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ABSTRACT
Hypergraphs have been becoming a popular choice to model com-

plex, non-pairwise, and higher-order interactions for recommender

systems. However, compared with traditional graph-based meth-

ods, the constructed hypergraphs are usually much sparser, which

leads to a dilemma when balancing the benefits of hypergraphs and

the modelling difficulty. Moreover, existing sequential hypergraph

recommendation overlooks the temporal modelling among user

relationships, which neglects rich social signals from the recom-

mendation data. To tackle the above shortcomings of the existing

hypergraph-based sequential recommendations, we propose a novel

architecture named Hyperbolic Hypergraph representation learn-

ing method for Sequential Recommendation (𝐻2𝑆𝑒𝑞𝑅𝑒𝑐) with the

pre-training phase. Specifically, we design three self-supervised

tasks to obtain the pre-training item embeddings to feed or fuse

into the following recommendation architecture (with two ways to

use the pre-trained embeddings). In the recommendation phase, we

learn multi-scale item embeddings via a hierarchical structure to

capture multiple time-span information. To alleviate the negative

impact of sparse hypergraphs, we utilize a hyperbolic space-based

hypergraph convolutional neural network to learn the dynamic

item embeddings. Also, we design an item enhancement module to

capture dynamic social information at each timestamp to improve

effectiveness. Extensive experiments are conducted on two real-

world datasets to prove the effectiveness and high performance of

the model.
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1 INTRODUCTION
Graph-based approaches have been widely used and achieved great

improvement for next-item recommender systems. However, most

existing literature [2, 12, 15, 18, 23, 29, 32, 35, 45] treat the dynamic

time-dependent user-item interactions as a temporal bipartite graph

and learn their latent representations for action. Though the graph-

based graph modelling can capture the beneficial first-order (i.e.,

user-item interactions) and second-order (i.e., co-purchasing) in-

teractions for recommendation, the higher-order signals among

users and items are usually neglected by existing works due to the

limitations of traditional graph modelling. With noting the short-

coming, recent works [4, 24, 25, 29, 30, 36, 43] resorted hypergraphs

to make up and developed hypergraph-based modelling approaches

for sequential recommender systems. The basic idea is illustrated in

Figure 1, when using traditional graphs to model user-item dynamic

relationships evolution, the learned information from Figure 1.(a)

to 1.(b) is monotonous due to the simple pair-wise data structure.

In contrast, hypergraphs are able to capture high-order dynamic

relationships (buy items at the same time, similar user groups, etc.)

thanks to the non-pairwise data structure. That is, unlike traditional

graphs, an edge in the hypergraph (a.k.a hyperedge) is allowed to

connect more than two nodes, promising to capture multi-scale

signals for the recommendation.
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Figure 1: A comparison of sequential graph construction
and hypergraph construction. Single-colored area in (c) and
(d) denote hyperedges.

Nevertheless, all these existing works ignored a critical issue of

such hypergraph-based approaches, which is the sparsity issue is
becoming more severe in hypergraph based recommender
systems. As analysed in [42], the recommendation benchmark

Amazon dataset is sparse and exhibits long-tailed distribution, in

which many users have limited interactions to the items, while

only a small number of users interact with many items. In such a

case, the constructed hypergraphs from the original dataset will be

much sparser, resulting in insufficient training samples for action.

To be specific, if we construct hypergraphs based on the origi-

nal simple user-item bipartite graph, the number of items (nodes)

does not change, but the number of hyperedges is dramatically

shrunken compared to the number of original links between users

and items, which is obvious in Figure 1. Therefore, when construct-

ing hypergraphs, the challenging sparsity issue and long-tailed data

distribution are becoming even more severe.

The second limitation of existing hypergraph-based sequential

recommendation lies in lacking exploitation of hidden hyper-
edges among users, which we believe will be beneficial to un-

derstand the hidden but insightful behaviours among users (e.g.,

common interests groups, co-purchasing groups, users who have

similar buying patterns, etc.). Taking the group recommendation

task [31, 41] as an example, it focuses on a group of users’ pref-

erence, which means users in the same group may tend to have

a similar preference, or at least they have more common interest

compared to the rest of the world. Inspired from the idea, we are cu-

rious about the possibility of exploring and leveraging hypergraphs

constructed from users side to improve the overall recommenda-

tion performance. For example, in Figure 1(c) and (d), from the

timestamp 𝑡0 to 𝑡1, they are the evolution of sequential hypergraph

constructions. It is obvious that in the timestamp 𝑡0, the user 𝑢1
is of co-purchasing relationship with 𝑢2, and the hyperedges of

𝑢1 and 𝑢2 are connected. In this case, the items 𝑖1, 𝑖2, 𝑖3 and 𝑖4 are

likely to be more similar to each other than to 𝑖5 and 𝑖6. The same

is also in the timestamp 𝑡1. Therefore, the aim is to capture the

Figure 2: An example of yearly purchase behaviour.

dynamic items diversification through dynamic hypergraphs con-

structions according to users’ relationships to enhance the model.

Intuitively, like traditional graph-based methods, this try may gain

improvement on recommendation.

To holistically solve the above issues, we propose a novel archi-

tecture named Hyperbolic Hypergraph representation learning for

Sequential Recommendation (𝐻2𝑆𝑒𝑞𝑅𝑒𝑐). Specifically, we propose

to firstly pre-train the model with self-supervised learning on three

well-sophisticated tasks. It is worth noting that compared with

the prior works paying more attention to chronologically model

each user’s buying history, one of our contributions is to introduce

a hyperedge prediction task, which explicitly models the users’

historical records as hyperedges at each timestamp and explores

the potential relationships between linked hyperedges (users who

have similar buying history) [37, 48]. Besides, we also investigate

hyperbolic embedding spaces [46] and manage to map the sparse

data points to the hyperboloid manifold directly. The rationale is

that hyperbolic space has a stronger ability than Euclidean space to

accommodate networks with long-tailed distributions and sparse

structures [1, 3, 13, 14, 21], which is also verified in our experiments.

In addition, to exploit hidden but useful user-side information

in sequential recommendation settings, we propose to construct an

induced hypergraph for each user to model his behaviour pattern

in group-level. Intuitively, a user’s behaviour pattern is not only

reflected in his historical records but can also be excavated from

other users who have similar behaviour pattern. This is particularly

helpful to remit the "cold start" problem. Specifically, for the target

user 𝑢, we first use a hyperedge to collect historical items taken by

𝑢 at the timestamp 𝑡 . Then we find the other hyperedges from other

users who share the overlapping items with𝑢 at the timestamp 𝑡 . All

these hyperedges construct an induced hypergraph to describe the

user 𝑢’s behaviour pattern from the group view at the timestamp 𝑡 .

Although constructing hypergraphs from original simple user-

item bipartite graphs seems a better choice, it is difficult to decide

the time granularity to which the length of item sequence for each

hyperedge is split. After analysing the items in the dataset, we find

the purchase history is not only in a chronological sequence way,

but with a periodic regularity, like seasonal evolution. As shown in

Figure 2, the user bought a Christmas tree and some decorations in

both 2018 and 2019, and she also bought two dresses in the summer

of 2018 and 2019. Therefore, rather thanmodel each user’s items in a

chronological way, we design three views for hypergraph construc-

tion, namely yearly, quarterly and monthly views, and manage to

hierarchically learn latent item representations. Moreover, we also

find that when constructing quarterly and yearly hypergraphs, the

hypergraphs are no longer as sparse as original single-time grained

hypergraphs. In this way, the hierarchical time-span method for
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hypergraph construction also alleviates the above mentioned sparse

problem.

In summary, the contributions of this work are as follows.

• We propose three self-supervised learning tasks as the pre-

training phase. To our best knowledge, we are the first to

propose a hypergraph link prediction as a pre-training task

to do data augmentation.

• We explore hidden insightful behaviours among users by

constructing hypergraphs related to users at each timestamp

to enhance the recommendation model.

• Instead of traditional chronological sequential modelling of

data, we argue periodical regularity andmodel users’ interest

as a hierarchical structure for improving recommendation.

• We propose a novel Hyperbolic Hypergraph representation

learning method for Sequential Recommendation

(𝐻2𝑆𝑒𝑞𝑅𝑒𝑐) to well-model long-tail data in sequential recom-

mendation task.

• Extensive experiments are conducted on benchmark datasets.

Our model outperforms the SOTA sequential recommenda-

tions, which shows the effectiveness of our model.

2 PROBLEM FORMULATION
The section presents the definition and the problem formulation.

Definition 1. Hypergraph.AssumingG𝐻 = (V, E𝐻 ) denotes a
hypergraph with a nodes setV and a hyperedges set E𝐻 , a hyperedge
𝑒𝐻 ∈ E𝐻 connects multiple 𝑛 nodes (𝑛 ≥ 2). The nodes set connected
by a hyperedge 𝑒𝐻 is a hypernode 𝑣𝐻 ⊂ V .

Problem 1. Sequential Recommendation. In the sequential
recommendation task, the user’s related items are in chronological
order. Given the user set U = {𝑢1, 𝑢2, ..., 𝑢𝑛} and the item set I =

{𝑖1, 𝑖2, ..., 𝑖𝑚}, each user has sequential itemsS𝑢𝑛 = {𝑠1𝑢𝑛 , 𝑠
2

𝑢𝑛
, ..., 𝑠𝑡𝑢𝑛 },

where 𝑠𝑡𝑢𝑛 ∈ I denotes the 𝑡𝑡ℎ historical item of user 𝑢𝑛 . The se-
quential recommendation problem is to predict the next 𝑞 items
{𝑠𝑡+1𝑢𝑛

, ..., 𝑠
𝑡+𝑞
𝑢𝑛 } associated to each user 𝑢, according to sequential his-

torical items SU = {S𝑢1
,S𝑢2

, ...,S𝑢𝑛 }. In this paper, 𝑞 = 1. For each
timestamp 𝑡 , a hypergraph G𝐻

𝑡 is constructed according to the current
user setU𝑡 and the item set I𝑡 . Each user’s historical items within
the timestamp 𝑡 are connected by a hyperedge.

3 MODEL
Figure 3 is an overview of our proposed sequential recommendation

system. Technically, we first generate yearly, quarterly, andmonthly

hypergraph snapshots as views from users’ historical records. Here

each hyperedge in the hypergraph refers to one user’s historical

items. With these hypergraphs, we design a novel hypergraph con-

volutional network in the hyperbolic space to learn multi-scale item

embeddings. To enhance the item embedding, we further explore

user’s behaviour pattern via similar users’ behaviours. In the end,

we leverage the Transformer to learn users’ preference and predict

the next item via multi-layer perception (MLP). Moreover, before

the 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 , we design three self-supervised tasks, as shown in

Figure 4, to pre-train item representations. The pre-trained item rep-

resentations could be as initial embeddings for 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 , named

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐−𝑖𝑛𝑖𝑡 and they could also be fused into𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 , named

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 .

Figure 3: Overall architecture 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 contains three mod-
ules, multi-scale embeddings via dynamic hierarchical hy-
perbolic hypergraphs, item enhancement via similar user
groups, and learning user preference for sequential recom-
mendation. The pre-training module could be as initial em-
bedding for 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 (𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑖𝑛𝑖𝑡 ); and it also could fuse
into 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 (𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒).

3.1 Item Features Extraction via
Self-supervised Learning

Before we start, we need the initial item features to support the

downstream model. Inspired by the self-supervised learning frame-

work [48], which can learn item representations without annota-

tions, we propose three novel pre-training tasks (as shown in Figure

4) to learn the pre-trained item representations:

• The first task is to predict whether a masked item sequence

is derived from a user’s historical records. The rationale is

that in the real world, one item usually cannot change a

user’s long-term preference. Therefore, we randomly mask

different items for a target user’s historical sequence and

then let these sequences’ representations as close as possible.

• The second task is to predict whether a sub-sequence is

consistent with a user’s short-term interest. The motivation

is that the consecutive items taken in a short time usually

contain a user’s short-term interest, and these items might

share similar functions. If we mask part of them, the user’s

short-term interest should be still observable from the rest

items. Therefore, we first mask a sub-sequence with length 2

and then wish the masked sequence be close to the complete

sequence.

• The third task is to predict whether two users have the same

behaviour patterns. Intuitively, users’ behaviour patterns

can be reflected in their historical records. If two users share

many historical items, they are more likely to have the same

preference, hobbies or even tastes. To this end, we use a

hyperedge to connect one user’s historical items and then

let a pair of hyperedges be as close as possible if they share

the overlapping items.

Let 𝒉𝒔𝒖 and 𝒉𝒔′𝒖 being embeddings of two sequences, we adopt

contrastive loss [37] for each task:
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(a) Mask random items (b) Mask subsequence items (c) Hyperedge link prediction

Figure 4: Pre-training phase with three self-supervised tasks.

Figure 5: Multi-scale Embeddings via Dynamic Hierarchical
Hyperbolic Hypergraphs.

L(𝑠𝑢 , 𝑠 ′𝑢 , 𝑆−𝑢 )=− log

exp

(
sim

(
𝒉𝒔𝒖 ,𝒉𝒔′𝒖

)
/𝜏

)
exp

(
sim

(
𝒉𝒔𝒖 ,𝒉𝒔′𝒖

)
𝜏

)
+∑

𝑠−𝑢 ∈𝑆−𝑢 exp

(
sim

(
𝒉𝒔𝒖 ,𝒉𝒔−𝒖

)
𝜏

)
(1)

here 𝑆−𝑢 is the sampled negative sequences of the user 𝑢. 𝒉𝒔−𝒖 is

the embedding of the negative sequence, 𝑠𝑖𝑚(𝒉𝒔𝒖 ,𝒉𝒔′𝒖 ) is defined

as:

𝒉𝑻𝒔𝒖 ·𝒉𝒔′𝒖
| |𝒉𝒔𝒖 | | · | |𝒉𝒔′𝒖

| | where 𝜏 is the hyper-parameter. The sequence

embeddings 𝒉𝒔𝒖 and 𝒉𝒔′𝒖 are both calculated by Transformer net-

work with two multi-head attention and feed forward blocks. We

combine the above three tasks together with optimized weights

{0.1,1,1}.

3.2 Multi-scale embeddings via dynamic
hierarchical hyperbolic hypergraphs

With the above initial features, we then design a dynamic hyper-

graph neural network for learning the multi-scale item embeddings

in hyperbolic space, as shown in Figure 5.

3.2.1 Hierarchical Time-span Hypergraph Construction. To model

the complex dependencies among the sequential items, we pro-

pose a hierarchical architecture to learn the monthly, quarterly and

yearly relationship among sequential items. The motivation is that

a user’s behaviour patterns are not just suggested in anteroposterior

items of the item sequences but also reflected via the seasonal and

periodical variance. For example, users prefer to buy Christmas-

related products before Christmas, and purchase T-shirts in summer

and coat in winter. Inspired by [29], we utilize hypergraphs instead

of traditional graphs to model different sub-sequences of each user

and we also use multi-scale time-spans views (monthly, quarterly,

and yearly) to learn the semantics of items. To tackle the sparsity

and the long-tail distribution of these hypergraphs, we learn the

graph representations in hyperbolic space because it is perfectly

suitable for long-tail structures.

Specifically, whenwe deal with themonthly item representations,

we first construct a monthly hypergraph where each hyperedge

connects user’s items within one month. Then we use hyperbolic

space-based hypergraph graph neural network (introduced in 3.2.2)

to learn the dynamic item embeddings in each month. Following

this approach, we can also learn quarterly and yearly item repre-

sentations.

3.2.2 Hyperbolic Space-based Hypergraph Convolutional Network.
Compared with traditional graphs that mainly rely on pairwise user-

item interactions, hypergraphs can model much higher relations in

user-item interactions and promise to fuse item context to remit

the sparsity problem. For example, if user 𝑢1 bought flower and

wedding dress and 𝑢2 bought flower and a vase, we can use a

hyperedge to connect the flower and the wedding dress, and use

another hyperedge to connect the flower and the vase. In this way,

the flower’s semantic for𝑢1 is about the wedding but for𝑢2 is about

decoration. However, if we use a traditional graph, the graph is

hard to reveal different item semantics directly.

In addition, the user-item record usually follows the long-tail

distribution and is sparse. The traditional Euclidean space usually

cannot capture this structure leading to representation distortion,

while hyperbolic space is beneficial to deal with the issue. [1]

Based on the abovemotivations, we propose a hypergraph neural

network to model the items evolution in hyperbolic space. Specif-

ically, we first transform the initial item features from Euclidean

space to hyperbolic spaceH𝑐
, and then we feed the initial hyper-

bolic item embeddings to learn item embeddings. For the hyperbolic

space, we set 𝒐 := {
√
𝑐, 0, 0, ..., 0} ∈ H𝑐

as the north pole in H𝑐
,

where −1/𝑐 is the negative curvature of hyperbolic model. As an-

alyzed in [1], the initial item features in hyperbolic space can be

deduced from Euclidean space as follows:

𝒉0,H = exp
𝑐
𝒐

((
0,𝒉0,E

))
=

©­­«
√
𝑐 cosh

©­­«



𝒉0,E




2√
𝑐

ª®®¬ ,
√
𝑐 sinh

©­­«



𝒉0,E




2√
𝑐

ª®®¬
𝒉0,E


𝒉0,E




2

ª®®¬
(2)

where 𝒉0,H and 𝒉0,E are the initial hyperbolic embedding and

the initial Euclidean embedding, respectively.

With the initial features in hyperbolic space, we further trans-

form the features via a linear function in hyperbolic space:

𝒙𝐿,H
𝑖

= (𝑊 𝐿 ⊗𝑐 𝒉𝐿−1,H
𝑖

) ⊕𝑐 𝒃𝐿 (3)
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where 𝒙𝐿,H
𝑖

is the hyperbolic hidden embedding of item 𝑖 in the

𝐿-th layer after transformation,𝑊 𝐿
and 𝒃𝐿 are the weight and bias,

respectively. 𝒉𝐿−1,H
𝑖

is item 𝑖’s hyperbolic embedding in the last

layer. When 𝐿 = 1, 𝒉𝐿−1,H
𝑖

= 𝒉0,H
𝑖

. Then, the item embeddings

can be aggregated from the neighbouring nodes via the following

convolutional operation in hyperbolic space:

𝒚𝐿,H
𝑖

= 𝑒𝑥𝑝𝑐
𝒙𝐿,H
𝑖

(
∑

𝑗 ∈N(𝑖)∪𝑗 ∈N(𝑖+),𝑤ℎ𝑒𝑟𝑒 𝑖+∈𝑒𝐻
𝑖

𝑀𝑖 𝑗 𝑙𝑜𝑔
𝑐

𝒙𝐿,H
𝑖

(𝒙𝐿,H
𝑗

)

(4)

where 𝒚𝐿,H
𝑖

is the hyperbolic hidden embedding of item 𝑖 in the

𝐿-th layer after aggregation, N(.) denotes the neighbors so N(𝑖)
is node 𝑖’s neighbors and N(𝑖+) is node 𝑖+’s neighbors where 𝑖+
is on the same hyperedge as 𝑖 . The node 𝑗 ’s hyperbolic embed-

ding is transformed to Euclidean embedding via 𝑙𝑜𝑔𝒐𝑐 (.) , so the

Euclidean-based sum and add operations are available. 𝑒𝑥𝑝𝑐 (.) aims

to transform the Euclidean-based embedding to hyperbolic embed-

ding. According to [1], choosing 𝒙𝐿,H
𝑖

as the north pole is the best

Euclidean approximation at this step.𝑀𝑖 𝑗 is the projecting weight

defined as follows:

𝑀𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
𝑗 ∈N(𝑖)∪𝑗 ∈N(𝑖+),𝑤ℎ𝑒𝑟𝑒 𝑖+∈𝑒𝐻

𝑖

(𝑀𝐿𝑃 (𝑙𝑜𝑔𝑐𝒐 (𝒙
𝐿,H
𝑖

) | |𝑙𝑜𝑔𝑐𝒐 (𝒙
𝐿,H
𝑗

)))

(5)

With the above node features’ aggregation, we then use an ac-

tivation function to generate the hidden embedding on Layer 𝐿:

𝒉𝐿,H
𝑖

= 𝑅𝑒𝐿𝑈 ⊗𝑐

(𝒚𝐿,H
𝑖

) (6)

where 𝒉𝐿,H
𝑖

is the node 𝑖’s hyperbolic embedding at 𝐿-th layer,

𝑅𝑒𝐿𝑈 ⊗𝑐
is the 𝑅𝑒𝐿𝑈 operation in the hyperbolic space. Through

𝑙𝑜𝑔𝒐𝑐 (.) , we transform the hyperbolic item embedding 𝒉2,H
𝑖

to Eucli-

dean-space based embedding 𝒉E𝑖 , and feed into the next module.

3.2.3 Mix Layer. With item embeddings for each month, quarter

and year, we then design a mix layer to fuse them together. Specifi-

cally, to fuse monthly embeddings and yearly embeddings, we use a

two-layer neural network to calculate their correlations as follows:

ℎ𝑀𝑌𝑡𝑚
= 𝑅𝑒𝐿𝑈 (𝑊𝑀𝑌ℎ𝑌𝑡𝑦 + 𝒃𝑀𝑌 ) ⊙ ℎ𝑀𝑡𝑚

(7)

where ℎ𝑀𝑌𝑡𝑚
represents the mixture of monthly and yearly item

embeddings at timestamp 𝑡𝑚 . ℎ𝑀𝑡𝑚
and ℎ𝑌𝑡𝑦 mean the monthly

and yearly item embeddings respectively. 𝑡𝑚 and 𝑡𝑦 denote the

monthly and yearly timestamp, respectively.𝑊𝑀𝑌 and 𝒃𝑀𝑌 are

weight matrix and bias. ⊙ means element-wise product. Similarly,

the mixed embeddings with the month and the quarter can be

defined as ℎ𝑀𝑄𝑡𝑚
, which is calculated by:

ℎ𝑡𝑚,𝐻𝑖𝑒 = ℎ𝑀𝑄𝑡𝑚
= 𝑅𝑒𝐿𝑈 (𝑊𝑀𝑄ℎ𝑄𝑡𝑞

+ 𝒃𝑀𝑄 ) ⊙ ℎ𝑀𝑌𝑡𝑚
(8)

where ℎ𝑡𝑚,𝐻𝑖𝑒
is the dynamic item embeddings at timestamp 𝑡𝑚

learned by this hierarchical architecture.

3.3 Item Enhancement via Similar User Groups
Most existing hypergraph-based sequential recommender systems

[29] ignore the hidden relationships among users, like social rela-

tionships, co-purchasing relationship, etc. However, these relation-

ships are highly informative to capture the hidden users’ behaviours.

For example, a user’s shopping behaviour may be affected by his

friend circle, making the user tend to buy similar products with

his friends. In light of this, we utilize user groups to enhance the

former learned dynamic item embeddings.

Dataset No. Users No. Items No. Interactions
AMT 5352 11672 59495

Goodreads 16701 20823 1084781

Table 1: Datasets Description.

Specifically, we first find similar users for each user at each times-

tamp 𝑡𝑚 . The similar users are those who take the same products at

the same timestamp 𝑡𝑚 . Using the current user’s shopping records

at 𝑡𝑚 and his similar users’ records at 𝑡𝑚 , we build an induced

hypergraph to model his behaviour pattern in group-level. Each

hyperedge connects each user’s items. Then we leverage our pro-

posed hyperbolic space-based hypergraph convolutional network

to learn item embeddings in group-level.

To enhance the item representations, we mix the above embed-

dings 𝒉𝑡𝑚,𝑈 𝑠𝑒𝑟
𝑖𝑢

with previous embeddings 𝒉𝑡𝑚,𝐻𝑖𝑒
𝑖

in Section 3.2.1.

The mix operation is defined as follows:

𝒉𝑡𝑚
𝑖𝑢

= 𝑅𝑒𝐿𝑈 (𝑊𝒉𝑡𝑚,𝑈 𝑠𝑒𝑟
𝑖𝑢

+ 𝒃) ⊙ 𝒉𝑡𝑚,𝐻𝑖𝑒
𝑖

(9)

where 𝒉𝑡𝑚
𝑖𝑢

is the item 𝑖’s embedding for user 𝑢 at timestamp 𝑡𝑚 .

3.4 Learning User Preference for Sequential
Recommendation

In this section, we leverage learned item embeddings to find users’

preference and then present the sequential recommendation model.

3.4.1 User Preference Learning. For each user 𝑢, we use the Trans-

former [26] to model the dynamic item embeddings during the

whole timestamps, mathematically,

𝒉S𝑢
= 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝒉𝑡1

𝑖𝑢
,𝒉𝑡2

𝑖𝑢
, ...,𝒉𝑡𝑚

𝑖𝑢
), 𝑖 ∈ S𝑢 (10)

where 𝒉S𝑢
is the embedding of user 𝑢’s item sequence, which can

describe 𝑢’s preference. The input of Transformer are the dynamic

item embeddings learned in Equation 9. In this way, the user’s

sequential items contain both the dynamic hierarchical information

and the user’s potential group information.

3.4.2 The Complete Model. With user preference representation

𝒉S𝑢
, we use a two-layer Multilayer Perceptron (MLP) to calculate

the rating score of the next item, mathematically,

𝑟
𝑡𝑚
𝑢,𝑖

= 𝑀𝐿𝑃 (𝒉S𝑢
,𝒉𝑡𝑚

𝑖
) (11)

where 𝑟
𝑡𝑚
𝑢,𝑖

is the rating score of user 𝑢 and item 𝑖 at timestamp

𝑡𝑚 , 𝒉𝑡𝑚
𝑖

is the embedding of item 𝑖 at timestamp 𝑡𝑚 . We train the

recommendation by Bayesian Pairwise Loss [20], which aims to

maximize the difference between the rating scores of the positive

item 𝑖 and negative sample 𝑗 :

𝑙𝑜𝑠𝑠 =
∑

(𝑢,𝑖,𝑡, 𝑗) ∈D
−𝑙𝑛𝜎 (𝑟𝑡𝑚

𝑢,𝑖
, 𝑟
𝑡𝑚
𝑢,𝑗

) + 𝛼 | |𝛿 | |2 (12)

where (𝑢, 𝑖, 𝑡, 𝑗) ∈ D denotes the positive pair (u,i,t) and the nega-

tive pair (u,j,t) from the training set D. 𝜎 is the sigmoid function, 𝛼

is the weight of L2 regularization term | |𝛿 | |2.

4 EXPERIMENT
4.1 Experiment Settings
4.1.1 Dataset. We evaluate our method on two real-world datasets,

named AMT and Goodreads. The statistics are shown in Table 1.
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• AMT. It is the subset of the public Amazon dataset [17],

which contains consumers’ buying record and reviews in 29

categories. In our experiment, we choose three categories,

Automotive, Musical Instruments and Toys and Games, to

form the dataset and remove users bought less than 5 items.

The time of AMT dataset is range from 2014 to 2018. The

first two items in 2018 are considered as valid data and test

data, respectively. Generally, the distribution of the items

among users is long-tail distribution [42].

• Goodreads. It [27, 28] is collected from goodreads website,

which is an online book community website. We choose

user-book (item) interactions between 2013 and 2015 as the

dataset. Last two interactions are valid and test data, respec-

tively. From Table 1, it is evident that Goodreads is much

denser than AMT dataset.

4.1.2 Baselines.

• GRU4Rec. [5, 6] It is a well-known sequential-based recom-

mendation model that utilizes GRU to sequentially model

users’ interactions to achieve top-N recommendation.

• SASRec. [12] It is a self-attention based sequential approach

for next item recommendation, which could capture each

user’s both long-term sequential relations through Point-

Wise Feed-Forward Network and short-term interactions

with items through an attention mechanism.

• BERT4Rec. [23] This method employs deep bidirectional

self-attention to sequentially model the user behaviours in

two directions through Cloze task.

• SRGNN. [35] The method utilizes graph neural networks to

model the session sequences and obtain the complex item

transitions for each session.

• HGN. [15] It proposes a hierarchical gating network with

the Bayesian Personalized Ranking in order to capture user’s

both long- and short-term interest.

• HyperRec. [29] It uses sequential hypergraphs to model

dynamic item embedding sequentially and fuses with static

item embeddings as item representations. For each user, item

representations are fed into Transformer network to obtain

the next item recommendation.

4.1.3 Evaluation. Our proposed method focuses on recommend-

ing next item, and therefore we use Top 𝐾 Hit Ratio (HR@𝐾 ) and

Top 𝐾 Normalized Discounted Cumulative Gain (NDCG@𝐾 ) as our

evaluation metrics. We choose𝐾 = {1, 5, 10, 20} in the baseline com-

parison experiment. Our baseline HyperRec [29] randomly selects

100 negative samples for each positive user-item pair. However,

we think it is insufficient to reflect our model’s effect accurately.

Moreover, the baseline Bert4Rec and SRGNN’s evaluation speed

is too slow to test all the data. Therefore, in our experiment, we

randomly choose {100, 500} negative samples and rank {101, 501}
items to calculate the HR@𝐾 and NDCG@𝐾 scores.

4.1.4 Parameter Details. We implement GRU4Rec, SASRec,

BERT4Rec and SRGNN from the RecBole python package [47]. For

other methods, we use the public code provided by each paper. For

all the methods, the feature dimension size is 100. For AMT dataset,

all baselines’ training batch size is set 512. We use the early stop

function in RecBole whose condition is not updating NDCG@10

for 10 epochs. The hidden size is 100, and the dropout probability

is 0.5, as the same as our proposed methods. Moreover, we choose

BPR as the loss of GRU4Rec, SASRec, BERT4Rec and SRGNN to

keep identical with our methods. For those baselines’ code authors

provided, we employ the given default parameters, but the learning

rate is 0.001 for all baselines. For Goodreads dataset, some baselines’

training time is so long with training batch size 512, so we change

it to 4096 if the baseline does not run out of CUDA memory. Other

parameters are the same as training AMT dataset.

To evaluate our proposed model
1
, we design three strategies

to initialize it: 1) 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 , one-hot item embeddings as input

without pre-training tasks, 2) 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑖𝑛𝑖𝑡 , pre-trained item

embeddings as input and 3) 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 , a combination of the

first two, one-hot item embeddings as input, and pre-training item

embeddings fused with dynamic item embeddings and group-level

item embeddings.

For our proposed methods 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 , 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑖𝑛𝑖𝑡 and
𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 , the parameter settings are the same. The layer of

hyperbolic hypergraph convolutional network is 2, and we choose

the hyperboloid model as hyperbolic geometry with the negative

curvature -1. Moreover, since the Goodreads dataset is too dense,

we sample 1/100 users to find similar user groups. To simplify our

proposed methods, we fuse the item embeddings learned via similar

users’ group with the dynamic item embeddings within each batch

rather than for each user. In Transformer, we set the number of

heads and blocks, 2 and 1, respectively. The epoch of hyperbolic

hypergraph convolutional network is 300. The maximum sequence

is set to 50 for all the above methods. Other parameters are the

same as the baselines’.

4.2 Effectiveness Analysis on Baselines
4.2.1 Overall Performance Analysis Between Different Baselines. As
shown in Table 2, we evaluate our proposed model with 6 state-of-

the-art sequential recommendation baselines. Our proposed model

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 ,𝐻2𝑆𝑒𝑞𝑅𝑒𝑐−𝑖𝑛𝑖𝑡 and𝐻2𝑆𝑒𝑞𝑅𝑒𝑐− 𝑓 𝑢𝑠𝑒 could outperform
all of them in both HR@𝐾 and NDCG@𝐾 in 100 and 500 negative

sampling experiments. For AMT dataset, our best model improves

the best baseline 31.61% and 16.94% at NDCG@1 for negative sam-

pling 100 and 500, respectively. In terms of Goodreads dataset, our

best model outperforms the best baseline 10.43% and 13.71% at

NDCG@1 for negative sampling 100 and 500, respectively. From

the last column (Improvement), the advantages also could see in

other evaluation metrics, especially in top 1 and 5 ranking. In rec-

ommendation task, it is significant to have better recommendation

in top ranking, because proper recommendation in higher ranking

means more effectiveness of the recommendation model.

4.2.2 Effectiveness on Pre-train Features. In Table 2, for AMTdataset,

the proposed 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 achieves the best performance and

improves 5.41% and 5.33% than the NDCG@1 of 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 with

100 and 500 negative samples. While for the Goodreads dataset,

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 achieves the best performance on NDCG@1 and better

than 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 by 2.74% and 7.74% in negative sampling of

100 and 500, respectively. From the results, we could get the conclu-

sion that when training sparser dataset, to do data augmentation

as pre-training could help improve model. However, in terms of

denser dataset, it is useless or even worse to do pre-training while

our proposed model without pre-training could still achieve quite

1
https://github.com/Abigale001/h2seqrec
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Datasets NEG Metrics GRU4Rec SASRec BERT4Rec SRGNN HGN HyperRec 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑖𝑛𝑖𝑡 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 Improvement

AMT

100

NDCG@1

0.0820 0.0878 0.0691 0.0889 0.0856 0.0871 0.1110 0.1153 0.1170 31.61%

500 0.0247 0.0291 0.0349 0.0245 0.0284 0.0372 0.0413 0.0422 0.0435 16.94%

100

NDCG@5

0.1725 0.1722 0.1530 0.1894 0.1672 0.1765 0.2107 0.2129 0.2135 12.72%

500 0.0557 0.0600 0.0761 0.0603 0.0621 0.0753 0.0780 0.0834 0.0832 9.59%

100

NDCG@10

0.2187 0.2159 0.1978 0.2390 0.2019 0.2216 0.2568 0.2571 0.2589 8.33%

500 0.0745 0.0766 0.0965 0.0830 0.0775 0.0968 0.0973 0.1041 0.1050 8.47%

100

NDCG@20

0.2689 0.2632 0.2488 0.2857 0.2333 0.2725 0.3013 0.3034 0.3054 6.90%

500 0.0962 0.0950 0.1209 0.1058 0.0971 0.1159 0.1189 0.1263 0.1281 5.96%

100

HR@1

0.0820 0.0878 0.0691 0.0889 0.0856 0.0871 0.1110 0.1153 0.1170 31.61%

500 0.0247 0.0291 0.0349 0.0245 0.0284 0.0372 0.0413 0.0422 0.0435 16.94%

100

HR@5

0.2601 0.2543 0.2367 0.2866 0.2448 0.2640 0.3087 0.3098 0.3111 8.55%

500 0.0876 0.0914 0.1158 0.0962 0.0916 0.1129 0.1175 0.1265 0.1226 9.24%

100

HR@10

0.4036 0.3903 0.3765 0.4415 0.3507 0.4045 0.4524 0.4469 0.4529 2.58%

500 0.1463 0.1429 0.1794 0.1670 0.1362 0.1794 0.1775 0.1896 0.1913 6.63%

100

HR@20

0.6033 0.5785 0.5796 0.6271 0.4735 0.6063 0.6291 0.6312 0.6385 1.82%

500 0.2332 0.2167 0.2763 0.2577 0.2113 0.2556 0.2655 0.2805 0.2842 2.86%

Goodreads

100

NDCG@1

0.2496 0.2407 0.2639 0.2856 0.2325 0.2792 0.3154 0.3027 0.3070 10.43%

500 0.0924 0.0894 0.1021 0.1298 0.1026 0.1212 0.1476 0.1357 0.1370 13.71%

100

NDCG@5

0.4302 0.4124 0.4376 0.4588 0.3848 0.4576 0.4866 0.4772 0.4810 6.06%

500 0.1911 0.1841 0.2032 0.2311 0.1899 0.2268 0.2584 0.2453 0.2456 11.81%

100

NDCG@10

0.4803 0.4637 0.4869 0.5057 0.4312 0.5044 0.5311 0.5229 0.5257 5.02%

500 0.2320 0.2240 0.2431 0.2703 0.2243 0.2676 0.2971 0.2856 0.2854 9.91%

100

NDCG@20

0.5129 0.4989 0.5187 0.5349 0.4656 0.5359 0.5591 0.5517 0.5547 4.33%

500 0.2700 0.2611 0.2785 0.3036 0.2559 0.3039 0.3311 0.3206 0.3206 8.95%

100

HR@1

0.2496 0.2407 0.2639 0.2856 0.2325 0.2792 0.3154 0.3027 0.3070 10.43%

500 0.0924 0.0894 0.1021 0.1298 0.1026 0.1212 0.1476 0.1357 0.1370 13.71%

100

HR@5

0.5969 0.5723 0.5967 0.6160 0.5225 0.6207 0.6437 0.6391 0.6389 3.71%

500 0.2875 0.2764 0.3008 0.3281 0.2674 0.3285 0.3632 0.3500 0.3505 10.56%

100

HR@10

0.7513 0.7305 0.7486 0.7609 0.6653 0.7679 0.7807 0.7778 0.7779 1.67%

500 0.4146 0.4005 0.4244 0.4498 0.3718 0.4553 0.4842 0.4765 0.4767 6.35%

100

HR@20

0.8799 0.8686 0.8735 0.8758 0.8006 0.8895 0.8916 0.8921 0.8920 0.29%

500 0.5652 0.5475 0.5649 0.5817 0.4936 0.5990 0.6195 0.6139 0.6152 3.42%

Table 2: Comparison with baselines. The last column is the improvement of the best proposed method than the best baseline.

𝐾 = 1 𝐾 = 5 𝐾 = 10 𝐾 = 20 Diff.

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 0.111 0.2107 0.2568 0.3013 -

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 ¬ U 0.1102 0.2083 0.2519 0.3011 1.91%

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 ¬ Hie 0.1084 0.2028 0.2466 0.2927 3.96%

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 ¬ HB 0.1099 0.2048 0.2486 0.2961 3.19%

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐(HieMQY
) 0.1095 0.2057 0.2509 0.2977 2.30%

Table 3: Impact of Different Modules (𝑵𝑫𝑪𝑮@𝑲 ). ¬ is re-
moving the following module and keeping the others. The
last column means the decrease rate of each row compared
with 𝑯 2𝑺𝒆𝒒𝑹𝒆𝒄 on 𝑵𝑫𝑪𝑮@10.
well performance. Therefore, unlike traditional recommendation

models which blindly pursue pre-training to improve the model,

our experiment shows that sometimes pre-training cannot really

help improvement.

Moreover, from the columns 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑖𝑛𝑖𝑡 and 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 −
𝑓 𝑢𝑠𝑒 of Table 2, we find that the results are of small differences in

two datasets. It means that no matter how to use the pre-training

embedding in the model, it is almost the same. Therefore, the con-

clusion is that pre-training does play a part in the model.

4.3 Improvement of Different Component for
Overall Performance

We perform ablation test on AMT dataset to study different mod-

ules’ effects. The evaluation metric is NDCG@{1,5,10,20}, and the

number of negative test sampling is 100. In Table 3, the ¬ represents

removing the following module and remaining other modules. For

example, 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 ¬ U means the proposed model without Item

Enhancement via Similar User Groups module in Section 3.3. In

the next row, Hie means the hierarchical module, so removing the

hierarchical module represents deleting the quarterly and yearly

dynamic item embeddings and only feeding monthly dynamic ones

into the recommendation. HB means hyperbolic space, and there-

fore that row means 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 abandons hyperbolic space and

train in Euclidean space. 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐(HieMQY
) changes the order of

fusion time-span in hierarchical architecture, that is, it fuses quar-

terly dynamic item embeddings firstly into monthly dynamic item

embeddings, and then yearly item embeddings fuse into them.

As shown in the Table 3, the proposed model𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 achieves

the best performance. The Item Enhancement via Similar User

Groups module plays the least important role in the whole model,

because of the sparsity of AMT dataset. Moreover, using the hierar-

chical module to learn dynamic item embeddings and hyperbolic

space-based item embeddings learning both could improve the

model. However, if we change the hierarchical time-span fusion

order, the results will be a little bit worse. That may be because if

yearly dynamic item embeddings fuse in the last step in hierarchi-

cal architecture, the final fused item embeddings would contain

more yearly information and less quarterly information. However,

yearly information may be too large as a time interval, and the
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quarterly one may be apposite. Therefore, that is why we choose

to fuse yearly information first and then quarterly, and the results

also prove our rationality.

4.4 Analysis of Different Pre-training Tasks
Influence on Performance

In Table 4, we evaluate different pre-training tasks’ influence on

the performance of the AMT dataset with 100 negative samples.

Minus after 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 denotes only considering the follow-

ing pre-training tasks. 𝑀 means the masking random items task, 𝑆

represents the masking subsequence task, and 𝐻 is the hyperedge

link prediction task.

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-SH and 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-MH obtain better

performance, compared with 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-MS, which proves

the effectiveness of our proposed hyperedge prediction task. We

can also get this conclusion by the last row, 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-H

shows the highest performance compared with 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-
M and 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-S. Therefore, this experiment shows our

proposed hyperedge link prediction task’s effectiveness, which is

more helpful than the existing pre-training methods merely model

each user’s buying history in a chronological way.

𝐾 = 1 𝐾 = 5 𝐾 = 10 𝐾 = 20

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 0.1170 0.2135 0.2589 0.3054
𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-SH 0.1149 0.2103 0.2568 0.3014

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-MH 0.1158 0.2102 0.2544 0.3036

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-MS 0.1138 0.2130 0.2584 0.3043

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-M 0.1123 0.2111 0.2541 0.3015

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-S 0.1117 0.2080 0.2533 0.3006

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒-H 0.1140 0.2129 0.2572 0.3020

Table 4: Impact of different pre-training tasks (𝑵𝑫𝑪𝑮@𝑲 ).
− denotes only considering the following pre-training tasks.

4.5 Parameters Sensitivity Study
In the Figure 6, we analysis different dimensions of items influence

on the proposed model and the baselines, we randomly choose

three baselines to compare with our proposed models. The negative

test sampling is 100, and the evaluation metric is NDCG@1.

(a) NDCG@1 w.r.t. # Dimensions (b) NDCG@1 w.r.t. # Epochs

Figure 6: Parameters Sensitivity.
As shown in Figure 6a, our proposed models 𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 and

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 could always outperform GRU4Rec, SASRec and

HyperRec when the dimension is {20, 40, 60, 100}. Moreover, when

the number of dimensions is larger in the figure, the pre-training

phase is more useful to the recommendation performance. It is

because the pre-training data augmentation can learn more infor-

mation about the sparse dataset when the number of dimensions is

larger.

In Figure 6b, we compare the NDCG@1 on models training.

GRU4Rec is early stopped because of not updating NDCG@1 for

10 epochs, so the line is not complete. In general, our proposed

two methods always achieve the best performance, especially the

𝐻2𝑆𝑒𝑞𝑅𝑒𝑐 − 𝑓 𝑢𝑠𝑒 , whose NDCG@1 is still updating after 25 epochs.

4.6 Complexity Analysis
Our model contains four parts, item features extraction via self-

supervised learning tasks, learning multi-scale embeddings via

dynamic hierarchical hyperbolic hypergraphs, item embeddings

enhancement via similar users groups and learning user preference

for sequential recommendation. Therefore, we will analyse the time

complexity of four separate parts, respectively.

For the self-supervised learning phase, we have three tasks. The

first task, for each user, we should randomly select two different

items to mask, so the time complexity is𝑂 (𝑈 ×𝐼𝑈 ×(𝐼𝑈 −1)), where
𝑈 is the number of users, and 𝐼𝑈 is each user’s related items. Since

𝐼𝑈 ≪ 𝑈 , the time complexity could approximately be 𝑂 (𝑈 ). The
second task is that we randomly mask a subsequence for each user,

and the length is 2, so the time complexity is about 𝑂 (𝑈 × 𝐼𝑈 ) ≈
𝑂 (𝑈 ). For the last task, we should find each user’s neighbours

and two-hop neighbours, and then build the hyperedge connecting

each user’s items within a timestamp. Therefore, if there are 𝑇𝑀
timestamps, the time complexity is𝑂 (𝑈 ×𝑇𝑀 ×N𝑈 ×NN𝑈

), where
N𝑈 is the average numbers of each user’s neighbours and NN𝑈

is

the average number of each user’s two-hop neighbours. Since𝑇𝑀 ≪
𝑈 ,N𝑈 ≪ 𝑈 ,NN𝑈

≪ 𝑈 , the complexity is approximately 𝑂 (𝑈 ).
The pre-training tasks’ time complexity can be added together, and

could approximately ignore the smaller magnitude terms, so the

overall time complexity of pre-training is 𝑂 (𝑈 ). In practice, it is

unnecessary to do the pre-training phase every time. The learned

pre-training features could be learned offline and stored. Even if

new data comes, it can implement incremental training. Therefore,

the time complexity is acceptable.

For the multi-scale dynamic hierarchical hyperbolic hypergraphs

learning, we have three time-spans views including month, quar-

ter, and year. For monthly hyperbolic hypergraph neural network

learning, we consider each user’s items within a month connected

by a hyperedge. We perform hyperbolic-based hypergraph convo-

lutional neural network on it, so the time complexity is 𝑂 (𝑇𝑀 ×
𝐼 × N𝐼 × 𝐿 × 𝐷2), where N𝐼 is the average number of neighbours

for each hyperedge connected to the item, because of the aggrega-

tion function in the model. 𝐿 is the number of layers, and 𝐷 is the

embedding’s dimension. The time complexity is the same as the

quarterly and yearly model, but the number of quarter𝑇𝑄 and year

𝑇𝑌 is less than 𝑇𝑀 . To sum up, this module’s time complexity is

𝑂 ((𝑇𝑀 +𝑇𝑄 +𝑇𝑌 ) × 𝐼 ×N𝐼 × 𝐿 ×𝐷2) ≈ 𝑂 (𝐼 ), because𝑇𝑀 ,𝑇𝑄 ,𝑇𝑌 , 𝐿
are countable, the average number of item’s neighbours is N𝐼 ≪ 𝐼

and the dimension is set as 100 in our model. What’s more, this

module can also learn offline due to our step-by-step learning style.

In practice, this will significantly save the time of the recommenda-

tion. The learning strategy is the same as the pre-training phase. If

there are new data, this module can also do incremental training.

Therefore, the time complexity of this module seems good.

For the item embeddings enhancement via similar users groups

module, the training method and the hypergraph construction

strategy is the same as the last module. However, this module
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focuses on the relationship between users and will construct multi-

ple hypergraphs for each user. Therefore, the time complexity is

𝑂 (𝑇𝑀 ×𝑈 × N𝐼𝑈 × NN𝐼𝑈
× 𝐿 × 𝐷2), where 𝐼𝑈 means each user’s

related items, N𝐼𝑈 is the average number of neighbours of each

user’s related items and NN𝐼𝑈
is our defined similar user’s related

items in section 3.3. Similarly, the approximate time complexity is

𝑂 (𝑈 ) because N𝐼𝑈 ≪ 𝑈 , NN𝐼𝑈
≪ 𝑈 . This module can also train

offline in advance, thanks to our step-by-step training strategy. In

practice, if there are new users fed into the model, it is convenient

to train new users’ item embeddings. If some existing users are fed

into the model again, it is convenient to train incrementally based

on the previous version of item embeddings.

In the last module, learning user preference for sequential recom-

mendation module, we use the Transformer to obtain each user’s

preference embedding. For each user, we feed user’s sequence

into the Transformer (self-attention layer), and therefore the time

complexity is 𝑂 (𝑈 × 𝐼2
𝑈

× 𝐷) ≈ 𝑂 (𝑈 ) because of 𝐼𝑈 ≪ 𝑈 as

claimed before. To train the recommendation, we sample 1 nega-

tive training item to maximize the difference between the positive

user-item pair score and the negative one. The recommendation

part’s time complexity is 𝑂 (𝐼𝑈 × (𝑁𝐸𝐺 + 1)). Since the user pref-
erence embedding learning part and the recommendation part are

learned end to end, the whole time complexity of the last module is

𝑂 (𝑈 × 𝐼2
𝑈
× 𝐷 × 𝐼𝑈 × (𝑁𝐸𝐺 + 1)) ≈ 𝑂 (𝑈 ) because of 𝐼𝑈 ≪ 𝑈 and

𝑁𝐸𝐺 ≪ 𝑈 .

To sum up, the final time complexity of the proposed model

is the maximum time complexity of the above modules, which is

𝑚𝑎𝑥 (𝑂 (𝑈 ),𝑂 (𝐼 )), so it is acceptable.

5 RELATEDWORK
5.1 Non-graph sequential modelling for neural

recommendation
Early neural recommendations building on typical deep neural

networks mostly use recurrent neural networks (RNN) or convo-

lutional neural networks (CNN) to capture the temporal patterns

from users’ historical records. Specifically, Quadrana et al. [19] de-

sign a multi-level RNN structure for learning temporal patterns in

a sequence. Although RNN-based methods have their advantages

in sequential learning, user-item interactions usually contain noisy

information. Only learning these relations is far from achieving

more reliable recommendation system. Unlike RNN-based method,

Yuan et al. [44] use CNN to learn from user-item sequences because

CNN-based methods can not only capture long-term dependencies

but also have the character of translation invariance, making the

model more stable for various sequential orders. Later, attention is

introduced in recommendation models [16, 22, 23, 34]. In particular,

Kang et al. [12] treat the user-item sequence as a sentence and

model the temporal relations via a transformer model [26]. The

transformer takes a self-attention unit to translate sequences as

entity embeddings and position embeddings, which can be used to

the downstream recommendation system.

5.2 Graph-based sequential modelling for
neural recommendation

In the real world, however, users and items contain more non-

linear relations with different topological structures. To this end,

graph-based sequential modelling approaches become more and

more popular to model the recommendation data. By modelling

graph structure data, graph neural networks (GNN) are introduced

recently. As a conceptional extension of linear CNNs, GNN-based

method [7, 35, 39] take the directed graph as input, and capture the

interdependence directly on the graph. For example, Wu et al. [35]

treat each user or item as a node in the graph, and transform the

user-item sequence as a path. With GNN-based model, they can

learn both users and items embeddings over the whole graph.

Later, more advanced technologies have been introduced such

as, self-supervised learning [11, 33, 37, 38, 40], group awareness

[8, 10, 31] and so on. In particular, Hwang et al. [9] propose self-

supervised auxiliary learning tasks to predict meta-paths to capture

rich-information of a heterogeneous graph, and thereby improve

the primary task to do link prediction.

5.3 Hypergraph-based sequential modelling
for neural recommendation

Recently, instead of traditional graph, constructing hypergraphs to

learn the data structure to do recommendation become a popular

approach. Yu et al. [43] design a multi-channel hypergraph convo-

lutional network to enhance social recommendation by exploiting

high-order user relations, which shows great improvement. How-

ever, it ignores the sequential information for users. Xia et al. [36]

model session data as a hypergraph and propose a dual channel

hypergraph convolutional network for session-based recommenda-

tion. Wang et al. [30] also construct hypergraphs for each session to

model the item correlations, and they also introduce a hypergraph

attention layer to flexibly aggregate correlated items in the session

and infer next interesting item. Although the above two methods

both consider some temporal information, it is within a specific

session, not a whole sequence. Wang et al. [29] propose a novel

next-item recommendation framework empowered by sequential

hypergraphs to incorporate the short-term item correlations while

modeling the dynamics over time and across users. The advan-

tage is to consider sequential information, but all the above three

hypergraph-based methods ignore the severe sparsity problem of

hypergraphs.

6 CONCLUSION
In this work, we focus on the sparse problem of most existing

hypergraph-based sequential recommendation and on the lacking

exploitation of hidden hyperedges among users problem, and pro-

pose Hyperbolic Hypergraph representation learning method for

Sequential Recommendation (𝐻2𝑆𝑒𝑞𝑅𝑒𝑐) with pre-training phase.

Experiments show that our proposed model outperforms the state-

of-the-art sequential recommendations and each of the components

contributes to the whole architecture. However, on a sparse dataset,

the data augmentation improves the recommendation, while on

a dense dataset, it is useless and even worse, which proves dense

datasets do not need data augmentation to achieve better perfor-

mance. In future work, we will explore multiple sequential ways to

model the sequential recommendation data on graphs.
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