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Abstract

Dispersal and fecundity are two fundamental traits underlying the spread of populations. Using integral difference equation
models, we examine how individual variation in these fundamental traits and the heritability of these traits influence rates
of spatial spread of populations along a one-dimensional transect. Using a mixture of analytic and numerical methods, we
show that individual variation in dispersal rates increases spread rates and the more heritable this variation, the greater
the increase. In contrast, individual variation in lifetime fecundity only increases spread rates when some of this variation
is heritable. The highest increases in spread rates occur when variation in dispersal positively co-varies with fecundity.

Our results highlight the importance of estimating individual variation in dispersal rates, dispersal syndromes in which
fecundity and dispersal co-vary positively and heritability of these traits to predict population rates of spatial spread.

Keywords: Dispersal; individual variation; integrodifference equations; range expansion; speed of invasion; trait evolution.

Introduction

Predicting the spatial spread of species over time is a central
question in ecology (Hastings et al. 2005; Jongejans et al. 2008).
Mathematical models combining demography and dispersal
have a long history of providing insights about the ecology
and evolution of spatial spread (Skellam 1951; Kot et al. 1996;
Hastings et al. 2005; Beckman et al. 2020). These models have
guided conservation and management decisions to control
the spread of invasive species (e.g. Shea et al. 2010) and are
used to make predictions about the persistence of species
under shifting climates (e.g. Travis et al. 2011; Santini et al.
2016). Traditionally, these models relied on mean estimates of
dispersal and demographic rates. These rates, however, often
exhibit substantial individual variation within populations

(reviewed in Schupp et al. 2019). As this individual variation is
known to have important consequences for many ecological
and evolutionary processes (Bolnick et al. 2011; Moran et al. 2016;
Snell et al. 2019), it is natural to ask what effect do they have on
rates of spatial spread.

In plants, variation in dispersal rates arises from intrinsic
variation in trait expression among and within individuals
and extrinsic variation based on the environmental context
of the plant (Schupp et al. 2019; Saastamoinen et al. 2018).
Saastamoinen et al. (2018) found that while plants can have
high levels of heritability in dispersal traits, there can be a wide
range of heritability that depends on the specific trait measured
and the environment in which it was measured. Theoretical
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studies have studied the effects of non-heritable and heritable
variation in dispersal rates on spatial spread. Petrovskii and
Morozov (2008) and Stover et al. (2014) found that non-heritable
variation in dispersal rates, such as due to phenotypic plasticity
in response to local environmental heterogeneity (Johnson et al.
2019), leads to fatter dispersal kernels and faster rates of spatial
spread. Alternatively, theoretical studies accounting for only
heritable variation found selection for increased dispersal rates
on the edges of a species’ range resulting in accelerating rates
of spatial spread (Travis and Dytham 2002; Hughes et al. 2007,
Phillips et al. 2008, 2010; Travis et al. 2009; Bouin et al. 2012; Perkins
et al. 2013). Empirical studies of expanding plant populations
have supported some of these theoretical predictions (Cwynar
and MacDonald 1987; Huang et al. 2015; Williams et al. 2016a;
Tabassum and Leishman 2018, 2019). However, we still lack a
full understanding of the relative contributions of heritable
and non-heritable variation in dispersal rates on spread rates,
and whether co-variation among individuals in dispersal and
demographic rates facilitates or constrains spread rates.

Rates of spatial spread are likely to depend on the
co-variance of dispersal with other traits under selection
(Saastamoinen et al. 2018). Within populations, higher
fecundity in plants is expected to increase the distance
seeds are dispersed (Clark et al. 1998a; Norghauer et al. 2011).
The number of fruit produced varies substantially among
individuals within and across years in natural systems (e.g.
Norghauer et al. 2011; Norghauer and Newbery 2015) with
moderate to high heritability found in crop systems (e.g.
Jindal et al. 2010; Usman et al. 2014). More generally, dispersal
and life-history traits may co-vary to produce integrated
strategies known as dispersal syndromes (Ronce and Clobert
2012) or dispersal may vary independently from other life-
history traits (Bonte and Dahirel 2017). Dispersal syndromes
may arise due to a variety of proximate and ultimate causes
(reviewed in Ronce and Clobert 2012), including trade-offs in
allocation, similar responses in expression to environmental
conditions, genetic correlations among traits, joint selection
on several traits or selection on dispersal constrained by or
constraining the evolution of other traits. Across species,
Beckman et al. (2018) found species with fast life-history
strategies dispersed their seeds further than species with
slow life-history strategies. Within species, dispersal is
predicted to be an independent axis of other life-history
traits (Bonte and Dahirel 2017), although this is not well-
studied in plants.

To better understand the simultaneous effects of heritable and
non-heritable co-variation in dispersal and demographic rates
on spatial spread, we introduce a new class of integral difference
equation models. These spatially explicit models simultaneously
account for individual variation in lifetime fecundities and
dispersal rates. This variation is allowed to be discrete or
continuous, and heritable or non-heritable. Using this model,
we explore the effects of variation in dispersal and demographic
rates among individuals on the spread rate of populations, by
first considering the separate effects of variation in dispersal and
fecundity varying among individuals and then the joint effect
of dispersal and fecundity co-varying among individuals. Our
mathematical analysis, buttressed by numerical simulations,
highlights that individual variation in dispersal rates, generally,
increases rates of spatial spread, while non-heritable variation
in fecundity has no effect. In contrast, when individual variation
in fecundity co-varies positively with dispersal rates, it increases
spread rates. Furthermore, heritability of either form of variation
always increases spread rates.

Model and Methods

Our models consider a population of plants living along a one-
dimensional transect.Individuals varyin their production of seeds
and the mean distance that a seed disperses. We consider two
forms of the model: one with random transmission of individual
traits and another allowing for non-random transmission of the
traits. Both forms of the models are integrodifference equations
that have been used extensively to model spatial spread (Kot et al.
1996; Neubert and Caswell 2000). For the model with non-random
transmission, the population is structured by the trait in every
spatial location. The changes in this local population structure
are determined by a matrix model for discretely structured traits
and by an integral projection model for continuously structured
traits. For both types of models, we use the methods of Ellner and
Schreiber (2012) to identify the asymptotic rates of spatial spread.
Using these methods, we develop explicit formulas for how
both forms of individual variation alter spatial rates of spread.
As these formulas are derived in the limit of small individual
variation, we also numerically investigate an empirically based
model to demonstrate that the insights from our formulas apply
to larger amounts of individual variation.

Models with random transmission

Let n,(x) denote the population density at location xin generation
t. Under low-density conditions, individual plants produce f
seeds during their lifetime. Each of these seeds disperses, on
average, a distance of / m. We call this mean dispersal distance,
the dispersal rate (i.e. the average number of metres a seed
moves in a generation). The density of individuals with these
characteristics equals p(f,£). For seeds with a dispersal rate
of 1 m, let ki(v)dv be the infinitesimal probability that these
seeds disperse from location x to location x + v. We assume that
the dispersal kernel for a group of seeds with dispersal rate ¢
equals k,(v) = k1 (v/0)/¢, i.e. the shape of the dispersal kernel is
common to all seeds. The density of individuals with dispersal
rate ¢ equals p.(¢) = [ p(f,?) df. The population-level dispersal
kernel corresponds to averaging dispersal kernels k, across this
individual variation (Fig. 1):

Rpop(V) = / Ro(v)pu (0)dL.

Petrovskii and Morozov (2008) call this population-level kernel a
statistically structured dispersal model.
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Figure 1. Individual variation in dispersal rates and the population-level
dispersal kernel. In (A), variation among 100 maternal trees in their seed
dispersal rates (mean dispersal distance). In (B), the Gaussian dispersal kernels
of the 100 individuals from (A). In (C), the population-level dispersal kernel (i.e.
the average of the kernels from (A)) in solid blue and the dispersal kernel of
individuals with the average dispersal rate in dashed grey.
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If D(n,(y)) corresponds to a density-dependent reduction in
lifetime fecundity at location y, then the spatial dynamics of the
population is

maa = [ ([ k= y)fots,0dedf) Doy (@
Without loss of generality, we assume that D(0) = 1. Furthermore,
we assume that D(n) < D(0) for all densities n>0, ie. the
lifetime fecundity of an individual is maximal at low densities.
This assumption allows us to use the linearization principle for
computing invasion speeds (Kot et al. 1996; Neubert and Caswell
2000; Ellner and Schreiber 2012).

While we have presented our model in equation (1) for
continuously structured traits, one can write a similar model
for discretely structured traits by replacing the double integral
JI with a double sum }; >*; and replacing the infinitesimal
probabilities p(f, £)dfd¢ with discrete probabilities p(f;, ;) for each
of the traits. For example, the population-level dispersal kernel
for discretely structured population variation is }7;Re(v)pL(4),
where pi(6) =Y p(fi,(;) is the marginal distribution of the
individual dispersal rates (Fig. 1).

Accounting for perfect transmission of traits

To account for seeds potentially inheriting their traits from
their parents, we keep track of the density of individuals of
a given trait combination at a given location. Specifically, let
ny(x;f,¢) be the density of individuals of type f,¢ at location
x at time t. Let v be the probability of perfect inheritance.
When the trait is not perfectly transmitted, we assume that
it is randomly transmitted with respect to the density p(f, ).
This model of inheritance provides a simple way to tune the
heritability of traits from random transmission (v = 0) to perfect
transmission for all individuals (v =1). From a population
genetics standpoint, this model corresponds to Turelli’s (1984)
‘house of cards’ model where mutations occur with probability
1—v and the traits of the mutants are randomly drawn with
respect to p(f,£).
Under these assumptions, the model becomes

et | ey D [ s apac)

(vfntsf 0+ @=0ipt£.0 [ s eragar) ay
el

where D ([ ne(y,f’,¢')df'd?’) is the density-dependent reduction
in fecundity at location y due to the total population density
[l ne(y,f’,¢)df'd¢" at location y. For discretely structured traits,
we can use the same model structure by replacing the double
integrals [[dfd¢ and [fdf'd¢ with a double sums 37 >, and
replacing the infinitesimal probabilities p(f, ¢)dfd¢ with discrete
probabilities p(f;, ¢;) for each of the traits.

Analytic methods

To compute the asymptotic rates of spatial spread in both
models, we make use of the linearization conjecture (Kot et al.
1996; Neubert and Caswell 2000; Ellner and Schreiber 2012)
whose assumptions are satisfied whenever the base dispersal
kernel k;(v) has exponentially bounded tails and the density
p(f,¢) is compactly supported, that is, there exist fuin < fmax and

lunin < L SUCh that [ p(f, O)dfde = [ [ p(f, 0) dedf = 1. To

min

use the linearization conjecture for the model with random
transmission, we use the transform

AGs) ]o // fesva( £, 0)dfdedv

for the combined demography and dispersal kernel at low
density. The linearization conjecture asserts that the asymptotic
rate of spatial spread equals

. . logA(s) @)

where the minimum is taken over values of s for which A(s) is
well-defined. Note that equation (3) describes the spread rate
on a generational time scale. To get a yearly rate of spread, we
divide this generational rate of spread by the generation time
in years.

For the model with perfect transmission, define the full
demography and dispersal kernel K(f, ¢;f*,¢,v) by

K(f, 65,¢,0) = Re(W) f(vii5,0(f, ) + (1= v)p(f', £))
where 6 (f',¢') is the Dirac delta function at (f,¢). Let H(s)
be the operator that takes function of the form n(f,¢) to the
function

(Hn)(f',¢') = / ( // K(f, ¢, f’,é’,u)e“dfdé) dv
and let A(s) be the dominant eigenvalue of H(s). Then, the
asymptoticrate of spatial spread is, once again, given by equation
(3). When the individual variation is discretely structured,
these formulas still apply but the double integrals [f need to
be replaced with double sums }7; }7; and the density functions
need to be replaced with probability distribution functions.

We use equation (3) in three ways. First, we approximate
its solution for small variances. Namely, let F and L be random
variables with joint density p(f,¢). Then, we can express these
random variables in the form F=F+02Zr and L =L+ %7,
where F and o2 are the mean and variance of the fecundity, L
and o? are the mean and variance of the mean dispersal distance
L, and Zr = (F—F)/or and Z; = (L — L)/oy. are random variables
with a mean of 0 and variance of 1. In Appendix A, we derive
approximations for the rates of spatial spread when o2 and o?
are sufficiently small. Second, to understand the effect of perfect
transmission on rates of spatial spread, we use the reduction
principle (Karlin 1976; Altenberg and Feldman 1987; Kirkland
et al. 2006; Altenberg 2012) in Appendix B to show that the rate
of spatial spread increases with the probability v of perfect
transmission. Moreover, we derive an explicit approximation of
the rate of spread for low levels of perfect transmission. While all
of our analytical results apply both to continuous and discretely
structured traits, we present the arguments in the Appendices
for continuously structured traits. The same arguments apply to
discretely structured traits by replacing integrals with sums.

Finally, we use equation (3) for our numerical calculations.
The numerical calculations were based on empirical fits of
dispersal data for the tree Acer rubrum (Clark 1998; Clark et al.
1998b). Clark et al. (1998b) collected data on seed rain over 5 years
from 100 seed traps located within five 0.36-ha mapped tree
stands in the southern Appalachians. When fit with a Gaussian
dispersal kernel, the distance parameter « equals 30.8 + 3.80SE
(average distance travelled is aI'(1)/T'(1/2) = 17.4). Clark (1998)
estimated the net reproductive rate as 1325 and the generation
time at T = 5.8 years. To get yearly rates of spread, we followed
Clark (1998) and used ¢/T. The distribution of mean dispersal
rates and fecundity were drawn from a hundred samples of
a log-normal distribution with the variance and correlations
reported in the figures.
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Results

Let F and L be the mean lifetime fecundity and mean dispersal
rate of the population: F = [[ fp(f, ¢)dfd¢and L = [f ¢p(f, ¢)dfd(. Let
o2 and o? be the associated variances: o2 = [[ (f — F)’p(f, ¢)dfd¢

and o2 = [[ (¢ - I:)zp(f, 0)dfde. Let r be the correlation between
the lifetime fecundity of individuals and the dispersal
rates of their seeds: r= [[(f — F)(¢ —L)p(f,¢)dfd¢/(oror). Let
m(s) = [*°_e%Vki(u/L)/Ldv be the moment-generating function

=S}

for the dispersal kernel of the mean dispersal phenotype.

Individual variation in dispersal rates

Using analytical approximations for small individual variation
in dispersal rates, Appendix A demonstrates that randomly
transmitted variation in dispersal rates increases the rate of
spatial spread by a term proportional to the squared coefficient
of variation in the mean dispersal distances. Specifically,
for sufficiently small variance o, the increase is the spread
rate equals

e > (£)° @

% tends to increase with the

variance in the base dispersal kernel; the greater this variance,
the greater the increase in the rate of spread. Intuitively, if
the base mode of dispersal has greater variation in distances
travelled (e.g. the Laplacian kernel with a fatter tail versus
the normal with a thinner tail), the greater the likelihood of
individuals moving greater distances and it is these individuals
that determine the rate of spatial spread.

When some of the variation in mean dispersal distances is
perfectly transmitted to offspring, Appendix B shows that there
always is an additional increase in the rate of spread. When the
variation in dispersal rates is small and the probability of perfect
transmission is small, this additional increase is proportional to
the product of the coefficient of variation in the mean dispersal
distance and the probability of perfect transmission. Specifically,

The proportionality constant

2k
mE) s (@)2 . 6]
m(s*) L

Consist with the analytical predications, numerical calculations
for A. rubrum based on equation (3) show that variation in
dispersal rates and the heritability of this variation increase
rates of spread (Fig. 2A). However, at higher levels of variation,
the approximation overestimates the spread rates (Fig. 2B).
Nonetheless, the qualitative trends of variation in dispersal
rates and perfect transmission of this variation increasing rates
of spread still hold. Notably, even for moderate levels of variation
and perfect transmission, individual variation in dispersal rates
gives substantial boosts to the predicted rate of spread for
A. rubrum. For example, a squared coefficient of variation of 0.5
more than doubles the rate of spatial spread (from ~20 to ~45 m
year?). If half of this variation is perfectly transmitted, then the
spread rate nearly triples to 60 m year.

Individual variation in fecundity

Randomly transmitted variation in fecundity has no effect on
rates of spatial spread. However, when some of this variation
is perfectly transmitted, Appendix B shows that there always
is an increase in the spread rate. For low levels of individual
variation in fecundity and perfect transmission, the invasion
speed increases by a term proportional to the product of the
squared coefficient of variation in fecundity and the probability
of perfect transmission. Specifically,

o (T) ©)
Figure 3 illustrates these effects numerically using equation (3)
for the A. rubrum model. In contrast to individual variation in
dispersal rates, heritable variation in fecundity for this specific
model has small effects on rates of spatial spread. For example,
a coefficient of variation of 1 with a 50 % chance of perfect
transmission, speeds only increase ~9 % for fecundity variation
(Fig. 3A) in contrast to ~380 % for dispersal variation (Fig. 2A).
This relative small increase in the rate of spatial spread stems
from the relatively small proportionality constant 1/s* ~ 8 in (6)
compared to the proportionality constants in equation (4) with
m 1)s" ~ 900 and equation (5) with m’(;;);f* ~ 1700.

2m(s*) m

Co-variation in dispersal rates and fecundity

If lifetime fecundity of parents co-vary with dispersal rates of
their seeds and this variation is randomly transmitted, then
Appendix A shows that the spread rate increases by two terms:
the amount due to dispersal variation alone in equation (4) plus

an additional term proportional to the co-variance of L and F:
m'(s*) oL oF

XTrX — .
m(s) L F @)
If this co-variation is perfectly transmitted with probability v,
then Appendix B shows that there always is an additional
increase to the spread rate. For low levels of individual variation
and perfect transmission, this additional increase is proportional
to the product of the co-variance between fecundities and
dispersal rates and the probability of perfect transmission:
2m'(s) xrx b s Ty, (8)
m(s*) L F
For the A. rubrum model, Fig. 4 illustrates the substantial
increase due to this co-variation: high positive correlation and
heritability of individual variation in fecundity and dispersal
rates (red curve in Fig. 4A) can lead to an 8-fold increase in the
rate of spatial spread (~160 m year) compared to the <4-fold
increase (~74 myear) due to uncorrelated variation in fecundity
and dispersal rates (blue curve in Fig. 4A).

Discussion

Dispersal and fecundity are two fundamental traits underlying
the spread of populations (Fisher 1937; Skellam 1951; Kot et al.
1996; Neubert and Caswell 2000). We show that inclusion of
individual variation and co-variation of these traits shifts
predictions of population spread. Our results indicate that
variation in dispersal increases spread rates of populations
regardless of the mode of transmission, while variation in
fecundity only increases spread rates when some of this
variation is heritable. The highest increases in spread rates occur
when variation in dispersal positively co-varies with fecundity.
Spread rates generally increase as heritability of dispersal rates
and fecundity increase. Although we focus on plants, our results
are also applicable to animal systems.

Our results are in line with previous mathematical studies
that show accelerated spread rates when individuals within
the population vary in their dispersal ability (Bouin et al. 2012;
Stover et al. 2014). For gamma-distributed variation in dispersal
rates and uniform distributions on two dispersal rates, Stover
et al. (2014) showed that the moment-generating functions of
the population-level dispersal kernels increase with individual
variation in dispersal rates and, thereby, increase spread
rates. However, their numerical explorations found modest
increases in spread rates when compared to our A. rubrum
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Figure 2. Individual variation in dispersal rates increases rate of spatial spread. In (A), rates of spatial spread for Acer rubrum (see Model and Methods) are plotted
against the coefficient of variation of the dispersal rate and for increasing probabilities of perfect transmission (from blue to red). In (B), the analytical approximations
(dashed lines) provide a good approximation to the exact invasion speeds (solid lines) for low variability and transmission probabilities. Higher levels of variation (A)
have a decelerating effect on rates of spatial spread.
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Figure 3. Individual variation in fecundity increases rate of spatial spread only when it is heritable. In (A), invasion speeds for Acer rubrum (see Model and Methods)
are plotted against the coefficient of variation of fecundity and for increasing probabilities of perfect transmission (from blue to red). In (B), for low variability and
transmission probabilities, the analytical approximations (dashed lines) provide a good approximation to the exact invasion speeds (solid lines). Higher levels of
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Figure 4. Co-variation in fecundity and dispersal rates leads to faster rates of spatial spread. In (A), spread rates for Acer rubrum (see Model and Methods) are plotted
against the coefficient of variations of fecundity and dispersal rates, and for increasing correlations between fecundity and dispersal rates (from blue to red). In (B), for
low variability, the analytical approximations (dashed lines) provide a good approximation to the exact invasion speeds (solid lines). Probability of perfect transmission
is 0.5 in (A) and is 0.1 in (B).
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example (e.g. about 20 % in (Stover et al. 2014, Fig. 3) versus 300 %
increase in spread rates for a squared coefficient of variation of
1). Our analytic approximation (see equation (4)) highlights that
this type of difference stems from differences in mean dispersal
rates. Specifically, the mean dispersal rate of A. rubrum (30.8 m
year?) being greater than the base dispersal rate used by Stover
etal. (2014) (1 m year?). When intraspecific variability in dispersal
rates is mostly heritable, Bouin et al. (2012) demonstrated that
the spread rate is essentially determined by the genotypes with
the highest dispersal rate being selected for at the edge of the
spatial range, referred to as spatial sorting. Complementing
this result, we used Karlin’s reduction principle (Karlin 1976;
Altenberg 2012) to show that greater heritability leads to faster
spread rates. Indeed, at low levels of heritability, equation (5)
implies that the increase in spread rates is constrained by the
coefficient of variation in the dispersal rates and the shape of
population’s base dispersal kernel.

In contrast to individual variation in dispersal rates, we find
that non-heritable variation in fecundity has no effect on rates of
spatial spread. This outcome stems from (i) our analysis focusing
on populations being sufficiently large that demographic
stochasticity is negligible and (ii) the Laplace transform of the
demography-dispersal kernel being a linear function of local
demographic rates and a convex function of dispersal rates. As
local demographic stochasticity slightly decreases spread rates
(Snyder 2003; Reluga 2016) and individual variation in fecundity
increases demographic stochasticity (Lloyd-Smith et al. 2005),
it seems likely that demographic stochasticity coupled with
individual variation in fecundity would decrease spread
rates further. In contrast, we found that heritable variation in
fecundity increases rates of spatial spread. In the extreme of this
variation being perfectly transmitted from parents to offspring,
we anticipate that spread rates are determined by selection
for the most fecund individuals throughout the spatial range,
unlike the spatial sorting mechanism for heritable variation in
dispersal rates where selection only occurs at the edge of the
spatial range (Bouin et al. 2012).

We find the biggest effects of individual variation when
dispersalratesand fecundity co-varytoformdispersalsyndromes
within species. Specifically, positive co-variation of these traits,
as has been found for some wind- and endozoochorous-
dispersed seeds (reviewed in Schupp et al. 2019; Snell et al. 2019),
always increases spread rates (e.g. more than doubling spread
rates for A. rubrum). Heritability of this co-variation leads to
greater increases of spatial spread. For example, our analysis
implies that 50 % heritability of this co-variation can double the
increase in spread rates (i.e. equations (7) and (8) are equal when
v = 0.5). In contrast, our analytic approximations in equations
(7) and (8) imply that negative correlations between fecundity
and dispersal rates lead to slower spread rates, but these rates
are still higher than if there were no individual variation in
fecundity or dispersal. Interestingly, Elliott and Cornell (2012)
demonstrated that when there is trade-off between fecundity
and dispersal (i.e. a negative correlation), polymorphisms of
high- and low-fecundity individuals maintained by mutation
lead to faster spread rates than the monomorphic spread
rates. Whether these effects of co-variation on spread rates are
operating in natural systems remains to be seen.

Here we consider the influence of variation in dispersal,
variation in fecundity and their co-variation on population
spread rates under several simplifying assumptions.
Understanding how relaxing these assumptions may alter these
predictions provide many avenues for future research. Notably,
we assumed the environment is spatially and temporally

homogeneous. However, heterogeneous environments may alter
these predictions. Heterogeneous environments can arise from
natural disturbances, such as tree fall gaps, or through habitat
loss and destruction due to human impacts. The latter tends to
resultin the fragmentation of the landscape into smaller, isolated
fragments within a human-modified matrix. This fragmentation
can alter rates of spatial spread (Shigesada et al. 1986; Kinezaki
et al. 2010; Williams et al. 2016b; Crone et al. 2019). For example,
Shigesada et al. (1986) showed that habitat fragmentation
slows down and, when sufficiently severe, halts spatial spread.
Alternatively, temporal variation in fecundity and dispersal
rates, respectively, slow down and speed up rates of spatial
spread (Ellner and Schreiber 2012). To what extent heritable or
non-heritable variation in dispersal rates and fecundity counter
or amplify these effects of temporal and spatial heterogeneity
remains to be understood. Furthermore, it would be useful to
see how individual variation due to ontogenetic changes (Ellner
et al. 2016) or genetics beyond the ‘house of cards’ model (see,
e.g. Johnson and Barton 2005) influences our predictions about
individual variation on spatial spread.

Conclusion

Predictions of spread tend to rely on mean estimates of
population parameters for dispersal and life-history traits, but
these may vary within a population and evolve through time. We
found increased heritability in dispersal and fecundity increases
spread rates compared to random transmission of traits, and if
these are positively co-varying to form dispersal syndromes
within species, selection further facilitates increased spread
rates. However, if dispersal and fecundity co-vary with other life-
history traits, selection for these traits may be constrained by
or indirectly influence the evolution of other life-history traits,
such as competitive ability or defence against natural enemies.
The degree to which plant populations exhibit heritability of
variation in dispersal or dispersal syndromes in which fecundity
and dispersal co-vary positively is key to predicting the speed at
which populations will track shifting habitats.
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Appendix A: Derivations for the random
transmission model

In this appendix derivations of the main analytic results are
presented. As in the main text, let F and L be random variables
with joint density function p(f, ¢); more, generally F and L can be
any mixture of a discrete and continuous distribution with finite
moments. Then, we can rewrite (1) as

ma(0) = [ Bku(x - y)FID(m(y)ne(y)dy (a1
and A(s) from the Model and Methods in the main text can
be rewritten as

As) = / E[Fky(v/L)/L] exp(—sv)dv.

Provided that F and L have a finite variances, we can always
write F=F+o0pZr and L =L+ 0,7, where Z, Z are random
variables with mean zero and variance 1, F and L are the
expected values of F and L, and o2 and o? are the variances of F
and L. Let r denote the correlation between F and L.

To derive the small variance approximations, we assume
that there are positive constants 7¢,7. such that o =e7r
and op =ern, for small ¢>0. Ellner and Schreiber (2012)
showed that

dkc*
dek n
e=0

1 Flog A
s*  Ock

(s%) (A.2)
e=0

where s*is such thatc* = \(s*)/s*fore = 0. By Tonelli’s theorem,

= / E[Fky(v/L)/L] exp(—sv)dv = E {/ Fkl(u/L)/Lexp(—su)du} = E[FM(Ls)]

where  M(s) = [*_ki(v)exp(—sv)dv. Differentiating with
respect to ¢ and evaluating at zero yields

Ry = Z|_oElF+emZoM(L+enzi)s)
E[mZrM((L + e.ZL)S) + (F + erZe)M'((L + e7.Z1)S)71.Z18]| .o

= ]E[TFZFM(I:S) + FM’(E.S)TLZLS] =0

as E[Zr] = E[Z;] = 0. Hence, we get

dlog A 10X
ee0 = ———|eeo = 0. A3

B 70T X5z =0 a3

Differentiating a second time with respect to e and evaluating

at zero yields
_1 (@)2
A2\ 0e
-0

Computing the second derivative of A yields

1523
A Oe2
e=0

1)
A 0e? N
e=0

9?log A\
02

. (A4)

%\ 3\ = =
— = — E[(F Zr) M((L Z
92 922 [(F + e7eZp) M((L + em.Z1)8)]
e=l e=0
= % E[rZeM((L + e7121)s) + (F + e7eZp) M/ (L + em.Z1)S) 7121 8]
e=0
= E[ZTFZFM1TLZLS + FM2(TLZLS*)Z]
= 2M17’FTL]’S+FM27'L2(S*)2 (A 5)

where M; = M/(Ls*) and M, = M"(Ls*). Recalling that o = e,
op=en, and M|.—o = FMy, where M, = M(Ls*), equations (A.2)-
(A.5) give the second-order approximation

c*(e)=c" O) + = (2M17‘FTLVS* + FMZTE(S*)Z) + 0(63)
QFM (A 6)
K M M .
=c*(0) + T,MOUFULY‘F M, C’L +0(%).

Defining  m(s) = [ _ky(v/L)/Le"*ds = M(Ls), ~ we  get
m'(s) =M'(Ls)L and m ( ) =M"(Ls)[2. Hence, My=m(s*),
M; = m/(s*)/L and M, = m"’(s*)/L? and

i m(s*)opor_ m'(s*)s* rop\2
=0+ T F LT am (1) TOE) A7

which gives equations (4) and (7) from the main text.

Appendix B: Rates of spread for the model
with perfect transmission

For the model with perfect transmission, recall that we have the
demographic-dispersal kernel K, (f, ¢;f', ¢, v) (now parameterized
by v) given by

V(f’ [;.flv ZI’ U) = kl(U)f(VZS(f,g) (f’:zl) + (1 - ’/)p(f/’ e’)) (Bl)

where d5,)(f, ¢') is the Dirac delta function based at the point

(f,€). Let H,(s) be the operator that takes the function n(f,?) to
the function

(H, (s)n)(f, ') = 7(//K,(f,z;f’,e',u)ewn(f,z)dfde) dv (B2)

and let )\, (s) be the dominant eigenvalue of H(s). The rate of
spatial spread, as a function of v, is given by ¢} = ming-o A, (S)/s.
Let s* be the value of s that gives the rate of spread for v = 0, i.e.
only random transmission.

Ellner and Schreiber (2012) showed that
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des 10logh,, 1 0,
dv ~ s 0%/ (s7) = Ao s* Ov (s7)- (B:3)

We will use the reduction principle (Karlin 1976; Kirkland
et al. 2006; Altenberg 2012) to show that this derivative is always
positive, i.e. the rate of spatial spread increases with v. Then,
will compute this derivative at v = 0 to get an approximation of
the rate of spatial spread when v is small.

We will show that the operator H, (s) can be written in the
form (vId + (1 — v)P) D, where Id is the identity operator, P is a
stochastic, positive operator and D is a non-scalar multiplication
operator. For operators of this form, Altenberg (2012, Theorem
6) proved that the dominant eigenvalue A,(s) is an increasing
function of v. Equivalently, A, (s) is a decreasing function of the
probability 1 — v of mutation, i.e. the reduction principle. Using
the definition of H,(s) and K, we have

I, ¢) = 7 ([ xewrsc

— [ Mt swsso e+
=vM(s)f'n(f", ') + (1 = v)p(f', )
= ((vId+(1 —v)P)Dn)(f", ¢')

(50 ) + (1 = v)p(f, €))en(f, Z)dfdl) dv

(1 =v)p(f', £))n(f, £)dfde
[ Mes) fn( £, o) dfde

where P is the positive operator defined by
P)(f", ') = p(f", ') [[n(f,0)dfd¢ and D is the multiplication
operator defined by (Dn)(f’,¢') = M(¢'s)f'n(¢,f"). Hence, by the
reduction principle A, (s) is an increasing function of v. Equation
(B.3) implies that ¢}, is an increasing function of v.

To find the derivative in (B.3) at » =0, we need to find the
dominant, left and right eigenfunctions of Hy(s*). The dominant,
right eigenfunction w and eigenvalue Ao must satisfy

Aow(f’,e’)=///Ke(u)fp(f,e;f’,z')w(f,f)eS*VdfdMu

N // <7 ¢ "dv> folf', ¢ yw(f, 0)dfde

= [ s sotg e wis. odsac
= oif' ) [ Mies oo 5, )

Hence, we get the unique, normalized
eigenfunction is w(f,f)=p(f,¢) and eigenvalue is
o = [ M(¢s*) fp(f,0)dfdl = EFM(Ls*)], where (F,L) is the
random vector with density function p(f,¢). The dominant, left
eigenfunction u(f, /) must satisfy

soulf, ) =pMes") [[u(f o), e)af ar

and therefore can be chosen to equal u(f, ¢) = fM(¢s*). Hence,
we get

[2W
ov

(s") = [fu f 0) Gw f 0)dfde
v=0 Ju( t)afde

where G is the perturbation operator on functions n(f,¥¢)
defined by

(Gn)(f',f')=///f(éf/,g/(f,é)—p(f’,Z'))n(f,Z)e’s*”kg(u)dfdfdv.

We have
Jfu(f, w(f,e)dfde = [f fM(ls*)p(¢, f)dedf = E[FM(Ls*)] = Xo.

Furthermore,

[ uis.oxcwis.ode = [ uis M08 0 - oS e
// Mt fM )o(f.0) -
- // 2p(f, 0)dfd] — E[FM(Ls")]

= E[(FM(Ls" )) ] E[FM(Ls")]? = Var [ FM(Ls") ] .

p(f, E[FM(Ls")))dfde

Thus, we get

dc;, 1 Var[FM(Ls")]
dv|,_o Mos* E[FM(Ls")]
Asin Appendix A, letF = F + opZrand L = L + 0,Z;, where Z, Z,
are random variables with mean zero and variance 1, F and L are
the expected values of F and L, and o% and o are the variances of
F and L. Let r denote the correlation between F and L. To derive the
small variance approximations, we assume that there are positive
constants 7, 7 such that or = e7r and oy = e for small e > 0. With
these assumptions, to get an approximation of Var[FM(Ls*)] for
small ¢, we need the following three approximations

E[FM(Ls")] = E[(F + 0¢Z¢) (Mo + M101Z18* + Ma(01Z15)*/2)] + O(<*)
= F(Mo + My(015*)%/2) + Myoporrs* + O(?)

(B4)

(B.5)
where My = M(Ls*), My = M'(Ls*) and M, = M”(Ls*), and
E[FM(Ls*)]* = (FMo)? + F*MoMa(015*)? + 2FMoMjoror7s* + O(c),
B.6
and (.6)
E[(FM(Ls"))’] = E[((F + 07Zr) (Mo + M101.Z15" + Ma(01215")*/2)°] + O(<?)
E[(FMO + FMy01Z18" + FMy(01.Z15%)%/2 + o ZeMo + oerMloLZLs*)Z] +0(%)
= (FMo)” + FMoFMy (015")? + 2FMoM; o 07rs* + (FMyops®)”

+2FMoM; 0.0¢1s™ + M3o2 + O(c3).
(87)

Taking the difference between (B.7) and (B.6) gives us
Var[FM(Ls*)] = (FMy015*)? + 2FMoMyo10§7s* + M3oZ + O(c).
(B.8)

Thus, for sufficiently small v and ¢, equation (B.4) and
Ao = FMp implies that

v (FMloLS) + 2FMoM; o 0Frs* +MOUF

C R+ =
FMs* FMO (B9)
¢+ Mis* S P of
= 14 ) OLO] .
M2 7t M, T s

Defining  m(s) = [~ _ky(v/L)/Le"*ds = M(Ls), ~ we  get
m'(s) =M (Ls)L and m'(s) =M"(Ls)[2. Hence, M,=m(s*),
M; = m/(s*)/L and My = m’’(s*)/L? and

)2k 2 *
mi(s*)°s* of  2my(s*) oL oF 1 sop\2
¢~ o LOF, L 2 (PF)")(B.10
M +u< v 75+ ms) LT +S*(F) (B.10)

which gives equations (5), (6) and (8) from the main text.

We conclude by noting that provided they are bounded, all
of the arguments here also apply when the joint distribution of
F and L is any mixture of continuous and discrete distributions.
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