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In this paper, we proposed a more robust supervised hashing framework based on the Cauchy loss func-
tion and Supervised Discrete Hashing (SDH) called Robust Supervised Discrete Hashing (RSDH), which
can learn a robust subspace consisted of binary codes. The Cauchy loss is used to measure the error
between the label matrix and the product of the decomposed matrices. RSDH can not only reduce the
outliers and noise of the hashing codes, but also achieve the more satisfactory retrieval effect. Image
retrieval experiments demonstrate that RSDH performs better than the other hashing methods.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recently, data processing techniques advance rapidly in some
areas including fast internet, smart phone and multimedia data.
For the high-dimensional data precise indexing and effective
searching, it becomes an enormous challenge. Most previous data
indexing techniques (e:g. B+-tree [1] and B�-tree [2]) were pro-
posed to address this problem. However, these techniques may fail
to deal with high-dimensional data due to disaster of dimensional-
ity. To solve this problem, hashing techniques [3–7] were put for-
ward and demonstrated effectiveness and efficiency in image
retrieval [8–10], security protection [11], pattern recognition
[12–15] and recommendation [16]. The purpose of hashing algo-
rithms is to learn a Hamming space composed of binary codes
(i:e. �1 and 1 or 0 and 1) from the original data space. The Ham-
ming space has the following three properties: (1) remaining the
similarity of data points. (2) reducing storage cost. (3) improving
retrieval efficiency.

Typically, existing hashing methods can be approximately sum-
marized into two categories: data-independent and data-
dependent methods. Data-independent methods randomly pro-
duce a group of hash functions that do not need training data
and project the original data space into a Hamming space by the
hash functions. Some classical data-independent methods are
Local-Sensitive Hashing (LSH) [17] and its variant [18]. To acquire
a better retrieval performance, the LSH family requires a larger
Hamming space than the original data space, which leads to high
storage cost and low retrieval efficiency. In contrast, data-
dependent hashing methods require training data to learn a Ham-
ming space composed of fewer bits, which can achieve an excellent
retrieval performance. Generally, data-dependent hashing meth-
ods can be approximately split into three groups, i:e. unsupervised
hashing methods [19–24], semi-supervised methods [25,26] and
supervised methods [27–31].

Unsupervised hashing methods [19–24] can learn hash codes
without semantic labels. Spectral Hashing (SH) [19] generates hash
codes by solving a continuously relaxed problem similar to Lapla-
cian Eigenmap [32]. Anchor Graph Hashing (AGH) [20] utilizes the
anchor graphs to construct a sparse adjacent graph. Semi-
Supervised Hashing methods [25,26] employ the pairwise label
information to regularize hashing functions. Binary Reconstructive
Embedding (BRE) [26] learns hash functions by minimizing the
reconstruction error between the Euclidean distances and the
Hamming distances. Supervised hashing methods [27–31] exploit
all labels of training data, which leads to a more excellent perfor-
mance than other methods. Supervised Discrete Hashing (SDH)
[27] learns directly the binary hash codes without relaxation.
Kernel-Based Supervised Hashing (KSH) [28] relaxes the binary
constraints to solve a successive optimization problem.

Most of hashing models [21,22,27,33,34] with the discrete con-
straints on the hash codes can be formulated as mixed-integer
optimization problems (MIOP). To acquire a feasible solution from
the MIOP, a general optimization structure can be summarized into
three steps. Firstly, the MIOP is transformed into a relaxed problem
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Table 1
Comparing the robustness of RSDH and other methods.

Methods Objective function Derivative
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Fig. 1. A part of the sample images from CIFAR-10.

Fig. 2. A part of the sample images from MNIST.

Y. Xiao, W. Zhang, X. Dai et al. Neurocomputing xxx (xxxx) xxx
without any discrete constraints. Secondly, a solution of the con-
tinuous values is achieved by the relaxed problem. Thirdly, the
solution of continuous values is rounded to the solution of binary
values. Although, this strategy apparently exhibits its advantage
to optimize MIOPs, the accumulating quantization error caused
by the strategy decreases the effectiveness of the hash codes. To
address this issue, Shen et al. [27] utilized the discrete cyclic coor-
dinate descent algorithm (DCC) [35] to optimize directly hash
codes without relaxation. However, this way the SDH becomes
non-robust for unreliable and noisy environment. Recently, Luo
et al. [33] proposed the l2;p loss function to control undependable
binary codes and noise labeled samples. Actually, some loss func-
tions [36,37] are more robust than the l2;p loss function in handling
outliers and noise.

To further reinforce the robustness of hashing methods, we
introduce the Cauchy loss to reduce the noise affection and the
quantization error. Based on the framework of SDH, the Cauchy
loss is utilized to measure the error between the label matrix
and the corresponding decomposition matrix. In other words, the
measuring function jj � jj2F is replaced by the Cauchy loss. In a word,
the main contributions include:

� Based on the framework of SDH and the robustness of the Cau-
chy loss function, a robust supervised hashing method, called
RSDH, is proposed to reduce the decomposed error and elimi-
nate some outliers and noise of the hashing codes.

� Our problem is a mixed-integer optimization problem. The
objective function is non-quadratic, thanks to the existence of
the Cauchy loss function. We exploit the convex conjugation
theory [38] and transform the non-quadratic objective function
into an augmented loss function.

� Extensive experiments are carried out to evaluate the robust-
ness and effectiveness of our method on four image datasets.

The remainder of this paper is written as follows. In Section 2, the
SDH and the general optimization steps of the corresponding algo-
rithm are reviewed. Then, the RSDH and its robustness analysis are
introduced. Extensive experiments are gone in Section 4. Finally, the
conclusion is summarized in Section 5.

Remarks: X represents data matrix, n represents training sample
size, B represents hash codes, l represents the length of hash code,
Y represents label matrix, W represents projection matrix for hash
codes, jj � jj represents Frobenius norm, m represents the number of
anchor points, Fð�Þ represents embedding function, P represents
projection matrix, c;v and k represents penalty parameter, t repre-
sents iteration number, /ðxÞ represents an m-dimensional vector,
Fig. 3. A part of the sample images from ORL.
2. Supervised discrete hashing

Supposed that there are n example and each of those samples
has d features. For each sample, we generate a short hashing codes
(e:g. totally l bits) to remain the similarity. Therefore, any data

matrix X ¼ x1 . . . :xnf g 2 Rn�d can lead to hashing codes
2

B ¼ bif gni¼1 2 �1;1f gn�l. The labels of all training instances are
Y ¼ yif gni¼1 2 Rn�c , where c represents the number of classes. There-
fore, the problem of SDH can be summarized as follows:



Fig. 4. A part of the sample images from COIL100.
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min
B;F;W

jjY � BW jj2F þ kjjW jj2F þ mjjB� FðxÞjj2F
s:t B 2 �1;1f gn�l

:

ð1Þ

The nonlinear term Fð�Þ is the approximation of hashing codes,
which can be summarized as follows:

FðxÞ ¼ PT/ðxÞ; ð2Þ

where /ðxÞ represents an m-dimensional vector, which can be cal-

culated by /ðxÞ = ½expðjjx� a1jj2Þ=r; . . . ; expðjjx� amjj2Þ=r�
T
; aj
� �m

j¼1

represents m random anchor points and r is the kernel parameter.
The algorithm framework of problem (1) mainly follows the

block coordinate descent algorithm [39]. Specifically, some block
variables are updated while the remaining block variables are
fixed. Repeatedly and alternatively updating P, W and B, the local
solution of problem (1) can be achieved. The optimization proce-
dure includes the following three parts: Compute P:

Fixing B and W; P can be calculated by

P ¼ ð/ðxÞT/ðxÞÞ�1
/ðxÞTB: ð3Þ

Compute W:
Fixing B and F;W can be achieved by

W ¼ ðBTBþ kIÞ�1
BTY: ð4Þ

Compute B:
Fixing P and W;B can be solved by the DCC algorithm [35]. To

save space, the particulars of the optimization can be seen in [27].
3. Robust Supervised Discrete Hashing

To further reinforce the robustness and performance of SDH, we
utilize the Cauchy loss to replace the Frobenius norm of SDH. Based
on the Cauchy loss and SDH, the objective function can be
described as follows:

min
B;F;W

X
i;j

gððY�BW
c Þ2

ij
Þ þ jjW jj2F þ mjjB� FðxÞjj2F

s:t B 2 �1;1f gn�l;

ð5Þ

where gðuÞ ¼ lnð1þ uÞ;u ¼ ðY�BW
c Þ2

ij
; m ¼ m

kand c ¼ ffiffiffi
k

p
c. v and c are

penalty parameters.
Problem (5) denotes a mixed-integer optimization problem

with three variables. Similar to SDH, the optimization problem
3

solve iteratively by the block coordinate descent algorithm. Alter-
natively solving the following problems

min
F

jjB� FðxÞjj2F ð6Þ

and

min
B

X
i;j

gððY � BW
c

Þ
2

ij
Þ þ mjjB� FðxÞjj2F ð7Þ

and

min
W

X
i;j

gððY�BW
c Þ2

ij
Þ þ jjW jj2F ð8Þ

until convergence. Problem (5) can achieve the local optimal solu-
tion. In the latter parts, we mainly discuss the optimization details
for solving problems (6), (7) and (8).

Compute P:
The optimal solution of problem (6) is

P ¼ ð/ðxÞT/ðxÞÞ�1
/ðxÞTB: ð9Þ

Compute B:
According to the conjugate function theory, problem (7) can be

converted to a maximization form as follows:

max
B

X
i;j

gððY � BW
c

Þ
2

ij
Þ ð10Þ

where f ðuÞ ¼ �v jjB� FðxÞjj2F � gðuÞ. If the negative logarithmic func-
tion is convex, then f ðuÞ is convex. Therefore, we have

f �ðpÞ ¼ max
u2Rþ

up� f ðuÞf g: ð11Þ

The optimal solution is p� ¼ �1=ðuþ 1Þ. f �ðpÞ can be written as:

f ðuÞ ¼ f ��ðuÞ ¼ max
p2Rþ

pu� f �ðpÞf g: ð12Þ

Replacing u by u ¼ ðY�BW
c Þ2

ij
in formula (12), we have

f ðuÞ ¼ max
Pij

ðY � BW
c

Þ
2

ij
� f �ðPijÞ

( )
: ð13Þ

By combining (13) and (7), we have

max
B;Pij

X
i;j

ðY � BW
c

Þ
2

ij
� f �ðPijÞ

( )
� v jjB� FðxÞjj2F : ð14Þ

Problem (14) can be decomposed into the following two
problems:

max
Pij

X
i;j

ðY � BW
c

Þ
2

ij
� f �ðPijÞ

( )
ð15Þ

and

max
B

X
i;j

ðY � BW
c

Þ
2

ij

( )
� v jjB� FðxÞjj2F ð16Þ

Problem (15) can be obtained by p� ¼ �1=ðuþ 1Þ. Thus, P can be
calculated as follows.

Pij ¼ � 1

ðY�BW
c Þ2

ij

: ð17Þ

For problem (16), we utilize DCC [35] to solve hash codes B. We
suppose that



Fig. 5. Retrieving precision, recall and MAP from CIFAR-10, MNIST, COIL100 and ORL with different m and c. The third dimension represents precision, recall and MAP with
different colors.
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B ¼ zT

B0

� �
; Y ¼ yT

Y 0

� �
; Q ¼ qT

Q 0

� �
; P

c2 ¼
d

D0

� �
ð18Þ

where D represents the diagonal matrix of d, zT represents the nth
row of B, yT represents the nth row of Y; qT represents the nth
row of Q. Thus, we rewrite problem (16) by
4

X
i;j

PijðY � BW
c

Þ
2

ij

( )

¼ �2trðYDBTWTÞ � trðBWDWTBTÞ þ constant

¼ �2trðyTDzWÞ þ constant

¼ �2yTDWzþ constant:

ð19Þ



Table 2
Parameter settings of SDH, FSDH, RSDH, AGH, KSH and IMH.

datasets

parameters CIFAR-10 and MNIST ORL and COIL100

t 10 10
v 10�5 10�5

c 10�5 1

anchor points 1000 200

Table 3
Retrieval results on CIFAR-10 when code length is 128. The best result are in bold.

Methods Precision Recall Map

RSDH 0.644 0.650 0.715
SDH 0.310 0.064 0.458
FSDH 0.301 0.076 0.458
KSH 0.053 2.6e-4 0.383
AGH 0.243 3.8e-4 0.146
IMH 0.259 0.003 0.188

Table 4
Retrieval results on MNIST when code length is 128. The best result are in bold.

Methods Precision Recall Map

RSDH 0.966 0.966 0.973
SDH 0.902 0.757 0.951
FSDH 0.904 0.762 0.949
KSH 0.669 0.273 0.907
AGH 0.813 0.003 0.574
IMH 0.859 0.083 0.760

Table 5
Retrieval results on ORL when code length is 64. The best result are in bold.

Methods Precision Recall Map

RSDH 0.875 0.880 0.904
SDH 0.240 0.115 0.830
FSDH 0.300 0.140 0.840
KSH 0.030 0.009 0.604
AGH 0.332 0.102 0.373
IMH 0.460 0.202 0.468

Table 6
Retrieval results on COIL100 when code length is 64. The best result are in bold.

Methods Precision Recall Map

RSDH 0.912 0.917 0.916
SDH 0.870 0.653 0.653
FSDH 0.892 0.682 0.682
KSH 0.537 0.080 0.080
AGH 0.693 0.265 0.265
IMH 0.843 0.225 0.225

Fig. 6. The precision versus code length (8 to 128) on the CIFAR-10.

Fig. 7. The recall versus code length (8 to 128) on the CIFAR-10.

Fig. 8. The MAP versus code length (8 to 128) on the CIFAR-10.
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Similarly, we have

vjjB� FðXÞjj2F
¼ �2trðBTQÞ
¼ �2qTz;

ð20Þ

where Q ¼ vFðxÞ. Combining (19) and (20), problem (16) can be
written as:

max
z

ð�yTDWT þ qTÞz ð21Þ
5

Therefore, problem (7) can be solved by

z ¼ signð�WDTyþ qÞ: ð22Þ



Fig. 9. The precision versus code length (8 to 128) on the MNIST.

Fig. 10. The recall versus code length (8 to 128) on the MNIST.

Fig. 11. The MAP versus code length (8 to 128) on the MNIST.

Fig. 12. The precision versus code length (8 to 128) on the ORL.

Fig. 13. The recall versus code length (8 to 128) on the ORL.

Fig. 14. The MAP versus code length (8 to 128) on the ORL.
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The time complexity of B is Oðlc2 þ lcÞ.
Compute W:
Similarly, problem (6) can also be transformed into the follow-

ing two problems
6

max
Pij

X
i;j

PijðY � BW
c

Þ
2

ij
� f �ðPijÞ

( )
ð23Þ

and



Fig. 15. The precision versus code length (8 to 128) on the COIL100. Fig. 16. The recall versus code length (8 to 128) on the COIL100.

Fig. 17. The MAP versus code length (8 to 128) on the COIL100.
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max
W

X
i;j

PijðY � BW
c

Þ
2

ij

( )
� jjW jj2F ð24Þ

For problem (23), we can also get the solution by
p� ¼ �1=ðuþ 1Þ. For problem (24), we haveX

i;j

PijðY�BW
c Þ2

ij

n o
� jjWjj2F ¼ ðY � BWÞKðY �WTBTÞ � c2jjWjj2F

¼ �2YKWTBT þ BWKWTBT � c2jjWjj2F
¼ �BKY þ BTKBW � c2W:

ð25Þ
where K represents the diagonal matrix of P. Thus, for problem (8),
we have

W ¼ ðBTKB� Ic2Þ�1
BTKY ð26Þ

The time complexity of W is Oðnl2 þ nclÞ. Above all, we summarize
the above-mentioned procedures in Algorithm 1.

Algorithm1:RSDH

Input:X, l, t, k; c;v
Output:hash code B.
Initialize B, Y and /ðxÞ
Compute P in terms of (17).
Compute W in terms of (26).
Achieve maximum iterations (i:e. t):
B: Compute B in terms of (22).
F: Compute P in terms of (17).
G: Compute W in terms of (26).
3.1. Robustness analysis

To better illustrate the robustness of RSDH, we compare several
popular methods (e:g. SDH [27], FSDH [40], KSH [28], AGH [20] and
IMH [23]) by using the sample-weighted procedure interpretation.
[41].

Assumed that FðXÞ represents the objection function of these
problems and f ðtÞ ¼ FðtXÞ. Thus, the optimization of these prob-
lems is to find an X, bring f 0ð1Þ ¼ 0, in where f 0ðtÞ represents the
derivative of f ðtÞ. Assume that cðYij;XÞ ¼ ðY � XÞijð�XÞij is the con-
tribution of the jth entry of the ith training sample for the opti-
mization procedure. For the sample-weighted procedure, we can
explain it as the weighted contribution with about the noise.
7

We compare the robustness of these problems by f 0ð1Þ in
Table 1. Note that robustness algorithms should allocate a small
weight to the sample with large noise. Thus, according to Table 1,
we can obtain the following conclusion: (1) KSH, SDH and FSDH are
less robust than other methods for noise and outliers because they
have constant weights. (2) RSDH is very robust to outliers and
noise when the outliers and noise are too large, its weights will
drop directly to zero.

4. Experiments

4.1. Experimental Setup

4.1.1. Compared Methods
RSDH is compared with the other five methods (i:e. SDH [27],

FSDH [40], KSH [28], AGH [20] and IMH [23]) in terms of image
retrieval. All methods are summarized as follows:

RSDH is a robust discrete hashing method to reduce the noise
affection and the quantization error.

SDH1 learns directly the hash code without relaxations.
FSDH is based on SDH, which accelerates the convergence of the

algorithm and improves performance.
KSH relaxes the binary constraints to solve a successive opti-

mization problem.



Fig. 18. Retrievals achieved by RSDH.

Fig. 19. Retrievals achieved by FSDH.
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AGH utilizes the anchor graphs to construct a sparse adjacent
graph.

IMH learns compact binary embeddings on the intrinsic
manifolds.
8

4.1.2. Compared datasets
Four various datasets are used to assess the performance of the

aforementioned methods. These datasets can be depicted as
follows:



Fig. 20. Retrievals achieved by SDH.
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CIFAR-102 contains 60,000 manually mark images, in which each
class contain 6000 instances. The GIST feature vector of dimension
512 represents each image. For this experiment, 59,000 data samples
are utilized randomly to train and the rest is utilized to test.

MNIST3 includes 70,000 images, and each instance consists of
784-dimensional. The handwritten digit consists of ’0’ to ’9’. Each
instance is a grayscale handwritten digital image that is cropped
and normalized to 28�28.

ORL4 contains sets of face images from 40 disparate persons, each
person has 10 face images, totaling 400. These face images are taken
with various times, various illumination, various face expression and
various face detail.

COIL1005 includes 20 different objects, where each object was
photographed at different angles and has 72 postures.

To better illustrate the four datasets, we show some sample
images in Figs. 1–4, respectively.
4.1.3. Parameters setup
To achieve a better retrieval performance, it is important to

choose suitable parameters. These empirical parameters are shown
in Table 1. Then, we will test suitable m and c to achieve the ideal
result. Fig. 5means the retrieving recall, precision andMAPwith dif-
ferent m and c on four datasets. These figures denote three-
dimensional images, in which the x-axis denotes m, y-axis denotes
c and the third dimension denotes retrieval results (i:e. precision,
recall and MAP) showed by different colors. In terms of Fig. 5, we
conclude that: 1) For ORL and COIL100, the larger c and smaller m
cause better retrieval performance. 2) For CIFAR-10 and MNIST,
the smaller m and c cause better retrieval effectiveness (see Table 2).
2 http://www.cs.toronto.edu/ kriz/cifar.html
3 http://yann.lecun.com/exdb/mnist/
4 http://www.cad.zju.edu.cn/home/dengcai/Data/ORL/ORL.mat
5 http://www.cad.zju.edu.cn/home/dengcai/Data/COIL100/COIL100.mat

9

4.2. Image retrieval

The recall, precision Hamming ranking (MAP) are utilized as
retrieval indices. The specific performance of our method is shown
in Tables 3–6 and Figs. 6–17.
4.2.1. Cifar-10
A part of the retrieval results are presented in Table 3. RSDH is

superior to all other methods. SDH and FSDH perform similarly no
matter what indices. To clearly show the retrieval effect, the preci-
sion, recall and MAP are shown in Figs. 6 to Fig. 8, respectively.

� As the code length increases, RSDH achieves better image retrie-
val performance. However, the other methods perform worse
continuously. Apparently, RSDH leads to the relatively better
image retrieval results than other methods.

� The performance of most methods on degraded as code length
increases on the precision and recall, except RSDH.

� RSDH is always superior to all other methods on the recall when
the code length exceeds 8.

� For SDH, FSDH, KSH, AGH and IMH, the retrieved result per-
forms ideally on the recall aspect when the code length is equal
to 8.

� Although the effectiveness of all methods tends to be stable on
the MAP, RSDH always can be far ahead of other methods.

4.2.2. Mnist
Some experimental results are presented in Table 4. SDH and

FSDH achieve the satisfactory precision and MAP, however, IMH,
AGH and KSH perform poorly in recall. By comparison, RSDH out-
performs all other methods in any indices. The precision, recall and
MAP curves are shown in Figs. 9 to 11, respectively. Based on these
Figures, we conclude that:



Fig. 21. Retrievals achieved by KSH.

Fig. 22. Retrievals achieved by IMH.
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Fig. 23. Retrievals achieved by AGH.
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� In general, RSDH outperforms all other methods, no matter
what the code length is.

� When the code length is 32, the effectiveness of FSDH and SDH
are very close to RSDH.

� As code length increases, RSDH is generally stable in perfor-
mance. However, some of the methods demonstrate perfor-
mance degradation, such KSH.

� Although the performance of some methods tends to be stable
on the MAP, RSDH always can be far ahead of other methods.

� When the code length is equal to 8, the performance of all
methods was unsatisfactory on the precision, except RSDH.

� When the code length is equal to 8, all methods are very close
on the recall. When the code length is 128, AGH is nearly 0.

4.2.3. Orl
A part of experimental results are presented in Table 5, RSDH

performs best in image retrieval indices. To better explain the
retrieval performance, Figs. 12 to 14 show the result of precision,
recall and MAP. In terms of these Figures, we can obtain the follow-
ing findings:

� When the code length is 8 bit, RSDH performs poorly than SDH,
FSDH, AGH and IMH in the recall.

� RSDH outperforms other methods in two evaluating indicators
(i:e. precision and MAP), no matter what the code length is.

� In general, the performance of RSDH performs the best in large
code length.

� As code length increases, RSDH performs the best in recall.
� Although the performance of some methods tends to be stable
on the MAP, RSDH always can be far ahead of other methods.

4.2.4. Coil100
Some experimental results are presented in Table 6. Obviously,

when the code length is 64 bit, RSDH outperforms other methods
in three evaluating indicators. The precision, recall and MAP versus
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the number of code length is shown in Figs. 15 to 17. According to
these Figures, we summarized as below:

� When the code length is equal to 8, RSDH performs poorly than
SDH, FSDH, AGH and IMH in recall.

� When the code length increases, the precision and recall of SDH,
FSDH and KSH has been continuously declining.

� In general, when the code length is large, RSDH performs the
best.

� Although the performance of some methods tends to be stable
on the MAP, RSDH keeps ahead in general.

� When the code length is equal to 8, most methods are very close
on the recall, except KSH.

4.2.5. Retrieval Examples
To illustrate intuitively the superiority of our method on image

retrieval. Figs. 18–23 show some retrieval examples by RSDH, SDH,
FSDH, KSH, AGH and IMH, respectively. For each algorithm, five
queries and 8 top retrievals are utilized on CIFAR-10, MINIST,
ORL and COIL100. If the query image is the same as the example
image, the border presents green, otherwise, it presents red.

According to these retrieval results, RSDH performs the best
than other methods, especially, this difference is particularly obvi-
ous on ORL and CIFAR-10.

Remarks: For this experiment, Hanming distance is utilized to
measure similarity and hash bits are set to 64.
5. Conclusion

In this paper, Based on Cauchy loss and SDH, we present a more
robust supervised hashing framework called Robust Supervised
Discrete Hashing (RSDH) to reduce the decomposed error and
eliminate some outliers and noise of the hashing codes. Due to
the fact that the Cauchy loss is a non-quadratic function, the con-
vex conjugation theory is utilized. The non-quadratic objective
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function is rewritten into an augmented loss function by adding an
auxiliary variable. Then, the DCC algorithm is used to solve the
augmented loss function. To illustrate the superiority of this
method, we go on plentiful experiments on four various datasets
and obtained considerable achievement.

Selecting an appropriate model is very important for large-scale
data retrieval with noise or outliers in the data set of the real
world. In the following work, we continue to enhance the robust-
ness of this method framework.
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