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ABSTRACT. In studying the “11/8-Conjecture” on the Geography Problem in
4-dimensional topology, Furuta proposed a question on the existence of Pin(2)-equi-
variant stable maps between certain representation spheres. A precise answer of Fu-
ruta’s problem was later conjectured by Jones. In this paper, we completely resolve
Jones conjecture by analyzing the Pin(2)-equivariant Mahowald invariants. As a geo-
metric application of our result, we prove a “10/8+4”-Theorem.

We prove our theorem by analyzing maps between certain finite spectra arising
from B Pin(2) and various Thom spectra associated with it. To analyze these maps, we
use the technique of cell diagrams, known results on the stable homotopy groups of
spheres, and the j-based Atiyah-Hirzebruch spectral sequence.
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1.1. The classification problem of simply connected 4-manifolds. A fundamen-
tal question in four-dimensional topology is the following:

Question 1.1. How to classify all closed simply connected topological 4-manifolds?
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To start our discussion, let N be a simply connected topological 4-manifold. There
are two important invariants of N:

(1) The intersection form Qp: this is a symmetric unimodular bilinear form over
Z given by the cup-product

Qy : H2(N;Z) x H¥(N;Z2) — Z,
(a,b) —> (@ U b,[N]).

(2) The Kirby-Siebenmann invariant ks(IN') (defined in [KS77]): this is an element
in H*(N;Z2/2) = 7/2.

Question 1.1 was resolved by the following famous work of Freedman:

Theorem 1.2 (Freedman [Fre82]).

(1) Two closed simply connected topological 4-manifolds are homeomorphic if and
only if their intersection forms are isomorphic and their Kirby-Siebenmann in-
variants are the same.

(2) When the form is not even, any combination of the symmetric unimodular bi-
linear form and Kirby-Siebenmann invariant can be realized by a closed simply
connected topological 4-manifold.

(3) When the form is even, the combination can be realized if and only if the Kirby-
Siebenmann invariant is equal to the signature of the form divided by 8 modulo 2.
(Note that the signature of an even form must be divisible by 8. See [DK90, Section
1.1.3] for example.)

Therefore, given two manifolds, one can deduce whether they are homeomorphic
or not by computing their intersection forms and Kirby-Siebenmann invariants. More-
over, Theorem 1.2 implies that any symmetric unimodular bilinear form can be real-
ized by exactly two non-homeomorphic closed simply connected topological
4-manifolds if it is non-even, and by exactly one manifold if it is even.

We will now move on to the smooth category.

Question 1.3. How to classify all closed simply connected smooth 4-manifolds?

By the works of Cairns, Whitehead, Munkres, Hirsch, and Kirby-
Siebenmann [Cai35, Whi40, Mun60, Mun64b, Muné64a, Hir63, KS77], the Kirby-
Siebenmann invariant of any smooth manifold, and in particular, a smooth 4-manifold,
is zero. This fact, combined with Theorem 1.2, shows that two closed simply connected
smooth 4-manifolds are homeomorphic if and only if they have isomorphic intersec-
tion forms. Therefore, Question 1.3 naturally breaks down into Questions 1.4 and 1.5:

Question 1.4. Given a symmetric unimodular bilinear form Q, can it be realized as
the intersection form of a closed simply connected smooth 4-manifold?

Question 1.5. Suppose that the answer to Question 1.4 is yes; then how many non-
diffeomorphic 4-manifolds can realize the given form?

In other words, Question 1.4 is asking which closed simply connected topological
4-manifolds admit a smooth structure. Question 1.5 is asking that if they do, how many
different smooth structures do they admit. Topologists often refer Question 1.4 as the
“Geography Problem” and Question 1.5 as the “Botany Problem”.
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The main motivation of our work comes from the Geography Problem. In the past
thirty years, starting with Donaldson’s groundbreaking work in [Don83], significant
progress towards the resolution of the Geography Problem has been made.

Let’s divide symmetric unimodular bilinear forms Q over Z into two categories: the
definite ones and the indefinite ones. For definite forms, a complete algebraic classifi-
cation is still unknown. Nevertheless, Donaldson proved the following seminal theo-
rem.

Theorem 1.6 (Donaldson’s diagonalizability theorem [Don83]). A definite symmetric
unimodular bilinear form Q can be realized as the intersection form of a closed simply
connected smooth 4-manifold if and only if Q can be represented by the matrix I or —I.

This gives a complete answer to Question 1.4 in the case when Q is definite.

For indefinite forms, a powerful algebraic theorem of Hasse and Minkowski (see
[Ser77]) states that if Q is not even, it must be isomorphic to a diagonal form with
entries *+1, and if Q is even, it must be isomorphic to

(L.1) KEy @ q((l’ (1))

for some k € Z and q € N (for negative k, kEg denotes the direct sum of |k| copies of
—Ejy).

When the bilinear form Q is not even, by the theorem of Hasse and Minkowski, Q
can always be realized by a connected sum of copies of CP? and CP2.

When the bilinear form Q is even, by Wu’s formula [Wu50], the closed simply con-
nected 4-manifold M realizing Q must be spin. Furthermore, by Rokhlin’s theorem
[Roh52], the integer k in (1.1) must be even. By reversing the orientation of M, we may
assume that k > 0.

To this end, the following celebrated conjecture of Matsumoto [Mat82] serves as the
last missing piece to this puzzle:

Conjecture 1.7 (The 1gl-conjecture, version 1). The form

01
2pE3 @ q <1 0)
can be realized as the intersection form of a closed smooth spin 4-manifold if and only if
q = 3p.

Remark 1.8. Note that Conjecture 1.7 is for general closed smooth spin 4-manifolds,
which are not necessarily simply connected.

The “if” part of Conjecture 1.7 is straightforward: if ¢ > 3p, then the form can be
realized by
#K3 # (S?xS%).
P q-3p

Recall that the intersection forms of K3 and S? x S? are
0 1 0 1
2E8693<1 0) and (1 0),

respectively.
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The “only if” part of Conjecture 1.7 can be reformulated as follows:

Conjecture 1.9 (The %-conjecture, version 2). Any closed smooth spin 4-manifold M
must satisfy the inequality

11 .
b>(M) 2 | sign (M),

where b,(M) and sign(M) are the second Betti number and the signature of M, respec-
tively.

Definition 1.10. An even symmetric unimodular bilinear form is spin realizable if it
can be realized as the intersection form of a closed smooth spin 4-manifold.

By studying anti-self-dual Yang-Mills equations, Donaldson proved Conjecture 1.7
in the case when p = 1, under the additional assumption that H;(M;Z) has no 2-
torsions [Don86,Don87]. The condition on H; (M; Z) was later removed by Kronheimer
[Kro94], who made use of the Pin(2)-symmetries in Seiberg-Witten theory. Later, Fu-
ruta combined Kronheimer’s approach with a technique called the “finite dimensional
approximation” and proved the following significant result:

Theorem 1.11 (Furuta’s %-theorem [Fur01]). For p > 1, the bilinear form

0 1
2pEs @ Q<1 0)

is spin realizable only if ¢ > 2p + 1.

As we will explain in Section 1.2, Furuta proved Theorem 1.11 by studying a prob-
lem in equivariant stable homotopy theory (Question 1.17), which concerns the exis-
tence of certain stable Pin(2)-equivariant maps between representation spheres. The
main purpose of this paper is to provide a complete answer to this Pin(2)-equivariant
problem. A consequence of our main theorem (Theorem 1.21) is the following:

Theorem 1.12. For p > 2, the bilinear form

0 1
2pEs®q (1 0)
is spin realizable only if

2p+2 p=1,2,5,6 (mod 8)
q>12p+3 p=3,4,7 (mod 8)
2p+4 p=0 (mod 8).

Corollary 1.13. Any closed simply connected smooth spin 4-manifold M that is not
homeomorphic to S*, S? x S2, or K3 must satisfy the inequality

1.2) b,(M) > % sign (M) + 4.

Proof. Recall that the rank of Eg is 8, and that the signatures of Eg and (¢ } ) are 8 and
0, respectively. Therefore, (1.2) is equivalent to the inequality

q=>2p+2.
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By Theorem 1.12, this is true when p > 2. By Theorem 1.6 and Theorem 1.11, the only
exceptional cases are the following:

(p,q@) = (0,0), (0, 1), (1,3).
These cases correspond to S%, S? x S2, and K3 by Theorem 1.2. O

Aswe will see in Section 1.3, Corollary 1.13 is the “limit” of current methods towards
resolving the %-Conjecture using Bauer-Furuta invariants (see Remark 1.23).

1.2. Finite dimensional approximation in Seiberg-Witten theory. In this sub-
section, we will give a brief summary of Furuta’s proof of Theorem 1.11.

Let M be a smooth spin 4-manifold. By doing surgery along essential loops in M
(which does not change its intersection form), we may assume that b;(M) = 0. The
Seiberg-Witten equations (a set of first order nonlinear elliptic differential equations),
together with the Coulomb gauge fixing condition, can be combined to produce a non-
linear continuous map

SW : H, - H,
between two Hilbert spaces H; and H,. (See [BF04, Section 3], where the map is de-
noted by u.) Instead of describing the map % explicitly, we list three of its key prop-
erties:
(I) SW can be decomposed into the sum L + C, where L : H; — H, is a Fredholm
operator and C is a nonlinear map that send any closed bounded subset of H;
to a compact subset of H,.
(IT1) There exist constants Ry, € such that

(1.3) 0€SW (B(H,,¢)) C B(Hy, Ry),

where B(—, —) denotes the closed ball in H; with center 0 and given radius.
(IIT) The Lie group
Pin(2) := {e} U {jel®} Cc H
acts on both H; and H,. Under these actions, the map SW is a Pin(2)-
equivariant map.

By choosing a finite dimensional subspace V, of H, that is transverse to the image of
L and invariant under the Pin(2)-action, one can define the “approximated Seiberg-
Witten map”

Wapr =L +pry, oC: V=V,

Here, V; == L7}(14) and pry, : Hy — Vpis the orthogonal projection. For € > 0,

—_1
consider the set SW,,(B(V5, €)). By property (II) above and elliptic bootstrapping ar-
guments, one can show that whenever V is large enough, the following condition holds

(1.4) SWap(8B(i, Ry + 1)) C V3 \ B(V3, €).
Now, consider the representation spheres
S"1 = B(V;,Ry + 1)/0B(V;, Ry + 1)

and
S"2 = V,/(V, \ B(V3,€)).
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Then by (1.4), the map SW apr induces a Pin(2)-equivariant map
—~—V
SWoapr © S1 - SV2,

Applying X®(-), the map Z°°(§\I/I7:pr) represents an element in n?n(z)(so), the
RO(Pin(2))-graded equivariant stable homotopy group of spheres. It was proved by
Bauer and Furuta [BF04] that this element is independent with respect to the choices
of auxiliary data (e.g., the Riemann metric and the spaces V;, V,) and is an invariant of
the smooth structure on M. This invariant is called the Bauer-Furuta invariant and is
denoted by BF(M).

Theorem 1.14 is due to Furuta [Fur01]. We include a sketch of proof for complete-
ness.

Theorem 1.14 (Furuta [Fur01]).
(1) Suppose Iny = 2pEg @ q (9 §). Then

Pin(2)
BF(M) € 7,2}

SO,

Here, H is the four-dimensional representation of Pin(2), with Pin(2) acting on it
via left multiplication, and R is a 1-dimensional representation such that the unit
component acts as identity and the other component acts as negative identity.

(2) The element BF(M) fits into the commutative diagram

SPH
BF(M
“f”T )
SO — % gaR,
af

where ay € KEE(Z)SO and ag € 7{%1(2)50 are stable homotopy classes that rep-

resents the inclusions S° < SH and S° & SR of fixed points.

Sketch of proof. (1) The RO(Pin(2))-grading of BF(M) is V; — V,. This is the index
of the operator L and can be computed by the Atiyah-Singer index theorem.

(2) By the specific definitions of H;, V; and V; are direct sums of H and R. There-

fore, the elements a% and BF(M) - a} are both represented by some unstable

maps from the space S"™H+™R to the space S"H+M+OR for some m,n > 0.
By the equivariant Hopf theorem [tD79, Section 8.4], the equivariant, unsta-
ble homotopy classes of such maps are determined by the mapping degrees of
the induced maps on the H-fixed points for the isotropy groups H = S! and
H = Pin(2) (the isotropy group {e} is not relevant because its Weyl group has
dimension > 0). Therefore, to prove that a% = BF(M) - aﬁ], it suffices to show
that they are equal when passing to the S!-geometric fixed points.

To prove this is indeed true, we note that when we restrict SW apr to the
S1-fixed points, the nonlinear term C vanishes and the map is the standard
inclusion R™ < R™*4, Therefore, the element BF(M) - al;, when passing to
the S'-geometric fixed points, is represented by the standard inclusion from the
space S° to the space S9®_ Since the same conclusion holds for a%, we see that
BF(M) - af; and a% are equal to each other when passing to the S!-geometric
fixed points. O
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Definition 1.15. For p > 1, a Furuta-Mahowald class of level-(p, q) is a stable map
y o SPH 5 gaRt

that fits into the diagram

N
0 R
S T SaR,

Using equivariant K-theory, Furuta proved Theorem 1.16, from which Theorem 1.11
directly follows.

Theorem 1.16 (Furuta [Fur01]). A level-(p,q) Furuta-Mahowald class exists only if
q=>2p+1

1.3. Main theorem. At this point, it is natural to ask Question 1.17:

Question 1.17. What is the necessary and sufficient condition for the existence of a
level-(p, q) Furuta-Mahowald class?

Remark 1.18. We would now like to discuss the choice of the universe (i.e. the Pin(2)-
representations that one stabilizes with respect to when passing from the space level
to the spectrum level). In Furuta’s original proof of Theorem 1.16 [Fur01], he used
the universe consisting of only the representations H and R, because this universe is
the most relevant to the geometric problem. Modified proofs by Manolescu [Man14]
and Bryan [Bry98], using divisibilities of the K-theoretic Euler classes, show that the
statement of Theorem 1.16 holds for any universe.

For Question 1.17, the answer could potentially depend on the choice of the uni-
verse. By works of Schmidt [Sch03, Theorem 2.6, Theorem 3.2] and Minami [Min],
any Furuta-Maholwald class can be desuspended to the same diagram on the space
level as long as q > 2p + 1. By the discussions in the previous paragraph, the bound
q > 2p + 1 in Theorem 1.16 holds for any universe. Therefore, a level-(p, q) Furuta-
Mahowald class in one universe can be desuspended to a space-level map SP" — SaR|
and then be further suspended to a level-(p, q) Furuta-Mahowald class in any other
universe. It follows that the answer to Question 1.17 does not depend on the choice of
the universe.

Without loss of generality, we always work with the complete universe.

One might hope that the answer to Question 1.17 is ¢ > 3p because this would
directly imply the %—conjecture (Conjecture 1.7). Unfortunately, John Jones showed
that this is false by exhibiting a counter-example for p = 5. See [FKMMO07] for a more
conceptual explanation of why such counter-examples must exist.

Subsequently, Jones proposed Conjecture 1.19:

Conjecture 1.19 (Jones [FKMMO07]). For p > 2, a level-(p, q) Furuta—Mahowald class
exists if and only if

2p+2 p=1 (mod 4)

g> 2p+2 p=2 (mod 4)
" |2p+3 p=3 (mod 4)
2p+4 p=4 (mod 4).
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For the necessary condition, various progress has been made by Stolz [Sto89],
Schmidt [Sch03], and Minami [Min]. Before our paper, the best result is given by
Furuta-Kametani:

Theorem 1.20 (Furuta-Kametani [FK]). For p > 2, a level-(p, q) Furuta-Mahowald
class exists only if

2p+1 p=1 (mod 4)
0> 2p+2 p=2 (mod 4)
2p+3 p=3 (mod 4)
2p+3 p=4 (mod 4).

Much less is known about the sufficient condition for the existence of Furuta-
Mahowald classes. So far, the best result is in Schmidt’s thesis [Sch03], in which
Schmidt used Pin(2)-equivariant stable homotopy theory to attack Conjecture 1.19 for
p < 5. In particular, Schmidt showed the existence of a level-(5, 12) Furuta—-Mahowald
class. This is also the first attempt to study this problem by using Pin(2)-equivariant
stable homotopy theory.

In this paper, we completely resolve Question 1.17. Theorem 1.21 is the main result
of our paper:

Theorem 1.21 (The limit is % +4). For p > 2, a level-(p, q) Furuta-Mahowald class
exists if and only if

2p+2 p=1 (mod 8)
2p+2 p=2 (mod 8)
2p+3 p=3 (mod 8)
q2‘2p+3 p=4 (mod 8)
2p+2 p=5 (mod 8)
2p+2 p=6 (mod 8)
2p+3 p=7 (mod 8)
2p+4 p=8 (mod 8).

Remark 1.22. The “only if” part of Theorem 1.21 directly implies Theorem 1.12 and
Corollary 1.13.

Remark 1.23. The “if” part of Theorem 1.21 implies that without further input from
geometry or analysis, the best result one can achieve in proving Conjecture 1.9, using
the existence of Furuta-Mahowald classes, is % + 4. Note that by Remark 1.18 this
“limit” does not depend on the choice of the universe. In order to break this “limit”
and to further attack the %-conjecture, more delicate properties of the Seiberg-Witten
map have to be studied. In particular, the Seiberg-Witten map should not be merely
treated as a continuous map.

Remark 1.24. Our answer differs from Conjecture 1.19 when p = 4 (mod 8). Note
that in [Sch03], Schmidt proved that Conjecture 1.19 is true for p < 5. We came to a
different conclusion for p = 4 because there is a minor error in Schmidt’s computation
(see Remark 10.2 for more details).
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1.4. The Pin(2)-equivariant Mahowald invariant. Let G be a finite group or a com-
pact Lie group and let RO(G) denote its real representation ring. One can consider
7§ S0, the RO(G)-graded stable homotopy groups of spheres. Unlike the classical
nonequivariant case, there are many non-nilpotent elements in 71'(;:50. Here are some
examples:

(1) For each prime p, the multiplication-by-p map
p:S®—s°
between spheres with trivial G-actions is non-nilpotent.
(2) The geometric fix point functor induces a homomorphism
Y 1 7SO =[59,5°1¢ — [$°,5°]=Z

from the Burnside ring of G to Z. Since ®°(—) preserves smash products,
any preimage of the nonequivariant multiplication-by-p map is also a non-
nilpotent element in 77§ S°.

(3) Let V be areal irreducible representation of G. The Euler class ay is the stable
class in 79, S° that represents the inclusion

ay :S°—S”
of the fix points. Since all the powers of a;, induce nonzero maps in equivariant

homology, a;, is non-nilpotent in 719( SO,

Definition 1.25. Suppose that «and § are elements in 7$ S° with 8 non-nilpotent. The
G-equivariant Mahowald invariant of o with respect to 8 is the following set of elements
in 7§ 5°:

Mg(cx) ={y | a = yB¥, a is not divisible by gk+1}.
In other words, an element y belongs to Mg(oc) if the left diagram exists and the right
diagram does not exist for any class y’ € 7§ S°.

S—kIBI S—(k+D)IB]
ﬁ’k v ﬁk+l 4
g0 * . gl o & . g-la

Remark 1.26. 1t is clear from Definition 1.25 that the RO(G)-degree of each of the ele-
ments in Mg (a) is k|| — |a|.

Historically, the G-equivariant Mahowald invariant has been studied in many cases:
(1) Let G = C, be the cyclic group of order 2. The real representation ring of C, is

generated by the trivial representation 1 and the sign representation o. The classical
Borsuk-Ulam theorem in the unstable category is equivalent to the following statement
when phrased in terms of the C,-equivariant Mahowald invariant:

Theorem 1.27 (Borsuk-Ulam). Forall q > 0, the RO(C,)-degree of ng(ag) is zero.
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(2) Let G = C,. Consider the homomorphism
% : 75280 = [§", 5012 —s [S", 5] = 7, S°

that is induced by the geometric fix point functor. For any non-equivariant class a €
7,S°, consider all of its preimages under the map ®2 and their corresponding C,-
equivariant Mahowald invariants with respect to the Euler class a,.

Among all the elements in ng ((@°2)71a), pick the element that has the highest
degree in its o-component. Then, apply the forgetful functor to the nonequivariant
world. Bruner and Greenlees [BG95] proved that this construction produces the clas-

sical Mahowald invariant M(«) of a, which has been studied extensively by Mahowald,
Ravenel, and Behrens [MR93, Beh06, Beh07].

sn+ka gn+k
sn (@) S 50 50
@2

sn— %\ go
In particular, when n = 0 and « is a power of 2, Bredon [Bre67, Bre68] made conjec-
tures about the degrees of the elements in Mg2((®2)~124) for q > 1. His conjecture
was proved by Landweber [Lan69], who used equivariant K-theory. Later, Bruner and
Greenlees [BG95] translated Mahowald and Ravenel’s work [MR93] and obtained an
independent proof of Bredon’s conjecture.

Theorem 1.28 (Landweber [Lan69], Mahowald-Ravenel [MR93]). For q > 1, the set
M(29) contains the first nonzero element of Adams filtration q. Moreover, the following
4-periodic result holds:

Bk+1)o ifq=4k+1

8k+2)o ifq=4k+2

8k+3)c ifq=4k+3

Bk+ 7)o ifq=4k+4.

We would like to mention that Bredon-Loffler [Bre68, Bre67] and Mahowald-
Ravenel [MR93] have independently made Conjecture 1.29:

IM2((@C2)~1249)| =

Conjecture 1.29 (Bredon-Loffler, Mahowald-Ravenel). For any non-equivariant class
a that is of positive degree, we have the inequality

[M(2)| < 3|a|.

Jones [Jon85] proved that [M(a)| > 2|«| for all non-equivariant classes a of positive
degrees. The C,-equivariant formulation of the classical Mahowald invariant gives a
simpler proof of Jones’s result (see [BG95, Bru98], for example).

(3) Let G = C4, the cyclic group of order 4. The real representation ring of C, is
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generated by the trivial representation 1, the sign representation o4, and the two-
dimensional representation A that corresponds to rotation by 90 degrees. The C,-
equivariant Mahowald invariant of powers of a,, with respect to a,; has been stud-
ied by Crabb [Cra89], Schmidt [Sch03], and Stolz [Sto89].

Theorem 1.30 (Crabb [Cra89], Schmidt [Sch03], Stolz [Sto89]). For q > 1, the follow-
ing 8-periodic result holds:

8kA ifq=8k+1
8k ifq=8k+2
8k +2)A ifq=8k+3
8k +2)A ifq=8k+4
B8k+2)A ifqg=8k+5
Bk+4)A ifq=8k+6
B8k +4)A ifq=8k+7
(8k+4)A ifq=8k+38.

C.
|M1124/1(ag4)| + qo4 = 9

Since C, is a subgroup of Pin(2), Theorem 1.30 was used by Minami [Min] and
Schmidt [Sch03] to deduce the existence of Furuta-Mahowald classes. Crabb [Cra89]
also studied the C,-equivariant Mahowald invariant of powers of a,, with respect to
a,.

For our case, we are interested in the group G = Pin(2) and its irreducible represen-
tations H and R (defined in Theorem 1.14). By definition, it is clear that a level-(p, q)
Furuta-Mahowald class exists if and only if the H-degree of

Pin(2 =
IMeyP(ad)] + qR
is greater than or equal to p.
To prove our main theorem (Theorem 1.21), we translate it into a problem of ana-
lyzing the Pin(2)-equivariant Mahowald invariants of powers of agz with respect to ay;.
After this translation, our main theorem is equivalent to Theorem 1.31:

Theorem 1.31. For q > 4, the following 16-periodic result holds:

(8k—1H ifg=16k+1 | (8k+3)H ifq=16k+9

(8k—1H ifg=16k+2 | (8k+3)H ifq=16k+10
(8k—1)H ifg=16k+3 | Bk+4)H ifq=16k +11
(8k+1H ifg=16k+4 | (8k+5H ifq =16k + 12
8k +1H ifg=16k+5 | (8k+5H ifq=16k+13
(8k +2)H ifq =16k +66 | (8k+ 6)H ifq = 16k + 14
8k +2)H ifq=16k+7 | (8k+6)H ifq=16k+15
(8k+2)H ifg=16k+8 | (8k+6)H ifq= 16k + 16.

Pin(2 =~
IMat @ ()] + qR = -

Note that when q = 16k + 11,
M@ (ad)] + qR = (8K + 4)H.

If the answer had been (8k + 3)H instead, then Theorem 1.31 would be an 8-periodic
result and Jones conjecture (Conjecture 1.19) would be true. This deviation from Jones
conjecture is explained in details in Step 6 of our proof (See Sections 2 and 10).
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FIGURE 1. The Mahowald line. In each column, intuitively, the black
dots represent cells of each X(m), the black straight lines represent 2-
attaching maps, the black curved lines represent n-attaching maps,
and the cyan curved lines represent n?-attaching maps. For the pre-
cise definitions of these attaching maps, see Section 4.

1.5. Summary of techniques. To resolve Question 1.17, which is a problem in
Pin(2)-equivariant stable homotopy theory, we first translate it into a problem in
non-equivariant stable homotopy theory. More specifically, we consider the sequence
of maps

X(m) — X(m—1) — --- — 5O,

which are maps between certain Thom spectra over B Pin(2) that are induced by in-
clusions of (virtual) subbundles. Given this sequence of maps, our Pin(2)-equivariant
problem is equivalent to asking what is the maximal skeleton of each X(m) that maps
trivially to S°. We call the “vanishing” line that connects these skeletons the Mahowald
line. Intuitively, by drawing the cell diagrams for each X(m), we can visualize the Ma-
howald line in Figure 1. See Section 2.1 for more details.

One can also form a Mahowald line for the computation of the classical Mahowald
invariants for powers of 2. The analogous diagram to Figure 1 in the classical case
has the cell diagram for ZRP%, in each column. Maps between the columns are the
multiplication by 2 maps. The classical Mahowald line in this case is established by
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Mahowald-Ravenel by proving a lower bound and an upper bound for the line, and
observing that they coincide. Our proof in the Pin(2)-equivariant case is in the same
spirit as Mahowald-Ravenel. However, as we point out below, it is significantly more
complicated and delicate than the classical arguments:

(1) Classically, the lower bound is proved by using a theorem of Toda [Tod63], which
states that 16 times the identity maps on certain 8-cell subquotients of RP* are
zero. This implies that the Mahowald line rises by at least 8 dimensions every time
we move by four columns. In our situation, the analogue of Toda’s result does
not hold. Therefore, our situation requires a more delicate inductive argument
that gives us control over several cells above the Mahowald line (this control is not
needed in the classical case).

(2) Classically, the upper bound is proved via detection by the real connective K-theory
ko. In our case, this techniques does not work at X(8k + 3), k > 1, which is the
crux of the geometric application of our main theorem (Theorem 1.12 and Corol-
lary 1.13). To handle this case, we need a careful study of both the j-based and the
sphere-based Atiyah-Hirzebruch spectral sequence of X(8k + 3).

(3) Classically, the lower bound and the upper bound are proven independently, and
they happen to coincide. In our case, the proofs for the lower bound and the upper
bound are not independent. More precisely, we first establish a rough lower bound
in Step 1 (Section 2.3) and a rough upper bound in Step 2 (Section 2.4). These rough
bounds do not coincide, but they do give us some information on the cells that are
located in between them (Step 3, Section 2.5). Using this information, we refine
the lower bound and the upper bound step-by-step, while updating information
about the undetermined cells until the two bounds finally match each other (Steps
4-7, Sections 2.6-2.9).

1.6. Summary of contents. We now turn to give a summary of the paper. In Sec-
tion 2, we provide an outline-of-proof for our main theorem (Theorem 1.21). We first
reduce the Pin(2)-equivariant statement regarding the existence of a level-(p,q)
Furuta-Mahowald class into a non-equivariant statement (Proposition 2.2). The non-
equivariant statement is determined by the location of the Mahowald line. Theorem 2.5
proves the exact location of the Mahowald line, from which our main theorem directly
follows. Our proof of Theorem 2.5 consists of seven steps, described in Sections 2.3-2.9.
The readers should regard Section 2 as a roadmap to the rest of the paper, as it contains
all the main statements needed to prove Theorem 2.5.

In Section 3, we define maps between certain subquotients of X(m) that will be use-
ful in the later sections. In Section 4, we prove certain attaching maps in X(m). Sec-
tions 5-10 prove all the statements that are listed in Sections 2.3-2.9.

This paper has two appendices. Appendix A proves the combinatorial statements
that are needed for the arguments in Sections 9 and 10. Appendix B recalls the defini-
tion of cell diagrams, a tool that we use for illustration purposes throughout the paper.

2. OUTLINE OF PROOF FOR MAIN THEOREM

In this section, we give an outline of our proof for Theorem 1.21.
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2.1. Equivariant to nonequivariant reduction. Consider the classifying space
BPin(2) = S(coH)/ Pin(2). There is a universal bundle

Pin(2) —— EPin(2) —— BPin(2).
We let A be the line bundle associated to the representation R and set
X(m) := Thom(BPin(2), —mA).
Alternatively, there is a C,-action on the space BS! = CP®, given by:
(2.1) (21,22, 235 245 - -+ s Zan—1> Zan) —— (=22, 21, =24, 235 - -+ » —Z2p> Zon—1)-

The quotient space of BS! with respect to this C,-action is the classifying space B Pin(2).
Given this, 1 can also be defined as the line bundle that is associated to the principal
bundle

C, — BS! % BPin(2).
Note that there is a fiber bundle
2.2) RP? «—— BPin(2) ——> HP>.

The cellular structure on HP* (one cell in dimension 4k for each k > 0) and RP? (one

cell in dimensions 0, 1, 2) induces a cellular structure on B Pin(2), and hence on X(m).

Given this cellular structure, we use X(m)j to denote the subquotient of X(m) that

contains all cells of dimensions between a and b. There are certain attaching maps

between the cells in X(m) (see Figure 1). We prove these attaching maps in Section 4.
For m > n, the inclusion nA < mA of subbundles induces a map

i(m,n) : X(m) — X(n).
Let
¢(0) : X(0) = =®*BPin(2), — S°

be the stabilization of the base-point preserving map that sends all of BPin(2) to the
point in the space S° that is not the base-point. For m > 0, define the map c(m) to be
the composition
i(m,0 0
x(m) 22 x(0) <2 s0.
We will also define the map c(m) to be the restriction of c(m) to the subcomplex X (m)*:
c(m)* : X(m)k — SO.

Remark 2.1. In general, there is no canonical choice of a cell decomposition of X(m).
For different choices, the skeleton X(m)¥ (and hence the map c(m)¥) will be different.
However, we are only interested in whether c(m)¥ is null homotopic or not. By cellular
approximation, this does not depend on the choice of a cell decomposition. Hence we
can use the specific cell decomposition described above.

Proposition 2.2. A level-(p, q) Furuta-Mahowald class exists if and only if the map
()29 : X(g)*=2"1 — 5°

is zero.
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Motivated by Proposition 2.2, we make Definition 2.3:
Definition 2.3. The function 2 : N — Z is defined by setting 2(k) to be the largest
integer such that the map
c(k)*® + X (k)*®) — 50
is null-homotopic.
Definition 2.4. The function 2(k) can be visualized by drawing a line over the 2(k)-

cell in the cell-diagram of X (k). When we connect these lines for all k > 0, the resulting
“staircase” pattern is called the Mahowald line.

In light of Proposition 2.2, our goal is to find the exact location of the Mahowald
line.

Theorem 2.5. The function 8(m) takes values as follows:
20)=281) =22 =-1,
23) =0,
and forall k > 1,
2(16k + 4) = 16k,
2(16k + 5) = 16k,
2(16k + 6) = 16k + 1,
2(16k + 7) = 16k + 1,
R(16k + 8) = 16k + 1,
2(16k + 9) = 16k + 2,
2(16k + 10) = 16k + 2,
2(16k + 11) = 16k + 6,
2(16k + 12) = 16k + 8,
(16k +13) = 16k + 8,
{(16k + 14) = 16k + 9,
2(16k + 15) = 16k + 9,
2(16k + 16) = 16k + 9,
2(16k + 17) = 16k + 10,
L(16k + 18) = 16k + 10,
2(16k + 19) = 16k + 10.
Theorem 2.5 directly implies Theorem 1.21. Our proof of Theorem 2.5 consists of
seven steps, each giving a new bound on £(k) (see Figure 2):

(1) Step 1 proves a lower bound for (k).

(2) Step 2 proves an upper bound for (k). This upper bound agrees with the lower
bound in Step 1 except at (8k + 3), k > 1.

(3) Steps 3-5 prove that 2(8k + 3) < 8k — 2 forall k > 1.

(4) Step 6 proves that 2(8k + 3) > 8k — 2 when k is odd.

(5) Step 7 proves that &(8k + 3) = 8k — 6 when k is even.
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FIGURE 2. Various bounds for the Mahowald line

Proof of Proposition 2.2. Consider the diagram

SPH

1
DI
(23) SO 2 ; Sq[R

T A

S(pH)
In the diagram above, 1 = a}; and 2 = a%. The left column is the cofiber sequence
S(pH)y — S° — SP¥,

where S(pH) is the unit sphere of the representation pH. By our discussion in Sec-
tion 1.2, a level-(p, q) Furuta—-Mahowald class exists if and only if there exists a map g
that makes diagram (2.3) commute.

Since the first column is a cofiber sequence, g exists if and only if the composition
4 = 2 o0 3 is null-homotopic. The Spanier-Whitehead dual of map 2 is the map

D2 : SR _ 50,
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Map 4 is null-homotopic if and only if the map
5:=D2A3 : S A S(pH), —> S°

is null-homotopic.
Map 5 can be written as the composition

~ D2aid
51 579 A S(pH), ——2t,

Note that S~9% A S(pH), is Pin(2)-free for all ¢ > 0 and Pin(2) acts trivially on S°.
Therefore, 5 is null-homotopic if and only if the nonequivariant map

3
S(pH), — S°.

_ 7 8

(ST A S(PH) 4 )pinz) — (S(PH) 4 )pinz) — S°
is null-homotopic (see Theorem I1.4.5 in [LMSM86]). Here,

(=)pinz) = (=)/ Pin(2)
is the orbit. The maps 7 and 8 are induced by D2 A idg(p, and 3, respectively.
Note that the restriction of the fiber bundle (2.2) to HPP~! gives the bundle
RP2 <% S(pH)/Pin(2) —> HPP-L.
Therefore, the inclusion
S(pH)/ Pin(2) —— S(coH)/ Pin(2) = BPin(2)
is the inclusion of the (4p — 2)-skeleton. This implies that
(S™9® A S(PH). Jpin(2) = Thom (B Pin(2)*~2,—q4) = X(q)*P~271.

Under this identification, maps 7 and 8 are equal to i(q, 0) and c(0) respectively. The
map c(q)*?~274 is exactly the composition map 8 o 7, which is null-homotopic if and
only if a level-(p, q) Furuta-Mahowald class exists. O

2.2. The Mahowald line at odd primes and over Q. For each prime p, we can lo-
calize the map c(m)* : X(m)* — S° at p to obtain a map

c(m)é‘p) : X(m)é{p) - S?p)'
Similar to Definition 2.3, we define the function £,y : N — Nas follows: £,)(k) is the
largest integer such that the map

Lo () . Lipy () 0

is null-homotopic. It is clear from this definition that for all k € N,

L(k) = prlr)lr}geﬁ(p)(k).

The line determined by the function £, is called the p-local Mahowald line.

We show that, at any odd prime p, the p-local Mahowald line is above the 2-local
Mahowald line (see Figures 1 and 3). This will reduce our problem to a 2-primary
problem. After this subsection, we will focus on the case when we localize at the prime
p = 2 for the rest of the paper.

Recall the fiber bundle

RP?2 <3 BPin(2) —> HP®.
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As discussed in Section 2.1, the cell structures for RP? and HP* induce a cell structure
for BPin(2).

The standard cell structure for RP? has one cell in dimensions 0, 1, and 2. The 2-cell
is attached to the 1-cell by 2, which is invertible when localized at p. Therefore,

H,(RP%Z,) = {Z(” ) Whenx =0,
0 otherwise.

This implies that when we localize at p, there is a cellular structure for RP? with only
one cell in dimension 0, and no cells in other dimensions. Since the cell structure for
HP* has one cell in dimension 4n for all n > 0, the induced cell structure for B Pin(2)
from the fiber bundle above also has one cell in dimension 4n for all n > 0.

The bundle 24 is orientable because its first Stiefel-Whitney class is 0. There is a
Thom-isomorphism

H*(X(2m); Z(p)) = H*(Thom (B Pin(2), —2mAl); Zp)) = H*+2™(B Pin(2); Z(p))-
This Thom-isomorphism implies that

) _ Zp) when * = —2m +4n,n > 0,
HAX(@m): 2)) = 0 otherwise.

It follows that there is a cell structure for X(2m),y with one cell in dimension
(—2m + 4n) for all n > 0. Note that by the cellular approximation theorem, Propo-
sition 2.2 and Definition 2.3 do not depend on the cellular structure of X(m)(y). There-
fore, we can use this specific cell structure to deduce a lower bound for the p-local
Mahowald line (see Figure 3). This lower bound is above the 2-local Mahowald line
(shown in gray). Rationally, the lower bound for the rational Mahowald line is the
same as the one for the p-local Mahowald line.

2.3. Step 1: Lower bound. From now on, we localize at the prime p = 2. In the dis-
cussions below, the arrow < denotes a map that induces an injection on HF ,-homology,
and the arrow - denotes a map that induces a surjection on HF,-homology (see Defi-
nition 4.1).

Theorem 2.6. For every k > 0, there exist maps
o fr i X@k+4)gH ., — S°
o gt B o X8k + )34y
.y SBKFA  X(8k — 4)3K—2
o by : X(8k — 4)$k—4 50
with the following properties (see Figure 4):
(i) The diagram

(2.4) X8k +4) —=S°

|

X(8k + 4)g5 11

commutes.
(i) The map gy induces an isomorphism on Hgy4(—;F5). In other words, S8+* is
an HF,-subcomplex of X(8k + 4)g; , ; via the map gy (see Definition 4.1).
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. . . . . . . . o o

X(28)  X(24)  X(20) X(16) X(12) X(8) X@4)  X(0)

X(.SO) X(.26) X(.22) X(.18) X(.14) X(.l()) X(.6) X(.2)

FIGURE 3. The lower bound of the p-local Mahowald line at p > 2
(black) is above the 2-local Mahowald line (gray)

(iii) The following diagram is commutative:

(2.5) sek+ac_ B v(gk 4 D,

lak ifk
by

X(8k—4)3k—4 = - g0,

(iv) Let ¢y = S8*+1 — SO be the restriction of fy to the bottom cell of X(8k + 4)$, ;.
Then for k > 1, the map ¢, satisfies the inductive relation

bk — Pr—2 * Xk € (Pr—1>2,Ti),

where T, € {0,80} in 7, and yy is some element in mws. We will show in
Lemma 4.9 that ¢, = n and we set p_, = 0.

We prove Theorem 2.6 by using cell diagram chasing arguments.
Remark 2.7. Property (i) immediately implies that the map

c(8k + 4)% : X(8k + 4)F — §°
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X(8k+4)g 1

S81¢+4 el o o)

SSIH»I

I} @O .

second lock

X (8 +4)3k1

first lock

SO

—I_l—‘

FIGURE 4. Constructing f) and proving a lower bound for the Ma-
howald line

is null homotopic, and therefore it is the main property that we desire for f}.. Properties
(ii) and (iii) are added so that we can construct f} inductively from f._;. Property (iv)
is an additional requirement on f that will be useful in Step 3.

Corollary 2.8. Forany k > 0and 0 < m < 7, we have the inequality

28k + m + 4) > 8k + (m),

where
0 m=0,1
t(m)=41 m=23,4
2 m=15,6,7.

This line is shown in blue in Figure 4.
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Proof. When m = 0, the claim directly follows from diagram (2.4). When1 <m <7,
the claim follows from the case when m = 0 and the following commutative diagram:

X(8k + 4 + )X (8k + 4 + (m — 1)) —X (8 + 4550

X(8k + 4 + m)Sk+7m) o X(8k + 4 + (m — 1))3k+70m—D ..o x(8k + 4)8k+4
0

2.4. Step 2: Upper bound detected by KO. Using Pin(2)-equivariant KO theory, we
prove Proposition 2.9:

Proposition 2.9. Forany k > 1, the composition

c(8k+2)8k—4 o
— > S — KO

X(8k + 2)8k—+
is nonzero.
Proposition 2.9 has Corollary 2.10:
Corollary 2.10. The map c(8k + 2)%=> : X(8k + 2)3%~5 — 5 is nontrivial.

Proof. For the sake of contradiction, suppose that the map c(8k +2)8¢~3 is trivial. Then
the map

c(8k + 2)8k—4 : X(8k + 2)8k—4 — §°

will factor through the quotient map X(8k + 2)3¢—* - $8—4viasome map f : S8+ —

SO, Since no element in 7g,_,S° is detected by KO, the composition

X(8k +2)8k—4 —y s8k—4 Ly g0\ ko

is trivial. This is a contradiction to Proposition 2.9. O
Corollary 2.11. The equality

8k + m+ 4) = 8k + t(m)
holds for all k > 0 and 0 < m < 6. Here, t(m) is defined as in Corollary 2.8.
Proof. Corollary 2.10 implies that

28k + 6 + 4) < 8k + 1(6).
This directly implies that

28k +m+4) <8k + t(m)

for all 0 < m < 6. The claim follows by combining this inequality with the inequality
in Corollary 2.8. O
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2.5. Step 3: Identifying the map on the first lock as {P*~1h}}. After establishing
the lower bound for (k), the (8k — 5)-cell and the (8k — 1)-cell in X(8k + 3) will play
significant roles for the rest of our argument. We call them the “first lock” and the
“second lock”, respectively (see Figure 4).

In this step, we will focus on the first lock. Combining Theorem 2.6(iv) with an
inductive Toda bracket computation, we prove Proposition 2.12, which will be essential
in the proof of Proposition 2.16 and Proposition 2.20.

Proposition 2.12. Forall k,m > 0, we have the relations
i - (P™hT} = {P" e,
Corollary 2.13 is a consequence of Proposition 2.12 and Theorem 2.6(i):

Corollary 2.13. Forall k > 0, the diagram

X(8k + 3)8k5 —— S8k=3

(2.6) l{Pk_l )
c(8k+3)8k—5
SO

commuites.

Corollary 2.13 identifies the map on the first lock as {P*~1h3}.

2.6. Step 4: A technical lemma for the upper bound. To prove an upper bound for
L(k), we make use of the spectrum j”, which is defined as the fiber of the map

Pi-1
ko —— ko(2).
Here, ko(2) is the 1-connected cover of ko. Proposition 2.14 is proved by analyzing the

interactions between j” and the spectrum kog,.

Proposition 2.14. For any k,m > 0, the map

@.7) JOsHm) — jrOX(8k + 3)5™ "
induced by the quotient map X(8k + 3)¢™*3 » S*m+3 jg injective.

Terminology 2.15. Let X be a CW spectrum that has at most one cell in each dimen-
sion. Recall that the cohomological E-based Atiyah—Hirzebruch spectral sequence for
X has the following form:

EY' = @ Els] = E'X.
sel
Here, I is the indexing set containing the dimensions of the cells of X, s is the cellular
filtration of X. The degrees for the d,-differentials are as follows:
dr . Eﬁ’t N E'§+r,t+r—1‘

Similarly, the homological E-based Atiyah-Hirzebruch spectral sequence for X has the
following form:

E)' = (P mEls] = Eyy X

sel
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Here, I is the indexing set containing the dimensions of the cells of X, s is the cellular
filtration of X. The degrees for the d,-differentials are as follows:
d. - Es,t _ Es—r,t—r+1
ro. r r .

Proposition 2.14 can be interpreted as follows: in the j”-based cohomological

Atiyah-Hirzebruch spectral sequence of X(8k + 3)¢™*3, any nonzero class of the form

aldm + 3], a € wypi3j”

survives. Using this, we can further show that in the j”-based Atiyah-Hirzebruch spec-
tral sequence of X(8k + 3)*"*3, a nonzero class

a[4m + 3]
with a € 74,,,3j" can only be killed by a differential of the form
b[-1] — a[4m + 3],

where b € 7y j" = Z(;). Note that 7, j” = 0 for m < —1, so this implies that a cell of
dimension < —2 cannot support a differential with target a[4m + 3].

2.7. Step 5: The second lock is not passed.
Proposition 2.16. There exists a map
tr : X(8k +3)8k-1 — 50
with the following properties (see Figure 5):
(i) The map
c(8k 4 3)8k-1 . X(8k + 3)8k-1 — §°
factors through the quotient map
X(8k + 3)8k=1 — X(8k + 3)8K”}
via ty:

X(8k + 3)8k-1 c(8k+3)8k-1

(2.8) ¢ -
X(8k + 3)8k~1
(ii) The map ty factors through a quotient map
X(8k +3)3k=1 —% =8k=5¢Cy

via a map
t : 2850y — 8O,
iii e restriction of t;. to its bottom cell is the ma
(iii) The restricti t}. to its bott Il is th p
{Pk=1h3} : S8k=5 — SO,

(iv) The map ty has order 2 in j”. In other words, the following composition is zero:

2t
k .
»8k=50y 5 50— j”.
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2 71—1] — ¢[8k 1]

FIGURE 5. Proposition 2.16

Properties (i) and (iii) in Proposition 2.16 are direct consequences of diagram (2.6).
Properties (ii) and (iv) are established by a local cell diagram chasing argument.

Lemma 2.17. In the j”-based Atiyah-Hirzebruch spectral sequence of X(8k + 3)8¢—1,
there is a differential

(2.9) 2471 [-1] — ¢l8k — 1],
where ¢ is a nonzero element in 7wgy_,j".
To prove Lemma 2.17, we first construct a map
X(8k + 3)%~1 — m-8k=3CpiEH

that is of degree one on both the top and the bottom cell. Then, we prove a differential

in Z‘Sk‘3CPf,’{‘1'11 by computing certain e-invariants using the Chern character. Pulling

back this differential to X(8k + 3)%%~1 proves the desired differential.

Theorem 2.18. The composition map

(8k 3)8k—1
foX(k+ 3t g0

is not zero.

Proof. For the sake of contradiction, suppose that f is zero. Consider the composition

g1 X(8k+ 3Kl % X(8k+3)8k-] Ky g0y jr
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By Proposition 2.16(i), the map f is the composition in the top row of the following
diagram:
g

X(8k + 3)8k~1 —% X(8k +3)%-! —=
X (8k + 3)72.
Since the sequence
X(8k +3)8k~1 —% X(8k 4+ 3)%"1 — =X (8k +3)2
is a cofiber sequence and [ZX(8k+3)~2, j”] = 0(j” has no negative homotopy groups),
the map g is zero.
Let 8 € j"°(X(8k+3)8k~1) be the pullback of 1 € j"°(S°) = Z under the composition
X(8k + 3)8K1 — X(8k +3)8k=l Ty g0,
Let o € j"0(X(8k + 3)8¢~) be the pullback of 8 under the inclusion
X(8k + 3)3F=5 % X(8k + 3)§k~ 1.
Then the following three facts hold:
i) 2B8=0.
(i) B pulls back to 0 € j"°(X(8k + 3)88~1) under the map
X(8k +3)%1 —% X(8k + 3)§k1.

(iii) a # 0.
Fact (i) is true by Proposition 2.16(iv). Fact (ii) is true because the map g is zero. To see
that fact (iii) is true, note that by Proposition 2.16(iii), & can be represented as the map

K {Pk_lh%}
X(8k + 3)8k—5 — g8k=S > S0 > J"

Since {P*¥~1h3} is detected by j”, the composition

=1

> J

§8k=5 (PE1h) y 50
is nonzero. Proposition 2.14 then implies that a # 0.
Consider the following commutative diagram, where the rows are induced from

cofiber sequences:

at

~
=
~

o

J70(8%) —2 jOX(8k + 3)81) ——> jrOX(8k + 3)8K1)

| " !

J7S0) 5 X (8K + ) — OB+ 3O,

ab—— > a#0
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By fact (ii), 8 = d(a) for some a € j"°(S°) = Z(,). By the definition of a and fact (iii),
d'(a)=a#0.

By Lemma 2.17, 8(2*~1) = y, where y € j"°(X(8k + 3)3¢~1) is the pullback of a
nonzero element ¢ € j"°(S8~1) under the map

X(8k + 3)5k~1 — s8k—1,
Since y pulls pack to 0 € j"°(8k + 3)3k—3, 3'(2*~1) = 0. This implies that
v(a) < v(2*1) =4k -1
(here v(—) denotes the 2-adic valuation). Therefore,

y=0@%")

24k—1
=( 2a )5(2a)

(55 )

0 (by fact (i)).

This is a contradiction because y # 0 by Proposition 2.14. O
Corollary 2.19. We have the inequality

28k +3)<8k—2
forallk > 0.

2.8. Step 6: The first lock is passed when k is odd. In this step, we will show that
when k is odd, (8k + 3) > 8k — 2. To prove this, we first construct a spectrum 1 Z(k)
for any k. This spectrum is defined as the homotopy fiber of a certain map

Z—8k—3CP4§.3,lc{_:11 » SSk—7.

The spectrum Z~!Z(k) has bottom cell in dimension (—1) and top cell in dimension
(8k — 5).

Proposition 2.20. There exists a map
0 1 X(8k +3)%k2 — 5-17(k)

such that the following diagram commutes:

X(8k + 3)8k=2

+

(2.10) X(8k + 3)%2

e

271Z(k) —— S8S

c(8k+3)8k—2

SO

{PE=1hi}
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Proposition 2.21. When k is odd, the composition

[P 1hi}

Z_1Z(k) —% SSk—S — 1 SO
is zero.

Proposition 2.21 is proven by considering Tyj_3, the (4k — 3)-layer of the Adams
tower for S°. Using the connectivity of the 0-connected cover of Ty _3, we prove that
there exists a differential of the form

24k=4[—1] — a[8k — 5], a € mg_s

in the S°-based Atiyah-Hirzebruch spectral sequence of =1 Z(k). Moreover, a is in the
image of j. By computing the e-invariant of the element a using Chern character, we
show that a = {P*~1h}}.

It follows from Proposition 2.21 that the map

c(8k+3)8k—2

X(8k +3)8k-2 —— 0
is also zero by the commutativity of diagram (2.10).
Corollary 2.22. When k is odd, we have the inequality
2(8k + 3) > 8k — 2.
2.9. Step 7: The first lock is not passed when k is even.
Proposition 2.23. When k is even, the class
24— 1]

is a permanent cycle in the j"-based Atiyah-Hirzebruch spectral sequence of
X(8k 4 3)8k=3,

The proof of Proposition 2.23 is sketched as follows: first, by restricting the map p
in Proposition 2.20 to the (8k — 5)-skeleton, we obtain a map

X(8k + 3)%k—5 — =712(k),
where Z(k) is constructed in Section 2.8. Then, we establish a permanent cycle

24k—4—v(k)[_1]

in the j”-based Atiyah-Hirzebruch spectral sequence for Z~!Z(k) when k is even via
Chern character computations. This permanent cycle is then used to prove the desired
permanent cycle.

Theorem 2.24. When k is even, the composition map

k 8k—5
2.11) X(8k + 35 Vg0 g

is not null.
Proof. By Corollary 2.13, one can rewrite (2.11) as the composition

{P*"1hi}

(2.12) X(8k +3)8k=5 — g8k=5 1y
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For the sake of contradiction, suppose that (2.12) is null-homotopic. By Proposition
2.14, there must exist a differential of the form

(2.13) b[—1] — {P*"1h}}[8k — 5]
for some b € Zy).
Recall that in Lemma 2.17, we established the differential
24-1_1] — ¢[8k — 1]
for some nonzero element ¢ € 7g,_; j”. This, combined with differential (2.13), shows
that there exists a differential

(2.14) 2b[—1] — ¥[8k — 1].

k—
Furthermore, the elements ¢ and y - %, when considered as elements in j”°(X(8k +
3)8k—1), are equal. Since

24k—1
7/( T )24k—1—(1+4k—5—v(k)):3+71(k)

and 7g_,j" = 2/(2*+¥K)), y must be the generator of 7rg;_; j".
Consider the exact sequence

JOSHETY) = X (8K + 3)32)) — J"OX Bk +3)%H) — j"OX(8k +3)%)
that is induced from the cofiber sequence
X(8k + 3)8=5 — X(8k + 3)k~1 — X(8k + 3)5KC1.
Differential (2.14) implies that the map
J7OSEET) = 70X (8K + 3)FTL) — jOX Bk + 3%
is zero. Therefore, the map
JOX(8k + 3)3K~1) — j"O(X(8k + 3)%K5)
is injective. However, our induction hypothesis states that the composition map

"

> J

k 8k—1
X(8k + 3)8k=5 3 x(8k + 3)sk-1 ST g0

is zero. The injection above will imply that the composition map

c(8k+3)8k-1
_—

X(8k + 3)8~1 SO —s j"

is also zero. This contradicts Theorem 2.18. O
Corollary 2.25. When k is even, we have the equality
28k + 3) = 8k — 5.

In light of Proposition 2.2, our main theorem (Theorem 1.21) follows directly from
the various bounds that we have established for the Mahowald line (see Figure 2).

3. PRELIMINARIES

In this section, we set up some preliminaries that will be useful in the later sections.
In Section 3.1, we define maps between certain subquotients of X(m). In Section 3.2,
we discuss the transfer map.
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o]

i(m,n,l, ]
X (1) () (—2

= 0]
o
S

ho(m)

\—‘ ho(n)

FIGURE 6. Maps between subquotients

3.1. Maps between subquotients.
Definition 3.1. Letm, n, and [ be integers with m > n > 0. The function h(n,m,l) € Z
is inductively defined as follows (see Figure 6):
1-1 ifl+n=0,3 (mod 4),
l otherwise.
e h(m,n,1) = h(m—-1,n,h(n,n—1,1)) whenm —n > 2.
We also set h(m, n, o) = co.

. h(n,n—l,l):%

Intuitively, the integer h(m, n,[) can be described as follows: start with the I-cell
in X(m) and walk to the right (towards X(n)), moving down one cell every time we
encounter an empty cell. The cell we reach at X(n) is h(m, n, 1).

Definition 3.2. For k > 0and 0 < m < 7, define
ho(4 + 8k + m) = 8k + t(m) + 1,
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where the function t(m) is defined as in Corollary 2.8. In other words, the
ho(4 + 8k + m)-cell of X(4 + 8k + m) is the first cell that is above the lower bound
line proved in Section 2.3 (the blue line in Figure 6).

Proposition 3.3. Let m, n, I, j be integers such that the following conditions hold:
(@) m=8k+4+aandn=8k+4+ b, wherek >0anda,b €{0,...,7}
(b) m>n;
(©) 1= ho(m);
(d) j = h(m,n,1).

Then there exists a map
. N . 1 J
i(m,n,1, j) : X(m)y () —> XMy ()
Furthermore, the maps i(m, n,l, j) are compatible with each other in the sense that the

following three properties hold:

(1) (Compatibility with respect to quotient). The following diagram commutes for all
m> n:

o i(m,n,00,00) o
XMy omy —= XMy

T i(m,n) T

X(m) X(n).

(2) (Compatibility with respect to inclusion). If (m,n,l’, j') is another tuple satis-
fying the conditions above with I' < l and j' < j, then the following diagram

commutes:
3.1) X(m)! M)X( )
. ho(m) h ho(n)

l/
X(Mpymy —= Xy -

(3) (Compatibility with respect to composition). If (m, n, 1, j) and (n, p, j, q) are two
tuples satisfying the conditions of the proposition, then
i(m, p,1,q) = i(n, p, j,q) e i(m, n, L, j).

To avoid clustering the notations in the later sections, we will simply use the special
arrow

N j
XMy my = XMy
to denote the map i(m, n, 1, j) when the context is clear.

Proof. We will construct the maps i(m, n, L, j) in four steps, increasing the level of gen-
erality at each step.

Stepl. m = n+1,] = j = co0. By our definition of hy(—) and the cellular approximation
theorem, there is always a map

X(n+ 1)h0(n+1)—1 N X(n)hO(n)_l.
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Furthermore, this map makes the bottom square of the diagram

i(n+1,n,00,00)

X(n+ Dpyner) ——————- > X(Miny(n)
X(n+1) G4 o x(n)

X(n+ l)ho(n+1)—1 SN X(n)ho(n)—l
commute. Since both columns are cofiber sequences, there is an induced map
i(l’l + 1, n, oo, OO) . X(I’l + 1)h0(n+1) - X(n)ho(n)
between the cofibers making the whole diagram commute. The top square of the com-
mutative diagram above implies that property (1) holds for m = n + 1.

Step2. m=n+1, j = h(n+ 1,n,1). Note that by the definition of h(n + 1,1, [),

1 _ h(n+1,n,l)
X(Mho(ny = XMWy )

We define the map i(n + 1,n, L, h(n + 1, n, 1)) to be the map

1 1 _ h(n+1,n,l)
X+ Djnpry = XMWy = XMy

The map i(n + 1, n, 1, h(n + 1, n, 1)) fits into the following commutative diagram:

i(n+1,n,00,00)

X(n+ D (1) 7 XMoo

(3.2) T T
1 i(n+1,n,LLh(n+1,n,1)) h(n+1,n,1)
X(n+ l)ho(n+1) % X(n)ho(n) .

Step 3. m = n+ 1. We define the map i(n + 1, n, [, j) to be the composition

X(n + 1)Lo(n+l) i(n+1,n,L,h(n+1,n,0)) X(n)zg’g;)l’n’l) o X(I’l)';lo(n).
We now prove that property (2) holds when m = n + 1. The case when [ = oo is
directly implied by diagram (3.2).
Suppose that | < oco. Consider the two compositions

. v I i(n+1,n,l,j) j
1) : X(n A+ Dy gy © XA+ Dy () —— X0 )

and
X I i(n+1,n,l’,j’) j’ j
(2) 1 X(n+ Dy (ng1y —— XMWy, (ny © XMy ()
in diagram (3.1). We want to show that these two compositions are equal. After post-
composing with the inclusion map

Xy = X oy
the maps 1 and 2 are homotopic to each other (this is because we have already verified
Property (2) when € = o).
Consider the cofiber sequence

TIX()5, — Xy = XD (-
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Since the difference 1 — 2 is null after post-composing with the map

J )
X(Mho(n) < X(MWg(ny
it factors through the fiber via a certain map

() 1 X(n+ Dy (pny) = ZTXMT,

l/
X(n+ 1)h0(n+1)
| 1-2
13
~

2_1X(n)ﬁ1 —_— X(”);lo(n) —> X(”)Z%(n)-

If the left vertical arrow in diagram (3.1) is the identity map, then diagram (3.1) com-
mutes by definition. Otherwise, it is straightforward to check that the dimension of the
top cell of X(n + 1)%0 (n+1) 18 less than the dimension of the bottom cell in =1 X(n e
Therefore, the map 3 is zero by the cellular approximation theorem. This implies1 = 2
and that property (2) holds when m = n + 1.

Step 4. General m, n, I, j. Choose a sequence l,;,, l,,,_1, ..., l,, such that

(1) lm=l’ ln=j'
2) g >h(s+1,s,l;,)forallm—1>s>n.

We define the map i(m, n, [, j) to be the composition

m

I] ior =105 ) = in+ 1,n, Ly, 1) o o0 i(mm = 1, Ly, L ).

r=n+1

Note that by our discussion in Step 3, this composition does not depend on the choice
of the sequence (I, L1, .., ;). Property (3) holds immediately by definition. Prop-
erties (1) and (2) hold by our discussions in Steps 1 and 3, respectively. (Il

3.2. Transfer maps.

Proposition 3.4. There is a cofiber sequence

+

i(m+1,m) Sm -m o
(3.3) X(m+1) —5 X(m) = =~"MCPP.

Proof. The map i(m + 1, m) can be rewritten as the map

(S(ool), A S=m+DE A 50) — (S(cob), A S=(m+DR A 57)

hPin(2) hPin(2)’

which is induced by the map ag : S° — S®. The cofiber sequence
a= ~
SO —= SR — 5(C,,)

produces the cofiber sequence

i 1, m R
X(m+1) M) X(m) S—) (S(ool]'l])+ A S(m+DR Z(C2)+)h Pin(2)
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Note that
(SCoob)y ASTRAR(C), ), = ((S(eob)y ASTHIRA(C),), ()
2
= (CPP ASTMIIAZ(C))1)
= CP® A S~(m+D) A g1
= X"MCP.
This establishes the cofiber sequence (3.3). O

Let V denote the rank-3 bundle over BSU(2) = HP* that is associated to the adjoint
representation of SU(2) on its Lie algebra 3u(2).
Given a Lie group G with a closed subgroup H, there is a fiber bundle

G/H — BH —23 BG.

Let V i (resp. V ) be the vector bundle over BH (resp. BG) associated to the adjoint
representation on the Lie algebra. There is a well-known transfer map

Tr : Thom(BG,V ) - Thom(BH,V g)

that has been studied by Becker-Gottlieb [BG75], Becker-Schultz [BS78], and
Bauer [Bau04]. Now, set

G = SU(2),

H = Pin(2),
Vo=V,
V=2

(Recall that A, as defined in Section 2.1, is the line bundle that is associated to the
principal bundle C, & BS! — BPin(2).) We obtain a transfer map

Tr : Thom(HP®,V) — X(-1).
Proposition 3.5. The transfer map
(3.4) Tr : Thom(HP®,V) — X(-1)
induces an isomorphism on (HF,)4,3 for all n.

Proof. Consider the pull back of Tr under the inclusion map pt < HP*. We obtain the
following commutative diagram:

Thom (HP®, V) — =% X(-1)

T

§3 ——=% Thom(RP?, A|gp2).

Note that (HF,); of all the spectra in the diagram above are F,.
Since map 3 is induced by the inclusion of fiber of the bundle

RP? <% BPin(2) — HP®

and the Serre spectral sequence for this bundle collapses, map 3 induces an isomor-
phism on (HF,);. Moreover, map 2 is the Pontryagin-Thom collapsing map, and it
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induces an isomorphism on (HF,);. It follows from this that Tr must induce an iso-
morphism on (HF,);.

To prove that Tr induces an isomorphism on (HF;)4,,3 for any n, note that both
H,(Thom(HP*,V);[F,) and H,(X(1);F,) are modules over H*(HP*;[F,). Moreover,
the induced map Tr, on [F,-homology preserves this module structure. Therefore, the
statement is reduced to proving an isomorphism for the case n = 0, which we have just
proved. O

We equip Thom (HP®, V') with the cell structure that has one cell in dimension 4n+3

for each n > 0.
Lemma 3.6. Thom(HP®, V)1#*7 is homotopy equivalent to Z*"*3C(2 + n)v.
Proof. Let U denote Thom (HP®, V). We have the following equivalences:

U*=! = Thom (HP" L, V|ypn-1),

Usn+7 = Thom(HP"“, V|[H]P”+1)-
Also,

HP?+! = Thom (HP!, nH),
where H is the tautological bundle over HP!. These equivalences imply that
Ugt! = Thom(HP', nH @ V).

Note the following general fact: given a vector bundle E over S*, the attaching map
in Thom(S*,E) is given by @ - v € m3. This fact can be proven by analyzing
Thom (HP!, H), which corresponds to the generator v of 7.

We will now compute p;(nH @ V). By restricting the representations of SU(2) to
the subgroup S!, we deduce that under the map BS' — BSU(2), the bundle V pulls
back to r(I*) + 1 and the bundle H pulls back to r(L + L~1) (L is the tautological bundle
over CP®). Therefore,

(V) = pi(r(1?)) = {(I?) — 2c,(I*) = 4
and
pi(H) = p(r(L +L7Y)) = ci(L + LY — 2¢,(L+ L71) = 2.
It follows that p;(nH @ V) = 4 + 2n. This completes the proof. O

4. ATTACHING MAPS IN X(m)
4.1. HF,-subquotients. We recall Definition 4.1 and Lemma 4.2 from [WX17]:
Definition 4.1. Let A, B, C and D be CW spectra, i and q be maps

A, B B—L. .

We say that (A, i) is an HF,-subcomplex of B if the map i induces an injection on mod 2
homology. An HFF,-subcomplex is denoted by a hooked arrow as above. Similarly, we
say that (C, q) is an HF,-quotient complex of B if the map q induces a surjection on mod
2 homology. An HF,-quotient complex is denoted by a double-headed arrow as above.
When the maps involved are clear in the context, we may ignore the maps i and q and
just say that A is an HF,-subcomplex of B, and C is an HFF ,-quotient complex of B.
Furthermore, D is an HF,-subquotient of B if D is either an HIF,-subcomplex of an
HIF,-quotient complex of B or an HF,-quotient complex of an HF,-subcomplex of B.
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Note that from Definition 4.1, HF,-subcomplexes and HIF,-quotient complexes are
not necessarily subcomplexes and quotient complexes on the point-set level. Our defi-
nitions should be thought of as in the homological or homotopical sense. A motivating
example to illustrate this is the following: the top cell of the spectrum RP splits off, so
there is a map from S3 to RP} that induces an injection on mod 2 homology. There-
fore S3 is an HFF,-subcomplex of RP} in our sense. However, on the point-set level, the
image of the attaching map is not a point and so S is not a subcomplex of RP{ in the
classical sense.

It follows directly from Definition 4.1 that if (A4, i) is an HF,-subcomplex of B, then
the cofiber of i is an HF,-quotient complex of B. We will often denote this quotient
complex as B/A. Dually, if (C, q) is an HF,-quotient complex of B, then the fiber of q is
an HFF,-subcomplex of B.

Lemma 4.2 is useful in constructing HF ,-subquotients.

Lemma 4.2. Suppose that (A, i) is an HF,-subcomplex of B. Let C be the cofiber of i and
let (D, j) be an HF,-subcomplex of C. Define E to be the homotopy pullback of D along
B — C. Then E is an HF ,-subcomplex of B. Moreover, A is an HF,-subcomplex of E with
quotient D.

Dually, suppose (C, q) is an HF,-quotient complex of B. Let A be the fiber of q. let
(F, p) be an HF ,-quotient complex of A. Define G to be the homotopy pushout of F along
A — B. We have that G is an HF ,-quotient complex of B. Moreover, C is an HIF,-quotient
complex of G with fiber F.

Lemma 4.2 follows from the short exact sequences of homology induced by the fol-
lowing commutative diagrams of cofiber sequences and diagram chasing.

A—SE—%D

I & &

A—3>B—%»C
A—>B -1y C

F—G—»C
Definition 4.3. For any element « in the stable homotopy groups of spheres, we say
that there is an a-attaching map from dimension n to dimension n + |¢| + 1 in a CW

spectrum Z if ¥"Ca is an HFF ,-subquotient of Z. Here, |a| is the degree of a and Ca is
the cofiber of a.

Lemma 4.4. Suppose that Z is a CW spectrum, with only one cell in dimension n. Then
the following claims hold:

(1) Thereis a 2-attaching map from dimension n to dimension n+ 1 in Z if and only

if the map
Sq' : H(Z;F,) — H"Y(Z;F,)
is nonzero.
(2) There is an n-attaching map from dimension n to dimension n + 2 in Z if and
only if the map

Sq? : HY(Z;F,) — H"™%(Z;F,)

is nongzero.
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Proof. This follows from naturality and the fact that Sq* # 0in H*(C2;F,) and Sq® # 0
in H*(Cn; [Fy). O

4.2. The 2 and n-attaching maps in X(m). Recall that
X(m) = Thom (B Pin(2), —mA).

Proposition 4.5. The mod 2 homology of X(m) is as follows:
o Form =0 (mod 4),

j=0,1,2 (mod 4),

HyX(m) = {0 j=3 (mod 4).

« Form=1 (mod 4),

j=0,1,3 (mod 4),

— IFZ
HyX(m) = {0 j=2 (mod 4).

o Form =2 (mod 4),

j=0,2,3 (mod 4),

H;X(m) = {0 j=1 (mod 4).

« Form =3 (mod 4),

HX(m) = F, j=1,2,3 (mod 4),
J 0 j=0 (mod4).

Proof. When m = 0, X(0) = B Pin(2), which is a bundle over HP* with fiber RP%. The
corresponding Serre spectral sequence collapses at the E,-page, from which we obtain
a computation for H,X(0).

The homologies for all the other X(m)’s follow from the homology of X(0) and the
Thom isomorphism. O

Recall from Proposition 3.4 that there is a cofiber sequence

(4.1) X(m+1) —™  xmy —— " s=mepe

for every m > 0.

Lemma 4.6. The induced homomorphisms i(m + 1, m), and s, on mod 2 homologies
can be described as follows:

(1) The map
im+1,m), : HiX(m+ 1) — H;X(m)

is an isomorphism if and only if

« m=0 (mod 4) and j =0,1 (mod 4);

« m=1 (mod 4) and j = 0,3 (mod 4);

e« m=2 (mod 4)and j = 2,3 (mod 4);

e« m=3 (mod 4)and j =1,2 (mod 4).
In other words, i(m + 1, m), is an isomorphism when both the domain and the
codomain are nonzero.
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(2) The map
Sm, © HiX(m) — H;(ZMCP®)

is an isomorphism if and only if
« m=0 (mod 4) and j =2 (mod 4);
« m=1 (mod 4) and j =1 (mod 4);
« m=2 (mod 4) and j =0 (mod 4);
« m=3 (mod 4) and j =3 (mod 4).

Intuitively, part (2) of Lemma 4.6 is saying that for the cells in Z~™CP*, the ones
in dimensions 4k + 2 — m come from X(m), and the ones in dimensions 4k — m go to
2X(m + 1).

Proof. The proofs for both parts (1) and (2) follow from the associated long exact se-
quences on mod 2 homology groups from the cofiber sequence (4.1). O

Proposition 4.7. In the mod 2 homology of X(m),

®
Sq' : HiX(m) — HI*1X(m)

is nonzero if and only if
e m=0 (mod 4) and j =1 (mod 4);
e m=1 (mod 4) and j = 3 (mod 4);
« m=2 (mod 4) and j =3 (mod 4);
« m=3 (mod 4) and j =1 (mod 4).
(2
Sq* : HIX(m) — HI*?2X(m)
is nonzero if and only if
e m=1 (mod 4) and j = 3 (mod 4);
e m=2 (mod 4) and j =2 (mod 4).

Proof. Recall that BPin(2) is a bundle over HP*® with fiber RP2. The existence of the
Sq's and the Sg?’s in H*X(0) = H*BPin(2) follows from the collapse of the Serre
spectral sequence. More precisely,

H*BPin(2) = F,[q,v]/(¢? = 0),

where |q| = 1and |v] = 4. If we denote Sq = ), Sq' to be the total Steenrod squaring
operation, then

Sq(1) =1,

Sq(q) = q+ ¢,
Sq(q?) = ¢,

Sq(v) = v + V2.

To deduce the Sq'’s and Sg?’s in X(m) when m > 1, note that by the Thom isomor-
phism,

H*X(m) = H*MX(0) - ®_ ;.
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FIGURE 7. Some attaching maps in X(m)

Here, ®_,,; € H™™X(m) is the Thom class associated with the virtual bundle —mA.
For any a € H**"X(0),

Sq(a - @_pa) = Sq(a) - Sq(P_mz)
= Sq(a) - w(=mAa) - ©_y,
where w(—) denotes the total Stiefel-Whitney class. Since
1 =w(0) = wd ® —1) = ww(-21)
and w(4) = 1 + q, we have that

(4.2)

1
— = )M = — 2\m
w(—mAa) = w(=21) T om Q+q+q)™
Substituting this into equation (4.2) and letting « take values from elements in H*X(0)
produce all the Sq*’s and Sq*’s in X(m). O

Corollary 4.8. There are 2 and n-attaching maps in X(m) if and only if they are marked
in Figure 7.

Proof. The 2 and 7n-attaching maps follow from Lemma 4.4 and Proposition 4.7. ]

Lemma 4.9. Suppose that m and j satisfy one of following conditions:
« m=0 (mod 4) and j =2 (mod 4);
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e m=1 (mod 4)and j =1 (mod 4);
« m=2 (mod 4) and j =0 (mod 4);
« m=3 (mod 4)and j =3 (mod 4).

Then the map

St —=X(m+ 1)/ —————— X(m)]" ==

isn.
Proof. By Lemma 4.6, the cofiber of the map is
(z—mcp)l 2.

Since there is a nonzero Sq? in its cohomology, this cofiber is indeed %/ C». O

4.3. n*-Attaching maps in X(m).

Proposition 4.10. Thereis an n?-attaching map in X(m) from dimension j to dimension
(j + 3) if and only if it is one of the following four cases (see Figure 7):

« m=0 (mod 4) and j =2 (mod 4);
e m=1 (mod 4)and j =1 (mod 4);
« m=2 (mod 4)and j =3 (mod 4);
« m=3 (mod 4)and j =2 (mod 4).

Proof. For dimension reasons, there are eight cases of possible 7?-attaching maps in
total. We need to show that of these eight cases, four cases have 7?-attaching maps and

four cases don’t. Recall that 7, = Z/2, generated by 7?.
Casel. m=1 (mod 4) and j =1 (mod 4). Consider the map
X(m+ 1] — X(m)] ™.
By Corollary 4.8, the cells in dimension j + 2 are not attached to the lower skeletons

of X(m + 1)]1 ™ and X (m)JJ: 3 Therefore, they are H[F,-subcomplexes. Taking cofibers,
we have the following commutative diagram:

SOy == X(m + 1)]*?/si*?> - — — -~ - X(m)]** /12 — 3/ Ca
X(m+ 1" X(m)l*
gi+2 id Si+2
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Since X(m)j: 31802 is a 2 cell complex, it must be the cofiber of a class a € 7, in the
stable homotopy groups of spheres.

— () 1
—_— —_—
2

{
|

a \ a
@

X(m+1)/" —— x(m)/** X(m+ 1) 1s7+? — — = X(m)]**/57+2

It is clear that we must have a = 7%. If it is not, then X (m)JJ: *3/8i+2 would split as
SJ v §*3, and we would have a map

Ti+lcy — S
whose restriction to the bottom cell is 7 by Lemma 4.9. This is not possible.
Case2. m =2 (mod 4) and j = 3 (mod 4). Consider the map
X(m)!** — X(m - 1)]*.
From the 2 and n-attaching maps in Corollary 4.8, this map is the Spanier-

Whitehead dual (up to suspension) of the map

X(m+ 1)}'+3 — X(m);

in the case when m = 1 (mod 4) and j = 1 (mod 4). Therefore, we must have the
n*-attaching map.

Jj+3

X" —————— X(m - 1)]*?
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Case 3. m = 3 (mod 4) and j = 2 (mod 4). The proof is similar to the case when
m=1 (mod 4) and j =1 (mod 4). Consider the map

X(m)]** — X(m - 1],
By Corollary 4.8, the cells in dimension j + 1 are not attached to the lower skeletons of

X (m)JJ: *3 and X (m— 1)JJ: +3, Therefore, they are HF,-subcomplexes. Taking the cofibers,
we have the following commutative diagram:

SICp == X(m)]**/si*1 - — — — - = X(m—1)]"* /s —=siCy
X(m)l* X(m-1)*
gi+1 id gi+1

Since X(m)f 387+ isa 2 cell complex, it must be the cofiber of a class ¢ € 7, in the

stable homotopy groups of spheres.
n
¢

\
|
I
|

/

/
DD

X(m)j:+3 *>X(m _ 1);+3 X(m)Jj_'+3/Sj+1 _ >-X(m _ 1)Jj_'+3/Sj+1

It is clear that we must have ¢ = 5. If it is not, then X(m)}H/Sj"1 would split as
SJ v §i+3 and we would have a map

Sit3 — zicy.

By Lemma 4.9, post-composing this map with the quotient map X/C»n - S/+2 would
give 1, which is not possible.

Case4. m=0 (mod 4) and j =2 (mod 4). Consider the map
X(m+ l)JJ:+3 — X(m)jj:+3.

From the 2 and n-attaching maps in Corollary 4.8, this is the Spanier-Whitehead dual
(up to suspension) of the map

X(m)I** — X(m - 1)}
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in the case when m = 3 (mod 4) and j = 2 (mod 4). Therefore, we must have the 7?-
attaching map. Alternatively, one may also prove this 7?-attaching map by considering
the map

X(m)!** — X(m - 1)]*.
Now, we will show that in the other four cases, there do not exist 7?-attaching maps.
Casel. m =3 (mod 4) and j = 3 (mod 4). Consider the map
X(m+ 1" — x(m)]*.

By Corollary 4.8, the cells in dimension j + 2 are not attached to the lower skeletons of
X(m+ 1)} *3 and X (m)JJ- 3, Therefore, they are HIF,-subcomplexes. Taking the cofibers,
we have the following commutative diagram:

SIHLY SIH —= X(m + 1) /s/+? - — — — — - X(m)[*/s1+2 == s/Ca’
X(m+1)* X(m)l*
gi+2 id gi+2

Since X' (m)]j *3/Si+2 s a2 cell complex, it must be the cofiber of a class &’ € 7, in the
stable homotopy groups of spheres.

(2)——= () (r——
_—

X(m+ D" —— X(m)]"? X(m+D[P/s+2 - — = X(m)] "5+

It is clear that we must have &’ = 0. Otherwise, we would have «’ = 7? and there
would be a map

§i+3 — zicy.
Post-composing this map with the quotient map £/C»? - S/*3 gives us the identity
map. This is not possible.
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Case2. m=0 (mod 4) and j =1 (mod 4). Consider the map
X(m)]** — X(m—-1)]*.

From the 2 and #n-attaching maps in Corollary 4.8, this is the Spanier-Whitehead dual
(up to suspension) of the map

X(m+ l)JJ-'Jr3 — X(m)JJ-‘+3

in the case m = 3 (mod 4) and j = 3 (mod 4). Therefore, there cannot be an 7?-
attaching map.

Case3. m=1 (mod 4) and j =0 (mod 4). Consider the map
X(m)]** — X(m - 1)]*.

By Corollary 4.8, the cells in dimension j + 1 are not attached to the lower skeletons

of Xi (m)JJ: *3 and X (m— 1)} *3_ Therefore, they are HIF,-subcomplexes. Taking cofibers,
we have the following commutative diagram:
sicy :X(m)]]:*'?’/sjﬂ _____ - X(m — 1)}1:+3/Sj+1 — §i vy §itl
Jj+3 Jj+3
X(m)] X(m —1);
gi+1 id gi+1

Since X (m)JJ: *3/5i+1 is a 2 cell complex, it must be the cofiber of a class ¢’ € 7, in the
stable homotopy groups of spheres.

DD

X(m)!*? —— X(m - 1)]*? X(m)[ /s — — = X(m — 1) /5741
It is clear that we must have ¢’ = 0. Otherwise, if ¢’ = 52, we would have a map
Yicy? — S

whose restriction on the bottom cell is the identity. This is not possible.
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Case4. m=2 (mod 4) and j = 0 (mod 4). Consider the map

X(m+ 1] — X(m)] .

From the 2 and n-attaching maps in Corollary 4.8, this is the Spanier-Whitehead dual
(up to suspension) of the map
j+3

X(m)j

— X(m — I)JJ:+3

in the case when m = 1 (mod 4) and j = 0 (mod 4). Therefore, there cannot be an
n?-attaching map. O

4.4. Periodicity in X(m).
Proposition 4.11. For any m,n,k > 0, there is an equivalence

X(m)gnterm o 54X (m + ak)gnto mo4k,

Proof. Given any two G-representations U and V, there is a cofiber sequence
SU); — SUdV), — S(V), ASY.

Let U = nH and V = ocoH. The cofiber sequence
S(nH); — S(coH); —> S(coH), A S™

produces the cofiber sequence

(S(nH), A S7MR) —> (S(coH), A ST™R)

hPin(2) hPin(2)

nH—mR
— (S(ool]-l])Jr AS )h Pin)"

This cofiber sequence can be rewritten as

X(my*—m-1 <% X(m) % Thom (B Pin(2), nH — mA).

Here, H and A denote the bundles over B Pin(2) that are associated to the representa-
tions H and R, respectively. From this, we deduce that

X(M)4p—m = Thom (B Pin(2), nH — mA).
Let B Pin(2)° be the 6-skeleton of B Pin(2). We have the equality
X(m)ﬁZZ%Jr6 = Thom(B Pin(2)®, (nH — ml)|g Pin(2)6)-

To finish the proof, it suffices to show that the bundle 41|g pin (2)s is stably trivial. Note
that since w;(44) = w,(41) = 0, this bundle is spin and can be classified by a stable
map

f : BPin(2)® — BSpin.

Moreover, since p;(44) = 4p,(1) = 0, f can be further be lifted to BString. It follows
that f = 0 because BString is 7-connected. O
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4.5. Some HF,-subquotients of X(m). In this subsection, we define and discuss
some HIF,-subquotients of X(m).

We start with the 3 cell complex X (8k+4)§’,§1‘1‘ and the 4 cell complex X(8k + 3)%:},.

Lemma 4.12. The 3 cell complex X(8k + 4)3k++ splits:

X(8k + 4)8Ft) o g8k+4 y w8+,

Proof. By Corollary 4.8 and Proposition 4.10, there are no 7 and n?-attaching maps in
X(8k + 4)§£ﬂ. The claim then follows from the fact that 7; = Z/2 and 7, = Z/2 are
generated by 7 and n? respectively. (]

Lemma 4.13. The 4-cell complex X(8k + 3)3k~1 splits:

X(8k + 3)3k-1 ~ 38k=5Cy v 28k=3C2,

ﬁwﬁ e

=

Proof. Consider the (8k — 2)-skeleton of X(8k + 3)3’,2:%, which is the 3 cell complex
X(8k + 3)3k~2. By Corollary 4.8 and Proposition 4.10, there are no 7 and 7?-attaching
maps in X(8k + 3)3k~2. Since 7, = Z/2 and w, = Z/2 are generated by 7 and 7?
respectively, we have the following equivalence:

X(8k + 3)8Kk=2 ~ §8k=5 y 38k=3 (2,

This gives ¥8k=3C3 as an HIF,-subcomplex of
X(8k + 3)3k~2 and, therefore, as an HIF,-subcomplex of X(8k + 3)5k1.
Now consider the attaching map

S8=2 — X(8k + 3)§x73

whose cofiber is X(8k + 3)2’,§j§. By Corollary 4.8, the cell in dimension 8k — 1 is not
attached to the cell in dimension 8k — 2 by 2. It is also not attached to the cell in
dimension 8k — 3 by 7. Therefore, it is null homotopic and we have the following
homotopy equivalence:

X(8k + 3)8K-1 ~ 38k=3Cp v §8k-1,

This gives S8~ as an HF,-subcomplex of X(8k + 3)5k-1.
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By Lemma 4.2, we can pullback S8~ along the quotient map

X(8k +3)3K-1 — — > X(8k + 3)5k~1
and obtain a 2 cell complex as an HF,-subcomplex of X(8k + 3)2’,2:;.

SSk—S( 5 ZSk_SCV s SSk—l

|

SEk=SC— X(8k + 3)§k 75 ——= X(8k + 3)5 7}

We claim that this 2 cell complex must be Z3¥=>Cv. In fact, consider the map
X(8k + 3)5k=t — (z~8k3CP)Sk-L

induced by the map X(8k + 3) — X~3k=3CP*. Since there is a nontrivial Sq* on
H8=5(z=8k=3CP)8k-1 we must have a nontrivial Sq* on H®~5X(8k + 3)5k~! and the
2 cell complex. This produces the v-attaching map. Therefore, 28¥~5Cv is an HF,-
subcomplex of X(8k + 3)3k-1.

In summary, we have shown that both 28¥=3C2 and 3%~3Cy are HF,-subcomplexes
of X(8k + 3)2’,5:_1,. Their wedge gives an isomorphism on mod 2 homology and is there-

fore a homotopy equivalence. This completes the proof of the lemma. O

Proposition 4.14. There exists a 4 cell complex E(k) that is an HF ,-subcomplex of X (8k+
4)§£fi. It has cells in dimensions 8k — 4, 8k — 3, 8k and 8k + 4.

Proof. First, by Corollary 4.8, the cells in dimensions 8k — 2 and 8k are not attached by
7 in X(8k + 4). Therefore, there is an equivalence

X(8k + 4)5k_, ~ 58k v §8k—2,
In particular, we have $3¢=2 as an HF,-quotient complex of X(8k + 4)2’,2_2 and X(8k +
4)3k_,, and $®* as an HF,-subcomplex of X(8k + 4)3K_, and X(8k + 4)5k+2.
Define F(k) to be the fiber of the following composition:
X(8k + 4)3%_4 — X(8k + 4)§,I§_2 —— §8k=2,

Then F(k) is a 3 cell complex with cells in dimensions 8k — 4, 8k — 3 and 8k. This 3
cell complex is an HF,-subcomplex of X(8k +4)3k_, and X(8k +4)3k+4. It is clear that
we have the following commutative diagram in the homotopy category:

X(8k + 4)8k=3 X(8k + 4)8k=3

Fk) = X(8k + 4)5K+4 > X(8k + 4)5K+4/F (k)

i |

SBC > X(8k + 4)5KFS > X(8k + 4)3K+4 /58K

Therefore, we can identify the 4 cell complex

X(8k + 4)$K+4/F (k) = X(8k + 4)5K+4/ 58k,
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Now, we claim that the top cell of X(8k + 4)2’,§f1/F (k) splits off. In fact, consider the
attaching map

S8k+3 s X(8k + 4)5K+2/S8k,

whose cofiber is X(8k + 4)5k+4/58k. We will show that this attaching map is null-
homotopic. Consider the E;-page of the Atiyah—Hirzebruch spectral sequence of the 3
cell complex X(8k + 4)5k*2/58k that converges to its (8k + 3)-homotopy groups:

7Tgk+358k+2 ® 7Tgk+358k+1 S 7f8k+358k_2 =m @7, ®ns=27Z/2& Z/2.
The right hand side is generated by
n[gk + 2] S ﬂ8k+358k+2 and 772[81( + 1] (S 7f8k+358k+1.

By Corollary 4.8 and Proposition 4.10, there are no 7 and 7?-attaching maps in X(8k +

4)8Kk+4 58k This proves our claim.

Therefore, we have a splitting
X(8k + 4)3T5/58% o S8k+4 v X(8k + 4)3K T3 /S5,
In particular, this splitting exhibits $8*4 as an HFF,-subcomplex of
X(8k + 4)375/5%% = X(8k + 45K T4/F (k).
Lastly, we pullback S8<+# along the quotient map

X(8k + 4)5k+4 o X(8k + 4)3K+4/F(k)

F(k)C E(k) S8k+4

| |

F(k)— X(8k + 4)3K+4 > X(8k + 4)3K+4/F (k).

By Lemma 4.2, E(k) is an HF,-subcomplex of X(8k + 4)2’,§fj with cells in dimensions
8k — 4, 8k — 3, 8k and 8k + 4. This concludes the proof of the proposition. O

Definition 4.15. Define E(k) to be the 4 cell complex in Proposition 4.14. Define F(k)
to be the 8k-skeleton of E(k). Define

G(k) :== X(8k + 4)g;. _4/F(k)
and G(k)®**1 to be its (8k + 1)-skeleton.
It is clear from Proposition 4.10 that
G(k)8k+1 — ZSk—ZCnZ.

Proposition 4.16. There is a 2 cell complex Y (k) with cells in dimensions 8k — 4 and
8k — 8, such that it is an HF,-quotient complex of X(8k + 4)3K—2.

Proof. Tt suffices to show that X(8k + 4)$K~2 has an HFF,-subcomplex W with cells in
dimensions 8k — 7,8k — 6,8k — 3 and 8k — 2.

Firstly, by Corollary 4.8, we know that 3%~7C2 is an HF,-subcomplex of
X(8k + 4)5k=2. Secondly, by Corollary 4.8 and the fact that 7, = 0 and 75 = 0, we
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know that Z8~3C2 is an HF,-subcomplex of X(8k + 4)5K~2/58k=7C2. Therefore, by
Lemma 4.2, we have the following diagram and in particular we may define W.

»8k=702C w »8k=3c)

| |

287020 X(8k + 4)5k 72 ——= X(8k + 4)3K"2/58k7C2

| :

Y(k) Y(k).

We then complete the proof by defining Y (k) to be the cofiber of the map

WC—s X(8k + 4)8k=2. O

5. STEP 1: PROOF OF THEOREM 2.6

In this section, we present the proof of Theorem 2.6, which states that: For every
k > 0, there exist maps
« fr i X@Bk+4)gH . > S°
o g 1 S o X(8k + AL,
. ay ;S8R o X(8k — 43K
o by X(8k — 4)8k=4 - 0
with the following properties:
(i) The diagram

(5.1) X8k +4) —— S°

| 7

X(8k + 4)gj 11

commutes.

(i) The map g induces an isomorphism on Hg.4(—;F5). In other words, S8+*
is an HFF,-subcomplex of X(8k + 4)g; ., via the map gi.

(iii) The following diagram is commutative:

(5.2) sek+aC_ BX vk 4 D11

B K

b
X(8k —4)84 —* - g0,

(iv) Letgy : SB*+1 — SO be the restriction of f} to the bottom cell of X(8k + 4) . ;.
Then for k > 1, the map ¢, satisfies the inductive relation

b — Pr—2 * Xk € (Pr—1,2,Ti),

where 7, € {0,80}in 77; and y, is some element in ;4. Note that by Lemma 4.9
¢o =mandwesetp_; =0.
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FIGURE 8. Step 1 main picture

5.1. An outline of the proof. In this subsection, we list the main steps of our proof
of Theorem 2.6 (see Figure 8). The intuition is explained later in Remark 5.6.
We need to show the existence of 4 families of maps

fi> 8ks A, and by

for all k > 0 that satisfy two commutative diagrams, namely the ones in (i) and (iii)
of Theorem 2.6, a property for g, namely (ii) of Theorem 2.6 and a property for f,
namely (iv) of Theorem 2.6.

The strategy of our proof can be summarized as the following. We first prove the
existence of the maps a; for all k > 0, and then construct the maps g for all k > 0. We
check that g satisfies property (ii) in Theorem 2.6. This is Step 1.1 and Step 1.2 of our
proof.

In the rest of the proof, we show inductively the existence of the maps f and by,
and that the two diagrams in (i) and (iii) of Theorem 2.6 commute.

We first define b to be the zero map and show the existence of f,. We check that
the two diagrams in (i) and (ii) of Theorem 2.6 commute. This is Step 1.3 that gives the
starting case k = 0.

Next, we assume the maps f)_; and by_; exist and the two diagrams in (i) and (ii)
of Theorem 2.6 commute for the 4 maps (f_1, €k—1> @k—1>bx—_1)- We define the map
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X(8k+4)3 ., ) X(8k—3)3 .

S8k+A

N

3= o e e

o
.//
=
.‘/

/L 9\8k—4
X(8k = 3)gr 7 X (8k — ,,1>§l;:47

‘l—l—l—

FIGURE 9. Step 1.1 picture

b, and show the existence of f}, using information in the induction. Note that there
are choices for f. This is Step 1.4.

Then, we check that the two diagrams in (i) and (ii) of Theorem 2.6 commute for
the 4 maps (f, 8k, ak> bi), for all choices of f}. This is Step 1.5.

Finally, in Step 1.6, we prove that there exists one choice of f}, such that it satisfies
an inductive relation between the restriction of fy, fr_1, fr—» to the bottom cell of
their domains. For this choice of f, this establishes property (iv) and finishes the
proof.

More precisely, the details of Steps 1.1-1.6 are stated as the following.

Step 1.1. We establish the existence of the maps ay for all k > 0 (see Figure 9).
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Proposition 5.1. For every k > 0, there exists a map cy, that fits into the following com-
mutative diagram

(5.3) E(k)— X(8k + 4)Z._,
S8k+4 X(8k —3)3._,

\

The proof of Proposition 5.1 is an extensive and careful study of the cell structures
of the columns between 8k +4 and 8k — 3 and in dimensions between 8k +4 and 8k —7.
It involves the computation of stable stems 7 in the range s < 11. We define qy, as the
composition

X(8k — 3)3k=2

Ck - -
S8k 25 X(8k — 3)8K% —— X(8k — 4)8K 3.

Step 1.2. Using Proposition 5.1 and the homotopy extension property, which is stated
as Lemma 5.12 in Section 5.3, we show the existence of two maps u; and v in Propo-
sition 5.2.

Proposition 5.2. For every k > 0, there exist maps uy, Uy that fit into the following
commutative diagram:

(5.4) E(k)—— X(8k + 4)g_4

| L

sekrac T G — > X(8k — 3)T,_,

Ck
X(8k — 3)§k4

Moreover, the map uy, induces an isomorphism on Hgy,4(—;F,). In other words,
(S8k+4 w,) is an HF,-subcomplex of G(k).

We define the map g; as the following composite

Uk

S8k+4C G(k) G(k)gy 1 = X8k + D) ;-

Note here we use the octahedron axiom to identify G(k)g},; with X(8k + 4)g; ;. It then
follows from Proposition 5.2 that the map g induces an isomorphism on Hg, 4(—; F,),
which establishes property (ii) in Theorem 2.6.

Step 1.3. We define
bo . X(—4):; — S0

to be the zero map. Note that the 3 cells of X (—4):‘7l are in dimensions —4, —6, —7, so
this is the only choice. Since 7, = 0, the following diagram (iii) in Theorem 2.6 for
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k = 0 commutes regardless of the construction of f,.

s o x(@)

s

b
X(—4)-% — 2 .50

For the existence of the map f,, it suffices to show the following composite is zero.

X(4)°¢ X(4) SO,

This is true because this map factors through X(3)° = X(3)~! by cellular approxima-
tion. This gives the following commutative diagram (i) in Theorem 2.6 for k = 0.

X4)°

=0
X(4) ——=S°
7
7
e
lﬁ 7 fo
XA
This gives the starting case k = 0 of our inductive argument.
Step 1.4. For k > 1, we assume the maps fj_; and bj_, exist, the two diagrams in (i)
and (iii) of Theorem 2.6 commute for the 4 maps (fx_1, €k—1> Ak—1>bk—1)> and fr_;

satisfies property (iv) in Theorem 2.6.
We define the map by, to be the composite

X(8k — 48t x(8k — 4y, Tl g0,

Using the commutative diagram (2.5) in (iii) of Theorem 2.6 for the case k — 1, we have
Proposition 5.3:

Proposition 5.3. The following composite is zero.

U X(8k = 3)%,_, —— X(8k — )5, 1L g0,

(5.5) §8k—2C G(k)
Note that the first map is the inclusion of the bottom cell of G(k), and that the map
Uy is established in Step 1.2 before the induction.

As a result, there exist maps

fic: X@k+ 8%, , = Gk, = G(k)/S8*2 — 50
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that fit into the following commutative diagram:

(5.6) g8k—2 o

|

Glk) —~ = X8k —3)%_, —~ X(8k—4)%,_, — g0

i fk—l/ -7
G(k)/SSk—Z _
T ~
XBk+4)J .1

Note that there are many choices of f that makes the diagram (5.6) commute.
Step 1.5. In this step, we prove Proposition 5.4.

Proposition 5.4. For any choice of f in Step 1.4, the two diagrams (2.4) and (2.5) in
(i) and (iii) of Theorem 2.6 commute for the 4 maps (f, k> Ak, bx)-

The proof is a straightforward cell diagram chasing argument.
Step 1.6. In this step, we prove Proposition 5.5.

Proposition 5.5. Let ¢, : S®k*1 — SO be the restriction of f,, to the bottom cell of
X(8k + 4)g;. .- Then there exists one choice of f) in Step 1.4 such that the following
property is satisfied:

(5.7) Pk — Pk—2* Xk € (Pr—1,2,Tk),
wheret; € {0,80}and y € m15(S°). Note that by Lemma 4.9 ¢, = nandwesetd_, = 0.

This proves that this choice of f) satisfies the relation in (iv) of Theorem 2.6 and
therefore completes the induction.

Remark 5.6. The critical part of Theorem 2.6 is the existence of the map f,. We want
to prove it inductively. Namely, we assume that f}_; exists and want to show that f
exists. This induction would follow easily if the following map were zero:

(5.8) X(8k + 43K, —~ X8k —4X_,.

However, this is not true. Intuitively, the (8k—2)-cellin X (8k+4)§§_ 4 maps nontrivially
to the (8k — 4)-cell in X(8k — 4)&._, by n?. More precisely, one can show that the map
(5.8) factors through $8%=2 as an HF,-quotient, and the latter map in the following
composite

X(8k + 43k, —— 82 > X(8k —4)%,_,
is detected by n?[8k — 4] in the Atiyah-Hirzebruch spectral sequence of X(8k — 4)g;,_,.
Therefore, we have to show the composite

(5.9 X(8k + 4)2%_4 s S8k-2 o X(Sk _ 4);7{_7 fk-1 S0

is zero. It turns out that we can show the composite of the latter two maps in (5.9) is
zero. This follows from a technical condition that f;_; can be chosen to satisfy:
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* fr1lssk-s factors through X(8k — 12)§k~12,
Here note that $8¥—# is an HIFF,-subcomplex of X(8k — 4)g%_7- In fact, this is due to the
composite

2
§8k—2 Y g8k—4 - X(8k — 12)2’;:%? — g8k—12 |, y8k—150

corresponding to an element in the group (g + 77,C2) - n* = 0.
Now to complete the induction, we need to show that f. can be chosen to satisfy:
« filgsk+s factors through X(8k — 4)3K=3.

Firstly, in X(8k +4)g;,_ 4, the (8k + 4)-cell is only attached to the cells in dimensions
8k — 4, 8k — 3 and 8k, all of which map trivially to X(8k — 4)g;,_,. As a result, we can
choose f} such that the restriction f|gsk+4 factors through X(8k — 4)g; _,.

Secondly, by some local arguments that involve attaching maps in X(8k + 4 — m)
form =0, ..., 7, we can show that f) can be chosen such that f|gsk+4 factors through
X(8k — 4)8k—2.

This allows us to complete the induction and to prove Theorem 2.6. See Figure 10
for an illustration of the discussion above.

We'd like to comment that our actual argument is a little different from our discus-
sion above. We actually analyze X(8k — 3)5~4 instead of X(8k — 4)5k=%. This is used
to deduce the inductive relation (5.7), based on which we identify the first lock.

In the remaining subsections of this section, we will prove Propositions 5.1-5.4 one
by one.

5.2. Proof of Proposition 5.1. The proof of Proposition 5.1 consists of many steps.
The goal is to construct a map
cp o S8R+ — X(8k — 3)8k—4,

such that it is compatible with the map

E(k) & X(8k + 4)g_4 = X(8k — 3)g% _-.
Since the top cell of E(k) is in dimension 8k + 4, we have the maps

E(k) & X(8k + 4)5k+5 — X(8k — 3)5K+1.
So roughly speaking, we want to show that the bottom 3 cells of E(k) map trivially to
X(8k — 3)5k*1, and the image of E(k) does not involve the cells in X(8k — 3)3k*1. Our

strategy is to carefully study the cell structures of the intermediate columns of finite
complexes, and to get rid of certain cells gradually.

Step 1.1.1. In this step, we focus on column 8k + 1. We use the n-attaching maps in
column 8k + 1 between cells in dimensions 8k — 5 and 8k — 3, 8k + 3 and 8k + 5, to get
rid of the cell in dimension 8k — 4 of E(k), and to lower the upper bound of the image
to dimension 8k + 1 in column 8k + 1. More precisely, we prove Lemma 5.7.

Lemma 5.7. There exists the following commutative diagram (see Figure 11):

(5.10) E(k)——— X(8k + 4)g,_, — X(8k + 1)g_s

i J

E(k)/S8k—4 ! X(8k + 1)§£f§
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foXoJ

FIGURE 10. Intuition for Step 1
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X(8k+4)g 4 ) > | X@k+1)E ;5

(R 8k+1
X (8K + 1555

]

‘l—l—l—

FIGURE 11. Step 1.1.1 picture

Proof. Firstly, we have the following commutative diagram:

(5.11) G8k+4 ____ 8k+4 " §8k+3C X(8k + 1)%1;
E(k)—— X(8k + 4)3k+4 X(8k + 13— X(8k + 1)5k+3
E(k)Sk = X(8k + 4)8k+2 X(8k + 1)5Kk+1 X(8k + 1)5k+1

By Lemma 4.9, we have that the map in middle of the top row of diagram (5.11) is 7.
8k+5

By Corollary 4.8, we have an n-attaching map in X(8k + 1)g, ;3 between the cells in
dimensions 8k + 3 and 8k + 5. This corresponds to an Atiyah-Hirzebruch differential
1[8k + 5] — n[8k + 3].

Therefore, the composition of the maps in the top row of diagram (5.11) is zero. In

particular, pre-composing with the map
E(k) s SSk+4

is also zero. By the cofiber sequence of the right most column, we know that the map
from E(k) to X(8k + 1)5K*2 maps through X(8k + 1)3¢+1.
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Secondly, we have the following commutative diagram:

(5.12) E(k)/S®*~*C—— X(8k + 4)3K+4 X(8k + 1)3K+1 o X(8k + 1)5K+]
E(k)——— X(8k + 4)5k+4 X(8k +1)8k+1 X(8k +1)3k+1
g8k—4 g8k—4 7 o §8k—5¢ ~ X(8k + l)gllg:g

By Lemma 4.9, we have that the map in middle of the bottom row of diagram (5.12) is
7. By Corollary 4.8, we have an n-attaching map in X(8k + 1)3’,2:; between the cells in
dimensions 8k — 5 and 8k — 3. This corresponds to an Atiyah-Hirzebruch differential

1[8k — 3] - n[8k — 5].
Therefore, the composition of the maps in the bottom row of diagram (5.12) is zero. In
particular, post-composing with the map
X(8k + 13—~ X(8k + 1)5k]

is also zero. By the cofiber sequence of the left most column, we know that the map
from E(k) to X(8k + 1)3k+1 factors through E(k)/S8k—4.
This gives the required map

1: E(k)/S%—* — X(8k + 1)3KF1. O

Remark 5.8. We will use arguments similar to the ones in the proof of Lemma 5.7 many
times in the rest of this paper. Instead of presenting all details in terms of commu-
tative diagrams, we will simply refer them as “similar arguments as in the proof of
Lemma 5.10” or “cell diagram chasing arguments” due to certain attaching maps.

Step 1.1.2. In this step, we focus on column 8k — 2. We show that in E(k)/S8~*, the
cells in dimensions 8k and 8k — 3 map through $3~° in column 8k — 2. More precisely,
we have Lemma 5.9.

Lemma 5.9. There exists the following commutative diagram:

(5.13) E(k)/S8* — 2> X(8k + 1)8+) —~ X(8k — 2)%K
S8k v 583 ——= E(k)§k_, — 2 S8k~6C X(8k — 2)8k=¢

Proof. By Proposition 4.10, there is no n?-attaching map in E(k)§£_3. This shows that
E(k)3k o~ 58k v g8k=3,

‘We may therefore consider the cells in dimensions 8k and 8k — 3 separately.

For $8%~3, it maps naturally through the (8k — 1)-skeleton in column 8k — 2. By
Proposition 4.10, there is an n?-attaching map in X(8k — 2)3’;_5 between the cells in
dimensions 8k — 4 and 8k — 1. A similar argument as in the proof of Lemma 5.10
shows that $3¢~3 maps through S8 in column 8k — 2.
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For S8, firstly note that by Corollary 4.8, there is an n-attaching map in X (8k + l)gl,f_ré

between the cells in dimensions 8k — 1 and 8k + 1. A similar argument as in the proof
of Lemma 5.10 shows that S8 maps through the (8k — 3)-skeleton in column 8k + 1.
Then it maps naturally through the (8k — 4)-skeleton in column 8k — 2. To see that it
actually maps through S8, we only need to show the following composite is zero.

S8k —— X(8k — 2)5K=¢ ——= X(8k — 2)§f =4 = s8k—4 v §8k-5,

This is in fact true, since 7, = 75 = 0.
Combining both parts, this gives the required map

2 1 S8k v §8k=3 = E(lfK_, — s8k-e, 0
We enlarge Diagram (5.13) to Diagram (5.14). We will establish the maps 3,4 and 5
in Steps 1.1.3,1.1.4 and 1.1.5:
(514) SSk+l iV, SSk—Z

a - =

S8k+4 X(8k — 2)8k 2>X(8k 3k,

:\ —
T~ T -3
~o S

E(k)/S%~ 4»X(8k+1)§’,?5\x(8k 2)8K_ ~X(8k —3)8k_,

5 ~
~
~
~

S8k 58k=3 2 g8k=6C_. x(gk — 2)8k=4 ~ X(8k — 3)3k~¢

Step 1.1.3. In this step, we establish the map 3, making the triangle under 3 in Diagram
(5.14) commute.
By Lemma 4.9, we have that the map

S8k=6C_ > X(8k —2)8K _ ——~ X(8k — 3)5k_,

is » mapping into the bottom cell of X(8k — 3)8k ;- Since
n-m3=0,1n-71g =0,

the composition of maps in the bottom row of Diagram (5.14) is zero. In particular,
post-composing with the map

X(8k —3)3k—4C > Xx(8k —3)5k .

is also zero. By the cofiber sequence of the left most column, we know that the map
from E(k)/S®*~* to X(8k — 3)5k__ factors through S+, which gives the desired map
3, making the triangle under 3 commute.

Note that we haven’t shown the triangle above 3 commutes. We will show it later in
Step 1.1.5.

Step 1.1.4. In this step, we establish the map 4, making the parallelogram below 4 in
Diagram (5.14) commute.



80 MICHAEL J. HOPKINS ET AL.

By the cofiber sequence in the left most column, it suffices to show the following
composite is zero.

3

E(k)/S8k—4 S8k+4c X(8k —3)8k . —— X(8k —3)8k ..

Since both the triangle under 3 and the upper rectangle in Diagram (5.14) commute, it
is equivalent to show that the following composite is zero.

E(k)/S8k—4 S8k+4 X(8k —2)8k X(8k —3)8k ..
This is in fact true, since the composition of the latter two maps is already zero.

Lemma 5.10. The following composite in Diagram (5.14) is zero.

S8k+4 - X(8k —2)8k X(8k —3)8k ..

Proof. We first show that the left map factors through the bottom cell S3%~2 of the
codomain. In fact, the composite

S8kH+4 o X(8k —2)8k , —— X(8k —2)3k | =38k-1¢2

corresponds to an element in 75C2. Since 74 = 75 = 0, the group 75C2 = 0. There-
fore, it must factor through the bottom cell $3¥~2. We have the following commutative
diagram.

(5.15) 58k+44>\X(8k 2k, — X(8k — 3)5 _;
§8k—2 Y §8k—3

By Lemma 4.9, the map in the bottom row of Diagram (5.15) is 5. Since

n-7me =0,
this completes the proof. O
Step 1.1.5. In this step, we establish the map 5, making all parts of Diagram (5.14)

commute.
It suffices to show Lemma 5.11.

Lemma 5.11. The following composite is zero.

S8k+4 R SSk+lvs8k 2 R X(8k 3)8k 3

In fact, by Lemma 5.11 and Step 4, the following composite is zero.

sek+d 3 x(8k —3)8k_ — = X(8k — 3)8k__.

Then by the cofiber sequence in the right most column of Diagram (5.14), the map 3
must map through X(8k — 3)5K~4, establishing the desired map 5.

To see that all parts of Diagram (5.14) commute, first note that by Lemma 5.11 and
Lemma 5.10, both the triangles above the map 3 and under the map 4 commute. Next,
by the construction of the map 5, the triangles above it commute. Finally, by Step 1.1.3
and the cofiber sequence of the left most column in Diagram (5.14), the triangle under
the map 5 commutes. Therefore, all parts of Diagram (5.14) commute.

Now, let’s prove Lemma 5.11.
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Proof of Lemma 5.11. The composite in the statement splits into the following two
composites.

(5.16) S8k o g8k+1 O x(gk —3)8k_,

(5.17) Sek+d o g8k=2 T . x(gk — 3)8k .

For the first composite (5.16), let’s study the second map 6. By Proposition 4.10 and
Corollary 4.8, X (8k—3)§’,§_3 isa 3 cell complex, with cells in dimensions 8k, 8k — 1, 8k—
3, and with a 2 and 7?-attaching map. Since 5> # 0, there is a nonzero differential

n[8k] = n3[8k — 3]

in the Atiyah-Hirzebruch spectral sequence of X(8k—3)5k_.. It follows that the second
map 6 must map through its (8k — 1)-skeleton: S8¢—1 v §8k=3_ Since 7, = 0, the map
6 must further map through S%~! and the composite (5.16) can be decomposed as

SSk+4 s SSk+1 SSk—l( X(Sk _ 3)21]2_3 .
Therefore, due to the relation
Ty T3 = 0,
the first composite (5.16) is zero.

For the second composite (5.17), the second map 7 must map through the (8k — 2)-
skeleton of X(8k — 3)3k__, which is $%%=3. Then it follows from the relation

7T1 . 77"6 =0
that the second composite (5.17) is zero. This completes the proof. O

Now we claim that the map 5 is our desired map cj in Proposition 5.1. In fact, part
of Diagram (5.14) gives us the following commutative diagram (see Figure 12).

(5.18) E(k)/S8k~4 — > X(8k + 1)$K+] —~ x(8k — 3)3k _,
g8k+4 Ck X(8k — 3)8k—4
(8k — 3)g_7

Putting Diagrams (5.10) and (5.18) together, we have the following commutative dia-
gram.

E(k)——— X(8k + 4)_4 —= X(8k + 1), _s — X(8k — 3)g%_;

i J

E(k)/s%k=* ! X(8k + 1)gETs — X(8k - 3)k_,
g8k+4 Ck X(8k — 3)8k—4
8k—7

Forgetting some terms in this diagram, we obtain Diagram (5.3) in Proposition 5.1.
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o> g8k

X(8k+1)5!

FIGURE 12. Step 1.1.5 picture

5.3. Proof of Proposition 5.2. Lemma 5.12 is essentially the homotopy extension
property.

Lemma 5.12. Suppose that we have the following commutative diagram in the stable
homotopy category

(5.19) /| —
1
B

A
|
c

B/A C/A G

l4>
|
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where B/A and C/A are the cofibers of the maps1 : A — Band 2 : A — C respectively.
Then it can be extended into the following commutative diagram:

B/A——->C/IA-—-->G
\F

Proof. We can first extend the commutative diagram (5.19) to the following commuta-
tive diagram:

B/A-2>cC/A G
1

10 7 \Ts

2A——%A F

Note that the map 9 : B/A — C/A is not unique in general. We choose one and stick
with our choice. Since the composite

502=50301=8070401:A—G
is the zero map, there exists a map
12: C/A— G,

making the diagram commute.

c

NS

c/A-2~G
Now consider the map
13=1209—-807 : B/[A— G.

The map 13 is not zero in general. If it were zero, we then have the commutative dia-

gram as requested.
The fix is to modify the map 12. Note that the composite

1304=120904—-80704=120603—-503:B— G
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is the zero map. Therefore, by the cofiber sequence

B—2-Ba- .34,

there exists a map

4:2A— G
such that 14 0 10 = 13. We define the map
12':=12-14011: C/A — G.

Then the following diagram commutes as requested.

o
b,

\8

1206 =1206—-1401106=1206 = 5,

In fact, we have that

1209=1209-1401109=1209—-14010=1209—-13 =80 7. O

From the commutative diagram (5.3) in Proposition 5.1 and the definitions of F(k)
and G(k), we have the following commutative diagram

F(k) === F(k)

E(k)—— X(8k + 4)3._,

| T

S8k+4 G(k) X(8k —3)%._,

Ck

X(8k - 3)§k%
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By Lemma 5.12, we can extend it to the following commutative diagram

F(k) =———— F(k)

E(k)—— X(8k + 4)g_4

| L

sokrs T G —E > X(8k — 3),_,

Ck
X(8k — 3)8k—4

Removing the terms F(k), we have the commutative diagram (5.4) in Proposition 5.2.
It is clear that the map u; induces an isomorphism on Hgj,4(—;F,). In other words,
(S8k+4 1) is an HF,-subcomplex of G(k). This completes the proof of Proposition 5.2
(see Figure 13).

.

X (8k +4)3 4

Q
Se—e

X(8k —3)3% /7

\
\

S ]e 9 o  e—» &  e—» s

X(8k —3)5 7

FIGURE 13. Step 1.2 picture
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5.4. Proof of Proposition 5.3. In this subsection, we prove Proposition 5.3 that for
k > 1, the following composite is zero.

SH2C - G(k) T X(8k — 3)%,_, —— X(8k — 4),_, L 50,

We start with the commutative diagram (2.5) for the case k—1 in (iii) of Theorem 2.6.
We enlarge the commutative diagram (2.5) for the case k — 1 in the following way

(5.20) X8k —3)%_; — X8k —4)F_, fr-1 0
X(8k = 377 —— X(8k — )75 bis
g8k—4 B X(8k — 12)8k-12

We next state a lemma about the map vy, whose proof we postpone until the end of
this subsection. This Lemma 5.13 will also be used in Section 5.6.

Lemma 5.13. There exists a map
wy : G+ — X(8k — 3)5k—4

that fits into the following commutative diagram

(5.21) Glk) —~ > X(8k — 3)%_ .

w
G(l)¥+! — > X(8k — 3)3k=4

Putting these two diagrams (5.20) and (5.21) together, we obtain the following com-
mutative diagram (see Figure 14)

(522)  S%2C> Gl S5 X(8k — 3)T,_, - X(8k— 4)%_, — 1~ 50

Gk)Pk+1 2 X (8k — 3)3k=4 - X(8k — 4)3k—4 by

sk _ R - 5%k X (sk — 12)3 12

It is clear that Proposition 5.3 follows from Lemma 5.14, Lemma 5.15 and the above
commutative diagram.

Lemma 5.14. The following composite

P20 GRSk s x(8k — 3)8K4 —~ x(8k — 4)8K~4.

factors through S3%=4, giving the map 1 in the diagram (5.22).
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G(k) ) X(8k —3)., b ) X(8k—4)% 7

Uk

Xk 42

FIGURE 14. Step 1.4 picture

Lemma 5.15. The following composite is zero.

sz L gsk—4 DL y(gk — 12)8k12

We first prove Lemma 5.14 and Lemma 5.15, and then prove Lemma 5.13.
Proof of Lemma 5.14. By Lemma 4.12, the 3 cell complex X(8k — 4)3k~4 splits as
SSk—4 v 28k—7c2‘
To show that the map
S8k=2 s X(8k — 4)5Kk—4 ~ §8k—4\ 38k=7(2
maps through S84, we need to check the following composite is zero.
S8k=2 — > X(8k — 4)5=3 —— x8-7C2.
This composite corresponds to an element in the group
7Z'8k_2(28k_7C2) = 7T5C2 =0.
The last equation follows from the fact that 7, = 75 = 0. This completes the proof. [J
Proof of Lemma 5.15. By Lemma 4.12, the 3 cell complex X(8k — 12)§K~12 splits as
SSk—lZ Vv ZSk—lSCZ‘
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Therefore, the composite

g8k—2 1 g8k—4 %X(Sk —12)3k-12 = g8k-12y 38k-150
corresponds to an element in the group
(Tk_aSPF12 @ 7gy_4(Z8K715C2)) - mgy_,S%K* = (my ® 7, C2) - 7,
Crmg -7, ®m3C2=0.
The last equation follows from the facts that
g -7y, =0, T, =13 =0.

This completes the proof. O

Now we present the proof of Lemma 5.13.
Proof of Lemma 5.13. From the cofiber sequence

X(8k — 3)8K74C— X(8k — 3)%,_, —> X(8k — 3)%_5 ,

we need to show that the composite

(5.23) G(k)Bk+1C G(k) —*

X(8k — 3)%,_, — = X(8k — 3)_,

is zero. By Proposition 4.10, G(k)%%*! is a 2 cell complex with an #?-attaching map:
G(k)8k+1 — ZSk—chz'

Our strategy to show the composite (5.23) being zero is to first deal with the bottom
cell and then the top cell.

By the cellular approximation theorem, the restriction of the composite (5.23) to the
bottom cell S8~2 of G(k)®**+! maps through the bottom cell S8 3 of X(8k — 3)%_,, by
either z or 0. The possibility of 7 is ruled out by a cell diagram chasing argument due to
the n-attaching map between the cells in dimensions 8k —3 and 8k —5in X(8k—3)g} _,.

Therefore, the composite (5.23) factors through the top cell S8+1 of G(k)3k+1. We
can further require it factor through the top 2 cells of G(k)3**2, namely

G(l)§kts = z8k+1c2,

By the cellular approximation theorem, it maps through the (8k +2)-skeleton of X(8k—
3)s%_3- Note that there isno cell in dimension 8k+2 in X(8k—3)g; _5, so it maps through
the 4 cell complex X(8k — 3)5K*1. We have the following commutative diagram.

SSk—Z

N =0

G(R)PHC—> G(R)P+2 — > X(8k — 3)EHC o X(8k — 3)%_,

-
-
~
rd
-
~

p8k+1C) X(8k —3)5 .
7

-
—~
-
—
—
—
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To prove this lemma, it suffices to show the following composite is zero.

(5.24) SSIHIC o 38k+10) o X(8k — 3)3K+1

Firstly, post-composing with the quotient map
X(8k — 3)3K+1 o 8K+

must be zero. This is due to the fact that it maps through the mod 2 Moore spectrum.
Therefore, the composite (5.24) must map through the 8k-skeleton of X(8k — 3)3’,?:;,
namely the 3 cell complex X(8k — 3)5K .

(5.25) SHH — X(8k — 3)§_s.

Now let’s consider the Atiyah—-Hirzebruch filtration of this map (5.25). It cannot be de-
tected in filtration 8k, since there is a nontrivial differential in the Atiyah-Hirzebruch
spectral sequence of X(8k — 3)3’,2_3:

nl8k] — n*[8k — 3],

which is due to the n?-attaching map by Proposition 4.10. If it is detected in filtration
8k — 3, then it must be zero since 7, = 0. Therefore, if it is nonzero, then it must be
detected by n?[8k—1]. In this case, post-composing with the inclusion to X (8k — 3)3’&;
is zero, due to the n-attaching map between the cells in dimensions 8k — 1 and 8k + 1,

and therefore the Atiyah-Hirzebruch differential
n[8k + 1] = n?[8k —1].

In sum, regardless of the actual Atiyah-Hirzebruch filtration of the map (5.25), the
following composite is always zero.

srt O gk 3)8k o x(8k — 3)3tL,

This completes the proof of the lemma. O

5.5. Proof of Proposition 5.4. We check that the two diagrams (2.4) and (2.5) in (i)
and (iii) of Theorem 2.6 commute for the 4 maps (fy, gk, Ak, by)-

For the diagram (2.4) in (i) of Theorem 2.6 for the case k, we put together the fol-
lowing commutative diagrams

« diagram (5.6) in Step 1.4,
« diagram (2.4) in (i) of Theorem 2.6 for the case k — 1,
« the upper right corner of diagram (5.4) in Proposition 5.2.
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X8k +4) —XBk—-3) ———XBk—-4) —— = S9

| i

X(8k+4)g5 4 — X8k —3)g,_;, — X(8k —4)g% _,

e

X(8k + 4)g;. 11

G(k)

The commutativity of the upper left corner of this diagram is due to the compatibility
of each columns.
For the diagram (2.5) in (iii) of Theorem 2.6 for the case k, we put together the
following commutative diagrams
« diagram (5.6) in Step 1.4,
« the lower half of diagram (5.4) in Proposition 5.2.

sokt K X(8k — 3)8k4 X (8k — 4)8k4
|- i
Glk) — > X(8k — 3)%_, —~ X(8k — ), _,

| -

f
X(8k+4)2,, L S0

By the definitions of g in Step 1.2 and by, in Step 1.4, the composites in the left and
right columns give us g, and b respectively.

Therefore, we have the diagram (2.5) in (iii) of Theorem 2.6 for the case k. This
completes the proof.

5.6. Proof of Proposition 5.5. In this subsection, we prove Proposition 5.5: There
exists one choice of f} in Step 1.4 such that

(5.26) b — Pr—2 * Xk € (Pr—1,2,Ti),

where ¢,,, € 7g,,41 is the restriction of f,, to the bottom cell of X(8k + 4)g; .1, Tx €
{0,80} and y; € m16(S°) (see Figure 15). Note that by Lemma 4.9, ¢, = 7 and we set

$_1=0.
Consider the following composite
(5.27)

GUP+! % x(8k — 3Bt X(8k — B2 X(8k — 4)5,_, L 50,
By Lemma 4.12, the 3 cell complex X(8k — 4)3K~% splits:
X(8k — 4)8K—4 ~ 38k-7C2 v §8k—4,
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SSA:+1

FIGURE 15. Step 1.6 picture

Therefore, the composite (5.27) can be written as the sum of the following two com-
posites (5.28) and (5.29).

(5.28) G(lPe+! Lo s8R0 X(8k — 4),_, L 50,
(5.29) G(k)sk+1 2o g8k—4 8k X(8k — B3, Sk 0.

For the composite (5.28), first note that the map 1 equals zero when restricted to bottom
cell S8%=2 of G(k)®¥+1. In fact, it corresponds to an element in

ek 28K~ 7C2 = 1,C2 = 0,
which follows from the fact that 7, = 75 = 0.

SSk—Z

£:0

G(lP+! Lo T8RT0oC o X(8k — 4)5,_, L 50
-

-~
7
-
-~

SSk+l
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Next note that the composite

8702 = X(8k — )86~ X(8k — 4),_, L g0

restricts to ¢_; on the bottom cell S8~7 of 28k=7C2. Therefore, we have the following
commutative diagram:

(5.28)

(5.30) G(k)8k+1 SO
i /
SSk+1

where & € (pr_1,2, T) With 7 an element in 7z, that is annihilated by multiplication
by 2, namely 0 or 8c.
For the composite (5.29), by the diagram (2.5) for the case k — 1, we can rewrite it as

by_
(5.31) Gl)sk+t 25 g8k=4 . x(gk —12)3k-12 KL o,
Using the splitting
X(8k — 12)5f 712 ~ §8k-12 v 58k-15C),

we can rewrite the composite (5.31) as the sum of the following two composites (5.32)
and (5.33).

(5.32) G(k)Bk+1 2 - g8k—4 g8k-12 S0,

(533)  G(k)Pk+! 2 s¥k—4 SB-15000 o X(8k — 12)3,_ 5 <% SO,

The composite (5.32) is zero. In fact, since G(k)8*1 = £8k=2(Cy? and
7T2'77.'8=0, 77.'13:0,

the composition of the first two maps in (5.32) is already zero. Therefore, the composite
(5.31) can be identified as (5.33).
For the composite (5.33), we have Lemma 5.16.

Lemma 5.16. The following composite is zero:

(5.34) G(k)8k+1 2 g8k—4 38k—1509 G8k—14_

Proof. Consider the following diagram.

SSk—Z

|

G(k)8k+1 4 §8k—4 »8k=1507 - ?Ssk—m

SSk+l -

Pre-composing the composite (5.34) with the inclusion of the bottom cell S8~2 of
G(k)®*+1 gives us the zero map. This is due to the fact that 77,5 = 0.



SPIN 4-MANIFOLDS AND MAHOWALD INVARIANT 93

The map from S8%+1 to $8—14 can be written as a Toda bracket of the form

(@, B, %) C 1,

where § € 7, = Z/2 generated by 7%, and a € 7,y = Z/2 generated by {Ph?}. For a
precise argument of this fact, we refer to Lemma 5.3 of [WX18].
The indeterminacy of this Toda bracket is

o5+t =0,

since 75 = 0, 73 = 0. We claim that this Toda bracket contains zero; therefore it is
zero as a set. This completes the proof of the lemma.
In fact, the only potential nonzero element that this Toda bracket contains is

({Phi}tn’ 1)
The corresponding Massey product
(Ph3,h3,h?) =0

in filtration 9 of the Adams E,-page, which is higher than all nonzero elements in the
Adams E, -page. Therefore, this potential nonzero element is also zero. O

By Lemma 5.16, the composite (5.33) maps through the bottom cell S8¢—15 of
»8k=15C2, and we have the following commutative diagram:

(535) SSk—Z SSk—14
G(k)8k+1 2 SSk—4 ZSk_lSCZCH X(Sk _ 12)?]){_15

Since 7713 = 0, the following composite is zero.
SSk—Z( R G(k)8k+l R SSk—lS‘

Therefore, the composite (5.33) further factors through the top cell S8+1 of G(k)3k+1.
We denote by y; the corresponding element in 7;4.
Removing some of the terms in (5.35), we obtain the following diagram:

(5.29) 0

(5.36) G(k)Bk+1
i P2 Xk
SSk+1

Adding the diagrams (5.36) and (5.30) together, we have the following commutative
diagram

(5.27)

G(k)8k+1 SO

i k+Pk—2:Xk
SSk+1
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which can be enlarged into the following commutative diagram:

SSk—Z ______ SSk—Z
G(k)8k+1(—> G(k)
L X
S8k+1 X8k + 4% 11
Skt+Pr_a Xk

Using the homotopy extension property that we proved, namely Lemma 5.12, we have
the following commutative diagram.

SS]E—Z [ SSI\Z
G(k)8k+1% G(k)

o

skt X8k + D1 — SO

Sk+Pr_2 Xk

Note that the map [, induces an isomorphism on Hgy,.; (—, F,) and therefore is an HF,-
subcomplex. In sum, we have constructed a choice of the map f that satisfies the
condition (5.7) in Proposition 5.5. This completes the proof of Proposition 5.5.

6. STEP 2: UPPER BOUND DETECTED BY KO

In this section, we prove Proposition 2.9:
Proposition 6.1 (Proposition 2.9). Forany k > 1, the composition

c(8k+2)8k—4
—— S S KO

X(8k + 2)8k—4
is nonzero.
Recall that X(8k + 2)3—* is the homotopy orbit of the free Pin(2)-action on
S=Bk+R A (4KkH), .

Therefore, we have the following isomorphism:

KO(X(8k + 2)%K4) = KOY, (S~ CK+DR A S(aki),).
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6.1. Some results about the Pin(2)-equivariant KO-theory. In this subsection, we
list some results about the group KO°(S®+PR) for various a, b € Z. These results are
established in [Sch03, Section 5] (see also [Lin15]).

(I) There is a commutative and associative multiplication map (given by tensor
product of virtual bundles)

Kogin(z)(saﬂ-Hbﬁ) ® Kogin(z)(scﬂ-Hdﬂi) N Kogin(z)(S(a+C)IH]+(b+d)ﬁ)_
(I1) There is a ring isomorphism
KOy, (2(8%) = RO(Pin(2))
~ 7Z[D,A,B]/(D?> —1,DA — A,DB — B, B?> — 4(A — 2B))
(note that there is a slight typo here in [Sch03]).

The generators are defined as follows:

(a) D =[R].

(b) A = K — (1 + D), where K is a 2-dimensional real representation. The
representation space of K is C = R @ iR, with the unit component S! =
{e®} of Pin(2) acting via left multiplication and j acting as reflection along
the diagonal.

(¢) B=[H]-2(1 + D).

(IIT) There are elements (called Euler classes)

y(D) € KOBy,(y(S™%),
¥(H) € KOp;, y(S™™).
They satisfy the following property: for any a < b and ¢ < d, the map

= y(D)d-Cy(m)b-a
Kogln(z)(SbH-'-dR) 5

Kogin(z)(saﬂ-ﬂwﬁ)
equals the map on K Ogin (2)(—) that is induced by the inclusion
Sa[H]+c@ N Sb[H]+dﬁ_
(IV) There are elements (called Bott classes)
by € KOp;p, (8™,
bgp € Kogin(z)(Sm),
such that the following maps are isomorphism for all a and b:

~ by -
Kogin(z)(saHerR) H, Kogin(z)(s(a+2)H+bR)’

~ b ~
Kogin(z)(saH+bR) 8D Kogin(z)(SaH+(b+8)R)'
(V) The relation
(D + 1)y(D) = 2Ay(D) = By(D) =0

holds.
(VI) The following relations hold:

y(D)®bgp = 8(1 — D),
y(H)?byy = A —2B —2D + 2.



96 MICHAEL J. HOPKINS ET AL.

(VII) There is an isomorphism

KO% oS =2z0 @ z/2,

n>1

generated by the elements y(D)? and A"*y(D)?, n > 1.

6.2. Proof of Proposition 2.9. Let

ing) * S@AKH), — S°
be the base-point preserving map that sends the entire S(4kH) to the point in S° that is
not the base-point. Consider the composition

~ id
cPin(Z)(8k+2)8k_4 : S—(8k+2)R /\S(4k|]‘|])+

i

Kk
ACpin(2) o
RN S s

S—(8k+2)@

where i is induced by the inclusion

SO o S(8k+2)ﬁ|i_

Lemma 6.2. The map
(cpin(2)(Bk+2)¥4)* 1 RO(PIn(2)) = KOY ,,(S°) — KO, (S~ CR+DRAS(4ki), )
sends 1 € RO(Pin(2)) to a nonzero element.
Proof. Consider the map
i* 1 KOB (5)(S°) — KOY ) (S™EK+2R)

that is induced by i. By (III), i*(1) = y(D)%**2. By (IV) and (VII), we have an isomor-
phism
KO3 oS~ 2R) 2 7 ¢ (P 772,

n>1

generated by the elements (b_gp)* - y(D)? and (b_gp)* - A"y(D)?, n > 1. Here, b_gp is
the unique element in Kogm(z)(s—fm) such that bgp - b_gp = 1. By (VI) and (V), we
have

y(D)¥<+2 = y(D)* - y(D)?
= y(D)** - (bsp)* - (b_sp)* - ¥(D)?
=8¢ (1-D)*- (b_sp)*-y(DY*  (by (VD)
=2%-(1-D) - y(D)* - (b_gp)*
=2% 2. y(D) - (b_gp)*  (by (V)
= 2% (b_gp)*y(D)*.
To finish the proof, it suffices to show that
(6.1) (Bin(z) AN D)™ (2*(b_gp)*¥(D)?) # 0.

We will prove this by contradiction. Suppose (6.1) is not true. Consider the cofiber
sequence
id ACKin )

S—(sk+2)@ A S(4k|]-|1)+ S—(8k+2)ﬁ< N S4kH—(8k+2)@
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that is obtained from S(4kH), —> S° —> S*H by taking S~®k+2)R A (=), This cofiber
sequence induces the sequence
0 akH—(sk+2)Fy YD 0 —(8k+2)R
KOpip (S ) = KOpjp (S )

(id /\ckin ))* _
O KOY 2y (S~ kDR A S(akE),,)

which is exact in the middle. Since
(cKin(ay A 1D)* (2% (b_gp)<y(D)) = 0,
there exists an element a € KOgin(z)(S“kH_(Sk”)@) such that
(6.2) 2%(b_gp)y(D)* = y(H)* - a.
By (IV) and (VII), @ can be written as
(bau)*(b_sp)*¥(D)* - P(A)
for some polynomial P(A). By (VI) and (V), equation (6.2) can be rewritten as
2% (b_sp)*y(D)* = (y(H)*(byy)**) - (b_gp)* - y(D)* - P(A)
=(A=2B-2D +2)*: (b_gp)* - y(D)* - P(A)  (by (VD)
= (A—2B—2D+2)* - y(D)* - (b_sp)* - P(A)
= (A+47 - y(D)* - (b_gp)* - P(A)  (by (V)
= (A +4)**P(A) - (b_gp)*y(D)*.
This implies that
2%k = (A + 4)%P(A) (mod 24).
By comparing the coefficients of A° and A%, we see that this is impossible. O
By definition, under the isomorphism
[S~ER+DR A S(4KB) ., S0Tpin 2y = [X(8K +2)%4, 5],

the element c(8k + 2)%~* corresponds to the element cpi(5)(8k + 2)8¢~4. Therefore,
we have the following commutative diagram:

(c(8k+2)8k—4)*

K0°(S%) S KOO(X(8k + 2)8k—4)
\l/ (CPin(z)(8k+2)8k—4)* ) H )
KOpin(2)(S”) > KOB 0 (S~ ®FDR A S(akH).).

In the commutative diagram above, the left vertical map sends 1 to 1. Therefore,
Lemma 6.2 implies that the map

(c(8k + 2)3K=4)* 1 KO°(S?) —> KOO(X(8k + 2)8k—4)

is nontrivial. This finishes the proof of Proposition 2.9.
Recall that the restriction of the map f : X(8k + 4)g;,; — S° to the bottom cell of
its domain is denoted
¢k : SSk+1 - SO

(see Theorem 2.6). Corollary 6.3 will be used in the next section:
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Corollary 6.3. For k > 0, the map ¢, is detected by KO.

Proof. For the sake of contradiction, suppose that ¢; is not detected by KO. Then the
composition

8k+4 8k+1
X(8k + aysert LT 0 ko

is zero. Since the map c(8k+7)%%+2 : X(8k+7)%+2 — SO factors through c(8k + 4)3k+1,
the composition

8k+7)8k+2
X(8k + 7)8k+2 T, 50 L kO

is zero. Moreover, since 7g;, 3(KO) = 0, the composition

c(8k+7)3k+3

X(8k + 7)8k+3 S — KO

is also zero.

By Proposition 2.9, the map c(8k + 10)%¢** is detected by KO. This maps factors
through the map c(8k + 7)8¢*3, which, as we have just shown, is not detected by KO.
This is a contradiction. U

7. STEP 3: IDENTIFYING THE MAP ON THE FIRST LOCK AS {P*~1h}}
In this section, we prove Proposition 2.12: For all k, m > 0, we have the relations
i - {P™hi} = {P"**hi}.
Combining Corollary 6.3 and part (iv) of Theorem 2.6, we have shown that the family
[ @ SBKHL 5 §0 | k> —1}

satisfies the following two properties:
(1) For k > 0, ¢ can be detected by KO;
(2) For k > 1, we have that
(7.1) Pk — Pr—2 Xk € (Pr-1,2,Tk),
for some 7}, € {0,80}in 77 and y; € 7;4. Here ¢ =1, ¢_; = 0.
Since gy, ko = Z/2, generated by the Hurewicz image of the element {P¥h, } in 7rg; .4
of the sphere spectrum, we make Definition 7.1 due to property (1) of the family ¢,
above.
Definition 7.1. Define
p-1=0, o =0,
and for k > 1,
P = $x — {PFhy).
It is clear that the Hurewicz image of ¢ in 7rg;, ko is zero for all k.
Then Proposition 2.12 follows from Lemma 7.2 for the elements ¢ in gy ;.

Lemma 7.2. Forallk > —1, m > 0, the following relations hold:
i - {P™hi} = 0.
Proof of Proposition 2.12. By Definition 7.1 and Lemma 7.2, we have
i - (P"hT} = (@ + {PXMy}) - {P™hi} = {P™*Fhi). O
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Now we prove Lemma 7.2.

Proof of Lemma 7.2. We first show that the elements 7} are 8c for all k > 1.
Suppose that for some k, we have 7, = 0. Then we would have

(7.2) bk — Pr—2 * Xk € (Pk-1,2,0) = Py_1 * 73,

where ) € 6. Since no elements in 7g and 77,4 can be detected by the ring spectrum
KO, mapping the relation (7.2) to 7,KO gives us ¢, = 0 in 7rg;;KO. This contradicts
property (1) that ¢, is detected by KO. Therefore, we must have

T, =80

forall k > 1.
Substituting ¢, = @, + {P¥h,}, the relation (7.1) becomes

P +{PXhi} € pra - i + (PF2h} - x
+{Pr_1,2,80) + ({P*"1h;}, 2, 80).

Here we set {P~'h;} = 0 to unify the notation.
We have the Massey product

P*hy = (P*"Yhy, ho, h3hs)

on the Adams E,-page with zero indeterminacy for all k > 1. Then by Moss’s theorem
[Mos70, Theorem 1.2], we have the Toda bracket for all k > 1:

{P¥h,} € ({P*"'h,},2,80).
Therefore, we have

Pic € Pr—2 - Xic + {P¥72hi} - i + (Ppr_1,2,80)
+ {Pk_lhl} M 7f8 + 7f8k_6 M 80

forall k > 1.
Using this relation, we complete the proof of Lemma 7.2 by induction on k, which
states that forallk > -1, m >0

i - {P™hi} = 0.

The cases k = 0, —1 are trivial, since both ¢_,; and ¢, are zero.
For k > 1, suppose the lemma holds for ¢;_; and ¢j_,.
Multiplying {P™h3}, We have

i - {P™h} € {PHM2R3Y - e + (PKTTIRY - g
+ <¢k—17 27 80—> : {th%}

Note that both {PX¥+"=2)13} and {P¥*™~113} are divisible by 2. Since

2'7T8:O,2‘7T16:0,
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we have

P - {P™hi} € (pr_1,2,80) - n{P™hy}
= @x-1-(2,80,7) - {P"hy}
D @k—1 - {Phi} - {P"hy}
= @y - {P"H 0}
=0.

The indeterminacy
P18 - {P"hi} + @iy - 2 - g - {P™hy}
is zero, since 2 - 9 = 0 and that
Pr—1-1-{P"hy} = pr1 - {P"hi} =0
by induction. Therefore, we have that
@i - {P™hi} =0

for all m > 0. This completes the induction and therefore the proof of the lemma. [

8. STEP 4: A TECHNICAL LEMMA FOR THE UPPER BOUND

In this section, we prove Proposition 8.1, which is Proposition 2.14 in Section 2.
Proposition 8.1. Forany k,m > 0, the map
(8.1) JOSHH) — X8k + 3)g™ )
induced by the quotient map X(8k + 3)¢™*> » S*m+3 ig injective.

The proof makes essential use of two spectra, kog,z and j’, which we review now.

8.1. Thespectra kog,z and j'. By Atiyah-Bott-Shapiro [ABS64, Section 11], any spin
bundle is ko-orientable. In other words, the spectrum ko is a module over the ring
spectrum MSpin. By Ando-Hopkins-Rezk [AHR], the orientation map MSpin — ko
can be refined to an E,-map. Let kog,, be the cofiber of the rationalization map

ko — kog.

Both kog and kog,z are modules over MSpin. Therefore, for any spin bundle F of
dimension n over a space A, we have the Thom isomorphism

ko™(A;Q/Z) —=> ko™*"(Thom(A4, F); Q/Z)

which is induced by cup product with the Thom class.
Moreover, if A’ is a subspace of A, and F’ is the restriction of F to A’, we also have
the relative Thom isomorphism

(8.2) ko (AJA;Q/Z) S ko™ (Thom(A, F)/ Thom (A, F'); Q/Z).
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Lemma 8.2. Let V be a virtual bundle over a space B, and let E be a spin bundle of

dimension n over B. Suppose that B’ is a subspace of B. Let V' and E' be the restrictions
of V and E to B'. We have the Thom isomorphism

(8.3) ko™(Thom(B,V)/Thom(B', V") ;Q/Z)

114

= ko™+"(Thom(B, V @ E)/ Thom(B', V' & E); Q/Z).

The isomorphism above is natural in the sense that if B" is a subspace of B', and V", E”
are the restrictions of V and E to B”, then the following diagram commutes:
(8.4)

ko™(Thom (B, V)/Thom(B', V") ;Q/Z) —=% ko™+1(Thom(B, V @ E)/ Thom(B', V' @ E'); Q/2)

l |

ko™ (Thom(B, V)/ Thom(B",V");Q/Z) é ko™*"(Thom(B,V @ E)/ Thom(B",V"” @ E"); Q/Z).

Proof. The desired isomorphism follows from the isomorphism (8.2) by setting

A =D(V),
A" =D(V")uS(V),

and letting F be the pull-back of E to D(V) (here, D(V) and S(V') denote the disc bun-
dle and the sphere bundle of V, respectively). Diagram (8.4) follows from standard
arguments on the point-set level. O

Next, we introduce a slight variant of the spectrum j”: we define j’ as the fiber of
the map

3.1
ko L> ko.

Note that j’°(S°) = Z @ Z/2 while j"°(S°) = Z. The map ko(2) — ko gives amap j” —
j' that induces isomorphism on 7,(—) for any n # —1,0. This proves the following

simple lemma:

Lemma 8.3. Let S be a finite CW-spectrum with no cell of dimension < 0. Then j'°(S) =
110
J" ).

These two spectra j' and kog,, are related via Lemma 8.4:

Lemma 8.4. Let j'(1) be the 0-connected cover of j'. There is a map
C: 1) = Z7kog,z

that induces an injection on 1,4,,_,(—) for any positive integer m.
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Proof. Consider following commutative diagram
-1 ‘4’3 -1 -1
z kOQ — kO@
= kogyz =7 kogyz

-1

ko ——— ko

Pi-1

kog ———— kog.

In the commutative diagram above, the columns form cofiber sequences. By the 3 X 3-
Lemma [May01, Lemma 2.6], we can extend this diagram to the following diagram

3-1
Z_ZkO@ Z_ljb Z_lkOQ L Z_lkOQ

2 %kog;z — X7 gz L 27 kog); — X7 kog z

g
-1 5 P>-1
>~'ko Jj ko ko
h
-1 ) Pi-1
X" kog Jo kog kog,

where all the rows and columns are cofiber sequences.
Now, consider the commutative diagram

2oz

17 l
g

J——=J

'

Ja-

Since j'(1) is 0-connected and 7;(jg) = 0 for i > 1, the composition A o i equals zero.
Therefore, the composition factors through the fiber of &, and there exists a map

L:j (1) — =Yg,
making the diagram above commute. The composition
.o ! -1 f -1
v 1) — X7 gz — X7 kogyz

is our desired map.
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To prove that ¢ induces an injection on 74,,_;(—), first note that f induces an injec-
tion on 774, _1(—) because 7,1 (X *kog/z) = 0. Furthermore, since 7 (ji) = 0 for
all k > 0, the map g induces an isomorphism on 7,,,_;(—) (just like the map i). There-
fore, | induces an isomorphism on 7,,,_;(—). It follows that ¢ induces an injection on

Tam—1(=). O
8.2. Proof of Proposition 2.14. Note that X(m)? is the Thom spectrum

Thom (—mA|g pin 2)a+m, B Pin(2)*+™).
Set

B= BPin(2)4m+8k+6,
B = BPin(2)4m+8k+5,
B” = BPin(2)%+2,

V = (-8k —3)4,

E = (8k+4)A.

Since 44 is spin, E is spin. By Lemma 8.2, we obtain Thom isomorphisms that fit into
the following commutative diagram:

(8.5) k0_1(54m+3; @/Z) k08k+3(s4m+8k+7; @/Z)

| |

ko™ (X(8k + 3){"*3;Q/Z) koS3 (X (—1F T Q/2)

IR

IR

Set Y = Thom(HP®, V) where V is the bundle associated to the adjoint representa-
tion of SU(2). Recall that there is a transfer map

T:Y > X(-1)

that induces isomorphism on Hy, 3;(—,F,) (see Proposition 3.5) for any integer n.
Truncating this map, we obtain a commutative diagram:

(8.6) S4m+8k+7 = R S4m+8k+7
Tg}l(w;tmw
8k+4m+7 + 8k+4m+7
Y8k+5 > X(_l)gk+5

For algebraic reasons, the kog,-based Atiyah-Hirzebruch spectral sequence of Y col-
lapses. Therefore, the map f induces injection on ko%’fg 3. By diagram (8.6), the pinch
map g also induces injection on ko®¥*3(—; Q/Z). By (8.5), the pinch map | : X(8k +
3)§m+3 5 §4m+3 induces an injection

ko : ko=1(S4m+3,Q/Z) — ko~ (X(8k + 3)i™*3,Q/2Z).
Now we relate ko, , and j’: the map

[ J,<1> d E_lkOQ/Z
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in Lemma 8.4 provides us with the following diagram:

(87) j/<1>0(S4m+3) % kO_l(S4m+3;@/Z)

J/u’m ilko

JOX(BK + 3)Im+3) — = koL (X(8k + 3){™*3;Q/2)

Since both 1, and I¥° are injective, the map I'") is injective as well.
Finally, since both $*"+3 and X(8k + 3)"** have no 0 and —1 cells, j°(—) and
j'(1)°(-) are identical for them. It follows that the map
U2 O(stm3) = jOX(8k + 3)™*)
is injective. By Lemma 8.3, the map

DS = X (8K + 3)™)

"

I
is also injective, as desired.

9. STEP 5: UPPER BOUND

9.1. Proving differentials using the Chern character. In this subsection, we in-
troduce a useful technique for proving differentials in the j”-based Atiyah—-Hirzebruch
spectral sequence.

Definition 9.1. A finite CW-spectrum W is called ko-injective if the map
ch(e(-)) : ko®(W) — EP H*(W; Q)
*>0

given by a — ch(c(a)) is injective. Here, c(a) denotes the complexification of a.

Theorem 9.2. Let W be a finite CW-spectrum that satisfies the following properties:

(1) W has a single top cell in dimension 4m;
(2) W has no cells in dimension (4m — 1);
(3) The (4m — 2)-skeleton W*=2 of W is ko-injective;
(4) The 2-skeleton W2 of W is homotopy equivalent to C.
Furthermore, suppose there is an element a € ko®(W) that satisfies the equality

(9.1) ch(c(a)) =2 +d, deH*™(W;Q)=Q.

Then in the j”-based Atiyah-Hirzebruch spectral sequence of £~ W, the following results
hold:

(D) Ifv(d) > «(m), then the class 2[—1] is a permanent cycle. Here, i((m) = 0 when
m is even and (m) = 1 when m is odd.
(ID) Ifv(d) < «(m), then there is a nontrivial differential

2—-1] — y[4m —1]
forsomey € myy,,_1j".
To prove Theorem 9.2, we first introduce some lemmas.

Lemma 9.3. Let o € ko®(W*m=2) be the pull-back of a under the inclusion map
W4m=2 o W. Then oy € ker(p® — 1).
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Proof. Recall that we have the equality
chy, (P*($)) = 3"chy, ($)
for all ¢ € k°(W). Since ch(c(ey)) = 2!,
ch(c((¥® — Daw)) = ch(@c(ay)) — ch(e(ay)) =20 = 2! = 0.

By our assumption, W#"~2 is ko-injective (property (3)). Therefore a, € ker (3> — 1),
as desired. O

Lemma 9.4. In the j”-based Atiyah—Hirzebruch spectral sequence for Z~1W*"=2, the
element 2![—1] is a permanent cycle.

Proof. The cofiber sequences
3-1
j'— ko i ko

and
0 am-2 4m—2
S'o W > W,

induce the following commutative diagram:

3_
¢0 c j/O(W4m—2) % ay = kOO(W4m—2) # kOO(W4m—2)

v [ 1

. 3_
) =z2@7/2 —0 § ko0(s0) =7 P k(S0 = 7

j/0(2—1%4m—2) 5 s j'O(Z_IWZZ) — j/O(Sl) =712®7/2

Consider the element ¢, € ko®(W#™=2), By Lemma 9.3, (> — 1)a, = 0. This implies
that there exists an element ¢, € j/°(W#"~2) such that

1(¢o) = ato.

Furthermore, 2(a,) = 2! because of the commutative diagram

ko® (W 4m=2) C; KO(W4m=2) Ch> @*ZOHz*(W4m—2;@)

| ! |

ko®(S?) ——— k(5% —L— @, H**(s% Q).
Since the map
J°(8%) — ko(s°),
72@7/2—Z
is (id, 0),
3(¢0) = (2,b)

for some b € Z/2.
We claim that b = 0. To see this, consider the composition

5041 JO(s%) — jO(s),
72712 — 728 7Z/2.
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Since W?2 ~ Cn (property (4)), this map is induced by  : S* — S° and sends (a,b) €

Z @ Z/2to(a,b) € Z/2 @ Z/2. Therefore, under the composition 504 o 3, ¢, is sent to
(0,0) = 50403(¢) = 504(2,b) = (0,b).

Therefore b = 0.
Consider the following commutative diagram:

(1,0)

) =72 —= j°(SO=z®z/2

} Js
jr/0(2—1W24m—2) = ) j’O(Z_IW;m_Z).
The bottom horizontal arrow is an equivalence because of Lemma 8.3. By the previous
discussion, 4(2,0) = 403(¢,) = 0. Therefore, the left vertical arrow sends the element

2L € j70(8°) to 0 as well. This is equivalent to saying that element 2![—1] is permanent
cycle in the j”-based Atiyah-Hirzebruch spectral sequence for -1 W4m=2, O

Lemma 9.5. W is ko-injective.

Proof. Let ¢ be an element in ko®(W) with ch(c(¢)) = 0. Since W*4™=2 is ko-injective,
the pulls-back of ¢ under the inclusion W4"=2 < W must be zero. Therefore, ¢ is the
pull-back of some element

b € ko®(S*™) = Z,
under the pinch map 7 : W -» S*™, Since
ch(c(b)) =24™ . b =0,
b must be 0. It follows that ¢ = 0 and W is ko-injective, as desired. O

Proposition 9.6. The element 2![—1] is a permanent cycle in the j"-based Atiyah-
Hirzebruch spectral sequence of Z~'W if and only if v(d) > (m).

Proof. If v(d) > ((m), then we can find an element b € ko®(S*™) such that
ch(c(b)) = d € H¥(S4™),
Given this element b, we have the equality
ch(c(a — (b)) = 2.,

where 7% : ko?(S*™) — ko®(W) is induced from the pinch map 7 : W - S*™. Using
Lemma 9.5, we can prove that 2/[—1] is a permanent cycle by the exact same argument
as the proof of Lemma 9.4.

Now, suppose that »(d) < «(m). Consider the commutative diagram

j”O(SO) — Z (1,0)} j,O(SO) — Z @ Z/z

JOET Wiy —=— ot wim.

To prove that 2/[—1] is not a permanent cycle, it suffices to show that the element
(21,0) € j’°(S?) is not sent to 0 under the right vertical map.
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For the sake of contradiction, suppose that (2,,0) € j'0(S°) is sent to 0 €
j°(Z~1w5™). Consider the following diagram:

JowW) —2—s ko) L koo(w)
I J
(2,0 € (s°) —25 ko®(s%) 75 ko(s?)
b
JOET W),
Since 1(2!,0) = 0, there exists an element 7 € j’°(W) such that 2() = (2,0) by the

exactness of the left column.
Let £ = 3(7). Since the diagram is commutative,

4(¢) =5(24,0) =2

It follows that ch(c(¢)) = 2.
Consider the element o — £ € ko®(W). We have

ch(c(a — &) = d € H™(W).
Since W#"=2 is ko-injective, the element o — £ equals 7*(b) for some
be kOO(S4m) = Z(Z)-

By comparing the Chern character, we obtain b = ZI(LM). This is impossible because
d

s & Z(2)- O

Proof of Theorem 9.2. The claim follows directly from Lemma 9.4 and Proposition 9.6.

O

9.2. Proof of Proposition 2.16. For k > 1, we define ¢ to be the composite

(9.2) X(8k + 3)5k-1 X(8k —4)$._, RIS

Then diagram (2.8) follows directly from diagram (2.4).
By Lemma 4.13, we have a splitting

X(8k + 3)3k-1 ~ 38k=5Cy v 28632,
Under this splitting, we can write
te =t Vi,

where f; and t; are the following two composites (9.3) and (9.4).

9:3) k=5 0pC— X(8k + 3)3K-1 —~ X(8k — )%, RIS
O4)  THFCH— X+ DY, —— X Bk -, 5.

We will show the following claims on ¢;, and t;. These claims directly imply Prop-
erties (ii) through (iv).
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Claim 1. t; = 0.

Claim 2. t; is of order 2 in j'. In other words, the following composite is zero.

. t!
(9.5) s8k=50y 214, ysk-50y K g0 1,

Claim 3. The restriction of ¢, to the bottom cell S8~ is
{PF=1h3} = {PK=1h } - 92
in TTgk—5-

It is clear that by Corollary 2.13 in Step 2 in Section 2.4 that Claim 3 is true. In the
rest of this subsection, we first prove Claim 1, and then prove Claim 2.
For Claim 1, note that ¢;; equals the composite

23020 X(8k +3)3K-1 — ~ X(8k —3)%,_, —~ X8k — 4% _, ELSW)

By exactly the same cell diagram chasing argument as the one in Step 1.1.2, we see that
the restriction of the composite

28k-302C = X(8k + 3)3K-1 —~ X(8k — 3)%._,

to the bottom cell S8%—3 is zero. Therefore, we can rewrite t,’é as the composite

8k=3¢C2 s8k=2 1o X(8k — 3)%_, —— X(8k — 4)3,_, EISEPY
for some map 1. By cellular approximation theorem, the map 1 maps through X(8k —
S

S8k-2 2 x(8k — 3)8 3 X(8k — 3)3,_.
Moreover, due to the n-attaching map in X(8k — 3)§£:§ between the cells in dimensions
8k — 5 and 8k — 3, the composite

g8k—4 __ 2 X(8k—3)§£j G8k—3

must be zero. Therefore, the map 1 maps through X(8k — 3)2’,2:‘7‘, and we can rewrite

t; as the composite

fr-1

> X(8k — 4)BTAC > X(8k — 4)5,_, 5 S0

ZSk—?)CZ SSk—Z

for some map 3. By Theorem 2.6, there is an HF,-subcomplex
Gy ¢ ST X(8k — 4)8K A X(8k + )., ;-
By Lemma 4.12, the 3 cell complex X(8k — 4)5k=4 splits:
X(8k — 4)3K=3 o~ 28k-7C2 v S8k—4,
Since 7, = 75 = 0, we have

T2 X(8k — )36 = 7.C2 = 0,
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and the map 3 maps through the HF,-subcomplex S3—4. In other words, we can
rewrite the composite

S8k=2 3 x(8k — 4)8k=4C - X(8k —4)3,_,

as the composite

g8k—2 4 _8k-1

; SSk

—— X8k — ) _7
for some map 4 in 7,. Therefore we can rewrite t; as the composite

»8k=3p g8k—2 4 U kL g0

sek=4 EL w(gk — 4y LN

As in the proof of Proposition 5.3, the composite

g8k—2 4 gsk—4 k-1 X(8k — )%, Si1 50

is zero. Therefore, we have t;, = 0. This completes the proof of Claim 1.

For Claim 2, note that the composite 2 - t; maps through X(8k + 2)g; _. Due to the
2-attaching map in X(8k + 2)g;,_s between the cells in dimensions 8k — 5 and 8k — 4,
the composite

S8k=5C 38k=50y =5 3RS CpC— X(8k + 3)3K 71—~ X(8k +2)% s

is zero. Therefore, we can rewrite 2 - t; as the composite

z8k=5Cy S8l 2 X(8k +2)%,_s — X(8k — )3, ELSW)
where 5 is a map that induces a trivial homomorphism on Hgj,_;(—; F5). By the cellular
approximation theorem and the 2-attaching map in X(8k + 2)g;_5 between cells of
dimensions 8k and 8k — 1, the map 5 maps through X(8k + 2)5K~2:
S8k=1 %o X(8k + 2)3 72— X(8k +2)8~2,
Therefore, we can rewrite 2 - t; as the composite

Sre— ISO

28K=5 058K =10, x (8K + 2)8 2 X(8k — 48K~ > X(8k — 4)3,_,—=
By Lemma 4.12, the 3 cell complex X(8k — 4)5K~% splits:
X(8k — 4)8k—4 ~ 38k=7Cp v §8k—4,
So we can write 2 - t; as the sum of the following two composites (9.6) and (9.7):

Fr=1

(9.6) »8k-5Cy s8k=1 T o 58k=TCoC 5 X(8k — 4)3,_, ——> S,

Sr-1 SO

©.7)  =8k=5cy okl B gek-d B xgk — ) KL
For the map 7 in the composite (9.6), it corresponds to an element in the group
k1 28K77C2 = s C2 = 7/2,

which is generated by v? on the bottom cell of 28<=7C2. Since v? is not detected by the
spectrum j’, post-composing (9.6) with the map S° — j' is zero.
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For the composite (9.7), note that by Part (iii) of Theorem 2.6, the composite g,_; o
fk-1is

—4 k-1 — by—1
S8k=4 T X(8k —12)8k-12 7 g0,

Therefore, the composite (9.7) can be rewritten as

9.8)  IRSCy e Bl S ik Bl ygp g1z Pl g0
Using again the splitting

X(8k — 12)3K-12 ~ 38k-1507 v g8k-12,
the composite (9.8) can be written as the sum of the following two composites (9.9) and
(9.10):

9.9) 38k=5) g8k—1 8 g8k—4 9 g8k—12 S0,

(9.10) s8k=50), o g8k-1_ 8  o8k—4 10 8k—15~5 . GO

The composite (9.9) is zero, since 9 o 8 corresponds to an element in
g - w3 = 0.
The composite (9.10) is zero, since 10 o 8 corresponds to an element in
m11C2 -3 = 0.

In fact, 7;;C2 = Z/2 & Z/2, which is generated by {Ph,}[0] and {Ph,}[1] - . Both
generators are annihilated by 5.

Therefore, the composite (9.7), which equals the composite (9.8), is zero.

In sum, we have that 2 - t; = 0in j’. This finishes the proof of Claim 2.
9.3. Proof of Lemma 2.17. Recall that there is a map

S8k+3

j(8k 4 3) : X(8k 4 3) —= x-8k=3Cp

that induces an isomorphism on (HF,),;,_;(—) for any m (see formula (3.3)). Truncat-
ing this map, we obtain a map

(sgi43)®70 0 X(8k + 38! - 717,
where
Z = £78k=2CpSkH! = Thom (CP*, (4k + 1)(L — 1)).

Here, L denotes the canonical bundle on CP®.
The Thom isomorphism gives an identification

H*(Z;Q) = Uy - H*(CP*; Q) = Uy - Q[x]/(x*+1),

where x = ¢;(L) and Uy is the Thom class for homology.
In order to apply Theorem 9.2 to Z, we require Lemma 9.7:

Lemma 9.7. For any odd integer n > 0 and any m > n, the spectrum Z~2"CP" is
ko-injective. (See Definition 9.1.)
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Proof. We show that for the spectrum Z~2"CP/, where n > 0 is odd and m > n, the
map
¢ : ko®(Z~2"CP") — kul(Z=2"CP")

is injective. Since the Chern character map is injective for this spectrum, this would
prove the lemma by Definition 9.1.

The complexification of real vector bundles corresponds to the following map on
the spectra level

¢ : ko — ku.

For degree reasons, the ku-based Atiyah-Hirzebruch spectral sequence for Z~2"CP}"
collapses at the E,-page. In particular, the group ku®(Z=2"CP!") is a direct sum of
copies of Z’s.

Since n > 0is odd, the bottom two cells of Z~2"CP}" are C7. More generally, we can
decompose Z~2"CP" by its subquotients (with certain attaching maps among them)
of the form Z*/Cy for j > 0, and with one possible copy of $?*~2"* when m is odd. In
this case, we have that 2m — 2n is divisible by 4. Since

koA Cn ~ ku,

the ko-based Atiyah-Hirzebruch spectral sequence for Z~2"CP}" collapses at the E;-
page. This means that we only need to check that the following maps are injective

(9.11) ¢ : ko®(Z¥ Cn) — ku®(z¥Cy),

(9.12) ¢ 1 ko®(S2Mm=2m) — ky0(S2m—2n),

where j > 0 and 2m — 2n is divisible by 4.
Due to the compatibility of real and complex Bott periodicity, the map

c: ko— ku

maps v} to vf in 7rg. So in particular, it induces an isomorphism on 7g; for all k > 0.
It is also well known that the generator of 7r,ko maps to 2v% in ,ku. So it induces an
injective homomorphism on g4 for all k > 0. This proves that the map (9.12) is
injective.

For the map (9.11), since the Spanier-Whitehead dual of C7 is £~2Cz, we may
rewrite it as

Tajaku = 74j42(ko A Cn) — 7y4j4(ku A Cn) = 74545 (ku v Z2ku),

which is an inclusion of a splitting summand.
Combining the injectivity of the maps (9.11) and (9.12) completes the proof of the
lemma. 0

Lemma 9.8. There exists an element ¢ € k°(Z) such that

(9.13) ch(p) = 2*K=2 4 d - Uyx**
for some d with v(d) = —2.

Proof. There is a Thom isomorphism

KO2) = Ug - K2(CP*) = Uy - Z(gp[w)/(w* ),
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where w = L—1 and Uy is the K-theoretic Thom class for the virtual bundle (4k + 1)w.
‘We have the relations
ch(w)=¢*-1
and
ch(Ug) = Uy - x((4k + Dw)
= Uy - y((4k + L)

_u (ex__ 1>4k+1
= Uy p”

¢=Ux-(ap+aw+ -+ ag_w
where q; € Z; forall 0 < i < 4k — 1. Our goal is to determine the coefficients a; so

that condition (9.13) holds.
Applying ch(—) to both sides of the equation and using the formulas above, we get

Now, suppose
4k—1)

4k+1 4k-1

@)=V (S5) Y a1

X i=0

Now, make the substitution z := e¥* — 1. Then x = In(z + 1) and the above equation
becomes

4k+1 4k—1
(9.14) (@) cch($) = U - 3, aiz' € Uy - Qlz]/(z*+).

i=0
Condition (9.13) requires
ch(¢) =242 4 q. Uy - z%K
for some a with v(a) = —2. By comparing the constant terms in (9.14), we deduce that
chy(¢) = ay and

4k+1 4k-1

1 1 .
( n(z + )) @%24d- %) = 3 a2l + 024+,
z i=0
. . In(z+1) 4+l 2 .
Let the power series expansion of (T) be 1+ byz + byz* + ---. By comparing

the coefficients of z' in the equation above, we obtain the relations

ap = 24k—2

d = ao . b4k,

Cll'=24k_2'b4k, fori=1,...,4k—1.
By Lemma A.2, we see that »(d) = —2. By Lemma A.3, we see that a; € Z(,) for all
0 < i < 4k — 1. Therefore, ¢ belongs to k°(X). O

Now, set o = r(¢). Then one has
ch(c(a)) = 241 4 2d - U x*k.

By Lemma 9.7, we can apply Theorem 9.2 to Z and conclude the existence of the dif-
ferential
2%1-1] — y[8k — 1]
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in the j”-based Atiyah-Hirzebruch spectral sequence of Z~1Z, with y # 0 in g _;j".
By naturality of Atiyah-Hirzebruch spectral sequence, we can pullback this differential
to X(8k + 3)%k~1 using the map j(8k + 3)%K~1. This finishes the proof of Lemma 2.17.

10. STEPS 6 AND 7: FIRST LOCK AND SECOND LOCK
In this section, we will prove the claims in Section 2.8 and Section 2.9.

10.1. Construction of Z(k). In this subsection, we will construct a spectrum Z(k) for
every k > 0. This spectrum will be crucial for proving Proposition 2.23 and Proposi-
tion 2.21. By Proposition 3.4, there is a cofiber sequence

X(8k +4) — X(8k + 3) —K+ 5—(8k+3)Cpee,

By restricting to the subquotient (—)®5~2, we obtain a cofiber sequence

X(8k +4)%2 — X(8k +3)¥2 25 m-(ke3Cpdk
Consider the quotient map
X(8k +4)%72 —% X(8k + 4)§( 2.

By Proposition 4.16, there is a 2 cell complex Y (k) with cells in dimensions 8k — 4 and
8k—8 such that it is an HF,-quotient complex of X (8k + 4)5<~2. There is a commutative
diagram

Yk) —— 2 v &
0 T
X(8k + 4)%-2 —— X(8k + 3)%k2,

where the left vertical map is the composition

X(8k +4)%K"2 —% X(8k +4)3K-2 —% v(k).

By the 3 X 3-Lemma [May01, Lemma 2.6], we can extend this commutative diagram
to the following commutative diagram, where the rows and columns are cofiber se-
quences:

Y(k) o S S TY(K)
1 T i
X(8k +4)%K~2 — % X(8k + 3)%2 — »-®k+3)cpk |
o0 7
X(8k +3)%k-2 — 2§ s-17(k),
The complex Z(k) is defined to be the cofiber of the map

-Gk+ICpsk | —% Ty (k).
By Lemma 4.6(2), the map p induces an isomorphism on (HF,)4,_; for all €.

Lemma 10.1. The complex Z(k) satisfies the following properties:
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(1) Z(k)8k—8 — Z—(8k+2)CP4§II§;f;

S8k—=4\/ G8k=8 L open
2) 7Z(k 8k—4 _ ’
(2) Z(k)g_s {Esk—scn3 k odd.

Proof. Property (1) is straightforward from the definition of Z(k). To prove property
(2), note that by truncating the transfer map (see (3.4))
Tr : Thom(HP®,V) — X(-1),
we obtain an HIF,-sub map
1 : Thom(HP®, V)I6k-1 & x(—1)lok-1
Desuspending 1 by =~(&+4)(_) and applying Proposition 4.11, we obtain the map
2 1 £=Ek+ Thom (HP*, V)15K =1 «—— X(8k + 3)573.

By truncating the map p : X(8k + 3)%~2 — =~1Z(k), we obtain an HF,-quotient

map
3: X(8k+3)5k=5 —% =1Z(k)Sk-4

The composite

302 : -6k+D Thom (HP®, V)Ik-1 % X(8k + 3)5k=5 — =1Z(k)Sk—¢

induces an isomorphism on HF,-homology. Therefore, it is a homotopy equivalence.
The claims now follow from Lemma 3.6. O

Remark 10.2. In the proof of [Sch03, Theorem 4.9], Schmidt made a minor error when
computing 7'!CP’. This error led to Schmidt’s proof of Jones Conjecture for p = 4.

Note that Lemma 10.1 is a crucial step in our proof of showing that the Jones con-
jecture is not true when p = 4 (mod 8). If Schmidt’s cohomotopy group computation
were true, our statement of Lemma 10.1(2) would be different: Z(1)§ = S° v S*. This
would also lead to an affirmative answer for Jones conjecture for p = 4 by using our
subsequent arguments.

Lemma 10.3. For any m < 8k — 4, the m-skeleton of Z(k) is ko-injective.

Proof. Note that Z(k)™ = ==8k=2CP}, ,, for some | > 4k + 1. Therefore, the claim
follows from Lemma 9.7. O

10.2. Proof of Proposition 2.20. Consider the map
tr t X(8k +3)8k-1 — 80

in Proposition 2.16. By properties (ii) and (iii) in Proposition 2.16, there is a factoriza-

tion of the map tk|X(8k+3)§’,§:§ : X(8k + 3)§£:§ — S9 as follows:

i |X(8k+3)§ﬁ:§

X(8k + 3)3k-2 s°

)

SSk—S

thlgsk—s ={PK1h3}
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Here, the vertical map is the restriction of the quotient map
X(8k +3)3k-1 % 38k=5¢Cy

to the (8k — 2)-skeleton.
When restricted to the (8k — 2)-skeleton, diagram (2.8) becomes the diagram

X(8k + 3)8k—2

+

X(8k + 3)8K2

¢ bl (ke 43)8k—-2
X(8k + 3)3k2 s 550

c(8k+3)8k—2

This diagram, combined with the factorization above, produces the following diagram:

X(8k 4 3)8k—2

+

X(8k + 3)8k—2

+

X(8k +3)§572 ———» S8k

c(8k+3)8k—2

S°.
{PK=1hi}

Given this commutative diagram, Proposition 2.20 follows from Lemma 10.4.

Lemma 10.4. The following diagram commutes:

XSk +3)8k2 — 2 v 5-17(0) — % 58S

i \L{Pk_l h3}

{P"1h})

X(8k+3)8K72 — % 85—~ % 50
Proof. Let 1 denote the composition
X(8k +3)%K"2 —% X(8k +3)3k=2 — §8k5,
and let 2 denote the composition
X(8k +3)8k—2 — 23 3-17(k) — S8K-S,
Wi v;/a131t to show that the map 1 — 2 becomes 0 after post-composing with the map
{P*"hi}.

It is straightforward to see that when restricted to the subcomplex X(8k + 3
(= 2)|x sk +3ysk=s = 0. This is because both 1 and 2 become the quotient map

)BES,

X(8k + 3)%k~5 — §8k=5,
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This implies that the map 1 — 2 factors through the fiber of the inclusion map X(8k +
3)8k=5 & X(8k + 3)®K~2, which is Z8k—3C2:

X(8k +3)87° —— X(8k +3)¥72 —» X(8k + 3)§ 23 = =8=3C2

\ !
SSk—S.

Given any map 28%—3C2 — $8 =5, the composition map

y8k—3 () \ §8k=5 n? y g8k=7
is 0 because 7, - 7> = 0 and 75 = 0. Since 7?|{P*~1h}}, the composition

{P*"1hi}

28k—3c2 ) SSk—S ) SO
is zero. This implies that {P¥~1h3} o (1 — 2) = 0, as desired. O

10.3. Bundles with simple Chern character. In this subsection, we will construct
virtual bundles over Z(k) with simple Chern characters. This will allow us to use The-
orem 9.2 to establish differentials in the Atiyah-Hirzebruch spectral sequence.

Recall from Section 9 the spectrum Z, which is defined as the Thom spectrum

Thom (CP*; (4k + 1)(L — 1)) = =~Gk+DCpiitl.
By definition, Z(k) is the fiber of a certain HF ,-quotient map
8k—4 ﬂ» g8k—6
We denote the generator of H?(Z8~4; 7) by x'.
Lemma 10.5. There exists an element y € k°(Z8%=*) such that
(10.1) ch(y) = 24K g cor o xR 4 cgr XK 3 4 cgp_ax*K2,
with v(cg_g) = —1 and v(cgg_4) = 0.
Proof. There is a Thom isomorphism
KO(Z8k=%) = Uy - kO(CP*~2) = Uy - Zp)[w]/(w**1),

where w = L—1 and Uy is the K-theoretic Thom class for the virtual bundle (4k + 1)w.
We have the relations

ch(w)=¢e*-1
and
ch(Ug) = Uy - x((4k + Dw)
= Uy - y((4k + 1)L)
x _ 4k+1
= Uy - (e 1)
X
Suppose

k-5
y= UK'(Z aiwi>.
i=0
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After taking Chern characters on both sides, we get

4k+1 4k-5

)= (S21) Y aer -y

x i=1

Just like before, we make the substitution z = e* — 1. With this substitution, equa-
tion (10.1) is equivalent to the following equation:

z 4k+1 4k-5
10.2 e — . gl = p4k—5-v(k) dk—4y
(10-2) <1n(z n 1)) l;) @z +0(z")

This equation is equivalent to the equation

4k-5 4k+1

(10.3) Z aizi = (@) . (24k—5—V(k) + 0(z4k—4)),
i=0

By comparing coefficients on both sides of equation (10.3), we obtain the relations
a; = 24k—5—11(k) . bi
forall0 <i < 4k — 5. By Lemma A.8, v(b;) > v(k) — (4k — 5) forall 0 < i < 4k — 5.
Therefore, the coefficients a; € Z,y and we have found a y that satisfies equation
(10.1).

To show that the rest of the coefficients in ch(y) satisfy the conditions of the lemma,
note that by the definition of the coefficients b;,

[se]

z 4k+1
. 4k—5-v(k)}.,i | — H4k—5-v(k)
(ln(z+1)) (;)2 blz> 2 )

Subtracting equation (10.2) from this equation and using the relation z
obtain the following equation:

4k—1 = 0. we

4k+1
4 _5-— - - —
<m> . p4k—5-v(k) -(b4k_4z4k 4+b4k_3z4k 3 +b4k—2z4k 2)

= chgi—s(¥) + chgi—6(¥) + Chgj—a(¥)-
Substituting e* — 1 back as z, the above equation becomes
4k+1

Y —1
<€ E ) .p4k=5-v(k) (ba_a(e*— 1)4k—4 +byp_3(e*— 1)4k—3 +by_y(e— 1)4k—2)

= chgk—g(y) + chgr—e(7) + chg—a(¥)-
After rearranging, we get

(241{—5—1)(1{)

T ) “(bag—a(e* — DF3 4 byye_3(e* — 1BK72 4 by, z*72(e¥ — 1)81)
= chgy_g(¥) + chgi_e(¥) + chsi_4(¥)

— 4k—4 4k—3 4k—2
= Cgk—gX + Cgk—6X + Cgp—aXx™ 7.
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ak—4 4k-2

Expanding the left hand side and comparing the coefficients of x and x

both sides of the equation, we obtain the relations

n

Cgk_g = 24k—5—v(k) . b4k—4’
_5_ 8k —3)3k—1
Cak—g = 237570 (%b4k—4 + 4k — 1bg_3 + b4k—2>
8k —3)3k—-1
I J Sak=5-3(k) { )3( ) Dar_s
+ 24=5v0 (b gy, — bag_3).
By Lemma A.6,

V(cgr—g) = 4k — 5 —v(k) + (v(k) — (4k — 4)) = —1.

By Lemmas A.5, A.6, and A.7, when n is odd, all three terms in the formula for cg;_, are
2-local integers, so v(cgx_4) = 0. When n is even, the lemmas show that the first term
is a 2-local integer while the other two terms are 2-local half-integers (they have 2-adic
valuations —1), and so v(cgy_4) > 0 again. This concludes the proof of the lemma. [

Proposition 10.6. There exists an element a;, € ko®(Z(k)) such that
(1) When k is even,

(10.4) ch(c(ay)) = 24k—4-v(0),
(2) When k is odd,
(10.5) ch(c(ay)) = 2%k—4-v(k) 4 qydk—2
with v(d) = 0.

Proof. When k is even, let ¥’ be the pullback of y under the map Z(k) — Z8~* and let
o =ry)(r: k%Z(k)) — ko®(Z(k)) is the restriction map). By Lemma 10.5,

ch(c(a)) = 2% =4=K) 4 2egr o x* 4 4 2cq) 4 x*K2,
Recall from Lemma 10.1 that Z(k)5k~4 = 88 v $8%=4 for even k. Let
b1, ¢ € ko®(Z(k)$E=8) = ko®(S%%=%) @ ko(S8F—*)
be the generators for the first and the second summand, respectively. Since the com-
position map
ko®(s4m) — kO(s4m) L Fre(s%m; )
is multiplication by 1 when m is even and multiplication by 2 when m is odd, we have
ch(c(¢y) = x*~*

and
ch(c(¢y)) = 2x*=2,
Now, set
ap =o' —2cgr_g - Po(P1) — Cgk—s - Po(P2),
where

po © Z(k) » Z(K)gZg
is the quotient map. Note that this construction is valid because both 2cg;_g and cgj_4
belong to Z(,) by Lemma 10.5. It follows that a; satisfies (10.5).
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When k is odd, let ¥’ be the pullback of y under the map Z(k) — Z%~* and let
a' =r(y’). By Lemma 10.5,

ch(c(a)) = 2% =4=K) 4 2egr o x4 4 2cq) 4 x*K2,
Recall from Lemma 10.1 that Z(k)5<—¢ = 28¢=8Cy3 for k odd. There is an element
$5 € ko®(Z(KE) = ko (Crp)
such that
ch(c(¢s)) = x*—4 4 ex*k=2
for some e with v(e) = 0 (this is because the e-invariant of 73 has 2-adic evaluation 0).
Now, set

o =o' —2cg_g - pi(P3),
where
pr : Z(k) > Z()5k4
is the quotient map. Then
ch(c(ay)) = ch(c(a’)) — 2cgi—g - ch(c(pi($3)))
— 24k—4—7}(k) + 2cSk—8x4k_4 + 2C8k—4x4k_2 _ 2c8k—8 . (x4k—4 + ex4k—2)
= 24k—4—11(k) + (2C8k_4 - 2C8k—8 M e) M x4k_2.

By Lemma 10.5, d = (2cg_4 — 2cgi_g - €) has 2-adic valuation 0. Therefore, o satisfies
(10.5), as desired. O

10.4. First lock for k odd. In this subsection, we will prove Proposition 2.21, which
states that when k is odd, the composition

{P*"1hi)

Z_1Z(k) % SSk—S % Ny
is zero.

Proof of Proposition 2.21. Let f : £71Z(k)$ — S° be the boundary map induced from
the cofiber sequence
S7l e 2717(k) — =71Z(k)5.
In other words, f fits into the sequence
Sl 3-1Z(k) — T-1Z(k)%F 1 S0,

We will show that the following diagram is commutative:

SO
k—13,3
(10.6) 24k'4fT \&hl}

5T1Z(k) — =T1Z(k) — S8,
Our proposition will follow from the commutativity of this diagram. This is because
taking [—, S°] in the cofiber sequence
S12(k) — 2120k L §0
produces the sequence

[S9,8°] — [=71Z(k)S, SO — [=~1Z(k), SO].
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In this sequence, the element

24k—4 c [SO,SO]
first maps to

28k=4f e [271Z(k)%, S0,

and then maps to

g € [27'Z(k), s°]
by the commutativity of (10.6). Since the sequence is exact at [Z~1Z(k)$, S°], we de-
duce that g = 0.

It remains for us to prove that diagram (10.6) is commutative. Since £~1Z(k)$ has
no 0-cells, the Adams filtration for the map f is at least 1. This implies that the Adams
filtration of the map 24K—*f is at least (4k —4) + 1 = 4k — 3. Therefore, the map 2*¢—* f
can be lifted through a map €4,_3 : Z71Z(k)? — Tyr_3, where T; (i > 1) is the ith
stage of the Adams tower of S°.

Thr—3

L
|

Caie=s T, — T, AHF,
v T, — T, AHF,
71
24k—4f
1Z(R 5 SO S HF,.

The cells of 271 Z(k)S are in dimensions 1, 3, ..., 8k—9, and 8k—5. Since 7r;(Ty_3) = 0
forall 1 <i < 8k — 8, the (8k — 9)-skeleton of Z~1Z(k)$ maps trivially to S° under the
composition map

E 120050 — 12008 2L 50,

Therefore, there exists a map S8~5 — T,,_; such that the following diagram is com-
mutative:

L
T e ]
=1Z(k)® ﬁ SO,

24k—4

SSk—S

Let u be the composition
— T3 — S°.
To finish the proof of our proposition, it suffices to show that u = {PX~1h3}.

Since the Adams filtration of u is at least 4k — 3, i can be 0, {Pk_lhz}, 2{Pk_1h2}, or
4{Pk=1h,} = {P*~1h3}. We will compute the e-invariant of e(u) and show that v(e(u)) = 0.
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This will finish the proof because the 2-adic valuations for the e-invariants of the four
possibilities above are

v(e(0)) > 1,
v(e({PF1hy})) = -2,
v(e(R{P* 1 hy))) = -1,

v(e(4{P*¥"1h,})) = 0.

Consider the diagram

£12(k) — 1Z()y —L 80— 2(k)

!

sloy ——3 §8k=5 Ky g0 S Cu.

By the definition of the e-invariant, there exists an element £ € ko®(Cu) such that

ch(c(§)) =1+ e(u).

This implies that when we pullback & along the map & : Z(k) — Cu, the Chern char-
acter ch(c(h*£)) is equal to

(10.7) ch(c(h*&)) = 2%k=* 4 e(u)x*k—2,

In Proposition 10.6, we constructed an element a; € ko®(Z(k)) with Chern charac-
ter

(10.8) ch(c(ay)) = 2*=* 4+ dx*k=2  (v(d) = 0).
Subtracting equation (10.8) from equation (10.7), we get
ch(c(h*E — o)) = (e(u) — d)x**=2.

In particular, this shows that when we restrict h*£ —ay, to the (8k—8)-skeleton Z(k)8k—8,

ch (c(h*§ - ocklz(k)gk_g)) =0.
By Lemma 10.3,
h*§ — ol 7 gyse—s = 0.
Therefore,
h*§ — oy = p*(¢)
for some ¢ € ko®(S%%—4). Here, p is the quotient map p : Z(k) » S%—*. The Chern
character of p*¢ is

ch(c(p*¢)) = ax*=2,
where v(a) > 1. From the relation
(e(,u) _ d)x4k—2 — ax4k—2’

we deduce that e(u) = d + a. Since v(d) = 0 and v(a) > 1, v(e(«t)) = 0. This concludes
the proof of the proposition. O
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10.5. First lock for k even.

Proof of Proposition 2.23. In Proposition 10.6, we showed that there exists an element
oy € ko®(Z(k)) such that
ch(c(ay)) = 24k—4-vk),

By Lemma 10.3, we can apply Theorem 9.2 to Z(k). Theorem 9.2 shows that the ele-
ment

24k—4—v(k)[_1]
is a permanent cycle in the j”-based Atiyah-Hirzebruch spectral sequence of Z~1Z(k).

The map p constructed in Section 10.1 induces a map of spectral sequences from

the j”-based Atiyah-Hirzebruch spectral sequence of =~!Z(k) to that of X(8k + 3)%%5.
Therefore, the element

24k—4—v(k)[_1]
is also a permanent cycle in the j”-based Atiyah-Hirzebruch spectral sequence of
X(8k + 3)%k~5 and X(8k + 3)8%~5. This finishes the proof of the proposition. O

In(1+2) 4k+1
z

APPENDIX A. COEFFICIENTS OF (

Let b; be the coefficient of z* in the power series expansion of
4k+1
In(1+z) z zz Z3
= —- =|1-——= —_— -
1@ ( z ) ( 2t o7t

In this section, we prove several facts about the 2-adic valuations of b; that we are going
to use in the rest of the paper.

4k+1

Notation A.1. Foranyr € Q, let v(r) be the 2-adic valuation of r. For example, v(4) = 2,
v(3) = 0, and v(%) = -3.

In the power series expansion of

In(1 +z))4k+1 _(i_
- -

4k+1
z3+
4 9

bm = Z b(Co,C‘l,Cz,...)’

(co,1,C25---)
where the sum ranges through all tuples (¢, ¢y, ¢y, ... ) such that
(1) ¢; >0foralli > 0;
2) co+cp+cr+-=4k+1;
(3) i +2c,4+3c3+--=m.
In all the cases that we are interested in, m will always be at most 4k, so the tuple
(co, €1, s, ... ) will always be finite. Each tuple (cq, ¢1,C5, ... ) corresponds to the mono-

mial S
e (<2)" (%>

The number b, ¢, c,,...) is the coefficient of this monomial, which is

4k +1 1
€p>C1,Ca5...] 2013C2 ...

oz
3

1=

the coefficient for z™ is

NN

b(Co,Cl,Cz,...) = (_1)C1+03+.“ : (
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Here,
( 4k +1 )_ (4k +1)!

Co,cl,CZ,... Co!C1!C2!“‘

In particular, this number is an integer.
Lemma A.2. v(by) = —4k forallk > 0.
Proof. For any tuple (cg,¢y,...)with 3}, ¢; = 4k+1and ), , ic; = 4k, the valuation

1
v(g3e) 2 —@k - D
except when (cg,cq,...) = (1,4k,0,...). Since

4k +1 1
— 4k
ko) = U ( 1,4k ) gk
_ (4k+1)
T 24k
the valuation v(b,y) is equal to —4k. -

Lemma A.3. Theinequality v(b,,) > —(4k—2) holds forallk > 1and1 < m < 4k—1.

Proof. For any positive integer c, we have the inequality

1
> —c.
v (c + 1) =¢
Equality is achieved only when ¢ = 1. This implies that
(A1) Wb(eg.ep) = V (201362 ) Zz ¢; =

From this, we deduce that f(b,,) > —(4k —2) forall1 < m < 4k — 2.
For by, given any tuple (co, 1, €3, ... )With 3, ¢; = 4k+1and 3,

the valuation )
v(33a) = —4k-2)

except when (cg,¢q,C5,...) = (2,4k —1,0,...). Since

=4k-1,

1>1

4k + 1 1
_ ak-1
baak-to..) = (FDT (2,4k - 1) " Sak-1
(4k + Dk
T oak—2

the 2-adic valuation of the denominator is still at least —(4k —2). Therefore, v(b4y_;) >
—(4k —2). O

Lemma A.4. v(by_,) = v(k) — (4k —3) forallk > 1.
. . 3 z 4k—2 . .
Proof. The coefficient of the monomial 1 (—5) in f(z)is

4k+1\ L5 (_ E)4k_2 _ (4k + D)(4k)(4k —1) z*2
3,4k —2 2 N 3! 24k=2
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The valuation of this number is exactly v(k)—(4k—3). We will prove that the coefficients
of all the other monomials in f(z) of degree z*¥~2 have 2-adic valuations strictly larger
than v(k) — (4k — 3).

Consider the monomial

c 2\ 3\%
( 4e+1 ).(1)%.(5)1.<Z_> (z_)
Cp>C15Co5 .- 2 3 4

where only finitely many of the ¢;’s are nonzero and c¢; + 2¢, + 3c3 + .- = 4k — 2. To
prove our claim above, it suffices to show that the fraction

(et Yo (37 (1)7(3)

k—
(ertys- (1)

is an even 2-local integer.
This fraction is equal to

4k+1
242 (o) 2% (ak—2)13)
2136243 ..\ (4k+1) = 901362403 ... colepleyl o
3
24k=2 3! (4k — 2)!

- 2013CZ4C3 ’ CO(CO - 1)(C0 - 2) ) (CO - 3)' C1!C2!
24k-2 3! ( 4k — 2 )

T 2636246 - colce — D)(co —2) \co—3,c1,¢0...)
The condition ¢y +2c, + 3¢5 +--- = 4k — 2 essentially guarantees that the product of the
first two terms is an even integer when (¢, ¢,, ... ) differs from (3,4k — 2,0, ...). There
are two exception cases. They are (4,4k — 4,1,0,...) and (5,4k — 5,0,1,0,...).
For the first exception case, the product is

24k=2 3! 4k -2
24k—431 4.3.2 \1,4k—4,1)

(4k—2)(4k=3)

The product of the first two terms is odd, but the last term is , which is even.

1!
For the second exception case, the product is
%231 [ 4k-2

24k=5.41 5.4.3 \2,4k—-5,1)

The product of the first two terms is odd, but the last term is
(4k — 2)(4k — 3)(4k — 4)
211! ’

which is even again. Therefore, v(by,_3) = v(k) — (4k — 3), as desired. O

Lemma A.5. v(by_3) = v(k) — (4k —3) forallk > 1.

Proof. The proof is very similar to the proof of Lemma A.4. Given a monomial in
f(2) of degree z**—3, the smallest 2-adic valuation of its coefficient is achieved when
(cgsC15Cp5-..) = (4,4k — 3,0,...). This coefficient is

(4k + 1) 1 (4k+1DEK)@Ek—1)@k-2) 1

4 ) 24k=3 T 41 24k—3"

Its 2-adic valuation is v(k) — (4k — 3).
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To prove that the 2-adic valuations of all the other coefficients are strictly bigger than
this number, we make a similar computation to the proof of Lemma A.4 and reduce the
problem into showing that the ratio

%31 4k -3
2€13€24¢3 ... (c‘?) Co— 4, C1,C2pens
is even when c; + 2¢c, + 3c3 + --- = 4k — 3 and (cg, ¢1,Cy,-..) # (4,4k — 3,0,...). The
product of the first two terms is an even number. O

Lemma A.6. v(byy_4) = v(k) — (4k — 4) forall k > 1.

Proof. The proof for this is again similar to the proof of Lemma A.4 and Lemma A.5.
We claim that the smallest 2-adic valuation is achieved only when ¢y = 5, ¢; = 4k — 4,
and c¢; = 0 for all i > 2. The corresponding coefficient is

4k +1 1 (4k +1)(4k)(4k — 1)(4k — 2)(4k — 3) 1 ad k
5 | Q4k=4 5! " hak—4 — odd - 4k—4"

The 2-adic valuation for this number is v(k) — (4k — 4). To prove that all the other
coefficients have bigger valuations, we need to show that the ratio

PA 1 4k — 4
2C13C24C5 ... (050) Co—5,C1,Cps ...
is even for all the other tuples (cq, ¢1, ... ) such that ¢c; +2¢,+3c5+--- = 4k—4. The prod-

uct of the first two terms will always be an even number except when (cq,¢5,€3,...) =
(4k —9,1,1,0,...). For this exceptional case, the ratio is

k=4 1 4k — 4
24n=9.31.41 " (%) "\3,4k—9,1,1)
5
The product of the first two terms is odd but the last term is

(4k — 4)(4k — 5)(4k — 6)(4k — 7)(4k — 8)
31! ’

which is even. O
Lemma A.7. We have

=v(k)— (4k—4), k> 2even,

bax—_pr — bap_
V(bak—2 4k 3)[ > v(k) — (4k —5), k> 1odd.

Proof. To prove the lemma, it suffices to consider all the coefficients in by _, and byy_3
whose valuation is at most v(k) — (4k — 4). For by_,, they are the following:

4k +1 3 z\*=2  (4k +1)(4k)(4k—-1) 1 tk—2
(3,4k— 2) (@) '<_§) - 31 "ak—2 Z

_@k+D@k-1) kg4,
3 24k-3 ’
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4k +1 Zydk=4 (72!
(4, 4k — 4, 1) (W (_E) ' <?)

_ (Ak+ 1)@k — 1Dk —2)(@k=3) 1 1 4,
= A1 oak-a 3

_ @k+D@Ek—DEk-D@Ek=3) Kk

- 9 " ak—4 "z :

All the other coefficients have 2-adic valuations at least v(k) — (4k — 5). For byj_3, only
the term

< 4k +1 ) ( 1)4( Z)4k—3 __Uk+ D@Dk -1D@k=2) 1 4,

4,4k — 3 ) 41 24k=3

_ (4k+1)(dk—-1)(2k —1) k k3
- 3 “ a3
will matter. All the other coefficients have 2-adic valuations at least v(k) — (4k — 5).
We have
(4k+1)(k—-1) k + (4k + 1)(4k — )2k —1)4k—3) Kk

3 24k=3 9 S4k—4
_ (_(4k +D@k-D2k-1) _k )
3 24k—3
_ (4k+1)@k—-1) k(1 (k—1)4k—3)  2k—1
- 3 '24k—4'<§+ 3 T3 )
(4k+1)(dk-1) Kk ((Qk—1)4k—3)
LR k(G DoD) )

+kis odd, and the 2-adic valuation of the last expression is
d (2k—1)(4k—3)

When k is even, —(2k_1)3(4k_3)
exactly v(k) — (4k—4). When n is od + k is even, and the 2-adic valuation
of the last expression is at least v(k) — (4k — 4) + 1 = v(k) — (4k — 5). This proves the

lemma. 4

Lemma A.8. For a fixed k > 2, the inequality v(b,,) > v(k) — (4k — 5) holds for all
m < 4k — 5.

Proof. We claim that the 2-adic valuations of all the coefficients for b,,, satisfy v(k) —
(4k — 5). We will divide the proof into four cases:

Case 1. There exist i, j > 1 such that ¢;, ¢; # 0 in the tuple (¢co, ¢y, ...). Consider the
ratio

cptimn ) 0 (5)" ()"~ (3)”

k
5ak=5
_ (4k + 1)(4k) 4k — 1 1 24k=5
- cicj €0sC1s-eerCi— L,iycj—1,... ) 1%2¢3¢ ... n
_ 4k — 1 ' 4k + 1 k=3
C0sC1s-+e5Ci— Louycj = 1, cicj - 1€02€13¢2 ... ’

Since ¢; +2¢; + 3¢3 + -+ = m < 4k — 5and ¥(c;cj) < ¢; +¢j,

‘V(Cicj . 1€ 2c13¢2 ) < 4k — 5
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and the last expression is even. Therefore, the 2-adic valuation of the coefficient is at
least v(k) — (4k — 5).

Case 2. There exists only one i > 2 such that ¢; # 0, and that c; is at least 2. Consider
the ratio

4k+1 1
(co,cl,ci) T GrDS 4k -1 (4k + 1)(4k) 1 24k=5
_k “\egsesei =2 ci(ci—1)  2a(i+1)k k
24k—5
4k —1 24k—3
= (4k +1) - .
(co,cl,ci — 2) ( ) cilc; —1)2¢1(i + 1)

Since ¢; + 2¢, + 3¢5 + -+ = m < 4k — 5and v(c;(c; — 1)) < ¢j,
v(ei(e; — 12 (i + 1)) <4k —5
and the last expression is even.

Case 3. There exists only one i > 2 such that c; # 0, and that c¢; is 1. Consider the ratio

4k+1 1
(co,;,l) CEGD ( 4k —1 ) (4k + 1)4k 1 24k=5

k co—1,¢p co-1 20(i+1) k

24k-5

4k —1 24k=3
<Co - 1,01) @b 2¢1(i+ 1)co

4k -1 24k—3—m+i
- <co - 1,01) e+ 1) i+ D@k+i—-m)

where we have used the facts thatc; +i = mand cq +c; = 4k. Leta =i+ 1, and
b=4k+i—m. Thena>2+1=3and

b—a=@k+i—m)—(i+1)=4k—m—1>4k—(4k—5)—1=4.

The term
24k—3—m+i

i+ 1DUk+i—m)

b-3
in the last expression is equal to Za—b. This number is an integer for all positive integers
(a,b)wherea >3 and b —a > 4.

Case 4. There exists no i > 2 such that ¢; # 0. Consider the ratio

1
siimm) T _(4k=1 ) @k+DER) 1 2%
s \4k—1-mm| (4k+1-m)dk—m) 2m n
_ 4k—3—m
(Tl ) k) 2 :
dk—1—-m,m (4k + 1 — m)(4k — m)

Since exactly one of 4k + 1 — m and 4k — m is even and 4k — m > 4k — (4k — 5) = 5,

the number
24k—3—m

(4k + 1 —m)(4k — m)
is always an integer. ]
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APPENDIX B. CELL DIAGRAMS AND THE ATIYAH-HIRZEBRUCH SPECTRAL
SEQUENCE

The theory of cell diagrams is a very powerful tool when thinking of finite CW spec-
tra. See [BIM84, WX17,Xul6] for example. We use them as illustration purpose in our
paper. In this section, we recall the definition of cell diagrams from [BIM84] and talk
about its connection to the Atiyah-Hirzebruch spectral sequence.

Definition B.1. Let Z be a finite CW spectrum. A cell diagram for Z consists of nodes
and edges. The nodes are in 1-1 correspondence with a chosen basis of the mod 2
homology of Z, and may be labeled with symbols to indicate the dimension. When two
nodes are joined by an edge, then it is possible to form an HFF,-subquotient

Z'/Z" =" — e,

f
®

which is the cofiber of f with certain suspension. Here f, the attaching map, is an
element in the stable homotopy groups of spheres. For simplicity, we do not draw an
edge if the corresponding f is null.

Suppose we have two nodes labeled n and m with n < m, and there is no edge joining
them. Then there are two possibilities.

The first one is that there is an integer k, and a sequence of nodes labeled n;,0 < i <
k, with n = nyg < n; < --- < nj, = m, and edges joining the nodes n; to the nodes n; ;.
In this case we do not assert that there is an HF,-subquotient of the form above; this
does not imply that there is no such HFF,-subquotient.

The second one is that there is no such sequence as in the first case. In this case,
there exists an HF,-subquotient which a wedge of spheres S v S™.

Remark B.2. In [BIM84]’s original definition, they use subquotients instead of HF,-
subquotients.

Example B.3 shows the indeterminacy of cell diagrams associated to a given CW
spectrum.

Example B.3. Let f be the composite of the following two maps:

2 .
2T .50 Loy,

where the second map i is the inclusion of the bottom cell. Consider Cf: the cofiber of
f>which is a 3 cell complex with the following cell diagram:

®
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It is clear that the top cell of Cf splits off, since #? can be divided by 7. So we do not
have to draw any attaching map from the cell in dimension 3 to the one in dimension
0. Note that the cofiber of #? is in fact an HF,-subcomplex of Cf.

We give two more interesting examples.

Example B.4. Consider the suspension spectrum of CP3. It is a 3 cell complex with
cells in dimensions 2, 4 and 6. It was shown by Adams [Ada58] that the secondary
cohomology operation ¥, which is associated to the relation

Sq*Sq' + Sq*Sq'Sq? + Sq'Sq* = 0,
is nonzero on this spectrum. In other words, there exists an attaching map between the
cells in dimensions 2 and 6, which is detected by hyh, in the 3-stem of the Adams E

page. Note that hyh, detects two homotopy classes: 2v, 6v. Their difference is 4v = 53,
which is divisible by 7. Therefore, we have its cell diagram as the following:

P

i

2 1
v | @\

)
@/

We can also consider the Spanier-Whitehead dual of the suspension spectrum of CP3.
It is a 3 cell complex with cells in dimensions -2, -4 and -6, with the following cell
diagram

In a way, the attaching maps drawn in the cell diagram of a CW spectrum correspond
to certain differentials in its Atiyah—Hirzebruch spectral sequence. We illustrate this
idea through Example B.4. For notations regarding the Atiyah-Hirzebruch spectral
sequence, we refer to Terminology 2.15 and Sections 3 and 6 of [WX17].

Example B.5. For the suspension spectrum of CP3, the attaching map 7 corresponds
to the d,-differential

1[4] — (2]
and its multiples
al4] - a-n[2]

for any element « in the stable stems, in the Atiyah-Hirzebruch spectral sequence of
CP3. The 2v-attaching map then corresponds to the d,-differential

1[6] — 2v[2]
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and its multiples. Note that 2[6] — 4v[2] = 5?[2], which is already killed by a d,-
differential. Therefore 2[6] is a permanent cycle.

For its Spanier-Whitehead dual, the attaching map # corresponds to the d,-
differential

1[-2] - n[-4]
and its multiples. For the 2v-attaching map, it does not correspond to a d,-differential
1[-2] » 2v[-6],

since 1[—2] already supports a nonzero d,-differential so it is not present at the E,-
page anymore. However, this d4-differential still “exists”, in the sense that some of its
multiples still exist. More precisely, suppose that § is an element in the stable stems
such that § - = 0. Then [—2] survives to the E,-page and we have a d,-differential

Bl-2] — B - 2v[-6],

which might or might not be zero, depending on whether 8 - 2v is zero. For example,
we have a nonzero d,-differential

2[-2] = 4v[—6] = n3[-6].
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