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AN EQUATION FOR THE IDENTIFICATION OF
AVERAGE CAUSAL EFFECT IN NONLINEAR MODELS

Wing Hung Wong

Stanford University

Abstract: When the causal relationship between X and Y is specified by a structural
equation, the average causal effect of X on Y is the population average rate of change
of Y with respect to changes in X, when all other variables are kept fixed. This
parameter is not identifiable from the distribution of (X,Y). We give conditions
under which the average causal effect is identified as the solution of an integral
equation based on the distributions of (X, Z) and (Y, Z), where Z is an instrumental
variable.
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1. Introduction

Suppose the causal relation between two real-valued random variables X
and Y is specified by a structural equation Y = f(X,U), where U represents
all other variables that may also affect Y. We assume f(z,U) is smooth in z,
and write Y (z) = f(z,U), YO (z) = & f(x,U)/(0x"),i = 1,2. Then YV (x),
which tell us how Y will change when X varies around the value x, can be
regarded as the causal effect of X on Y when X = x. This effect can be different
for different subject (or sampling unit) in the population. In this paper it is
assumed that we can observe X,Y but not U, the form of f() is unknown, and
we are interested in the estimation of the average causal effect (ACE) which
is defined as the function 8(z) = E(Y()(z)). ACE is a natural generalization
of ATE = E(Y(1) —Y(0)) when X is a binary variable indicating which of
two treatments were received. ATE stands for average treatment effect, which
is a parameter of central interest in the potential outcome framework for causal
inference (Rubin| (1974)). Since Y (z) and Y )(z) are counterfactual variables (i.e.
potential outcomes) that are needed in the formulation of causal relations but
are not directly observable, 6(x) is not identifiable from the distribution (X,Y)
alone. The method of instrumental variable attempts to identify 6(x) from the
two distributions (X, Z) and (Y, Z) where the instrumental variable Z can affect X
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through another equation X = g(Z, V). However, identifiability results for causal
parameters typically requires monotonicity assumptions on certain arguments of
the structural equations (Imbens and Angrist (1994)); |Angrist, Imbens and Rubin
(1996); |Chernozhukov, Imbens and Newey, (2007)); Imbens and Newey (2009));
Chen et al.| (2014)); (Torgovitsky| (2015)); Kennedy, Lorch and Small (2019), see
Wong (2021)) for further review). Importantly, the causal parameters identified
under those conditions were defined as averages of counterfactuals over certain
subpopulations rather than as the unrestricted average over the whole population.
Since the unrestricted population average is often also of interest (e.g. when we
want to know the effect of an intervention for society at large), it is useful to
supplement the existing results by developing methods to identify the unrestricted
average causal effect.
We consider the following nonlinear, nonparametric causal model

1) Y=f(X,U),Y e R, X e€RUEe€RP, f is bounded and smooth in x.

(1)
(2) X=9(Z,V),Z€ R,V € R".

(3) sup, . p.(7) < oo where p.() denotes the density function of X (z).
(4) Z is independent of (U, V).

In (1), the condition that f is bounded and smooth in z means that sup,, | f(z,u)|
< oo and sup,, |0'f(x,u)/0x¢| < m(x) for i = 1,2, where m() is a bounded and
integrable function. Then, when z — oo, we have Y (0c0) = lim Y (z) exists and
E(Y(x)) — E(Y(cc)). Similarly for Y (—o00). Also, 8(z) = E(YM(x)) is a
differentiable function and limf(z) = 0 as + — £oo. For nonlinear f and g,
the independence condition (4) is not sufficient for the identification of #(x) from
the distribution of (X,Y,Z). Under the condition that changes in Y caused by
varying X is uncorrelated to changes in X caused by varying Z, conditional on
Z = z,|Wong (2021) showed that the distributions (X, Z) and (Y, Z) identify a
related function (z) = E(Y(M)(X)|Z = z). That paper also demonstrated by
examples that sometimes the function (z) can be recovered from the function
¥ (z), but did not provide results on the direct identification of #(x). To fill this
gap, in this paper we derive an integral equation that can be used to identify 6(x)
from the distributions of (X, Z) and (Y, Z).

2. Result

To formulate our main result, consider the following conditions

(5) I(X(z) < ) is uncorrelated with Y1) (z), for all x, 2.
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(6) The set of distributions of X|Z = z, induced by varying z, is a complete
set.

Theorem 1. If (1)-(6) hold and zy is a fized value, then 0 is identifiable via the
integral equation

/K(z,x)@(w)dw = u(z) — p(zo) (2.1)
where K(z,x) = P(X <z|Z = 2)) — P(X <z|Z =2),u(z) = E(Y|Z = z2).
Proof.

pz) = (Y|Z = Z) fX, U)|Z = Z) E(f(9(z,V),U)|Z = 2)
= E(Y( E/5 x— X(2)Y(x)dz (2.2)

Before the formal proof we first provide a heuristic derivation. Suppose It
is valid to apply integration by part to (2.2) where the delta function §(t) is
regarded as the derivative of the step function D(t) = I(¢t > 0), then (2.1)) follows
because

w(z)=E (Y(oo)— / I(X(z) < x)Y(l)(x)d:r> = EY (00)— / P(X(2) < 2)0(z)dz.

To make this rigorous, replace 6() in (2.2) by the N(0,02) density ¢, (), and
define

=F / Yoz — X (2))Y (z)dx (2.3)

Since Y (z) = V(X (2)) + YO(X(2))(z — X(2)) + (1/2)Y (X (W)) (2 — X (2))?
where W is an intermediate variable lying between = and X (z), we have

1o(2) = BY (X(2)) + E

YOOV [ oole — X ()@ - X(:))Pde|

Thus,
2

o (2) — n(z)| < % supm(z) < co? for some constant c. (2.4)

x

Next, we claim that there exist a constant ¢ > 0, so that

- X
'E(CD <$(2)>Y(1)(x)> — P(X(2) <2)0(z)| < em(x)y/o for all small o.
o
(2.5)
Assuming (2.5 is true, we now analyze the integral in (2.3). Using integration
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by part, we have

=E(Y(0)) — /P(X(z) < z)0(z)dx +r(z,0)
where for some constant c, |r(z,0)| < ¢y/o for all small o. Thus,

(ko (2) = po(20)) — /[P(X(zo) <) - P(X(2) < 2)|0(x)dz| < 2¢cV/o. (2.6)

Taking the limit of (2.4)) and (2.6 as ¢ — 0, we have

(=) = plz0) = lim (s1o(2) = pio(20)) = / [P(X(x) < ) — P(X(2) < 2))6(x)da.

The desired equation (2.1]) follows because P(X(z) < z) = P(g(2,V) < z) =

P(g(z,V)<z|Z =2)=P(9g(Z,V) <z|Z =z2) = P(X <z|Z = z). To prove the
claim ,
’E <1>< ) M (z )) P(X(z) < x)0(x)

m
o

< m(:n)E‘q)<x _f(z)> ~I(X(2) < )
< m(a) @ - 72 ) + dlsup.(a)va] 27

The last inequality holds because |®((x — X(2))/o) — I(X(2) < z)| is
bounded by 2 on A(c) and by ®(—1/y/0) on A(0)¢, where A(o) is the event
{|X(2) — x| <+/o}. Finally follows from because of the exponentially
decreasing tail of the normal distribution. Since both K(z,x) and u(z) in the
integral equation are determined by the distributions of (X, Z) and (Y, Z),
it follows that 6 is also determined if the solution to is unique. To establish
uniqueness, let a be a fixed constant, and define for any (), its anti-derivative

x) =a— [>°0(t)dt. Suppose 0 and 63 are two solutions to and A\; and
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Ao are the corresponding anti-derivatives, then

EO(X) = Ma(X)|Z = 2) = / pxz(@]2) (M — Aa) ()
= —/P(X <z|Z =2)(01 — 02)(x)dx = —/P(X < z|Z = 29)(01 — 02)(x)dx

Since the last expression does not depend on z, Condition (6) implies A\; = Ag
and therefore 67 = 6.

3. Discussion

Of the 6 conditions in the theorem, the first 3 are needed just to set up the
model and are not restrictive. On the other hand, conditions (4), (5), (6) each
represents a significant constraint on the model. Condition (4) says that Z is
independent of all other causal variables that affect X and Y. Together with
(1) and (2), this means that the only way Z can affect Y causally is indirectly
through its effect on X. This is a natural condition on an instrumental variable.
Condition (6) implies that the family of conditional distributions P(X|Z = z2)
as z varies, is a large family. This means that Z has non-trivial relationship
with X in the sense that varying the value of z leads to rich changes in the
distribution of X. This is also a reasonable condition on an instrumental variable.
This type of completeness condition was first introduced into causal inference
by Newey and Powell (2003). Finally, condition (5) requires the causal effect
Y () = (8f/0x)(x,U) to be uncorrelated to I(X(z) < z) = I(g(z,V) < x),
which is a strong condition. However, even in the simplest case when both X
and Z are binary variables, it is not possible to identify the average treatment
effect (analog of € in that case) from the distribution (X, Z) and (Y, Z) without
similarly strong conditions (see discussion in |Angrist, Imbens and Rubin| (1996])).
In the general context of (1)-(4), we are not aware of alternative conditions that
can be used to relate p(z) to 6(z). The following example illustrates the use of our
result in a nonlinear, nonparametric model that allows i) unobserved confounders
and ii) heterogeneity in the causal effect of X on Y.

Example 1. Suppose Y = h(X,U;) + Us, X = g(Z,V), where h() is a smooth
and bounded function in x. If U; is independent of V, then condition (5) is
satisfied. Note that since no restriction is imposed on the joint distribution of
U, and V', they may include unobserved confounders that affect both X and Y.
Also, the completeness condition (6) is not too restrictive. For example, (6) holds
in the following cases (a) g(z,v) = s(z + v) where s() is an invertible function
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and V is a continuous random variable, (b) g(z,v) = 1 4+ v1z + v22%, V1 and Vs
are independent random variables.

From the proof of the theorem, it is clear that if condition (5) holds only
for some values of z and zg, then equation will hold for those z and zy. If
we are willing to make some modeling assumptions on (), say 0(z) = X¥a;b;(x)
where b;(),i = 1,...,k are fixed functions, then we may weaken condition (5)
by requiring it to hold only for a finite subset of values for z and then use the
corresponding finite set of equations to identify the parameters «;,7 = 1,... k.
Finally, we note that above proof of the theorem follows the way we discovered
the integral equation originally, namely, start with the expression for E(Y|Z =
z), replace the delta function in the expression by the normal kernel and then
integrate by part to obtain an expression involving 6(). Weijie Su (personal
communication) suggests a second proof, which starts from the given K(z, z) and
then shows that the integral in gives rise to u(z) — w(0). His proof has the
advantage that it does not require the existence of bounded second derivatives.

Acknowledgments

The author thanks Xiaohong Chen, Peng Ding, Dylan Small, and Weijie Su
for helpful comments. This work was supported by NSF grants DMS1811920 and
DMS1952386.

References

Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using
instrumental variables. Journal of the American statistical Association 91, 444-455.
Chen, X., Chernozhukov, V., Lee, S. and Newey, W. K. (2014). Local identification of nonpara-
metric and semiparametric models. Econometrica 82, 785-809.

Chernozhukov, V., Imbens, G. W. and Newey, W. K. (2007). Instrumental variable estimation
of nonseparable models. Journal of Econometrics 139, 4-14.

Imbens, G. and Angrist, J. (1994). Identification and estimation of local average treatment
effects. Econometrica 62, 467-475.

Imbens, G. W. and Newey, W. K. (2009). Identification and estimation of triangular simultane-
ous equations models without additivity. Econometrica 77, 1481-1512.

Kennedy, E. H., Lorch, S. and Small, D. S. (2019). Robust causal inference with continuous
instruments using the local instrumental variable curve. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 81, 121-143.

Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric
models. Econometrica 71, 1565-1578.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized
studies. Journal of Educational Psychology 66, 688—701.

Torgovitsky, A. (2015). Identification of nonseparable models using instruments with small sup-



AN EQUATION FOR CAUSAL EFFECT IDENTIFICATION 7

port. Econometrica 83, 1185-1197.

Wong, W. H. (2021). A calculus for causal inference with instrumental variables. arXiv preprint
arXiv:2104.10633.

Wing Hung Wong

Departments of Statistics and Biomedical Data Science, Stanford University 390 Jane Stanford
Way, Stanford, CA 94305, USA.

E-mail: whwong@Qstanford.edu

(Received May 2021; accepted August 2021)


mailto:whwong@stanford.edu

	Introduction
	Result
	Discussion

