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Neutrinos in compact-object environments, such as core-collapse supernovae, can experience various kinds
of collective effects in flavor space, engendered by neutrino-neutrino interactions. These include “bipolar”
collective oscillations, which are exhibited by neutrino ensembles where different flavors dominate at different
energies. Considering the importance of neutrinos in the dynamics and nucleosynthesis in these environments,
itis desirable to ascertain whether an Earth-based detection could contain signatures of bipolar oscillations that
occurred within a supernova envelope. To that end, we continue examining a cost-function formulation of
statistical data assimilation (SDA) to infer solutions to a small-scale model of neutrino flavor transformation.
SDA is an inference paradigm designed to optimize a model with sparse data. Our model consists of two
monoenergetic neutrino beams with different energies emanating from a source and coherently interacting
with each other and with a matter background, with radially varying interaction strengths. We attempt to infer
flavor transformation histories of these beams using simulated measurements of the flavor content at locations
“in vacuum” (that is, far from the source), which could in principle correspond to Earth-based detectors. Within
the scope of this small-scale model, we found that: (i) based on such measurements, the SDA procedure is able
to infer whether bipolar oscillations had occurred within the protoneutron star envelope, and (ii) if the
measurements sample the full amplitude of the neutrino oscillations in vacuum, then the amplitude of the prior
bipolar oscillations is well predicted. This result intimates that the inference paradigm can well complement
numerical integration codes, via its ability to infer flavor evolution at physically inaccessible locations.
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L. INTRODUCTION

The physics of neutrino flavor evolution can significantly
influence the dynamics and nucleosynthesis in core-
collapse supernovae (CCSN) and neutron star binary merg-
ers [1-11], and the era of multimessenger astrophysics
offers us an unprecedented vantage point on these events.
Understanding flavor evolution is critical for leveraging
gravitational wave and electromagnetic observations so as to
deepen our understanding of energy, entropy, and lepton
number transport at these sites. Owing to the large fluxes of
neutrinos in these environments, their flavor evolution can
be significantly impacted by neutrino coherent forward
scattering off of other neutrinos, resulting in a variety of
interesting collective phenomena in flavor space (see, e.g.,
the reviews in [12—-16] and references therein).

One important question pertaining to neutrino flavor
evolution in a CCSN environment is to ascertain whether
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“bipolar” oscillations [17-23] occur within the supernova
envelope. These are driven by neutrino-neutrino coherent
forward scattering, and arise in systems where the initial state
of the interacting neutrino ensemble exhibits a dominance of
different flavors at different energies. Bipolar oscillations
involve neutrinos at different energies rapidly and repeatedly
swapping flavors as they propagate. In numerical solutions
of flavor evolution in CCSN environments, neutrinos typ-
ically experience these types of oscillations at earlier radii;
that is, prior to undergoing the Mikheyev-Smirnov-
Wolfenstein (MSW) resonance [24-26], a phenomenon that
arises due to coherent forward scattering with matter. These
oscillations dramatically change the flavor evolution histor-
ies of neutrinos compared to the otherwise-simple MSW-
only scenario. As a result of occurring deeper within the
supernova envelope (where the neutrino fluxes are higher)
compared to the MSW resonance, the effects of bipolar
oscillations are potentially more significant with regard to
energy transport and nucleosynthesis.

There exist powerful numerical integration codes for
obtaining solutions to the flavor evolution problem in
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compact object environments [27-29]. Utilizing these
codes, however, requires making definite choices regarding
the relative flavor content of the neutrinos at the point
of emission from the proto-neutron star, based on reason-
able assumptions about the physics of dense nuclear matter
and neutrino decoupling. Typically, the decoupling of
neutrinos from chemical and thermal equilibrium is
approximated to be instantaneous at the surface of the
proto-neutron star, represented by a single, sharp “neutrino-
sphere.” As a result, the initial states of neutrinos at the
neutrino-sphere radius are taken to be definite flavor states.
It has been shown in recent years that relaxing these
assumptions regarding uniform, instantaneous neutrino
decoupling can result in an emission-angle dependence
in the initial flavor content of neutrinos, resulting in the
phenomenon of “fast” flavor oscillations (Ref. [16] and
references therein).

Moreover, including the effects of direction-changing
scattering of neutrinos can result in a small, non-outward-
propagating component of the neutrino flux, which can
nevertheless significantly contribute to the forward-scattering
potential experienced by the outgoing neutrinos, as a result
of the large intersection angles between their trajectories
[30-33]. This “halo effect” potentially changes how this
problem must be approached—not as an initial-value prob-
lem with flavor content fully specified at the source surface,
but rather as a boundary-value problem, with flavor infor-
mation propagating both outward and inward. As a result of
such discoveries, it has become pertinent to ask how much
can be learned about neutrino oscillations near a supernova
from a future earth-based neutrino detection, without any
a priori assumptions about the initial conditions [34].

In this paper, we avoid assumed knowledge of flavor
evolution at inaccessible locations within the supernova
envelope, by adopting an inverse approach. Using a small-
scale model with simulated data, we ask: what information
can we infer regarding the realm of bipolar oscillations,
using measurements made only in the vacuum oscillations
regime?

Specifically, we seek to ascertain whether multiple
measurements of flavor made in vacuum contain a
signature of the flavor evolution history within the
supernova envelope, where the neutrino-matter and neu-
trino-neutrino potentials are dominant. By “multiple”
measurements, we mean: measurements spaced out in
location but clustered within the vacuum oscillations
regime—a proxy for multiple Earth-based detectors.
Importantly, the critical differences between this formu-
lation and the forward integration approach are that we do
not assume knowledge of (i) unmeasurable model state
variables, or (ii) any (measurable or unmeasurable) state
variables at physically inaccessible locations. We ask
whether the accessible information is sufficient to infer
the complete flavor transformation histories of neutrinos
back to the emission surface.

To adopt this formalism we employ an inference pro-
cedure. Inference is a means to optimize a model given
measurements, where the measurements are assumed to
arise from model dynamics. Importantly, an inference
procedure need not be formulated as an initial-value
problem. Rather, we formulate the procedure using partial
information at one bound (near Earth) and zero information
at the other (at emission).

The specific inference technique used in this paper is
statistical data assimilation (SDA). SDA was invented for
numerical weather prediction [35-40] for the case of sparse
data. It has since gained traction in neurobiology [41-47],
for estimating cellular and synaptic properties given sparse
neuronal electrical signals. Within astrophysics, the known
applications of SDA include exoplanet modelling [48]
and solar cycle prediction [49,50]. In recent years, the
utility of SDA has been explored in the context of inferring
solutions to small-scale flavor evolution models
[34,51-53].

In this paper we find, for a small-scale steady-state
coherent forward-scattering model of flavor evolution,
that multiple measurements of neutrino flavor in the
vacuum-oscillations regime could contain a signature of
the frequency and amplitude—and to some degree the
complexity of the waveform—of bipolar oscillations that
had occurred near the point of emission. We quantify the
robustness of this result, and discuss implications regarding
a real detection.

II. MODEL

A. Formulation

Our model has been fully described in Refs. [34,51,52],
and we refer the reader there for details. Here we briefly
describe the model’s equations of motion, and note one
important feature of the collective neutrino oscillations
problems: nonlinearity.

We consider a single-angle, two-flavor scenario wherein
two monoenergetic neutrino beams with different energies
interact with each other and with a background consisting
of particles carrying weak charge, such as nuclei, free
nucleons, and electrons. The densities of the background
particles and of the neutrino beams dilute as some functions
of a position coordinate r, which we interpret as the
distance from the neutrino-sphere in a supernova. That
is: on their journey through the supernova envelope, the
neutrinos interact coherently with each other and with
the dense ejecta surrounding the star immediately after core
collapse. Importantly, the model is a forward-scattering-
only scenario, rendering it solvable via traditional forward-
integration techniques—a consistency check for SDA
solutions.

We write the equations of motion for flavor evolution of
each neutrino in terms of “polarization vectors™ P;, after
decomposing the density matrices and Hamiltonians,
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TABLE I. Model parameters taken to be known and fixed
during the estimation procedure. The A; are the vacuum
oscillation frequencies of the neutrinos, and C and Q are the
multiplicative factors governing the neutrino-matter, and neu-
trino-neutrino coupling potentials V(r) and u(r), respectively,
and r,, and r, are the radial offsets. Parameter @ is the mixing
angle in vacuum. Each of these parameters are taken to be known
in all of the SDA experiments, with the exception of the matter
coefficient C being left unknown in one experiment (Sec. V D),
where the SDA procedure was tasked with inferring its value.

Parameter Value Parameter Value
A, 1000 A, 2500
0] 100.0 C, 3308

r, 0.51 T 0.50

0 0.1

respectively, into bases of Pauli spin matrices' (for details
see Refs. [54,55]):

dP,
dr

(AB—{—V

r)ZP) xP;, (1)

J#

In Eq. (1), A; = ém?/(2E;) are the vacuum oscillation
frequencies of the two neutrinos with energies £, and E,,
with m? being the mass-squared difference in vacuum.
The unit vector B = sin(26)% — cos(26)2 represents flavor
mixing in vacuum, with mixing angle 6. The functions V(r)
and u(r) are potentials for neutrino-matter and neutrino-
neutrino coupling, respectively. They take the forms
V(r)=Cp/(r+ry,)* and u(r)=Q/(r+r,)" respec-
tively; C,, and Q are constant numbers, and r,, and r,
are offsets which determine the reference values of V and u
at r = 0. This form for the neutrino-neutrino coupling
reflects the manner in which coupling strength varies in the
neutrino bulb model calculations that employ the single-
angle approximation.

All the model parameters here are expressed in dimen-
sionless units, but the parameter value choices (shown in
Table I) are motivated by certain physical considerations.
For instance, the strengths of Q and C,, relative to A; were
chosen such that the domain of the solution, chosen here to
be r = [0:2], would encompass a transition from a matter/
neutrino dominated regime to a vacuum oscillation domi-
nated regime. Moreover, the offsets r,, and r, were chosen
such that r =0 would be near the characteristic radius
where the “bipolar” oscillation mode (see Sec. IIB)

becomes active (for instance, see the definition of R_

'The polarization vectors, or Bloch vectors are defined in
terms of the neutrino densﬂy matrices: p; = 3 l(1+5- P, i)). The
Hamiltonian can be_ decomposed in the same manner as
H; =5 (Tr(H;) + - V) Here, V; contains contributions from
vacuum oscillations, neutrino-matter interactions, and neutrino-
neutrino interactions, as shown in Eq. (1).

in Sec. 6 of Ref. [13]). All model parameters are taken to be
constant and known to the SDA procedure throughout all of
the experimental setups described in this work, with the
exception of Sec. VD. We again emphasize that the
equations of motion are fiercely nonlinear—and that
SDA was designed to perform state-and-parameter estima-
tion for nonlinear models.

The Z component of the neutrino polarization vector
denotes the net flavor content of electron flavor minus “x”
flavor, the latter being a superposition of muon and tau
flavors. In this scenario, we assume that flavor evolution is
driven entirely by coherent forward-scattering. At certain
distances from the emission surface for each neutrino, the
forward scattering potential arising from neutrino-matter
and neutrino-neutrino interactions leads to an in-medium
effective neutrino mass level crossing, referred to as the
“MSW resonance.” [24-26]. The MSW resonance is
associated with an enhanced e <> x flavor conversion
probability.

B. Bipolar oscillations

Collective neutrino oscillations in spherically symmetric
models are known to generically exhibit two types of flavor
oscillation phenomena: ‘“‘synchronized” and “bipolar”
[13,19-22]. The synchronized mode is exhibited, for
instance, in a dense neutrino gas where all the neutrinos
are initially of the same flavor; that is: all the individual
polarization vectors P, are aligned with one another. This
can cause the system to collectively oscillate with a unified
angular frequency Q.

The bipolar mode, on the other hand, may be exhibited
by systems consisting of polarization vectors pointing in
opposite directions (e.g., v, and v,), or v, and 7,. Bipolar
oscillations can be understood analytically by considering a
simple toy system of two neutrinos with equal and
oppositely aligned polarization vectors. This simple two-
neutrino system permits an analogy with an inverted
pendulum (the initial state for bipolar oscillations repre-
sents an unstable equilibrium configuration). Through this
analogy, it can be shown that the characteristic frequency of
these bipolar oscillations is ~/Ayu [20], where A and y are
the vacuum oscillation frequency and the neutrino-neutrino
interaction strength, as defined in Eq. (1).

III. METHOD

A. General formulation

Statistical data assimilation is an inference procedure
wherein any measured quantities are assumed to arise from
the dynamics of a physical model, which may be nonlinear
in nature, and where only a subset of the state variables can
be experimentally accessed. This model F can be written as
a set of D ordinary differential equations that evolve in
some parametrization r as:
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dx,(r)
dr

= Fo(x(r).p(r)); a=12,...D, (2

where the components x, of the vector x are the model state
variables. Unknown parameters to be estimated are
contained in p, and may be variable in general, although
for the scope of this work, we take all the parameters to be
constant.

A subset L of the D state variables is associated with
measured quantities. One seeks to estimate the evolution of
all state variables that is consistent with the measurements
provided, to predict model evolution at parametrized
locations where measurements are not present.

A prerequisite for estimation using real experimental
data is the design of simulated experiments, where the true
model evolution is known. Simulated experiments offer the
opportunity to ascertain which and how few experimental
measurements and constraints, in principle, are sufficient to
complete a model. This is a critical question for cases
wherein available measurements are extremely sparse—as
will be the case for an Earth-based neutrino detection from
a future core-collapse supernova. Finally, in this paper, we
J

Ay=R fAmcdel + R, Ameas

mode]
n €{odd} a=1

+ {xa(rm) =3 ) + 5,(rui2)) -
ZZ()’I(’}

rneas 7 =1

xi(rj))z-

One seeks the path X" = {x(ro) x(ry),p} in state
space on which A attains a minimum value One can derive
this cost function by considering the classical physical
action on a path in a state space, where the path of lowest
action corresponds to the correct solution [56]. Hereafter
we shall refer to the cost function of Eq. (3) as the action. In
a previous publication [52], it was shown that the action
formulation offers a litmus test for identifying correct
solutions: they are solutions that correspond to the path
of least action.

Anodel In Eq. (3) incorporates the model evolution of all
D state variables x,. Here, the outer sum on r is taken over
all odd-numbered discretized radial locations of the model

In previous works (Refs. [51,52]), the cost function also
included an equality constraint to impose unitarity. Eliminating
that term has two advantages. One is the easing of the computa-
tional burden. The other is that this makes the approach more
amenable to flavor evolution studies including the collision terms
[53]—a scenario in which unitarity is not necessarily conserved.

use forward integration to generated simulated data, as a
consistency check for SDA solutions.

B. Optimization formulation

We formulate the SDA procedure as an optimization
wherein a cost function is extremized, and we write the cost
function in two terms. One term represents “measurement
error: the difference between state prediction and any
measurements made. The second term represents “model
error”: the difference between state prediction and adher-
ence to the model dynamics.” It will be shown below in this
section that treating the model error as finite offers a
systematic method to identify the lowest minimum, in a
specific region of state-and-parameter space, of a non-
convex cost function. We search the surface of the cost
function via the variational method. The procedure in its
entirety—that is, a variational approach to minimization
coupled with an annealing method to identify a lowest
minimum of the cost function—is referred to as variational
annealing (VA).

The cost function Ay used in this paper is written as:

Z Z [{xa(‘rrH»Z) - xa(rn) - % [Fa(x(rn)!P) + 4Fa(x(rn+l)’p) + Fa(x(rnJrZ)’p)]}z

S P r).) = Fule(ri)) ||

(3)

[
equatlons of motion. The sum on a is taken over all D state
variables.” In our model, the state variables are all three
polarization components for each neutrino beam, or:
D =6. Ay, govemns the transfer of information from
measurements y, to model states x,. Here, the summation
on j runs over all discretized radial locations J at which
measurements are made, which may be some subset of all
integrated locations of the model. The summation on [ is
taken over all L measured qua.ntities.4 In our model, these
measured quantities are the P, component of the polari-
zation vector for each neutrino beam, or: L = 2.

The procedure searches a (D(N + 1) + p)-dimensional
state space, where N is the number of discretized steps, and
p is the number of unknown parameters in the model.

3This term can be derived via consideration of Markov-chain
transition probabilities [56]. For details, please also refer to
Ref [51].

“The measurement error term derives from the mutual in-
formation of probability theory [56].
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C. Annealing to identify a lowest minimum of the cost
function

Our model is nonlinear, and thus the action surface will be
non-convex. The complete VA procedure anneals in terms of
the ratio of model and measurement error, Rf and R,,,
rsspectj\fely,5 to gradually freeze out a lowest-minimum of
the action [57]. This iteration works as follows.

We define the coefficient of measurement error R,, to be
1.0, and write the coefficient of model error R, as:
R, = Rf,oaﬁ, where R;( = 107!, @ = 1.5, and f is initial-
ized at zero. Parameter /7 is the annealing parameter. When
p =0, relatively free from model constraints the action
surface is smooth and convex, and therefore there are no
additional local minima. Then we increase the weight of the
model term slightly, via an integer increment in f, and
recalculate the action so that the procedure can again be
tasked with finding the minimum. We do this recursively
toward the deterministic limit of Ry > R,,. The aim is to
remain sufficiently near to the lowest minimum so as not to
become trapped in a local minimum as the surface acquires
the structure imposed by the model dynamics.

IV. EXPERIMENTS

A. Specific physics of interest: presence of bipolar

oscillations?

Using forward-integration simulations, we permit two
neutrino beams of different energies to be emitted from the
source (here the “neutrino sphere” of a proto-neutron star)
in two different sets of flavor-state initial conditions. In the
first set, the two beams are emitted as pure electron-flavor
eigenstates. They evolve synchronously and smoothly
through the MSW resonance. In the second set, the beams
are emitted in nearly opposite polarization states: one
pure electron-flavor (P, = 1.0) and the other nearly pure
x-flavor (P, = —0.8). This second set gives rise to bipolar
oscillations, as described in Sec. II B.

We seek to examine these two scenarios for the following
reason. In a CCSN environment, typically the neutrino flux
during the early shock breakout, or “neutronization burst”
phase, is dominated by electron neutrinos over all other
flavors of neutrinos and antineutrinos [58]. Such initial
conditions typically give rise to synchronous oscillations.
Conversely, at later times during the supernova explosion,
such as the neturino-driven wind phase, neufrinos are
emitted in a rough equipartition among flavors, but with
different average energies. As a result, there is a dominance
of different flavors at different energies in the initial
distribution of neutrinos—leading to bipolar oscillations.
As the initial conditions will impact the subsequent flavor

*More generally, R,, and R/ are inverse covariance matrices
for the measurement and model errors, respectively. In this paper
the measurements are taken to be mutually independent, render-
ing these matrices diagonal.

evolution and nucleosynthesis throughout the envelope, we
seek to eliminate a priori assumptions and instead ask what
information regarding the early flavor evolution is con-
tained in measurable quantities at an Earth-based detector.

The challenge for the SDA procedure is to infer—based
on measurements made in vacuum near Earth—which
scenario had occurred at earlier radii: the synchronous
behavior or the bipolar oscillations. Translating to a larger-
scale model, the question will become: In principle, can
multiple measurements of flavor near Earth yield informa-
tion about the flavor states at earlier radii within the
matter-dominated region?.

B. Details of the procedure

In this paper, we give the SDA procedure full knowledge of
the model parameters, and measurements were provided at
three locations in the vacuum-dominated region. Figure 1
offers a schematic. Within the context of this simple model, by
“measurement” we mean the value of P, and P, ,—the
z-component of the polarization vector for Neutrino Beams 1
and 2, respectively.® The procedure is provided no information
regarding flavor outside of the three locations in vacuum. The
task is to take those sparse measurements, together with the
model dynamics, to predict the complete flavor evolution
history; that is: the values of P, P,, and P, for each beam at
each radial location between emission from the neutrino-
sphere at r =0 and detection at r ~ R. To obtain the
prediction, the SDA procedure is permitted to search the full
dynamical range for each variable—of [—1.0:1.0]—at each
location.” The confidence check on the SDA prediction is
simulated “data” generated by forward-integration.

Our specific question is whether vacuum oscillations
sampled near Earth contain a signature of whether bipolar
oscillations occurred prior to the MSW resonance. To this
end, we perform two variations on the experimental design
described above.

In the first variation, the simulated data takes as initial
conditions (at r = 0) Py, = 1.0and P, , = 1.0 (P, and P,
are initialized at 0 for both neutrino beams.) Initially
aligned in the pure v, state, no bipolar oscillation occur,
and the trajectory through the MSW resonance is smooth
and synchronous. The two beams emerge in nearly-pure v,
flavor and no appreciable vacuum oscillations occur near
the detector (at r = R).

In the second variation, the forward integration is instead
initialized (at r = 0) with P, , = +1.0and P, , = -0.8 (P,
and P, are again initialized at O for both beams.)

°Of course, a real detector will measure a spectrum convolved
with contamination.

"In previous publications (Refs [51,52]), we used search ranges
for P, and P, that were roughly three times stricter. Broadening
those ranges to encompass the full possible dynamics—while it
increased the computational expense—has rendered the procedure
more robust.
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Schematic of the small-scale simulation. Two neutrino beams, v, and v,, emanate from an infinitely sharp “neutrino-sphere,”

which lies at radius R, from the center of the proto-neutron star. The beams interact coherently through the matter-dominated envelope,
and arrive at Earth. Three detectors, clustered in the vacuum regime, sample the P_. components (i.e., electron-flavor content) of each
polarization vector. In a realistic scenario, these three measurement locations represent three satellite- or Earth-based detectors.

These represent two nearly opposite polarization states,
which—as described in Sec. II B—give rise to bipolar
oscillations prior to MSW. The beams then emerge from
MSW in mixed states and display high-frequency and high-
amplitude vacuum oscillations near the detector (at r = R).

In each variation, the SDA procedure is challenged to
predict which behavior had occurred within the supernova
envelope: smooth evolution or bipolar oscillations.

To discretize the neutrino path, we record the output of the
simulated forward-integration model at 50,001 discretized
steps and a step size ér of 0.00004. The optimization
procedure uses the same grid. The units for distance
(r = [0:2)) are arbitrary, in keeping with previous publica-
tions [51,52]. These numbers ensure that bipolar oscillation
frequency would be well resolved. Measurements of P,
and P, , are taken at the final location (n = 50, 001) and at
two locations within 1,500 steps of that final location. These
locations lie sufficiently far beyond the MSW resonance that
the vacuum term dominated the Hamiltonian there. The two
additional locations are varied, to determine the solution’s
robustness to the specific choices of locations. In total, we
conduct 67 independent experiments, corresponding to 67
distinct choices for the locations of the second and third
measurement locations. For each these 67 experiments, four
paths are searched, beginning at randomly generated initial
conditions for state variables.

The forward integration is performed by PYTHON’s odeINT
package, which discretizes via an adaptive step size. The
optimization is performed by the open-source Interior-Point
Optimizer (Ipopt) [59], which employs a Hermite-Simpson
method of discretization and a constant step size. The
discretization of state space, calculations of the model
Jacobean and Hessian matrices, and the annealing procedure
are performed via an interface with Ipopt that was written in C
and PYTHON [60]. Simulations are run on acomputing cluster
equipped with 201 GB of RAM and 24 Genuinelntel CPUs
(64 bits), each with 12 cores.

V. RESULT

Key results are as follows:

(i) Sampling the P, components of the neutrino beams
at multiple vacuum-regime locations reliably pre-
dicted whether synchronous evolution or bipolar
oscillations occurred at earlier radii.

(i) For the case of bipolar oscillations, and given three
measurement locations, the degree to which the
measurements sampled the vacuum oscillation am-
plitude correlated strongly with the strength of the
predicted amplitude of earlier bipolar oscillations.
Further, if the vacuum oscillation amplitude was
well sampled, the Fourier transforms of the evolu-
tion of the P, components at early radii captured
some degree of the complexity of the true waveform.

(iii) Using two, rather than three, radial locations, the
procedure correctly inferred that bipolar oscillations
had occurred, but poorly predicted their amplitude.

(iv) A preliminary examination suggests that performing
parameter estimation in addition to state estimation,
using multiple measurements in vacuum, will be
significantly more challenging than performing state
estimation alone.

A. Prediction of synchronous evolution

The left panel of Fig. 2 shows the true (dotted blue)
versus predicted (solid) state variable evolution for the case
in which initial conditions on P, , and P, , were +1.0 and
+1.0: pure electron-flavor states. The measured and
unmeasured states are in solid red and black, respectively.
These initial conditions yield smooth, synchronous evolu-
tion through the MSW resonance, as described in Sec. II. In
this case, measurements of P; , and P, , were taken at three
locations in vacuum.

Here we remind the reader that the measurements used to
obtain this prediction were the measurable state variables
P, , and P, , at three locations near the detector, outside the
matter-dominated region; that is: at three out of the 50,001
discretized locations on the path. Given this sparse infor-
mation—which captured no vacuum oscillations, the pro-
cedure correctly inferred that the beams had been emitted in
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True and predicted flavor evolution histories given three measurements of P, and P, near the detector. From top, the
columns are: P, Py, P, for Beam 1, and P,, P, P, for Beam 2. Black and red lines are predictions for unmeasured and measured state
variables, respectively; true model evolution is dotted blue. Left: the initial conditions—unknown to the SDA procedure—for P, , and
P, . were, respectively: +1.0, +1.0, yielding smooth synchronous evolution through the MSW resonance. Right: the initial conditions
were instead +1.0 and —0.8, yielding bipolar oscillations. The units for distance (r = [0:2]) are arbitrary, in keeping with previous

publications (Refs. [51,52]).

aligned pure states and that no bipolar oscillations had
occurred. This result was robust to ten percent noise added
to the measurements of P, and P,, (not shown).

B. Prediction of bipolar oscillations

The right panel of Fig. 2 shows the true (dotted blue)
versus predicted (solid) state variable evolution for one of
the 67 experiments with initial conditions on P, , and P, ,
set to +1.0 and —0.8, respectively. In the simulation
obtained by forward integration, nearly oppositely-aligned,
the beams’ interactions yield bipolar oscillations. Given
three measurements, which collectively were able to
sample the amplitude of vacuum oscillations near Earth,
the procedure predicted that bipolar oscillations had
occurred at earlier radii. The prediction of the frequency
of these bipolar oscillations was robust to ten percent noise
added to the measurements of P;, and P, , (not shown).

We sought to quantify in more detail the degree to which
the structure of bipolar oscillations at early radii was
predicted via observations at later radii in vacuum, over
all 67 experiments (as noted in Sec. IV B, the 67 experi-
ments represent 67 distinct choices of two out of three
measurement locations: those two lying within 1500
discretized steps of the final location at n = 50, 001).

First we offer one “good” and one “bad” representative
example, out of the 67 total. Figure 3 shows the good. The
right panels in Fig. 3 show the flavor evolution in vacuum
near the detector (n = [48500:50001]) for P, , (top) and

P, . (bottom). True versus predicted are blue and red,
respectively; green circles denote the observation locations.
The left panels show the corresponding predicted earlier
bipolar oscillations (n = [0:1000)).

Note that together, the three observations (Fig. 3 right)
capture well the amplitude of vacuum oscillations—and
that the corresponding prediction of earlier bipolar oscil-
lation amplitude is strong (Fig. 3 left).*

To further analyze the structure of the predicted bipolar
oscillations—that is, for n = [0:1000], we examined the
Fourier decomposition of the evolution of the two P,
components in that region. A Fourier decomposition was
called for because those bipolar oscillations may evolve in
radius within that region, and may not be strictly sinusoidal.

Figure 4 shows the resulting Fourier power spectrum, for
P, . (top) and P, , (bottom), where blue and red are true
versus predicted, respectively. The predicted amplitude of
the strongest harmonic is well matched to the true value, as
was indicated by the wave-forms at left in Fig. 3.

Further, and more interestingly, the predicted Fourier
transform captures to some degree the complexity of

The difference between true versus predicted initial condi-
tions at r = 0 is likely due to different discretization methods
employed by the optimization-versus-integration procedures.

The difference in the precise value of the predicted versus true
peak frequency corresponds to the minimum difference set by the
sampling rate. That nonzero difference is likely due to different
discretization methods employed by the optimization-versus-
integration procedures.
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FIG. 3. Estimate of flavor oscillations in vacuum, juxtaposed with prediction of bipolar oscillations at earlier radii: a “good” example.
Top and bottom: P, , and P, _, respectively. Right: estimate during observations window in vacuum, with final detector location at far
right. Observation locations denoted by green dots; blue and red are true evolution versus estimate, respectively. Left: prediction of
bipolar oscillations at earlier radii. Note that adequate sampling of the vacuum oscillations amplitude (right) yields a strong prediction of

the bipolar oscillations amplitude at earlier radii (left).

structure present in the correct solution. First, the peak
frequency is not a delta function, but rather has a finite
width, indicating that its value is evolving within the range
of n=[0:1000]. Second, the second harmonic is also
predicted. (The features at higher frequencies are likely due
to differences in the discretization methods used by the
PYTHON forward integration versus the optimizer.)

Figure 5 shows a representative bad solution out of the
67 total; it is formatted identically to Fig. 3. Note that the
three measurements (right) poorly sample the vacuum
amplitude, and that that poor estimate is reflected in a
poor prediction of the bipolar oscillation amplitude (Fig. 5
left, top, and middle). The Fourier transforms of Fig. 6, akin
to Fig. 4 for the good example, also reflect a poorer match
to the power in the first harmonic of the bipolar oscillations

|

Jjz

waveform, and the complexity of the Fourier decomposi-
tion of the true solution is not captured strongly.

These two examples alone suggest a pattern: in the
experiments where the multiple measurements in
the detector region are able to sample the full extent of
the vacuum oscillation amplitude, the prediction of the
bipolar oscillation waveform near the source becomes
significantly better. To quantify the “goodness” of the
bipolar oscillation prediction, the metric that we used
was the absolute value of the difference between the peak
amplitudes of the strongest frequency in the Fourier
transforms (FFTSs), of the true and predicted P, waveforms
near the source (the first 1000 grid points), summed over
both the neutrino energies. We will call this quantity
AFFTPeak: bipolar and formally write:

AFFTPeskbipolar — N7 max (FFT[P{" (n € [0:1000])]} — max {FFT[P¥ (n € [0:1000])]}], (4)

where “max” refers to the maximum strength of the FFT across all Fourier modes (except the zero-frequency mode). We
correlated that quantity with the degree to which the observations captured the vacuum oscillation amplitudes of both

neutrinos. Formally, we defined the difference in true versus estimated amplitude near the detector as AP,

ampl, vacuum
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AP — N ampl{ ™) (n € [48500:50000])} — ampl{ P¥* (n € [48500:50000])}, (5)
i

where” ampl” refers to the amplitude of each P, waveform
over the specified domain (in this case, the discrete grid
locations numbered 48500 to 50000).

Indeed, across all 67 experiments, we discovered that
these two metrics were well correlated. This is shown in
Fig. 7, where AFFTpeakbirolar (y axis) is plotted against
APV (0 axis).

C. Varying the number of measurements

Prior to conducting the experiments described above,
which employed three measurement locations, we had
attempted to find solutions using just one measurement
location for the P, components, and then using two
locations. Results were as follows.

Measuring the P, components only at the final location
(at r = R) yielded zero model dynamics (not shown).
Adding a second measurement location yielded a correct
inference that bipolar oscillations had occurred, although
the amplitude of those oscillations was predicted poorly

—— model

A —— prediction
100

0.1
25 45 100 250

100

10

P>, 2

0.1

2000

25 45 100 250

1000

frequency [1/distance]

FIG. 4. The Fourier decomposition of the region of bipolar
oscillations shown at left in Fig. 3, for P, , (top) and P, ; (bottom).
Blue and red are true and predicted, respectively. The predicted
amplitude of the first harmonic is well matched to the true value,
and some complex structure is captured.

(not shown). Adding a third measurement significantly
improved the prediction of the amplitude of bipolar
oscillations, as shown in Fig. 2 right panel and Fig. 3.

To interpret this result, one must recognize that meas-
uring P, at more than one location yields information about
the derivative of P,—which depends on the unmeasurable
variables P, and P,. As one increases the number of
locations at which P, is measured, one is effectively
reconstructing the dynamics of the imaginary P, and P,.
See Sec. VL.

D. Prediction with an unknown parameter
in the model’s matter potential

With a nonlinear model, rendering a single parameter to
be an unknown quantity significantly increases the math-
ematical challenge for the SDA procedure, compared to
state estimation alone. We sought to ascertain how well the
SDA design described in this paper would navigate such an
increase in complexity. To this end, we repeated the
experiments, this time setting one model parameter to be
an unknown quantity to be estimated along with the state
variables. We chose as this unknown parameter the constant
coefficient C,, in the matter potential (as described in
Model), because the matter potential is of keen theoretical
interest and may impart a signature upon a detection.

For both the cases with and without bipolar oscillations,
we initialized ten independent paths, using as measure-
ments the P, , and P, , values at three locations near r = R,
as before. The true value of C,, was 3308.0, and the
permitted search range was: [0:10,000.]

For both cases with and without bipolar oscillations, the
estimates of C,, were scattered within the permitted search
range, with half of the paths estimating the upper bound of
10,000. For each estimate, we confirmed via forward
integration that the corresponding state variable evolution
was as it should be, were the true value of C,, indeed the
estimated value. Importantly, for both cases, the SDA
procedure still correctly inferred whether bipolar oscilla-
tions occurred, and captured the amplitude and frequency
of those oscillations as faithfully as it had in the original
experiment that had taken C,, to be known. We can
conclude that the three measurements of P, near r = R
contain significantly more information about the state
variable evolution than they do about the specific strength
of the matter potential.

The failure to estimate C,, using measurements in
vacuum stems from the degeneracy inherent in these
measurements, given the simplicity of the matter potential
chosen for the model. Adding additional measurements
within the vacuum regime will not reduce this degeneracy.
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FIG. 5. Estimate of flavor oscillations in vacuum, juxtaposed with prediction of bipolar oscillations at earlier radii: a “bad” example.
Top and bottom: P, ; and P, ., respectively. Right: estimate during observations window in vacuum, with final detector location at far
right. Observation locations denoted by green dots; blue and red are true evolution versus estimate, respectively. Left: prediction of
bipolar oscillations at earlier radii. The poor estimate of vacuum oscillation amplitude (right) yields a poor prediction of bipolar

oscillation amplitude earlier (left).

For an additional measurement to help, it would need to be
placed within the matter envelope [52]—which would belie
the aim of this paper. Alternatively, adding more realistic
complexity to the matter potential, for example, including
shocks, may improve the ability of in-vacuum measure-
ments to home in on its precise form. Moreover, a detailed
study of the procedure’s ability to handle parameter
estimation will require an examination of the model’s
sensitivity to specific parameter values, and is beyond
the scope of this paper.

VI. DISCUSSION

We have made significant progress beyond previous
work, having eliminated assumptions regarding flavor
content throughout the matter-dominated regime, and
instead inferring flavor evolution histories via measure-
ments at accessible locations in vacuum. We have learned
that obtaining a measurement of polarization vector com-
ponent P, at multiple locations in vacuum yields informa-
tion about whether bipolar oscillations occurred at earlier
radii, prior to the MSW transition.

A. How do multiple measurements of P, in vacuum
predict bipolar oscillations at emission?

As noted in Sec. V B, one measurement in vacuum of the
P, components of the two neutrino beams yielded failed
inference of the flavor evolution history. Two measurement
locations correctly showed whether bipolar oscillations had
occurred at emission, but with poor matches to the
oscillation amplitude. Three measurement locations sig-
nificantly enhanced that amplitude prediction. What is the
significance of “at least three measurements”™?

This question brings to mind the time-delay embedding
theorem from dynamical systems. At the core of that
prescription is the notion that one can represent a state
space in n variables, or equivalently in one variable at n
distinct temporal locations [61]. The concept is intimately
related to the information contained in the derivatives of a
time series [62]. The relevant scenario for our purposes is
that, taken together, multiple measurements of P, represent
the derivative of P,. According to Eq. (1), that derivative is
dictated in part by the instantaneous values of P, and P,.
That is: the derivative of P, contains information about P,
and P,—and hence phase information.
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FIG. 6. The Fourier decomposition of the region of bipolar
oscillations shown at left in Fig. 5. The predicted amplitude of the
first harmonic is poor, and complex structure is not captured well.

A single measurement location of P, , and P, , contains
no information regarding the relative phases of the respec-
tive polarization vectors. Two measurement locations,
however, yield some crude approximation of the deriva-
tives, and hence can reconstruct to some degree the
instantaneous values of P, and P,. Thus, a pair of
measurements of P, contains some information about
the relative phases of the two beams, and hence whether
bipolar oscillations could have occurred at prior radii.

Adding yet a third measurement further improves the
accuracy of the predicted derivative of the P, components.
Having a third measurement greatly increases the like-
lihood of sampling the amplitude of the vacuum oscillation
waveforms of the individual neutrino modes in the detector
region. As shown in Fig. 7, sampling the full amplitude of
the vacuum oscillations is well-correlated with soundly
predicting the amplitude of bipolar oscillations in the
source region. Based on this correlation, we might expect
that, increasing the number of measurements beyond three
would further improve the bipolar oscillation predictions
near the source. To this end, we conducted two preliminary
tests that employed four and five measurement locations,

350

¢

AFFT peak, bipelar

50

( i j i
0 0.05 0.1 0.15 0.2 0.25 0.3
AP“rnnpf. R

FIG. 7. Correlation between the goodness of the bipolar
oscillation prediction, as quantified by the difference between
the peak FFT amplitudes of the true and predicted P, waveforms
in the source region [AFFTPeak bipolar 5q defined in Eq. (4)], and
the difference between the true and predicted P, oscillation
amplitudes in the detector region [APZ™PY4U™ " 4q defined in
Eq. (5)]. Each dot on the plot represents one experiment.

respectively, using just one set of measurement locations
for each test. Both yielded excellent predictions, compa-
rable to the best result obtained over all 67 experiments that
had employed three measurements—i.e., Fig. 2, right
panel. This finding is unsurprising: the more independent
locations of P, sampled in vacuum, the more precisely its
derivative can be estimated.

Finally, the reader might have noted that, in measuring
the P, vector components at three distinct locations, we
replaced the six boundary conditions used by forward
integration by six different boundary conditions. In the case
of forward integration, the six are: all measurable (P,) and
unmeasurable state variables (P, and P,) for both beams at
a single physically inaccessible location (r = 0). By con-
trast, within the SDA formulation, the six boundary
conditions were the measurable P, for both beams at three
physically accessible regions (in vacuum near r = R). In
the future, it might prove instructive to formalize a trans-
lation between these two formalisms.
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