.3863 0.1994 0.2342 0.2845 0.4235 0.1869 0.2323

HMG-CR(GIN) 0.3141 0.3627 0.2029 0.2191 0.3547 0.4313 0.2642 0.2891
HMG-CR(TAG) 0.3588 0.4464 0.2639 0.2926 0.2964 0.4350 0.1902 0.2359

Table IV
PERFORMANCES OF HMG-CR(GAT) WITH DIFFERENT FUSION LAYERS ON BOTH DATASETS

(β = 0.4 FOR DATASET TAOBAO AND β = 0.2 FOR DATASET TMALL)

Dataset Taobao Tmall

Fusion
Metrics Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

MEAN 0.3460 0.4390 0.2443 0.2746 0.3163 0.4320 0.2224 0.2604
SUM 0.3012 0.4427 0.2118 0.2580 0.2939 0.4345 0.1879 0.2343

MLP 0.3024 0.4344 0.2150 0.2579 0.2946 0.4349 0.1873 0.2336
PNLF 0.3046 0.4363 0.2157 0.2586 0.2944 0.4344 0.1865 0.2327

with graph structure aware graph encoders leverages the

advantages of the hyper meta-graphs and achieve the best

results in our experiments. To verify the improvement is

brought by our proposed framework instead of TAG or GIN

solely, we conduct supplementary experiments with TAG

and GIN shown in the Table III.

Fusion Layer Fusion layer is the output layer of the

proposed framework. We focus on two categories of fusion

layers, linear fusion layer, mean and sum, and non-linear

fusion layer, MLP and PNLF. The experimental results are

shown in the Table IV. According to the results, HMG-

CR taking mean as the fusion layer achieves the best

result. Overall, HMG-CR with linear fusion layer has better

performances in our experiments. We note that there are

mapping layers in MLP and PNLF. In this component,

mapping mechanism may disturb the user behavior pattern

obtained in the space in which the graph contrastive learning

was conducted. Hence, we should take linear fusion layer

to output the unified user behavior pattern embeddings to

avoid disturbing caused by conducting fusion in another

embedding space.

V. RELATED WORKS

A. Graph Contrastive Learning

Graph contrastive learning recently attracts attention from

researchers leveraging contrastive learning idea to enhance

existing GNNs. The core idea of contrastive learning is

to maximize representation agreement among sampled and

transformed data. Some works [16], [17] introduce con-

trastive learning to graph representation learning and had

achieved promising results. There are two main measures to

generate contrasting pairs, including graph perturbation and

sub-graph sampling. However, how to adpatively construct

contrasting pairs instead of randomly and how to implement

graph contrastive learning in real-world problems are not

fully explored.

B. Multi-behavior Recommendation

Multi-behavior recommendation utilizes multiple user-

item feedback for enhancing recommendation on target be-

haviors. There are different approaches to make use of users’

multi-behavior information. In a multi-behavior interactions

graph, [4], [26], [33] assign different weights to different

types of edges, representing different types of behaviors,

before conducting aggregation. Graph based recommenda-

tion methods [4], [26], [34] achieve good performances in

recommendation tasks with leveraging advantages of GNNs.

Moreover, [5], [6] adopt multi-task learning techniques to

acquire more supervision signals from multi-behavior data.

For embedding generation, they assume that one behavior

is strongly related to the precedent behaviors and embed-

dings of different types of user behaviors are adjacent in

the embedding space. Both aggregation in [4], [26] and

assumptions in [5], [6] are insufficient to capture complex

relationships among different behaviors of users.

VI. CONCLUSION

In this paper, we propose the concept of hyper meta-

path and a novel framework, HMG-CR, which first utilizes

graph contrastive learning techniques into recommendation

systems. Leveraging the advantages of hyper meta-path and

HMG-CR, we achieve the SOTA performances on the task

of purchasing prediction on both datasets. We also conduct

extensive analysis on HMG-CR and fully demonstrate the

details of it. The concept of hyper meta-path and the frame-

work are flexible and can be used in other heterogeneous

graph mining tasks.
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