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Abstract

Currently, coronavirus disease 2019 (COVID-19) has not been contained. It is a safe and
effective way to detect infected persons in chest X-ray (CXR) images based on deep learn-
ing methods. To solve the above problem, the dual-path multi-scale fusion (DMFF)module
and dense dilated depth-wise separable (D3S) module are used to extract shallow and deep
features, respectively. Based on these two modules and multi-scale spatial attention (MSA)
mechanism, a lightweight convolutional neural network model, MSA-DDCovidNet, is
designed. Experimental results show that the accuracy of the MSA-DDCovidNet model
on COVID-19 CXR images is as high as 97.962%, In addition, the proposed MSA-
DDCovidNet has less computation complexity and fewer parameter numbers. Compared
with other methods, MSA-DDCovidNet can help diagnose COVID-19 more quickly and
accurately.

1 INTRODUCTION

The 2019-nCoV is spreading with an extremely fast rate. Coron-
avirus disease 2019 (COVID-19) caused by 2019-nCoV has put
many countries and regions with scarce medical resources and
low medical standards into trouble. The most common used
method for diagnosing COVID-19 is a detection method based
on reverse transcriptase polymerase chain reaction (RT-PCR). It
has high specificity, but the current demand for detection kits is
increasing [1]. In addition, its sensitivity is low, which makes it
prone to false negative diagnostic results. False negative results
have serious consequences on the COVID-19 prevention. For
countries and regions where medical resources are scarce, a fast,
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reliable, and low-cost detection method should be sought. CXR
is the most widely used imaging test to diagnose heart and other
chest diseases [2]. Compared with CT scans, CXR is more pop-
ular, and X-rays have lower ionizing radiation [3].
Detecting diseases through chest radiographs is an extremely

challenging task. It requires a certain amount of professional
knowledge and careful observation. COVID-19 contains some
radiological features that can be detected by CXR. However, if
these characteristics are analysed by manual film reading, not
only will it take up a lot of medical staff’s time, but it will also
be prone to errors due to visual fatigue and other disturbances.
Therefore, it is necessary for us to find a way to automate the
detection of CXR.
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The purpose of this study is to search a lightweight and accu-
rate CXR image automatic recognition method of COVID-19
to assist medical staff in diagnosis. Since convolutional neural
networks (CNNs) have excellent performance in image recog-
nition task, especially in image classification task, CNN model
is considered to realize this method. In order to ensure that the
model can accurately identify the CXR image of COVID-19 in a
low-cost way, deep separable convolution [4], feature reuse and
multi-scale feature fusion are adopted fully when designing the
network structure.
The remainder of the paper is arranged as follows: Sec-

tion 2 discusses the related work of CNN image recognition
and medical image recognition. Section 3 describes the structure
of our proposed network and its modules. Section 4 shows the
experimental dataset, parameter setting and experimental results
and analyses the results in detail. Section 5 carefully analyses
the advantages of the structure of MSA-DDCovidNet and the
limitations of the study. Section 6 summarizes the paper and
describes our prospects for the future of this study.

2 RELATEDWORK

In recent years, deep learning has been widely used in medi-
cal image detection. For example, Wang W et al. [5] applied
the image classification method based on Deep Learning to
the classification of Colonic Polyps and proposed the improved
approaches VGGNets-GAP and ResNets-GAP with global
average pooling (GAP) to classified colonoscopy polyp images
for assisted diagnosis. Inspired by the DenseNet [6] and
MobileNet [4], Wang W et al. [7] proposed Dense-MobileNet,
which got a good performance in children’s colonoscopy polyp
dataset. As a representative branch of deep learning technol-
ogy, convolutional neural network (CNN) has excellent per-
formance in image feature extraction and learning [8]. There-
fore, researchers recommend using deep learning technology
to help detect lesion information on CXR images, save med-
ical resources, and improve diagnosis efficiency. For example,
Khan et al. [9] proposed the CoroNet based on the structure
of Xception [10], which achieved good performance on the
COVID-19 CXR image classification. Based on Xception [10]
and ResNet50V2 [11], Rahimzadeh et al. [12] designed a net-
work which improved the performance of the network by com-
bining the output feature of the two networks. The network
has achieved good results on a dataset containing three types
of CXR images of COVID-19, pneumonia and normal. Wang
et al. [13] designed the channel feature weight extraction mod-
ule (CFWE) according to the characteristics of CXR image and
proposed a new CFW-Net. Ozturk et al. [14] proposed a Dark-
CovidNet, which was improved based on the DarkNet-19 net-
work and achieved good classification accuracy. To recognize
the COVID-19 CXR images, Wang et al. [15] designed a new
network MCFF-Net based on the Parallel Channel Attention
Feature Fusion Module (PCAF). Wang et al. [16] proposed a
newmethod to detect COVID-19 patients in CXR images based
on MAI-Nets, and finally got an excellent result with an accu-
racy of 96.42%.

3 ARCHITECTURE DESIGN

Commonly, CXR images of different classes are highly conver-
gent, and CXR images in the same class have low specificity.
This leads to model deviation and overfitting, which reduces
the performance and generalization of the model. Moreover,
CNN for mobile terminals requires a model with few parame-
ters and fast speed, otherwise it will cause delays and undermine
recognition efficiency. In response to the above problems, a
new lightweight CNN, MSA-DDCovidNet, is proposed, based
on DMFF module and D3S module and the multi-scale spatial
attention (MSA) mechanism.

3.1 DMFF module and D3S module

The DMFF module and the D3S module are innovatively
proposed by our team, and both are modules based on deep
separable convolution. They have high computational efficiency
and have strong representational capacity on the shallow and
deep feature maps respectively. Their structure diagrams are
shown in Figures 1 and 2. In Figures 1 and 2, H, W, and C
denote the height, width, and channels of the feature maps,
respectively; f means the number of convolution kernels, k
represents the size of the convolution kernel, and s denotes
the step size. Depth Separate convolution decomposes the
convolution process into two processes: depth-wise con-
volution and point-wise convolution. Such decomposition
process can greatly reduce the amount of calculation and
model parameters. Applying h-swish can alleviate the delay
[17], so h-swish is adopted as the activation function in the
network.
DMFF module splits the input feature maps into channels

and generates two branches. After increasing the channels with
point-wise convolution, one of branches uses the dilated depth-
wise convolution layer, that is, the depth-wise convolution layer
using dilated convolution kernel with an expansion rate of 2,
instead of using the ordinary convolution kernel. The other
branch uses depth-wise convolutional layer after a point-wise
convolution layer. Finally, it concatenates the channels of fea-
ture maps of two branches, and gets the output after a channel
shuffle [18] operation. Obviously, the receptive fields of the two
branches are different. The channel-wise concatenate operation
can realize multi-scale feature fusion and enhance the spatial
representational capacity of the model. Since the dilated con-
volution with an expansion rate of 2 does not increase the com-
plexity of the model [11], the parameters and the amount of
calculation of the two branches are the same. Since the features
extracted by the convolutional layer close to the input contain
detailed texture information, the DMFF module will be used in
the shallow layers of the proposed network.
D3S module is based on dilated depth-wise separable con-

volutional layer and dense connection. The input feature maps
pass through a dilated depth separable convolutional layer, and
then the obtained feature maps and the input feature maps
are channel-wise concatenated as the output of the module.
Compared with standard convolution, the dilated depth-wise
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FIGURE 1 The structure of DMFF Module and D3S Module

separable convolution has fewer parameters and calculation,
and a larger receptive field, which makes the model more
lightweight and efficient. The features extracted from the
deep layers of the network are more critical for distinguishing
heterogeneous samples. Feature reuse can alleviate information
loss. Therefore, the D3S module will be used in the deep layers
of the proposed network.

3.2 Multi-scale spatial attention (MSA)
mechanism

Inspired by Kim et al. [19], a novel multi-scale spatial attention
(MSA) mechanism is proposed. Before being input to the fully
connected layer, the feature map will be input to MSA attention,
as shown in Figure 2. Let there be L successive D3S modules
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FIGURE 2 The structure of Multi-scale Spatial Attention mechanism

in the network. On the one hand, to obtain a spatial attention
map, the feature maps output by the first DMFF module will
be input to a global average pooling layer and a standard con-
volution layer. The resulting feature maps are token as a spatial
attention map; on the other hand, three groups of feature maps
containing different depth semantic features are channel-wise
concatenated. Such resulting feature maps contains rich multi-
scale deep features. These feature maps are multiplied with the
spatial attention map to extract the key spatial information in
the feature map. Compared with the single-scale spatial atten-
tion mechanism, MSA mechanism can capture feature informa-
tion of different depths, and has better spatial representational
capacity.

3.3 The structure of MSA-DDCovidNet

The structure of MSA-DDCovidNet is shown in Figure 3.
The input image is preprocessed before being input to the
model. The first layer contains a dilated convolution filters
with an expansion rate of 2. Then the DMFF module is used
for five times to halve the spatial dimension (the height and
width) of the feature maps, remove redundant information
and compress the features. And then the depth-wise separable
convolution layer is designed to enrich feature information.
Next, nine successive D3S modules are set to extract deep
features and alleviate the disappearance of gradients. Then the
MSA mechanism is used to extract the spatial domain informa-
tion in the multi-scale feature maps. After the global average
pooling layer, the spatial size of the feature maps becomes 1 ×
1. Then a point convolution layer is used to increase the feature
dimension and full connection layer. Next, a fully connected
layer is used to reduce the impact of feature coordinate infor-
mation on classification. Finally, the SoftMax layer is used for
classification.

3.4 Network complexity

In this work, the amount of computation and the num-
ber of parameters are adopted to measure the complexity
of the model. The parameters generated by the weight lay-
ers in CNN, which mainly includes convolution layer and
full connection layer. The amount of computation refers to
floating-point operations (FLOPs). All kinds of operations in
the network will produce computation, even a simple element-
wise addition operation. The parameters and the amount of
computation of the model are mainly related to the depth,
width, the resolution of input images and the structure of
model.
For a given input feature map Hi ⋅ Wi ⋅ Ci and the output

feature map Ho ⋅Wo ⋅ Co, the parameters Pstd and the amount
of computation Fstd produced by a standard convolution are as
follows:

Pstd = Ci ⋅ k
2 ⋅ Co (1)

Fstd = Ho ⋅Wo ⋅ k
2 ⋅ Ci ⋅ Co (2)

Since the dilated convolution with an expansion rate of 2 will
not increase parameters and calculations, the parameters Pdw
and the amount of computation Fdw generated by a depth-wise
convolution and a depth-wise dilated convolution process with
an expansion rate of 2 are as follows:

Pdw = Ci ⋅ k
2 (3)

Fdw = Ho ⋅Wo ⋅ Ci ⋅ k
2 (4)

For a given input feature map H ⋅ W ⋅ C and the output
feature map (H / 2) ⋅ (W / 2) ⋅ (C + 16), the parameters
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FIGURE 3 The structure of MSA-DDCovidNet

Pconv3_1 and the amount of computation Fconv3_1 generated by
a standard convolution with kernel size 3 × 3 are as follows:

Pconv3_1 = 9 ⋅ C ⋅ (C + 16) (5)

Fconv3_1 = 9 ⋅ (H∕2) ⋅ (W∕2) ⋅ C ⋅ (C + 16) (6)

And when the DMFF module is used to complete the above
dimension conversion, the parameters PDMFF and the amount
of computation FDMFF generated by a DMFF module are as
follows:

PDMFF = C2 + 33 ⋅ C + 272 (7)

FDMFF = H ⋅W ⋅
(5
8
⋅ C2 +

57
4
⋅ C + 68

)
(8)

Therefore, compared to a standard convolution, the reduc-
tion in parameter∆DMFF_P and computation∆DMFF_F achieved
by DMFF module is shown as follows:

ΔDMFF_P = Pconv3_1 − PDMFF = 8 ⋅ C2 + 111 ⋅ C − 272 (9)

ΔDMFF_F = Fconv3_1 − FDMFF = H ⋅W ⋅
(13
8
C2 + ⋅C − 68

)

(10)

Similarly, for a given input feature map H ⋅W ⋅ C and the out-
put feature map H ⋅W ⋅ (C + 16), the parameters Pconv3_2 and
the amount of computation Fconv3_2 generated by a standard
convolution with kernel size 3 × 3 are as follows:

Pconv3_2 = 9 ⋅ C ⋅ (C + 16) (11)

Fconv3_2 = 9 ⋅H ⋅W ⋅ C ⋅ (C + 16) (12)

When the D3S module is used to complete the above dimen-
sion conversion, the parameters PD3S and the amount of com-
putation FD3S generated by a D3S module are as follows:

PD3S = 9 ⋅ C + 16 ⋅ C = 25 ⋅ C (13)

FD3S = 9 ⋅H ⋅W ⋅ C + 16 ⋅H ⋅W ⋅ C = 25 ⋅H ⋅W ⋅ C (14)

Therefore, compared to a standard convolution, the reduc-
tion in parameter ∆D3S_P and computation ∆D3S_F achieved by
D3S module are shown as follows:

ΔD3S_P = Pconv3_2 − PD3S = 9 ⋅ C2 + 119 ⋅ C (15)

ΔD3S_F = Fconv3_2 − FD3S = 9 ⋅H ⋅W ⋅ C2 + 119 ⋅H ⋅W ⋅ C

(16)
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Obviously, ∆DMFF_P > 0, ∆DMFF_F > 0, ∆D3S_P > 0 and
∆D3S_F > 0, which means DMFF module and D3S module
make positive contribution to reduce the parameters and cal-
culation.
The complexity of MSA mechanism is analysed. For three

sets of input feature map with shapes H ⋅ W ⋅ C, H ⋅ W ⋅

(C + 16), H ⋅ W ⋅ (C + 32) input feature map, the output
feature map H ⋅ W ⋅ (3 ⋅ C + 48) and the shallow feature
map H1 ⋅ W1 ⋅ C1, the parameters PMSA and the amount
of computation FMSA generated by MSA mechanism are as
follows:

PMSA = 9 ⋅ C1 (17)

FMSA = 9 ⋅H ⋅W ⋅ C1 + 9 ⋅H ⋅W ⋅ (3 ⋅ C + 48) (18)

4 EXPERIMENTAL RESULTS

4.1 Dataset

Two different datasets were used in this study. The first
dataset mentioned in this paper is used in the compara-
tive experiment between MSA-DDCovidNet network and
some state-of-the-art CNNs. CXR images in the above
dataset come from two datasets: Kaggle CXR dataset [20]
(https://www.kaggle.com/paultimothymooney/chest-xray-
pneumonia) and the dataset collected by Joseph et al. [21].
Kaggle CXR dataset has a total of 5863 images, including
pneumonia and normal CXR images. From the above two
classes of images, 4265 images and 1575 images were selected.
The dataset proposed by Joseph et al. has a total of 790 CXR
images and CT images of patients infected with COVID-19 or
other pneumonia. Finally, 412 CXR images of with COVID-19
patients are selected in this dataset. Therefore, the experimental
dataset in this article contains a total of 6252 images. 310
COVID-19 images, 1341 normal images, and 3875 pneumonia
images are randomly selected from the experimental dataset
as the training set. The remaining 102 COVID-19 images, 234
normal images, and 390 pneumonia images are used as the
test set.
In the following section, COVIDx dataset [22] is adopted

to verify the performance of MSA-DDCovidNet on other
CXR image datasets. The COVIDx dataset is obtained accord-
ing to the dataset generation method provided by Wang
et al. [22], and finally got 589 COVID-19 images, 8851 nor-
mal images and 6053 images of pneumonia. Similar to the
method of Nihad et al. [23], 100 COVID-19 images, 885
normal images, and 594 pneumonia images in COVIDx are
randomly selected as the test set, and the remaining as the
training set.
Figure 4 shows an example of various CXR images in the

experimental dataset of this work. It can reflect the high inter-
class similarity and low intra-class variance of CXR images,
which ratchet up the difficulty to the CXR images classification
task.

4.2 The evaluation criteria of model

In terms of model evaluation criteria, we refer to the evalua-
tion criteria adopted by most medical image classification mod-
els. Accuracy, precision, sensitivity, specificity, F1-score, receiver
operating characteristic (ROC) curve and area under the curve
(AUC) are adopted as the model evaluation criteria. Some of the
formulas for these evaluation criteria are as follows:

Accuracy =
TP + TN

TP + TN + Fp + FN

Precision =
Tp

Tp + Fp

Sensitivity =
Tp

Tp + FN

Specificity =
TN

TN + Fp

F1-score =
2 TP

2TP + FP + FN

In these equations, TP denotes true positive, FP means false
positive, FN represents false negative, and TN represents true
negative.

4.3 Preprocessing and parameter settings

Since model training requires sufficient data samples, data aug-
mentation techniques are used in this work. First, the resolution
of the CXR images is scaled to a fixed size of 256 × 256, and
the centre crop is applied to make the size 224 × 224. Then we
perform a series of data enhancement processing on the train-
ing set: flip the CXR images horizontally with a probability of
0.5, and then randomly adjust the brightness, contrast, and sat-
uration of the images to 0.6–1.4 times. After data enhancement
technology, in fact, the number of samples used for training
is four times that of the training set. This article conducts all
experiments in the same configuration environment. The soft-
ware platform and hardware environment are shown in Table 1.
After many experiments, the training strategy of this experi-

ment is summarized. The initial learning rate of the experimen-
tal models was set to 0.001. Each group of experiments was
trained 150 cycles of epoch, and the loss function was the Cross-
Entropy loss function for label smoothing regularization [24]
with epsilon = 0.1. And Adam [25] optimizer with betas = (0.9,
0.999) is used to make the model converge quickly. The batch-
size of training set and test set are 32 and 16 respectively.

4.4 Experimental results and analysis

In order to illustrate the lightweight and classification perfor-
mance of our proposed model, several state-of-the-art models

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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FIGURE 4 Cases of CXR Images. (a) Represent COVID-19 CXR images. CXR images of COVID-19 are mainly characterized by Pulmonary interstitial edema
and exudation, thickening of pulmonary grain and multiple patchy and spotted shadow (b) Represent normal CXR images. (c) Represent pneumonia CXR images

TABLE 1 Experimental platform configuration

Attribute Configuration information

Operating system Ubuntu 18.04.1

CPU Intel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz

GPU GeForce RTX 2080

CUDNN CUDNN 7.5.0

CUDA CUDA 10.0.130

Frame Pytorch

IDE Pycharm

Language Python

are used as the control group in the experiments, such as
VGG19 [26], GoogLeNet [27], ResNet50 [28], DenseNet121
[6]. The control group also contain various lightweight networks
such as SqueezeNet1.0 [29], ShuffleNet [30], MobileNetV2 [18]
and ShuffleNetV2 [31]. The performance of the above models
is shown in Table 2. As can be seen from the Table 2, the
classification accuracy, precision, sensitivity, specificity and F1
score of MSA-DDCovidNet are 97.96%, 98.09%, 98.07%,
98.33% and 98.07%, respectively. Obviously, each criteria value
of our proposed network is better than other networks. Taking
the traditional network ResNet50 [28] in the control group
as an example, its accuracy is 93.53%, which is the traditional
network with the highest accuracy in our experiment. However,
it is still 4.43% lower than the proposed network.
In terms of the network complexity, it can be seen from the

Table 3 that the parameter and the amount of calculation of
MSA-DDCovidNet outperform the other methods. Taking the
lightweight networks ShuffleNet [30] and SqueezeNet1.0 [29]
as examples, they are the networks with the least amount of cal-
culation and parameters in the control group respectively. But
they are still not as lightweight as our network, and their clas-
sification performance is also far less than our network. More-
over, as shown in Table 3 the parameters and the amount of

FIGURE 5 The confusion matrix of MSA-DDCovidNet

calculation of ResNet50 [28] are 54.68 and 43.21 times that of
ours respectively, which is obviously not as light-weight as MSA-
DDCovidNet.
Figure 5 shows the confusion matrix of MSA-DDCovidNet

on test set. As can be seem from Figure 5, the sensitivity
of COVID-19 is 95.10% when 97 images are detected from
102 tested images. In addition, the true detection of the Nor-
mal class is 98.29%. Further, the Pneumonia class achieves
98.46% success ratio. Based on this confusion matrix, the val-
ues of various criteria of MSA-DDCovidNet are calculate, as
shown in Table 4. As shown in Table 4, the weighted average
precision, sensitivity, and specificity of MSA-DDCovidNet are
all higher than 97%, which are 97.95%, 97.93% and 98.23%
respectively. More notably, the precision and specificity of MSA-
DDCovidNet to recognize COVID-19 reach 100%. Since the
baseline sensitivity of Covid-19 CXR images is 69% [32], it
proves that our proposed network can effectively improve the
diagnostic efficiency of COVID-19.
In addition, some deep learning methods for detection of

COVID CXR images are compared with MSA-DDCovidNet,
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TABLE 2 Values of criteria of experimented models

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

VGG19 [26] 93.11 96.09 92.93 96.47 93.02

GoogleNet [27] 92.56 95.29 91.56 95.78 92.06

ResNet50 [28] 93.53 96.01 93.15 96.53 93.34

DenseNet121 [6] 93.11 95.98 92.75 96.38 92.92

SqueezeNet1.0 [29] 67.91 45.83 50.51 64.16 57.93

MobileNet [4] 88.53 90.14 87.25 91.84 87.89

ShuffleNet [30] 87.02 90.08 86.17 92.31 86.59

MobileNetV2 [18] 89.26 91.89 88.51 93.16 88.89

ShuffleNetV2 [31] 92.01 91.92 91.74 96.29 91.87

MSA-DDCovidNet 97.96 98.09 98.07 98.33 98.07

TABLE 3 Parameters and flops of several deep learning models and
MSA-DDCovidNet

Model

Flops

(million)

Params

(million)

VGG19 18 736.81 137.04

GoogLeNet 1 434.21 5.32

ResNet50 3 919.13 22.42

DenseNet121 2 731.91 6.62

SqueezeNet_1.0 702.71 0.73

MobileNet 560.73 3.11

ShuffleNet 142.02 0.91

MobileNetV2 311.13 2.13

ShuffleNetV2 144.72 1.22

MSA-DDCovidNet 90.69 0.41

TABLE 4 Precision, sensitivity, specificity of MSA-DDCovidNet on test
set

Class

Precision

(%)

Sensitivity

(%)

Specificity

(%)

COVID-19 100 95.10 100

Normal 97.05 98.29 98.58

Pneumonia 97.96 98.46 97.55

Average 97.95 97.93 98.23

as shown in Table 5. As is shown in Table 5, DarkCovid-
Net [14] has the fewest parameters among the five compari-
son models. But it is still 2.68 times more than that of MSA-
DDCovidNet, and its classification accuracy is 10.94% lower
than MSA-DDCovidNet. ECOVNet-Soft [23] has the high-
est accuracy among the five comparison models, which is still
2.26% lower than our proposed network, and its parameter is
12.146 times that of our proposed network. Therefore, con-
sidering the network performance and complexity, it demon-

strates that our proposed network is a recommendable intelli-
gent method for recognizing CXR images of COVID-19.
The results of these excellent methods are obtained in differ-

ent datasets. If these methods are verified with the same data
set, and the performance differences will be more intuitive and
convincing. In order to further verify the effectiveness of MSA-
DDCovidNet, an experiment is supplemented with COVIDx
[22] dataset: The performance of the six models in Table 5 in
COVIDx [22] dataset under the experimental environment and
parameter settings of this study (see Section 4.3 for details) will
be observed and compared. The results of the above experi-
ments are shown in Table 6.
As shown in Table 6, CoroNet, proposed by Khan et al. [9],

outperforms the other models in all criteria. Based on Xcep-
tion [10], CoroNet [9] adopts deep separable convolution to
reduce the parameters of the model, instead of standard con-
volution. However, the large depth and width of the network
result in a mass of parameters. Covid-Net [22] makes full use
of point convolution and depth separable convolution in the
PEPX module, which effectively reduces the parameters, and
finally obtains a better performance with fewer parameters.
XResNet50V2 [12] by Rahimzadeh et al. contains two parallel
sub-networks: Xception [10] and ResNet50V2 [11], and adopts
a fully connected layer to classify the features extracted by
these two sub-networks, which produces a mass of parameter.
Moreover, its complex structure makes it difficult to optimize.
Therefore, in the end, it needs more parameters, but it can’t
get good performance. The structure of DarkCovidNet [14] is
similar to VGGNet [26], consisting of some standard convolu-
tional layers, max pooling layers and fully connected layers. It
has fewer parameters with low depth and width, which makes
it difficult to learn a relatively large data set, like COVIDx.
Therefore, DarkCovidNet [14] performs poorly in this exper-
iment. After the experimental preprocessing, the CXR images
in COVIDx are finally resize to 224 × 224. For better com-
parison, the ECOVNet-Soft in this experiment is based on the
EfficientNet-b0 model, rather than the original EfficientNet-
b5. The ECOVNet-Soft obtained by this method is a rela-
tively lightweight network, and its performance in this experi-
ment is slightly different from that in the original paper [23].
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TABLE 5 Comparison of MSA-DDCovidNet with other deep learning methods developed using X-ray images

Method Numbers of cases Model Accuracy/% Params (Million)

Rahimzadeh et al. [12] 224 COVID-19
700 Pneumonia
504 Normal

XResNet50V2 [12] 92.85 45.37

Wang et al. [22] 358 COVID-19
5 538 Pneumonia
8066 Normal

Covid-Net [22] 93.3 11.75

Khan et al. [9] 284 COVID-19
657 Pneumonia
310 Normal

CoroNet [9] 94.59 33.00

Ozturk et al. [14] 125 COVID-19
500 Pneumonia
500 Normal

DarkCovidNet [14] 87.02 1.10

Nihad et al. [23] 589 COVID-19 ECOVNet-Soft [23] 95.70 4.98

8851 Pneumonia

6053 Normal

Our Method 412 COVID-19
4 265 Pneumonia
1575 Normal

MSA-DDCovidNet 97.96 0.41

TABLE 6 Values of criteria of experimented models

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

XResNet50V2 80.87 75.69 80.87 81.87 78.19

Covid-Net 93.22 93.19 93.22 93.79 93.17

CoroNet 94.81 94.85 94.81 95.45 94.78

DarkCovidNet 74.86 70.14 74.86 76.24 72.42

ECOVNet-Soft 86.83 81.26 86.83 87.20 83.92

MSA-DDCovidNet 90.63 90.86 90.63 92.51 90.65

Such difference is considered reasonable due to the difference
of hardware devices. MSA-DDCovidNet is the model with the
fewest parameters in the experiment. Due to the application of
deep separable convolution, feature reuse and multi-scale fea-
ture fusion, it still performs well in this experiment. From a
comprehensive point of view, although CoroNet [9] and Covid-
Net [22] have achieved better performance with sophisticated
designs, their parameters are more than 28 times that of MSA-
DDCovidNet. Moreover, MSA-DDCovidNet can perform bet-
ter than those more complex models such as XResNet50V2
[12], DarkCovidNet [14], ECOVNet-Soft [23].
ROC curve is considered as an effective evaluation method

that reflects the classification performance of the model. It can
reflect the trade-off between the true positive rate and the false
positive rate. Figure 6 shows the ROC curves of the six models.
The labels in Figure 6 show the micro and macro average and
class-wise AUC scores.
The comparison results of Figure 6 are similar to those in

Table 6. Both CoroNet [9] and Covid-Net [22] have better
ROC curves and AUC values, and the performance of MSA-
DDCovidNet is only behind these two networks. It can also
be found in Figure 6 that the three underperforming net-

works – XResNet50V2, DarkCovidNet, and ECOVNet-Soft
– have poor classification capabilities for COVID-19. In the
same experimental settings with the other models, DarkCovid-
Net underperforms. The intuitive explanation is that its low
depth and width make it difficult to detect relatively few Covid-
19 CXR images among the numerous CXR images. In contrast,
MSA-DDCovidNet has achieved a relatively well performance
with fewer parameters. In summary, MSA-DDCovidNet is a
network worthy of being applied to CXR image recognition.

5 DISCUSSION

In order to verify that the multi-scale spatial attention mecha-
nism is better than the traditional spatial attention mechanism,
a network SSA-DDCovidNet is designed as the control group.
In the SSA-DDCovidNet, the attention mechanism in MSA-
DDCovidNet is replaced with the traditional single-scale spa-
tial attention mechanism to obtain SSA-DDCovidNet. Figure 7
shows the accuracy curves of the two networks in the exper-
imental dataset (). As can be seen from Figure 7, the average
accuracy of the proposed network in 150 epochs is higher than
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FIGURE 6 ROC curves of MSA-DDCovidNet and the other deep learning models in Table 5

that of SSA-DDCovidNet, and the highest accuracy is 2.03%
higher than that of SSA-DDCovidNet.
An additional experiment is conducted to verify the need

for obtaining spatial attention map. Two networks are designed
in this experiment: D3S9Net and DMFF5Net as comparison

networks. In MSA-DDCovidNet, the output feature map of
the 1st DMFF module is used to generate spatial attention map.
While in D3S9Net, the output feature map of the 9th D3S
module is used to generate spatial attention map. Similarly, in
DMFF5Net, the output feature map of the 5th DMFF module
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FIGURE 7 Accuracy curves of MSA-DDCovidNet and SSA-DDCovidNet on test set. The red line represents the accuracy curve of MSA-DDCovidNet and
the green line represents the accuracy curve of SSA-DDCovidNet. The two curves peaked at the 120th epoch and the 109th epoch, respectively

FIGURE 8 Accuracy curves of MSA-DDCovidNet, D3S9Net and DMFF5Net on test set. The red line represents the accuracy curve of MSA-DDCovidNet,
the green line represents the accuracy curve of D3S9Net and the black line denotes the accuracy curve of DMFF5Net. The three curves peaked at the 120th epoch,
the 89th epoch and the 113th epoch respectively

is used to generate the attention map. 1st DMFF module, 5th
DMFF Module and 9th D3S Module are in the shallow, middle
and deep layers of the network respectively. Different depth
feature maps are adopted to generate attention maps and then
compare their performance. The test accuracy curves of the

three networks are shown in Figure 8. Our interpretation of
this result is that in each down sampling, the feature map will
lose some spatial information. Since the features in the shallow
feature map are not compressed many times, the included
features are relatively complete. Therefore, it is more reasonable
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to obtain the spatial attention map in the shallow layer of the
network.
As a lightweight network, MSA-DDCovidNet gets great

advantages from its structure. But its performance still has a
gap with some sophisticated and highly complex networks. The
model needs further study and improvement in the future. And
MSA-DDCovidNet will be rescaled in the further work, under
the premise of ensuring the lightweight of the network, using
more parameters for better performance.

6 CONCLUSION

In this paper, to recognize COVID-19 CXR images effec-
tively, two kinds of feature sensitive modules proposed by our
team are used: DMFF module and D3S module. Based on
these two modules and MSA mechanism, we proposed MSA-
DDCovidNet with strong spatial representation capacity and
few parameters. To verify the performance of our proposed
network, two datasets are adopted. In the preliminary experi-
ment, 4265 CXR images of pneumonia patients, 1575 normal
CXR images and 412 CXR images of COVID-19 patients are
selected from two datasets. The performance of our network is
compared with a series of other networks through experiments.
The results of the preliminary experiment show that MSA-
DDCovidNet has excellent performance, and its classification
accuracy for test set is 97.96%. More notably, its precision, sen-
sitivity and specificity for COVID-19 are 100%, 95.10% and
100%, respectively. In addition, a larger dataset COVIDx is also
adopted to verify the performance of MSA-DDCovidNet. An
additional experiment is designed and the performance ofMSA-
DDCovidNet is compared with some other deep learning mod-
els. Finally, MSA-DDCovidNet got a good performance. Two
additional ablation experiments are also conducted to verify the
effectiveness of MSA mechanism. Therefore, it’s believed that
using MSA-DDCovidNet to detect COVID-19 CXR can effec-
tively improve the diagnostic efficiency, and help detect and iso-
late patients in time. Due to the shortage of COVID-19, it’s
necessary to collect more COVID-19 CXR images to better
illustrate the effectiveness of our proposed network. Although
MSA-DDCovidNet performed very well in the experiment, it
still needs further clinical research and testing. After further
training and testing, MSA-DDCovidNet is expected to be put
into practical application in auxiliary diagnosis COVID-19.
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