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We implement an extended version of reflection positivity (Wick-rotated unitarity)
for invertible topological quantum field theories and compute the abelian group
of deformation classes using stable homotopy theory. We apply these field theory
considerations to lattice systems, assuming the existence and validity of low-energy
effective field theory approximations, and thereby produce a general formula for
the group of symmetry protected topological (SPT) phases in terms of Thom’s
bordism spectra; the only input is the dimension and symmetry type. We provide
computations for fermionic systems in physically relevant dimensions. Other topics
include symmetry in quantum field theories, a relativistic 10–fold way, the homotopy
theory of relativistic free fermions, and a topological spin-statistics theorem.
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1 Introduction

The moduli space, or stack, of a geometric object with fixed discrete invariants is a
central object of interest in geometry. A typical example is the moduli stack of Riemann
surfaces of fixed genus. Here the underlying topological space is connected, but moving
up to complex dimension two the moduli stack of complex surfaces of general type
with fixed Euler number and signature is not necessarily connected. It has finitely
many components — see Catanese [25] — so there are finitely many deformation types.
If singular objects are permitted, then sometimes connectivity can be restored. For
example, Reid [96] speculates that the moduli stack of three-dimensional Calabi–Yau
varieties is connected if one allows certain singularities. To illustrate further, consider
the moduli stack of one-dimensional Riemannian manifolds. If we allow simple
singularities, such as the figure eight, then we can connect a single circle to two circles
by a path (standard Morse function on a two-dimensional torus). We can also connect
one circle to two circles if we allow noncompact smooth manifolds: elongate a circle
to an ellipse to two lines and then each line to a circle. On the other hand, the set of
path components of the moduli stack of smooth closed Riemannian 1–manifolds is
isomorphic to Z�0 ; the isomorphism maps a 1–manifold to the cardinality of �0 .

In theoretical physics one contemplates moduli stacks of quantum systems with fixed
discrete invariants, such as dimension and symmetry type. If we remove the singular
locus of phase transitions, then path components of the moduli stack are identified with
phases of the quantum system.1 In condensed matter physics the quantum systems are
modeled discretely, using lattices, and the classification of phases is an active topic
of current interest. As far as we know there is not a robust mathematical theory of
lattice systems and their moduli which leads to rigorous computations of sets of phases.
Quantum field theories also exhibit phases and phase transitions, and those too are
topical. Physicists often pass back and forth between lattice models and field theories
using various mechanisms. In this paper we envision passing from a lattice system to
an effective low-energy field theory using two heuristic principles to argue that the set
of phases is conserved:

(i) The deformation class of a quantum system is determined by its low-energy
behavior.

1There is a tight analogy with the example of Riemannian 1–manifolds above: a figure eight corre-
sponds to a first-order phase transition, while a noncompact manifold corresponds to a higher-order phase
transition.
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(ii) The low-energy physics of a gapped2 system is well-approximated by a topo-
logical3 field theory.

A stronger version of (i) asserts that the entire homotopy type of the moduli stack is
determined by the low-energy behavior. These two principles are applied by physicists to
quantum systems of all kinds: condensed matter systems, quantum field theories, string
theories. For discrete lattice systems we also assume an emergent low-energy relativistic
symmetry. We remark that fracton models — see Nandkishore and Hermele [91] — are
thought not to satisfy (ii), nor to have any sort of emergent relativistic symmetry, but
those are not relevant here. The lattice models that motivate this paper belong to a
special class, often called short-range entangled, for which the long-range effective
topological field theory is invertible. In particular, there is a unique ground state for
the lattice model on any compact manifold. Early discussions of this property may be
found in Chen, Gu, and Wen [26] and Kitaev [75]. (Now ‘invertible’ is used in place
of ‘short-range entangled’ to describe the lattice model.)

One reason to pass to continuum models is that there is a mathematical axiom system
for Wick-rotated quantum field theory; it encodes the structural properties of correlation
functions and linear spaces of quantum states. It was first introduced in the mid 1980’s
for scale-independent theories: by Segal [102] for 2–dimensional conformal field
theories and later by Atiyah [7] for topological field theories. With modifications these
axioms are now believed to be relevant to scale-dependent theories as well. In this
framework a quantum field theory is a linear representation of a bordism category.
The latter categorifies Thom’s bordism groups [109], and a field theory categorifies
integer-valued bordism invariants, such as the signature of a compact oriented manifold.

The twin pillars of quantum field theory are locality and unitarity. These fundamental
properties persist after Wick rotation: locality manifests as factorization laws for correla-
tion functions and unitarity manifests as reflection positivity. Locality is encoded in the
axiom system using composition of morphisms: gluing bordisms along codimension-
one submanifolds. In the early 1990’s, especially motivated by 3–dimensional Chern–

2A quantum mechanical system is gapped if its minimum energy is an eigenvalue of finite multiplicity
of the Hamiltonian, assumed bounded below, and is an isolated point of the spectrum. For quantum field
theory ‘spectrum’ means the spectrum of representations of the translation group of Minkowski spacetime.
For lattice systems the spectral gap must be bounded below independent of the lattice size.

3We allow a topological field theory tensored with a nontopological invertible field theory;
see Section 5.4. A field theory is topological if it does not depend on any continuously varying (background)
fields, such as a metric or conformal structure. We give a precise definition of a topological field theory
in Section 2.2.
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1168 Daniel S Freed and Michael J Hopkins

Simons theory, an extended notion of locality was introduced by gluing bordisms with
corners along higher-codimension submanifolds, and this led naturally to formulations
involving higher categories; see Baez and Dolan [12], Freed [38], Lawrence [81], and
Lurie [85], for example. Extended locality is a characteristic feature of both physical and
mathematical applications of field theory, whereas unitarity is often not present in purely
mathematical contexts. Unitarity in field theory or rather its Wick-rotated manifesta-
tion — reflection positivity — is the first main subject of this paper. It is straightforward
to implement reflection positivity in the nonextended axiom system. A natural question
arises: What is the extended notion of reflection positivity that goes with extended
locality? We offer a solution in a very special case: invertible topological field theories.
These theories can be studied using stable homotopy theory — see Freed, Hopkins, and
Teleman [44] — and indeed we define4 a theory of this type as a map of spectra. Spectra
are the main characters in stable homotopy theory, a mathematical field that partly grew
out of Thom’s work. The domain of an invertible topological field theory is a Madsen–
Tillmann bordism spectrum, and our main result tells that extended reflection positivity
brings us full circle to the bordism spectra introduced by Thom in his thesis [109].

Theorem 1.1 There is a 1W1 correspondence

.1.2/

8<:
deformation classes of reflection positive

invertible n–dimensional extended topological
field theories with symmetry group Hn

9=;Š ŒMTH;†nC1IZ.1/�tor:

The right-hand side is the torsion subgroup of homotopy classes of maps from a
Thom spectrum to a shift of the Anderson dual to the sphere spectrum. There are
standard computational techniques which we employ in the latter part of this paper to
illustrate the efficacy of the theorem. Often field theories are classified by enumerating
lagrangians with specified background and fluctuating fields that are consistent with
a given symmetry group. By contrast, Theorem 1.1 is a direct quantum classification
of correlation functions and state spaces, as encoded by the axiom system. The only
inputs are the discrete invariants: the spacetime dimension n and the Wick-rotated
vector symmetry group5 Hn . We prove Theorem 1.1 in Section 8 as a corollary of

4A better starting point is the topological version of the axiom system, and then Theorem 5.12 brings
us to stable homotopy theory. But as the literature is still in flux we opt for Ansatz 5.14 instead; see the
remarks following Theorem 5.12.

5The basic case is Hn D SOn . In general there is a homomorphism �n WHn ! On whose image
includes SOn ; the kernel consists of internal global symmetries. There is a unique associated stable
symmetry group H independent of dimension, as we prove in Theorem 2.19.
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a more general result (Theorem 8.20). There is a related assertion which remains
conjectural in this paper: the abelian group of deformation classes of all reflection
positive invertible field theories, including those that are not topological, is obtained
by simply omitting ‘tor’ on the right-hand side of (1.2). We make some comments
about this generalization in Section 5.4 and Remark 8.41; we use it in the computations
of Section 9. More to the point, we introduce “continuous invertible topological field
theories” as a substitute for invertible nontopological theories, and prove theorems for
those.6 We remark that for general reasons nontorsion only arises if the spacetime
dimension n is odd.

We apply Theorem 1.1 to compute the abelian group of phases of invertible lattice
systems with fixed dimension and symmetry type. This implicitly assumes that every
possible deformation class of invertible topological theory can be realized by a lattice
model, something not implied by the heuristic principles (i) and (ii) above. We empha-
size the algorithmic nature of our classification: given a spacetime dimension n and
a symmetry group Hn the right-hand side of (1.2) is the group of topological phases
and is computable. We provide concrete evidence for this application of Theorem 1.1:
in Section 9.3 we undertake detailed computations for some fermionic systems and com-
pare to results in the physics literature, the latter derived by means of physical arguments.
Some readers may wish to examine our tables of computations before tackling the
more theoretical parts of the paper. In unpublished work Kitaev [75; 76; 77] develops
a classification of invertible phases based on microscopic considerations, and he too
is led to stable homotopy theory and results consonant with our effective field theory
classification. Kapustin [67] initiated computations of topological phases via character
groups of bordism groups, and he used them and subsequent computations, for example,
those in Kapustin, Thorngren, Turzillo, and Wang [68], as phenomenological evidence
for a general classification along these lines. Gaiotto and Kapustin [50], following
on Gu and Wen [56], show that some invertible fermionic phases defined by lattice
models are characterized by spin bordism groups; see also Brumfiel and Morgan [20].
Campbell [24] and Guo, Putrov, and Wang [57] carry out computations for other
bosonic and fermionic cases of interest, providing further affirmative checks against
the condensed matter literature.

A second subject of this paper, after extended reflection positivity, is the study of
symmetry groups in relativistic quantum field theory, and that is where we begin
in Section 2. Our starting point is a theory on n–dimensional Minkowski spacetime

6We thank Peter Teichner for his encouragement to adopt this point of view.
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with global symmetry group H1;n�1 , after dividing out by translations. The analytic
continuations of correlation functions, which exist as a consequence of positivity of
energy, are invariant under the complex Lie group Hn.C/, and the entire Wick-rotated
theory is symmetric under the compact real form Hn �Hn.C/ that appears on the
left-hand side of (1.2). In Section A.3 we discuss Wick rotation and the CRT theorem7

for general symmetry types. We use the rigidity of compact Lie groups to constrain
possible symmetry groups (Theorem 2.7) à la Coleman and Mandula [27]. One key
result in this section (Theorem 2.19) is the existence and uniqueness of a stabilization H,
which is the group in the Thom spectrum on the right-hand side of (1.2). When we
move to curved Riemannian manifolds — ie couple the theory to background gravity —
the symmetry becomes infinitesimal in the sense of Cartan: an Hn–structure on the
tangent bundle. In Section 3 we formulate reflection symmetry in terms of a group
extension

.1.3/ 1!Hn! yHn! f˙1g ! 1I

elements in yHn nHn are a Wick-rotated analog of antiunitary symmetries in quan-
tum mechanics. We use this extension in Section 4.1 to define an involution on the
bordism category of Hn–manifolds. In the basic case Hn D SOn the involution is
orientation-reversal; our uniform treatment gives analogs for any symmetry group. For
example, fermionic theories with time-reversal symmetry (and no other symmetry)
have Hn D Pin˙n : the involution takes a pin structure to its “w1–flipped” pin struc-
ture. Topological field theories are independent of the Riemannian metric, so we can
replace Hn by a noncompact analog, which we construct in Appendix C.

Three basic lessons we learned about reflection positivity:

(a) ‘Reflection’ and ‘positivity’ are distinct.

(b) ‘Reflection’ is a structure whereas ‘positivity’ is a condition.

(c) ‘Extended positivity’ is a structure, not a condition.

In the axiom system a field theory is defined to be a homomorphism — a symmetric
monoidal functor —

.1.4/ F W Bordhn�1;ni.Hn/! VectC

7There is a subtlety concerning double covers of the Lorentz signature isometry group, uncovered
by Greaves and Thomas [54], which we explicate in the context of Wightman quantum field theory for
general symmetry types; see Section A.2.
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Reflection positivity and invertible topological phases 1171

from the bordism category to the category of complex vector spaces and linear maps.
A reflection structure (Section 4.3) is equivariance data for F with respect to the
generalized orientation-reversal involution on Bordhn�1;ni.Hn/ and the involution of
complex conjugation on VectC . (We briefly review involutions on categories and
equivariant functors in Appendix B.) A reflection structure induces a Hermitian metric
on the vector space of states attached to an .n�1/–manifold, and positivity is the
condition that these Hermitian structures be positive definite. Analogous to reflection
positivity in Euclidean space (Section 3.2) we see that the partition function of the
double of a manifold with boundary must be positive in order that a reflection structure
be positive. Our treatment of this material using general symmetry groups means it
applies to all theories, including those with time-reversal symmetry and fermions which,
after Wick rotation, involve nonorientable manifolds with pin structure.

To proceed to extended field theories we specialize in Section 5 to the invertible case.
(Invertible field theories were first singled out by Freed and Moore [47] in an application
to string theory.) In Section 5.2 we review how invertibility catalyzes a transition to
stable homotopy theory: the analog of (1.4) for an invertible topological field theory is
a map of spectra

.1.5/ F W†nMTHn! I:

The domain is the invertible quotient of a higher bordism category, a Madsen–Tillmann
spectrum. There is freedom to choose the codomain spectrum, and in Section 5.3 we
introduce two universal choices. The first is (a shift of) IC� , a “character dual” to
the sphere spectrum, which is used to track topological theories on the nose: theories
with unequal partition functions are distinct. The second universal target spectrum is
(a shift of) the Anderson dual IZ.1/ to the sphere spectrum. It tracks deformation
classes of invertible theories rather than individual theories. Significantly, in the spirit
of “derived geometry”, maps into IZ.1/ classify deformation classes of invertible
theories that are not necessarily topological; the topological theories have finite order
in the abelian group of homotopy classes of maps. For the application to topological
phases one should include the nontopological theories, as they incorporate nonzero
thermal Hall response. An example is Kitaev’s E8 phase [73]. See Section 5.4 for
a general discussion, including an interpretation of maps into IZ.1/ as a continuous
invertible topological field theory. In this paper we only use nontopological field
theories heuristically and posit that their deformation classes are encoded in continuous
topological field theories, which we treat rigorously.
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The main arguments about extended positivity occur in Sections 6–8. Madsen–Tillmann
spectra filter Thom spectra, which leads to a notion of a stable invertible topological
field theory: a map out of a Thom spectrum. For invertible theories a reflection
structure is a lift of (1.5) to an equivariant map of Z=2–equivariant spectra. Section 6
begins with a brief exposition of spectra and Borel equivariant stable homotopy theory,
sufficient for the considerations in this paper. The involution on the domain that models
generalized orientation-reversal is straightforward to construct from the group exten-
sion (1.5). On the other hand, it is not clear a priori how to model complex conjugation
on the codomain, so in Section 6.3 we give an extended discussion motivating our
choice, Definition 6.30. We conclude Section 6 by introducing spectra and spaces of
“higher super lines”, including Hermitian structures and a higher notion of positivity
(Definitions 6.41 and 6.45). There is a basic link between nonextended positivity and
stability, which we establish in Theorems 7.22 and 7.30 using obstruction theory
arguments. This results in an intermediate classification (Corollary 7.33) of invertible
topological theories with reflection structure satisfying nonextended positivity. We
undertake a more systematic study in Section 9. There we define extended positivity
for invertible field theories in terms of higher super lines and their embellishments. We
give an intuitive construction of the space of invertible reflection positive theories, and
then we identify its homotopy type in Theorem 8.20, whose proof occupies the second
half of Section 6. Theorem 1.1 is a corollary.

The third main subject of this paper is what might be called the homotopy theory of
relativistic free fermions.8 There are two distinct scenarios in which a free fermion field
theory gives rise to a deformation class of n–dimensional reflection positive invertible
theories. First scenario: an .n�1/–dimensional free fermion theory has an associated n–
dimensional invertible anomaly theory, which is not necessarily topological; our concern
here is its deformation class.9 Second scenario: an n–dimensional massive free fermion
theory has a long-range effective invertible topological field theory approximation,
according to the general principle (ii) invoked above, applied to a quantum field theory
rather than a lattice system. We sketch the first scenario in some detail in Section 9.2,
culminating in a formula (Conjecture 9.70) for the deformation class of the anomaly
theory. Since massive free fermions have trivial anomaly, the starting point is the
group of free fermionic data under direct sum modulo massive free fermionic data. The

8A free fermion field theory is neither topological nor invertible, but it has an associated invertible field
theory.

9The anomaly theory lies in differential KO–theory, whereas its deformation class lies in topological
KO–theory.
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existence of a mass term has a meaning in terms of Clifford modules (Lemma 9.55), and
this produces an identification of the quotient as a homotopy group of the KO–theory
spectrum (Theorem 9.63). The formula for the deformation class of the associated
anomaly theory is, conjecturally, a product of the Atiyah–Bott–Shapiro map [8] with
the KO–theory class of the spinor data, followed by a Pfaffian map (Conjecture 9.70).
In this paper we provide a detailed sketch of these ideas; we hope to give a thorough
mathematical treatment in the future. There is a huge literature on relativistic free
fermion field theories and associated anomalies; the recent paper of Witten [116], which
describes several particular cases in detail, provided motivation and guidance for the
general story here. By contrast, we only comment briefly (Section 9.2.6) on the second
scenario, beginning from a massive n–dimensional free fermion theory, enough to
show that the starting and ending data match those in the first scenario. In fact, it is this
second scenario that is relevant to this paper, and in particular the conjecture (9.75)
about its low-energy effective field theory is used in the computations which follow.

To enable detailed comparisons with the physics literature we carry out the discussion
of relativistic free fermions for 10 cases simultaneously. To enumerate them we
resume group-theoretical arguments in Section 9.1 to classify relativistic symme-
try groups whose internal subgroup is the unit reals f˙1g, unit complexes T , or
unit quaternions SU2 . Restricting to fermionic theories in which .�1/F embeds in
this internal subgroup — which implements the “spin/charge relation” (see Seiberg
and Witten [104]) — we obtain the 10 groups in question. They include Spin, Pin˙ ,
and semidirect products with the various unit scalars. This “relativistic 10–fold way”
is a variation on the nonrelativistic case, which is described in many works: a sample
includes Altland and Zirnbauer [3], Dyson [33], Freed and Moore [48], Heinzner,
Huckleberry, and Zirnbauer [58], Kennedy and Zirnbauer [70], Kitaev [74], Ryu,
Schnyder, Furusaki, and Ludwig [98], and Wang and Senthil [112]. Remark 9.32
provides a link to this condensed matter literature: we compute a group I of sym-
metries that preserve points of space in a nonrelativistic setting. It is this group I
which acts at each lattice site in a discrete model, and it can be used to compare to
the ubiquitous symmetry tables for fermion lattice systems. Our uniform treatment
is based on Lemma 9.27, which embeds each symmetry group in a Clifford algebra.
Usual constructions with Clifford modules — the Atiyah–Bott–Shapiro–Thom class,
Dirac operators and their indices — then generalize easily. There is a purely geometric
application that we do not pursue here: index theory on pin and pinc manifolds is
straightforward using this embedding.
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The results of the homotopy theory computations are reported in Section 9.3. We
provide a table for each of the 10 fermionic symmetry groups. In each spacetime
dimension n� 5 we compute the group of free fermion theories (Theorem 9.63), the
group of deformation classes of interacting theories (Theorem 1.1), and the map between
them (Conjecture 9.70). We make comparisons with the condensed matter literature
where available and find almost total agreement; in the few cases with a discrepancy
we motivate a reexamination of the physics assertions. In Section 10 we outline how
the calculations are done and supply Ext charts that encode the E2–term of the relevant
Adams spectral sequences. The Ext charts also encode the map to KO–theory; in
fact, one of the main tasks in this section is to rewrite the “twisted” Atiyah–Bott–
Shapiro maps in a more accessible form. We provide more explanation of the charts
in Appendix D. In that appendix we also illustrate the use of Margolis homology
to derive information from the Adams spectral sequence. Papers by Campbell [24]
and Beaudry and Campbell [15] give pedagogical introductions to the Adams spectral
sequence and flesh out the details of our computations. Notice that whereas Theorem 1.1
computes the group of interacting phases for any symmetry type, the 10 fermionic
symmetry types are special in that there is a notion of a free fermionic phase which
does not exist in general. This leads to a richer application of homotopy theory and a
more stringent test against the condensed matter literature.

The sections of the paper not yet mentioned contain complements or background
material. An analog of the spin-statistics theorem in relativistic quantum field theory
holds for reflection positive invertible topological theories, as we explain in Section 11.
Section A.1 contains a review of pin groups and Clifford algebras, background for
the discussion of the CRT theorem later in Appendix A and for some of the material
in Section 9.

Beyond the immediate relevance to the study of topological phases, the successful
application of bordism computations to quantum systems is evidence — perhaps the
first substantial test against physics — that the sparse axiom system initiated by Segal
and Atiyah captures essential features of quantum field theory.

The lecture series [41] provides additional background and discussion on many of the
topics treated here.
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2 Symmetry groups in relativistic quantum field theory

The analytic extension of correlation functions, a consequence of positivity of energy,
provides a powerful constraint on symmetry groups. We explore the general structure
in Section 2.1 from the Wick-rotated point of view. The rigidity of compact Lie groups
is the key idea that underlies our proofs of structure theorems, such as Theorem 2.7.
One important result is Theorem 2.19, which constructs a stable group H from an n–
dimensional symmetry group Hn , assuming the spacetime dimension satisfies n�3. In
the expository Section 2.2 we recall the axiomatization of a field theory as a categorified
bordism invariant. We accommodate general symmetry groups on curved manifolds
using reductions of frame bundles, an analog of the passage from Klein’s Erlangen
program [17] to Cartan’s H–structures [105].

2.1 Stabilization of Wick-rotated symmetry groups

The Poincaré group is the connected double cover of the identity component of the
isometry group I1;n�1 of n–dimensional Minkowski spacetime M n . Minkowski
spacetime M n is assumed equipped with a time orientation, a choice of component of
timelike vectors in the inner product space R1;n�1 of translations. Let I"1;n�1� I1;n�1
denote the subgroup of isometries that preserve the time orientation. Assume n� 2.
Many treatments of quantum field theory, for example those based on S–matrix theory,
begin with the assumption that the Poincaré group is a subgroup of the (unbroken) global
symmetry group H1;n�1 of the theory. Then the Coleman–Mandula theorem [27]
asserts that on the level of Lie algebras there is a splitting as a direct sum of the Lie
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algebra of Poincaré with the Lie algebra of a compact Lie group K . We find it more
natural to posit from the beginning a homomorphism �n WH1;n�1 ! I"1;n�1 . After
all, g 2H1;n�1 acts on the operators in the theory, and so on the supports of those
operators. For a single point operator, or local operator, that action is �n.g/. The
relativistic invariance of the theory is the hypothesis that the image of �n contains the
identity component of I"1;n�1 . Therefore, the image is either the identity component or
the entire two-component group I"1;n�1 . The kernel of �n is the group K of internal
symmetries — symmetries that fix the points of spacetime. Note that K contains the
central element of the Lorentz group Spin1;n�1 if that element acts effectively, which
by the spin-statistics theorem happens if and only if the theory contains fermionic states.
(That element is often denoted by ‘.�1/F ’. Below we deduce in general a central
element k0 2 K with .k0/2 D 1, and it is identified with either the central element
of Spin or the identity element.) The internal symmetry group K is assumed to be a
compact Lie group.10

Assume the translation subgroup R1;n�1�I"1;n�1 lifts to a normal subgroup of H1;n�1 ;
see [48, Remark 2.13] for a justification of this hypothesis. Let H1;n�1 denote the
quotient of H1;n�1 by this normal subgroup of translations. There is a short exact
sequence11

.2.1/ 1!K!H1;n�1
�n
�!O

"

1;n�1

where the image of �n contains the identity component of O"1;n�1 �O1;n�1 , by the
relativistic invariance of the theory. The CRT theorem, reviewed in Section A.3, gives
a larger symmetry group. A fundamental consequence of the positivity of energy12

in quantum field theory, also reviewed in Section A.3, is a holomorphic extension13

of correlation functions on which the complexification Hn.C/ of H1;n�1 acts as
symmetries. There is an exact sequence

.2.2/ 1!K.C/!Hn.C/
�n
�!On.C/

10The global symmetry group of a “noncompact field theory”, such as for a free massless R–valued
scalar field theory, may be noncompact. Our discussion does not include supersymmetries or higher
symmetries.

11We overload the symbol ‘�n ’. Here it denotes the homomorphism induced from the previous �n
after modding out translations. Below we use it for the complexification, restriction to the Euclidean real
form, and various lifts.

12The dual to the cone of forward timelike vectors determines the notion of positive energy.
13See [80] for a geometric version on curved manifolds.
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of complex Lie groups. The Wick-rotated theory has a compact real form Hn of Hn.C/
as symmetry group such that Hn fits into the exact sequence

.2.3/ 1!K!Hn
�n
�!On

of compact Lie groups with the same compact kernel K as in (2.1). The image of
this �n is either On or SOn , depending on whether the relativistic theory has spatial
reflections or not; equivalently, by the CRT theorem, whether it has time-reversal
symmetry or not.

Definition 2.4 The symmetry type of a quantum field theory is a pair .Hn; �n/ of
a compact Lie group Hn and a homomorphism �n WHn ! On whose image con-
tains SOn � On . The kernel K of �n is called the group of internal symmetries.
We require that the anti-Wick rotation to Minkowski spacetime has a Lorentzian real
form (2.1) with compact internal symmetry group K D ker �n .

The caveats in footnote 10 apply. See Remark 2.13 for an example of a pair .Hn; �n/
that does not satisfy the anti-Wick rotation condition. The symmetry type is a basic
structure in a quantum field theory, useful to articulate explicitly in any example.

Define SHn D ��1n .SOn/ and let fSHn be the double cover of SHn constructed from
the spin double cover of SOn . These compact Lie groups are usefully encoded in the
pullback diagram

.2.5/

1 // K // fSHn

2W1
����

�n
// Spinn

2W1
����

// 1

1 // K // SHn� _
1W2

��

�n
// SOn� _

1W2

��

// 1

1 // K // Hn
�n

// On

If �n WHn!On is surjective, define zHn as the pullback14

.2.6/

1 // K // zHn

����

�n
// PinCn

����

// 1

1 // K // Hn
�n

// On // 1

14See Section A.1 for a review of pin groups.
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The restriction of zHn over Spinn � PinCn is fSHn . Let k, hn , and on denote the
Lie algebras of K , Hn , and On , respectively. The following theorem makes precise
the sense in which the entire symmetry group is nearly the product of (Wick-rotated)
spacetime symmetries and internal symmetries. In our approach to symmetry it plays
the role of the Coleman–Mandula theorem.

Theorem 2.7 (1) There is a splitting hnŠ o0n˚ k, and �n induces an isomorphism
of Lie algebras o0n

Š�! on .

(2) If n� 3 there is an isomorphism fSHnŠ Spinn�K . Hence there exists a central
element k0 2K with .k0/2 D 1 and an isomorphism

.2.8/ SHn Š Spinn �K=h.�1; k0/i;

where h.�1; k0/i is the cyclic group generated by .�1; k0/.

(3) If n� 3 and �n WHn!On is surjective , then there exists a group extension

.2.9/ 1!K! J ! f˙1g ! 1

and a pullback diagram of group extensions

.2.10/

1 // K // zHn

����

�n
// PinCn

����

// 1

1 // K // J // f˙1g // 1

There is an isomorphism

.2.11/ Hn Š zHn=h.�1; k0/i:

The pullback (2.10) shows that the failure of zHn to be a product is encoded in the
group extension (2.9), which is independent of n.

Corollary 2.12 There is a canonical homomorphism Spinn!Hn under which the
image of the central element �1 2 Spinn is k0 2K .

This homomorphism anti-Wick rotates back to a homomorphism of the Poincaré group
into the total symmetry group H1;n�1 of the relativistic theory, the traditional starting
point for discussions of symmetry in quantum field theory.
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Remark 2.13 For nD 2 we can only conclude that fSH2 is isomorphic to a semidirect
product of Spin2 and K . An example is SH2 D SO2 ËO2 , where a rotation R 2 SO2
acts on O2 by the automorphism that is the identity on SO2 � O2 and composes
a reflection with R . Alternatively, SH2 Š Z=2Z Ë .T � T /, where the involution
on T �T is .�1; �2/ 7! .�1; �

�1
1 ��12 /.

Proof of Theorem 2.7 Split the Lie algebra hn D Œhn; hn�˚ z, where z � hn is the
center, and let o0n be the orthogonal complement of the ideal k\ Œhn; hn� � Œhn; hn�
with respect to the nondegenerate Killing form on the semisimple Lie algebra Œhn; hn�.
Then �n induces an isomorphism o0n! on , which proves (1). The exponential of o0n is
a closed Lie subgroup S � fSHn which locally projects diffeomorphically onto Spinn
under �n , so is isomorphic to Spinn . It follows that fSHn Š S ËK .

We claim this semidirect product is a direct product if n� 3. To see this observe that
conjugation by s 2 S induces an automorphism ˛.s/ of K which is the identity on
the identity component K0 �K , since the Lie algebra of S commutes with the Lie
algebra of K . Since S is connected, the induced automorphism of �0K is also trivial.
Hence on each component of K the automorphism ˛.s/ is left multiplication by an
element z.s/2Z0 in the center of K0 . (Proof: Write ˛D˛.s/ and suppose ˛.k/D zk
for some k in that component and z 2K0 . Any other element of that component has the
form kk0 for k0 2K0 , and ˛.kk0/D z.kk0/. But we can also write any element in the
component as k00k for some k00 2K

0 , and ˛.k00k/D k
0
0zk D .k

0
0zk
0
0
�1
/.k00k/, from

which k00zk
0
0
�1
D z . This holds for every k00 2K

0 , from which we deduce z 2Z0 .)
Next, Spinn acts trivially on Z0 ; this follows since the outer automorphism group of a
compact Lie group is discrete, every inner automorphism of the abelian group Z0 is
trivial, and Spinn is connected. Hence the map s 7! z.s/ is a homomorphism S!Z0 .
But if n� 3 the Lie group S Š Spinn has no nontrivial homomorphisms to an abelian
Lie group.

Assume �n WHn ! On is surjective. We claim Spinn � fSHn � zHn is a normal
subgroup. Fix zh 2 zHn such that �n.zh/ D e2 2 PinCn . Conjugation by e2 induces
an involution ˛ W Spinn! Spinn . It lifts to an automorphism of fSHn Š Spinn �K
defined as conjugation by zh, so there is an induced automorphism ˇ WK!K and a
homomorphism 
 W Spinn!K .

Lemma 2.14 If n� 3, then the homomorphism 
 is trivial.

Proof Define zHn.C/ by pulling back as in (2.6) using the complexified groups (2.2);
pullback over the Lorentzian real forms to obtain the first of the pair of real forms
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zH1;n�1� zHn.C/� zHn . Note that zh lies in each of these groups, and conjugation by zh
preserves both real forms. Thus we obtain a homomorphism Spinn.C/!K.C/ that
restricts to 
 W Spinn!K and to a homomorphism Spin1;n�1!K . If 
 is nontrivial,
then so is the induced map on Lie algebras, and since on is simple, P
 W on! k is injective.
It follows that the Lie algebra map o1;n�1 ! k is also injective. Hence k contains
a subalgebra isomorphic to o1;2 Š sl2R. The Killing form on k induces a nonzero
semidefinite invariant symmetric bilinear form on the simple Lie algebra sl2R, which
is impossible since every invariant symmetric form on sl2R is a multiple of the Killing
form, which is indefinite and nondegenerate.

It follows that Spinn � zHn is a normal subgroup. Set J D zHn=Spinn . Then (2.10)
follows from (2.6), and (2.11) follows from the fact that the kernel of zHn!Hn equals
the kernel of fSHn! SHn . This completes the proof of Theorem 2.7.

Remark 2.15 Lemma 2.14 is not true without using the anti-Wick rotation back to
Lorentzian signature. Namely, let nD 3 and H3 D Z=2Z Ë .SO3 �SO3/, where the
nontrivial element of Z=2Z acts by shearing, .g1; g2/ 7! .g1; g1g2/; the homomor-
phism �3 that kills the last factor K D SO3 maps H3!O3 and sends the generator
of Z=2Z to the central element �1 2O3 . The reader can check that 
 W Spin3! SO3
is surjective. But H3 is not a possible symmetry group because of the anti-Wick
rotation, as in the proof of Lemma 2.14.

If we restrict the internal symmetry group to only include the image of the central
element �1 2 Spinn under Spinn ! Hn , then there are five possibilities. In these
cases K is trivial or K Š f˙1g. Let �4 D f˙1;˙

p
�1g be the multiplicative group

of fourth roots of unity, and define En � On � �4 as the subgroup of .A; �/ such
that detAD �2 .

Proposition 2.16 Assume n � 3. If the internal symmetry group K is trivial , then
Hn Š SOn or Hn Š On . If K Š f˙1g is cyclic of order two, then there are six
possibilities for Hn up to isomorphism: SOn � f˙1g, Spinn , On � f˙1g, En , PinCn ,
and Pin�n .

Proof The first statement is clear from the fact that the image of �n in (2.3) is
either SOn or On . The group extensions by f˙1g are central and are classified up to iso-
morphism by the cohomology group H 2.BSOnI f˙1g/ŠZ=2Z or H 2.BOnI f˙1g/Š

Z=2Z�Z=2Z, depending on the image of �n , and it is not difficult to work out what
the groups Hn are.
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The nonidentity element of K in SOn � f˙1g, On � f˙1g, and En is not the image
of the central element �1 2 Spinn . This leaves the five basic symmetry types listed in
the following table:

.2.17/

states/symmetry Hn K k0

bosons only SOn f1g 1

fermions allowed Spinn f˙1g –1
bosons, time-reversal (T ) On f1g 1

fermions, T 2 D .�1/F PinCn f˙1g –1
fermions, T 2 D id Pin�n f˙1g –1

Appendix A reviews the pin groups and justifies the Wick rotation of time-reversal that
leads to the last three lines in the first column of the table.

The main result in this section is a stabilization of Hn for increasing dimensions, as
needed in Theorem 1.1. Throughout this paper for k < ` we use the embedding

.2.18/
Ok!O`;

A 7!

�
I`�k

A

�
;

of orthogonal groups, where I denotes the identity matrix.

Theorem 2.19 Assume n � 3. There exist compact Lie groups HnC1;HnC2; : : :
and homomorphisms in; inC1; : : : and �nC1; �nC2; : : : which fit into the commutative
diagram

.2.20/
Hn

� � in
//

�n

��

HnC1
� � inC1 //

�nC1

��

HnC2
� � //

�nC2

��

� � �

On
� � // OnC1

� � // OnC2
� � // � � �

in which squares are pullbacks.

The stabilization is usually apparent, even when nD2 and Theorem 2.19 does not apply.
For example, if Hn D PinCn Ë T=h.�1;�1/i, where PinCn acts on T D U1 through its
components by conjugation, then Hm D PinCm Ë T=h.�1;�1/i. (We encounter this
and related groups in Section 9.)
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Remark 2.21 For m< n, define Hm and the homomorphism �m WHm!Om by a
pullback square:

.2.22/

Hm //

�m
��

Hn

�n
��

Om
� � // On

Remark 2.23 The pullback diagram (2.20) and the fact that �mC1.HmC1/ acts tran-
sitively on the m–sphere imply diffeomorphisms

.2.24/ HmC1=Hm ŠOmC1=Om Š S
m:

Proof of Theorem 2.19 In view of (2.8), define SHm WD Spinm � K=h.�1; k0/i
for m> n and so obtain for each m> n a stabilization over SOm . If �n.Hn/D SOn
this completes the proof. If not, define zHm as the pullback

.2.25/

1 // K // zHm

����

// PinCm

����

// 1

1 // K // J // f˙1g // 1

and

.2.26/ Hm Š zHm=h.�1; k0/i:

Theorem 2.19 allows us to speak about symmetry types in quantum field theory inde-
pendent of dimension. Set

.2.27/ H D colim
n!1

Hn:

For HnDSOn we obtain H DSO1DSO. Thus we can speak of ‘oriented theories’D
‘SO theories’, ‘Spin theories’, ‘PinC theories’, etc. The colimit of (2.20) is a homo-
morphism

.2.28/ � WH !O:

The symmetry type of a theory (Definition 2.4) can be taken to be the pair .H; �/ in
place of .Hn; �n/.

2.2 Curved manifolds and bordism categories with Hn–structure

Fix an n–dimensional relativistic quantum field theory with symmetry type .Hn; �n/. A
“coupling to background gravity” means that we define the theory on each n–dimensional
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smooth Riemannian manifold X. The Hn–symmetry is no longer global; it is tangential
and encoded in a reduction of the orthonormal frame bundle to Hn . Let BO.X/!X

denote the principal On–bundle of frames: a point of BO.X/ is an orthonormal basis
of the tangent space at a point of X. If P !X is a principal Hn–bundle, define the
principal On–bundle �n.P /D P �HnOn!X via mixing: Œph; g�D Œp; �n.h/g� for
all p 2 P, g 2On , and h 2Hn .

Definition 2.29 An Hn–structure is a pair .P; �/ consisting of a principal Hn–bundle
P !X equipped with an isomorphism of principal On–bundles BO.X/

�
�! �n.P /.

An Hn–manifold is a Riemannian n–manifold endowed with an Hn–structure. A
differential Hn–structure is a connection ‚ on P !X with the property that � maps
the Levi-Civita connection to �n.‚/.

It also makes sense to have an Hn–structure on a Riemannian manifold of dimension
`>n, via the composition Hn

�n
�!On ,!O` , and on a manifold of dimension k <n by

stabilizing the Ok–frame bundle to a principal On–bundle via the inclusion Ok ,!On .
The stability result Theorem 2.19 implies that an Hn–manifold has an induced Hm–
structure for all m� n. The same applies to the differential refinements.

Example 2.30 In bosonic theories of electromagnetism, K D T is the group U1 of
unit norm complex numbers, at least in the absence of further global symmetries. If
there is no time-reversal symmetry, then Hn D SOn �T . Thus P ! X is the fiber
product of the frame bundle with a principal T–bundle, which is usually equipped
with a connection, or gauge field. In theories of electromagnetism with fermions we
still have K D T , but now the center �1 2 Spinn of the spin group is identified15

with �1 2 T and so

.2.31/ Hn D Spincn D Spinn �T=f˙1g

is the group introduced in [8]. In other words, the Riemannian manifold X has a
Spinc–structure. If, in addition, there is time-reversal symmetry, then there are several
different extensions, including the Atiyah–Bott–Singer group Pincn ; see Proposition 9.4
for the complete classification.

Example 2.32 For Hn DOn �K an Hn–structure on a Riemannian manifold is an
auxiliary principal K–bundle, and a differential Hn–structure is a connection on that
bundle. For Hn D Spincn the differential structure is usually called a spinc connection.

15This assumes the spin/charge relation that particles of even electromagnetic charge are bosons while
those of odd electromagnetic charge are fermions; see [104] for more discussion.
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The basic properties of Wick-rotated correlation functions on all compact manifolds
simultaneously are encoded in the powerful framework of bordism categories, following
the fundamental work of Segal [102] and Atiyah [7]. Topological field theories do
not depend on the metric, nor do they require differential structures, and for the most
part we focus on topological theories and so on topological bordism categories. The
geometric case is used as motivation; we make some comments in Remark 2.39.

For the topological bordism category Bordhn�1;ni.Hn/ defined in the next paragraph,
we drop the connection. We can also drop the Riemannian metric, as just mentioned, and
to do so we would replace the compact Lie group Hn and homomorphism �n WHn!On

with a canonically associated noncompact real Lie group Hn and homomorphism
Hn!GLnR. We give the construction in Appendix C. Our field theories are discrete
in the sense that the partition function is C–valued and C has the discrete topology.
Hence the theories factor through the topological bordism category built with Hn–
manifolds in place of Hn–manifolds. So we follow standard usage (“spin theories”, etc)
and use the compact Lie group Hn , but no connections.

Define a topological bordism category Bordhn�1;ni.Hn/ as follows. An object is a
compact .n�1/–manifold Y without boundary, equipped with an Hn–structure Q!Y

and an “arrow of time”. To make sense of an Hn–structure on an .n�1/–manifold
we stabilize the tangent bundle of Y to a rank n bundle R˚TY ! Y by summing
with a trivial line bundle, thought of as a normal direction into n dimensions. In
this topological setting the Riemannian metric is not present; in the geometric setting
of Remark 2.39, an object in a geometric bordism category is an .n�1/–manifold
with a germ of an embedding in an n–manifold. The arrow of time is a normal
orientation. In the topological setting only the tangential information is relevant — we
can drop the germ — and the arrow of time is an orientation of the trivial subbundle
R! Y of R˚TY ! Y . Nonetheless, even in this topological case it is illuminating
to use the product germ .��; �/ � Y for some � > 0 and replace R ˚ TY ! Y

by the tangent bundle to the germ. A morphism X W Y0 ! Y1 is an equivalence
class of compact n–manifolds X with Hn–structure P ! X and an isomorphism
@X Š�! Y0qY1 of the boundary @X with the disjoint union of the incoming Y0 and
the outgoing Y1 ; the equivalence relation is diffeomorphism commuting with all of
the data. The isomorphisms include the Hn–structures and under those isomorphisms
the orientation of the trivial bundle R! Yi must line up with the incoming normal to
the boundary for i D 0 and with the outgoing normal to the boundary for i D 1. In
other words, the arrow of time is used to distinguish incoming and outgoing boundary
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components of morphisms. Composition of morphisms is gluing of bordisms. There is
an additional commutative composition law on the category — disjoint union — and
with this structure Bordhn�1;ni.Hn/ is a symmetric monoidal category. See [85; 23]
for detailed accounts.

A Wick-rotated field theory is a linear representation of a bordism category.

Definition 2.33 A topological field theory with Wick-rotated vector symmetry groupHn
is a symmetric monoidal functor

.2.34/ F W Bordhn�1;ni.Hn/! VectC

to the symmetric monoidal category of complex vector spaces under tensor product.

Much has been written about this definition, and we defer to previous accounts — such
as the original [7] and the recent survey [39, Sections 2–4] — for more exposition and
further references. Here we simply make the connection to point operators16 and their
correlation functions.

Remark 2.35 (vector spaces of point operators) The sphere Sn�1 is the link of a
point in n dimensions, ie it is the boundary of a small ball about the point. Therefore,
the vector space V WD F.Sn�1/ is the space of point operators in a topological field
theory; in a geometric theory we take a limit as the radius of the sphere shrinks to zero.
If the theory has total symmetry group Hn , then the sphere has an Hn–structure and
the vector space of point operators depends on it. If Hn D SOn�K or Hn DOn�K ,
the extra data is a principal K–bundle Q! Sn�1 (with connection). So there is a
vector space VQ of point operators for each Q . The group AutQ of global gauge
transformations acts on VQ . For the trivial K–bundle this is the familiar representation
of the global symmetry group K on local operators. If K is finite, then the “twist
operators” for Q! S1 nontrivial are familiar in nD 2. They are also familiar when
H2 D Spin2 , in which case the operators associated to the nonbounding spin circle
create a defect at the excised point which changes the spin structure on the punctured
surface. In n D 3 dimensions, if H3 is a Cartesian product of SO3 and K D T ,
then the twist operators in some sense create a magnetically charged instanton for the
global symmetry group K ; the Z–grading from the action of K on the point operators
measures the electric charge.

16These are usually called ‘local operators’ in the physical literature, but we use ‘point’ rather than
‘local’ to distinguish point operators from line operators and higher-dimensional analogs, since those too
are local.
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M X

x1

x2

x3
Sn�1.x1/

Sn�1.x2/

Sn�1.x3/

Figure 1: Correlation functions.

Remark 2.36 (correlation functions of point operators) Let M be a closed n–
manifold. Fix points x1; : : : ; xk of M at which we place local operators. Let X be
the compact manifold with boundary obtained from M by removing small open balls
about each xi ; regard X as a bordism

.2.37/ X W
G
i

Sn�1.xi /!∅n�1

from the disjoint union of the k boundary spheres to the empty manifold. Equip the
manifold X with an Hn–structure P, and let Qi denote its restriction to the i th sphere.
Applying the theory (2.34) we obtain a homomorphism

.2.38/ F.X IP / W VQ1 ˝ � � �˝VQk„ ƒ‚ …
k times

!C

which, evaluated on operators O1; : : : ;Ok , is usually written hO1.x1/ � � �Ok.xk/iM .

Remark 2.39 (nontopological theories) Wick-rotated field theories which are not
topological can also be formulated as functors on bordism categories, but now the objects
and morphisms have a geometric structure. The references [103; 80; 106] develop this
idea in various directions. We confine ourselves here to a few heuristic formal remarks.
Analogous to the topological bordism category Bordhn�1;ni.Hn/ we envision a geo-
metric bordism category Bordr

hn�1;ni.Hn/ whose objects and morphisms are smooth
manifolds with differential Hn–structures (Definition 2.29). An object is a closed
.n�1/–manifold equipped with an infinite jet of an embedding into an n–dimensional
manifold with differential Hn–structure and an arrow of time. A morphism is a compact
n–manifold with differential Hn–structure together with a partition of the boundary and
boundary isomorphisms as in the topological case. As in the topological case (2.34), a
field theory is a functor with domain Bordr

hn�1;ni.Hn/ and codomain a suitable symmet-
ric monoidal category of topological vector spaces. We want the correlation functions
and vector spaces to vary smoothly in smooth families, so the whole structure must be
“sheafified” over the category of smooth manifolds and smooth maps [106, Section 2].
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3 Unitarity and Wick rotation

We recall in Section 3.1 how positivity of energy leads to Wick rotation in quantum
mechanics, and describe reflection positivity in that context. The usual quantum mechan-
ical context for reflection positivity is recollected in Section 3.2, with attention paid to
nontrivial internal symmetry groups. These preliminaries are motivation for Section 3.3,
where we encode the reflection structure in a novel way via a coextension of the
Wick-rotated vector symmetry group to a Z=2Z–graded group, constructed from a
hyperplane reflection. The new components act antilinearly on the Hilbert space of
states. It is this formulation that we use in the rest of the paper.

3.1 Wick rotation in quantum mechanics

A quantum mechanical system, according to basic axioms, consists of a complex
separable Hilbert space H equipped with a self-adjoint operator H, the Hamiltonian.
The group R of time translations is represented unitarily on H :

.3.1/
R! U.H/;

t 7! e�itH=„;

where i is a choice of complex number such that i2 D�1. If we assume positivity of
energy — that H is a nonnegative self-adjoint operator — then real time evolution (3.1)
is the boundary value of a holomorphic semigroup of bounded operators defined on the
lower half-plane T DR�

p
�1R>0 �C . The semigroup of imaginary time evolution

is the restriction to �
p
�1R>0 , which is the semigroup

.3.2/ � 7! e��H=„; � > 0:

The transition from (3.1) to (3.2) is called Wick rotation.

The unitarity of time evolution manifests in the reality of the semigroup (3.2).

Example 3.3 (particle on the circle) Let A1 denote the affine17 time line. The
trajectory of a particle on the circle is a function �.s/D eix.s/, s 2A1 ; the lagrangian
density is LD 1

2
Px2 jdsj. The ensuing quantum mechanical system has Hilbert space

H D L2.S1IC/, Hamiltonian the Laplace operator H D � (up to a constant), and
imaginary time evolution the heat operator � 7! e��� .

17We (pedantically) distinguish the affine time line A1 from the group R of translations of time,
which appears in (3.1): after all, a 1–hour seminar and a seminar ending at 1:00 can be quite different.
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It is illuminating to add a “�–angle” to this system; see [51, Appendix D], for example.
Orient S1 and fix ! 2�1.S1/ with

R
S1 !D 1. Then for a fixed constant � 2R define

the lagrangian

.3.4/ LD 1
2
Px2 jdsj � ���.!/:

In this classical theory we must orient time in order to integrate L; time-reversal
exchanges the theories labeled by � and �� . Upon quantization we obtain the Hilbert
space H D L2.S1ILei� / of sections of the complex line bundle Lei� with holo-
nomy ei� . The Hamiltonian is the Laplace operator on this space, and imaginary time
evolution is by the associated heat operator. Now time-reversal (� 7! �� ) acts as
complex conjugation:

H 7!H;.3.5/

e��� 7! e���:.3.6/

We encode the formal structure in terms of oriented compact Riemannian 1–manifolds,
as described in Section 2.2, though we emphasize that this is not a topological theory.
The interval of length � > 0 maps to the imaginary time evolution e��H=„ WH!H .
The semigroup law is manifest by gluing intervals. The circle of length � maps to
Trace.e��H=„/2C . We interpret these oriented Riemannian 1–manifolds as morphisms
in a geometric bordism category whose objects are, roughly, compact oriented 0–
manifolds. More precisely, they are 0–manifolds embedded in the germ of an oriented
Riemannian 1–manifold, and there is an arrow of time, or orientation of the normal
bundle. The simplest object is a single point, which we can view as 0 2R embedded
in a small interval .��; �/ with its standard orientation; in the quantum mechanics it
maps to the Hilbert space H . According to (3.5) we have

.3.7/ orientation-reversal 7! complex conjugation:

More precisely, the orientation-reversal on objects in the geometric bordism category
reverses the orientation and reverses the arrow of time. This is the ‘reflection’ part of
‘reflection positivity’; the positivity is the positive definiteness of the Hilbert space H .

3.2 Reflection positivity in Euclidean quantum field theory

Positivity of energy in a relativistic quantum field theory also results in an analytic
continuation and restriction to Euclidean space, as we review in Section A.3. Here we
focus on the Wick rotation of correlation functions and the Wick rotation of unitarity as
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…O

�.O/EnC

En�

En

�

Figure 2: Reflection positivity in Euclidean space.

manifested in reflection positivity. (See [53, Section 6; 69, Section 2.2] for an account.)
Let n be the spacetime dimension and En Euclidean n–space. In this subsection
we restrict to the basic symmetry type Hn D SOn ; we take up general symmetry
types in the next subsection (see Remark 3.22). Fix an affine hyperplane … � En

and let � denote (affine) reflection about …. Let O denote an operator, or product
of operators, in the quantum theory which is supported in the open half-space En

C

on one side of …; the reflected operator �.O/ has support in the complementary
half-space En� . Let hOiEn

C

2H denote the half-space correlation function, which is a
vector in the Hilbert space of the theory. In a lagrangian field theory it is the functional
integral over the half-space En

C
. Then the reflection part of ‘reflection positivity’ is

.3.8/ h�.O/iEn� D hOiEnC ;

in accordance with (3.7); see (3.6) for the analog in quantum mechanics. The Hilbert
space H is associated to .…; o/, where o is an orientation of the normal line to …,
the arrow of time in Section 2.2. The reflection � reverses o, and the Hilbert space
associated to .…;�o/ is the complex conjugate

.3.9/ H.…;�o/
Š�!H.…;o/;

according to the dictum (3.7); compare (3.5). Therefore, h�.O/iEn�2H and (3.8) is an
equation in the complex conjugate Hilbert space H . The positivity part of ‘reflection
positivity’ is the positive definiteness of H , which implies that the norm square of the
vector hOiEn

C

is nonnegative:

.3.10/ h�.O/OiEn � 0:
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A theorem of Osterwalder and Schrader [94] reconstructs the relativistic theory in
Minkowski spacetime from the Euclidean theory; reflection positivity is an important
ingredient.

Remark 3.11 In theories with fermionic states the Hilbert space H is Z=2Z–graded.
The norm square of an odd vector is then purely imaginary [31, Section 4.4] and positive
definiteness requires a sign choice; see Example 6.49 for details in the invertible case.

Remark 3.12 (internal symmetry and reflection positivity) Suppose the full Wick-
rotated vector symmetry group Hn has a nontrivial internal symmetry group K , and for
simplicity take HnD SOn�K . Let X be Euclidean space with an open neighborhood
of the support of the operators O and �.O/ removed. Let Y D @X \HC and assume
�.Y /D @X \H� . In general there are twist operators that are defined by a principal
K–bundle P!X, as in Remark 2.35. The reflection � must account for the K–bundle,
and it might seem at first that � should “reverse” it by an involution on K . But that
does not happen; rather � lifts to P !X. We give three arguments:

(1) If O is a point operator, then Y is a sphere. Identifying �.Y / with Y via a
translation, � acts on Y as reflection in the equatorial plane parallel to …. If we
one-point compactify X to Sn minus the two balls and assume P extends over the
compactification, then the restrictions of P to Y and �.Y / are isomorphic, since the
compactification is diffeomorphic to Œ0; 1��Sn�1 .

(2) Continuing, suppose P ! X is the trivial bundle and V is the vector space of
local operators attached to Y . (In a geometric theory we take a limit as the radius of the
removed ball shrinks to zero.) The automorphism group K of the trivial bundle over Y
acts on V , producing K–multiplets of point operators. The hyperplane reflection �
induces an isomorphism V !V that commutes with the K–action, since geometrically
the lift of reflection to the trivial bundle commutes with the global gauge transformations.
So a K–multiplet in V is mapped to a K–multiplet in V that transforms in the complex
conjugate representation.

(3) Let n D 1 and H1 D SO1 � Z=3Z. Let ˛ W Bordh0;1i.H1/ ! VectC be the
invertible theory which attaches a nontrivial character � W Z=3Z! T to the positively
oriented point with its trivial principal Z=3Z–bundle. (That object Y of the bordism
category has automorphism group Z=3Z, which then acts on the vector space ˛.Y /.)
This theory is unitary. Now ˛.P ! S1/ is � applied to the holonomy of the principal
Z=3Z–bundle P ! S1 . Reflection reverses the orientation of S1 , and if the bundle
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stays the same under reflection, then the holonomy complex conjugates, which is
precisely what it should do in a reflection positive theory.

3.3 The extended symmetry group yHn

Let .Hn; �n/ be a symmetry type (Definition 2.4). We use reflection symmetry (3.8)
to construct a larger symmetry group yHn from Hn by adjoining an involution. In the
special case Hn D Spinn , we define yHn D PinCn ; the general case is a bootstrap from
this, following the proof of Theorem 2.19. The arguments in Remark 3.12 motivate
the triviality of the hyperplane reflection automorphism of K in our construction. We
view yHn as a symmetry group of the Euclidean quantum field theory; the action of an
element in yHn nHn on the Hilbert space H is by an antiunitary transformation.

Proposition 3.13 There exists a canonical group extension

.3.14/ 1!Hn
jn
�! yHn! f˙1g ! 1;

split (noncanonically) by a choice of hyperplane reflection � 2On , such that the split-
ting induces the automorphism of fSHn Š Spinn�K that is the product of conjugation
by � on Spinn and the identity automorphism of K . There is a homomorphism y�n
that fits into the pullback diagram

.3.15/

Hn
jn

//

�n

��

yHn

y�n
��

On // f˙1g �On

Finally, there are inclusions y{n W yHn ! yHnC1 which , together with the inclusions
in WHn!HnC1 , induce a commutative diagram linking (3.15) for varying n.

A hyperplane reflection � 2On induces an automorphism of SOn by conjugation in On ,
and it lifts uniquely to an automorphism of Spinn , which is realized as conjugation
by z� 2PinCn , where z� is a lift of � . However, it is the twisted conjugation [8, Section 3]
by z� in PinCn that lifts conjugation by � in On , where the twist is multiplication by
the nontrivial character

.3.16/ PinCn ! �0 PinCn
Š�! f˙1g:

Note z� is only determined up to sign; the splitting of (3.14) associated to � is determined
up to multiplication by k0 .
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Proof Define

.3.17/ cSHn D PinCn �K=h.�1; k0/i

and project onto �0 PinCn to define the quotient map in the extension

.3.18/ 1! SHn! cSHn! f˙1g ! 1:

If �n.Hn/ D SOn , then set yHn DbSHn . If �n is surjective, then define the double
cover of yHn as the mixing construction

.3.19/ .PinCn �K/�.Spinn�K/
zHn;

where zHnis as defined in (2.6). Let yHn be the quotient by the cyclic subgroup
hŒ�1; k0I 1�i of order two.

Reflection through the hyperplane perpendicular to � 2 Sn�1 � PinCn lifts to

.3.20/ Œ˙�; 1I 1� 2 .PinCn �K/�.Spinn�K/
zHn;

so passes to an element of order two in yHn , which gives the splittings of (3.14).

For any s 2 PinCn , k 2K , and zh 2 zHn set

.3.21/ y�nŒs; kI zh�D .det.s̄/; s̄�n.h// 2 f˙1g �On;

where s̄ 2 On is the image of s 2 PinCn and h the image of zh in Hn . This passes
to a homomorphism with domain the mixing construction (3.19), and then to its
quotient yHn .

Remark 3.22 Now we formulate reflection positivity on Euclidean space for a theory
with symmetry type .Hn; �n/. Adjoining translations via the pullback

.3.23/

1 // K // Hn

��

// Eucn

��

// 1

1 // K // Hn
�n

// On // 1

we obtain a larger group Hn and a homomorphism Hn!Eucn to the Euclidean group.
The complex point observables form a vector bundle O! En , and the action of Eucn
on En lifts to an action of Hn on O . Proposition 3.13 gives a coextension bHn of Hn

and a homomorphism bHn!f˙1g�Eucn . As before fix a hyperplane reflection � and
now fix a lift y� 2 bHn of .�1; �/ 2 f˙1g �Eucn . Then part of the data of a reflection
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structure is a lift of y� to an antilinear map of the complex vector bundle O! En .
Therefore (3.8)–(3.10) apply, with y� replacing � .

Proposition 3.24 For each n� 1 there is an inclusion of group extensions

.3.25/

1 // Hn //
� _

in

��

f˙1g �Hn //
� _

snC1�jnC1in
��

f˙1g // 1

1 // HnC1
jnC1

// yHnC1 // f˙1g // 1

in which in is the inclusion in (2.20) and jn the inclusion in (3.14). Furthermore , the
inclusions in and y{n induce a commutative diagram linking (3.25) for varying n.

Proof Define sn W f˙1g ! yHn as the splitting of (3.14) induced by the hyperplane
reflection that reverses the first coordinate of Rn and fixes the others; use Œe1; 1I 1�
in (3.20). Then the sn fit (3.14) into a commutative diagram of split short exact
sequences as n varies, using the inclusions in and y{n . With all maps defined the rest is
a systematic verification.

For the basic symmetry groups in (2.17) the extended symmetry groups are listed here:

.3.26/

states/symmetry Hn yHn

bosons only SOn On

fermions allowed Spinn PinCn
bosons, time-reversal (T ) On f˙1g �On

fermions, T 2 D .�1/F PinCn cPinCn
fermions, T 2 D id Pin�n cPin�n

The splitting of yOn is a consequence of the fact that hyperplane reflections are inner
in On . A similar argument proves that the 4–component group bPin˙n can be constructed
from Pin˙n by adjoining the automorphism that is the identity on Spinn � Pin˙n and
multiplication by the central element �1 2 Spinn on the off-component of Pin˙n . (This
argument is echoed in Remark A.9.)

4 Reflection symmetry on manifolds

The enhanced symmetry group yHn produces an involution (Section 4.1) on Hn–
manifolds that generalizes orientation-reversal for H D SO. In the field theory context
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it induces an involution on bordism categories that we call ‘bar’. (See Appendix B
for a general discussion of involutions on categories and other relevant background.)
In Section 4.2 we prove that the dual of an object in a bordism category is isomorphic
to its bar. The definitions of reflection structure and positive reflection structure for
nonextended field theories are in Section 4.3. In a reflection positive theory the partition
function of any double is nonnegative, as we prove in Section 4.4. We work as always
with arbitrary symmetry groups.18

Kevin Walker has introduced theories with more general reflection structures in which,
possibly, the group extension (3.14) that controls antiunitarity is not split. In particular,
he allows yHn D Pin�n when Hn D Spinn . This leads to exotic Hermitian structures.
Our more restrictive framework is based on Wick rotation of relativistic theories.

4.1 An involution on Hn–manifolds

Recall from Section 2.2 that an Hn–manifold is a Riemannian n–manifold equipped
with a reduction .P; �/ of its orthonormal frame bundle BO.X/!X to Hn . Extend
the principal Hn–bundle P!X to a principal yHn–bundle jn.P /!X, where jn is the
inclusion of groups in (3.14). Using (3.15) extend the isomorphism � WBO.X/!�n.P /

to an isomorphism y� W f˙1g �BO.X/! y�n.jn.P //.

Definition 4.1 The opposite Hn–structure .P 0; � 0/ is the principal Hn–bundle P 0 WD
jn.P / nP !X and the restriction � 0 of y� to f�1g �BO.X/.

Taking opposites is involutive: there is a canonical isomorphism .P; �/ Š�! .P 00; � 00/.

Remark 4.2 Let � 2On be a hyperplane reflection and �� the automorphism of Hn
resulting from the splitting of (3.14). Then we can identify the principal Hn–bundle
P 0! X as the projection P ! X of manifolds with the original Hn–action on P
precomposed with the automorphism �� . For if z� 2 yHn is the splitting element, then
we map P ! jn.P / nP by p 7! p � z� .

Example 4.3 An SOn–structure is an orientation, and the opposite SOn–structure is
the reverse orientation. In this case P!X is the bundle of oriented orthonormal frames,
jn.P /!X the bundle BO.X/!X of all orthonormal frames, and jn.P /nP !X

the bundle of oppositely oriented orthonormal frames.
18The definition of the double of a (s)pin manifold is somewhat tricky, for example; the general setting

is clarifying.
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Example 4.4 For simplicity, we sometimes abbreviate ‘Pin˙n –structure’ to ‘pin struc-
ture’, just as ‘Spinn–structure’ is abbreviated to ‘spin structure’. The opposite of a pin
structure is obtained by tensoring with the orientation double cover; see Definition A.8,
Remark A.9, and the text following (3.26). One motivation for our general study of
symmetry groups (Section 2.1) and involutions (Section 3.2) is to explain the appearance
of this opposite pin structure in the formulation of reflection positivity for Wick-rotated
quantum field theories with fermions and time-reversal symmetry.

We use the involution in Definition 4.1 to construct an involution of categories

.4.5/ ˇB D ˇ W Bordhn�1;ni.Hn/! Bordhn�1;ni.Hn/:

In Appendix B we explain that an involution on a category B is a functor ˇ WB!B

and a natural transformation of functors � W idB! ˇ2 . The objects and morphisms
in Bordhn�1;ni.Hn/ are Riemannian manifolds with Hn–structure: the functor ˇ fixes
the underlying Riemannian manifold and flips the Hn–structure to its opposite. The
equivalence � implements the canonical isomorphism indicated after Definition 4.1.
We emphasize that the “bar involution” ˇ is covariant: a morphism X W Y0! Y1 maps
to a morphism ˇX W ˇY0 ! ˇY1 . Put differently, the arrows of time on objects are
unchanged under ˇ .

Remark 4.6 One can envisage other involutions on the bordism category, and so other
notions of reflection structure (Definition 4.14 below), especially for mathematical
applications. The heuristics in Remark 3.12 are meant to illustrate why we feel the
involution defined here correctly models Wick-rotated unitarity in relativistic field
theories.

4.2 Duals and opposites

An object Y in a symmetric monoidal category, such as Bordhn�1;ni.Hn/, may have a
dual Y _ , which is equipped with duality data; see Definition B.8 for a quick review. In a
topological bordism category every object has a dual. The underlying smooth manifold
of the dual Y _ equals that of Y , but the arrow of time is reversed. This reversal is evident
in the coevaluation and evaluation duality data. For example, evaluation is the bordism

.4.7/ eY D Œ0; 1��Y W Y
_
qY !∅n�1

with the entire boundary incoming. The Hn–structure is the same at the two ends, but
the arrows of time are opposite. If the boundary at 0 2 Œ0; 1� is the object Y , with its
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Y

eY

Y _ Y _

cY

Y
D

Y

idY

Y

Figure 3: Evaluation, coevaluation, and the gluing to the identity.

arrow of time, then the boundary at 1 2 Œ0; 1� is the object Y _ . See Figure 3, where
the coevaluation cY and the “S–diagram” (B.9) are also depicted.

An object Y in a topological bordism category has a canonical product germ — see
Section 2.2 — namely the germ of f0g � Y in X D .��; �/� Y , where we fix � > 0.
Let � be the diffeomorphism of X that reflects t 7! �t and fixes Y . The splitting in
Proposition 3.13 leads to an alternative construction of the opposite Hn–structure and
the following important identification.

Proposition 4.8 For any object Y in Bordhn�1;ni.Hn/ there is an isomorphism

.4.9/ h W ˇY Š�! Y _:

Also , ˇh_ D h.

Reversing the Hn–structure (ˇY ) is equivalent to reversing the arrow of time (Y _ ).
Or, in the language of Definition B.14, every object in Bordhn�1;ni.Hn/ carries a
Hermitian structure.

Proof Set X D .��; �/�Y . The reflection

.4.10/
� W .��; �/�Y ! .��; �/�Y;

.t; y/ 7! .�t; y/;

lifts to the frame bundle BO.X/. We now construct a diagram of principal K–bundles:

.4.11/

Q0
� � //

��

P 0

� 0

��

� � // jn.P /

��

P? _oo

�

��

Q_? _oo

��

BY
� � // BO.X/

� � �1�id
// f˙1g �BO.X/ BO.X/? _1�id

oo B_Y
? _oo

Let BY �BO.X/ be the On�1–subbundle of frames with first vector ˙@=@t , the sign
chosen to align with the arrow of time of the object Y . Let B_Y be the compatible
frames with the opposite arrow of time. Then � induces an isomorphism BY !B_Y
which is realized inside BO.X/ as multiplication by the hyperplane reflection �1 2On
in the orthogonal complement to the vector e1 2 Rn . (Observe that �1 centralizes
On�1 � On .) Let P �

�! BO.X/! X be the Hn–structure: the composition is a
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principal Hn–bundle and the first map is a principal K–bundle over its image. Set
Q_ D ��1.B_Y /; then Q_!X is a principal Hn�1–bundle. Let jn.P / and P 0 be
as in Definition 4.1, so that P 0 �

0

�! BO.X/! X is the opposite Hn–structure. Set
Q0 D � 0

�1
.BY /, so that Q0!X is an Hn�1–bundle that encodes the opposite Hn–

structure. Let y�1D Œe1; 1I 1�2 yHn be the lift of �12On , as defined in (3.19) and the text
that follows; then y�1 centralizes Hn�1 and has order two. The action of multiplication
by y�1 on jn.P / restricts to an isomorphism of Hn�1–bundles Q0!Q_ . (It covers
multiplication by .�1; �1/ 2 f˙1g �On on f˙1g � BO.X/, which restricts to an
isomorphism BY !B_Y .)

The map ˇh_ is the inverse of the involution y�1 on jn.P /, restricted to the bar dual
bundles. Since y�1 is its own inverse, we conclude ˇh_ D h.

Remark 4.12 In a geometric bordism category not every germ admits a reflection
which is an isometry. It is only for germs which do admit such a reflection that we
expect the associated topological vector space of a field theory to have a Hilbert space
structure; see [80]. This is the case for the (noncompact) affine hyperplane in Figure 2,
consistent with (3.9).

4.3 Reflection structures and positivity

Let

.4.13/ ˇC D ˇ W VectC! VectC

be the involution of complex conjugation (Example B.2). Recall (2.34) that a topological
field theory is a symmetric monoidal functor F W Bordhn�1;ni.Hn/! VectC .

Definition 4.14 A reflection structure on F is equivariance data for the involutions
ˇB and ˇC .

Equivariance data is spelled out in Definition B.6. For every closed .n�1/–manifold Y
with Hn–structure we have an isomorphism of vector spaces

.4.15/ F.ˇY / Š�! F.Y /;

the curved space analog of (3.9). Combining with the isomorphism (4.9), we see
that F.eY / is a Hermitian form

.4.16/ hY W F.Y
_/˝F.Y /Š F.ˇY /˝F.Y /Š F.Y /˝F.Y /!C;
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which by the usual “S–diagram” argument (Figure 3) is nondegenerate. Sesquilinearity
is a consequence of the isomorphism

.4.17/
eY ! ˇ.eY /;

.t; y/ 7! .1� t; y/;

where recall, as a manifold, eY D Œ0; 1��Y .

Definition 4.18 A reflection structure is positive if the induced Hermitian form hY is
positive definite for all Y 2 Bordhn�1;ni.Hn/.

Remark 4.19 In a nonextended field theory reflection is data and positivity is a
condition. In the extended case considered later, both reflection and positivity are data.

Remark 4.20 There is also a notion of positivity if the domain is the category of
super vector spaces; see Example 6.49.

Example 4.21 To avoid trivialities, suppose the spacetime dimension n is even. Fix a
nonzero complex number � 2C . There is a simple invertible field theory of unoriented
manifolds (HnDOn ) whose partition function on a closed n–manifold X is �Euler.X/ ,
where Euler.X/ is the Euler number of X. The vector space F�.Y / attached to any
closed .n�1/–manifold Y is the trivial line C : the Euler characteristic of a compact
manifold with boundary is a well-defined number. In the bordism category we can
write the closed manifold Sn as the composition ∅n�1 D

n

�! Sn�1
Dn
�!∅n�1 of two

closed balls. Denote the first arrow as X and apply the theory F� :

.4.22/ �2 D F�.S
n/D hSn�1.F�.X/; F�.X//:

Therefore, a necessary condition for positivity is that � be real.

A reflection structure imposes a curved space analog of (3.8), which, for an n–
dimensional Hn–bordism X, asserts that

.4.23/ F.ˇX/D F.X/:

For example, if H D SOn then the partition function complex conjugates when the
orientation of spacetime is reversed. For a theory of unoriented manifolds (HnDOn ),
condition (4.23) implies that every partition function is real. For theories of pin mani-
folds (HnDPin˙n ) the partition function of the w1–twisted pin structure (Definition A.8)
is the complex conjugate of the original partition function.
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X Y

eY

Y _ D ˇY ˇX

Figure 4: The double of X.

4.4 Doubles

The reflection-conjugation equation (4.23) also applies to manifolds with boundary.
We use it to derive a necessary condition for reflection positivity.

Definition 4.24 Let X be a compact Hn–manifold with boundary, viewed as a bordism
∅n�1! @X. The double of X is the closed Hn–manifold

.4.25/ �X D e
@X
.ˇX;X/:

The double is illustrated in Figure 4. In that picture, Y D @X .

Proposition 4.26 If a theory F W Bordhn�1;ni.Hn/! VectC admits a positive reflec-
tion structure , then F.�X/� 0 for all compact Hn–manifolds X with boundary.

Note that the value of a theory on a closed n–manifold does not depend on the reflection
structure. The necessary condition for positivity in Proposition 4.26 is the compact
manifold analog of the usual reflection positivity statement (3.10) in Euclidean space.

Proof From (4.25) and (4.23) we deduce

.4.27/ F.�X/

D F.e
@X
/.F.ˇX/; F.X//D h

@X
.F.X/; F.X//D kF.X/k2F .@X/ � 0:

The double construction is standard for unoriented and oriented manifolds. It is a bit
trickier for spin and pin manifolds, so we give a recognition principle and illustrate with
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some examples. Observe that the double has an obvious (anti-)involution �X �
�!ˇ�X

with fixed-point set Y D
˚
1
2

	
�@X , and � induces multiplication by �1 on the normal

bundle. Set X 0 DX [@X
�
0; 1
2

�
� @X and cut along Y D @X 0 to write

.4.28/ �X D ˇX 0[@X 0 X
0;

which is the typical description of a double. But we must account for the Hn–structure
as well.

Proposition 4.29 Let X be a closed Hn–manifold , � WX ! ˇX an anti-involution
with fixed-point set Y such that

(i) there exists a submanifold N � X with boundary Y such that X is the union
of N and �N along Y and � induces a diffeomorphism ˇN Š �N of Hn–
manifolds; and

(ii) � jY induces the hyperplane reflection isomorphism of the Hn–structure on Y
to its opposite.

Then X Š�N as Hn–manifolds

The isomorphism in (ii) is left multiplication by Œe1; 1I 1� 2 yHn ; see (3.20).

Proof Use the tubular neighborhood theorem to replace Y with Œ0; 1�� Y and so
construct the desired Hn–isomorphism.

Corollary 4.30 The sphere Sn with Hn–structure HnC1!HnC1=Hn is a double.

We note from Remark 2.23 that the homogeneous space HnC1=Hn is diffeomorphic
to Sn .

Proof Reflection � in the hyperplane perpendicular to e1 is an involution of Sn

with fixed-point set the equatorial Sn�1 perpendicular to e1 . The reflection lifts to an
isomorphism of the principal Hn–bundle HnC1!HnC1=Hn with the pullback of its
opposite. (The isomorphism is globally left multiplication by Œe1; 1I 1�� yHnC1 .)

Example 4.31 For Hm D Spinm the circle Spin2 =Spin1 has the bounding spin
structure: the Spin1–bundle Spin2 ! Spin2 =Spin1 is the nontrivial double cover
of the circle. The nonbounding spin circle is not a double. Indeed, there is a re-
flection positive invertible 1–dimensional spin topological field theory ˛ into super
vector spaces that attaches the odd line to a positively oriented spin point; it follows
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that ˛.S1nonbounding/D�1. This does not violate Proposition 4.26 since S1nonbounding is
not a double. Turning this argument around, since the oriented circle is a double, the
1–dimensional oriented topological field theory into super vector spaces that attaches
the odd line to a positively oriented point does not admit a positive reflection structure.

Remark 4.32 The group HnC1 acts as symmetries of the Hn–sphere in Corollary 4.30.
Topologically, then, there is a universal family of Hn–spheres parametrized by the
classifying space BHnC1 . Field theories may be evaluated on families of manifolds
and bordisms; this family of spheres enters our analysis in Section 7.2.

5 Invertible topological field theories and stable homotopy
theory

We first recall that to fully implement locality in field theory we need to use a bordism
multicategory that encodes gluing laws in arbitrary codimension. Next we recount
how invertible topological field theories lie in the framework of homotopy theory:
invertibility moves the discussion from abstract multicategories to topological spaces.
Finally, we specify the universal target that tracks deformation classes of invertible
topological theories. The main result is Theorem 5.23, which is our point of departure
for implementing reflection positivity in invertible topological theories. We conclude
in Section 5.4 with a discussion of invertible nontopological theories and their role in
low-energy approximations of gapped quantum systems.

The material in this section is covered in much more expository detail in many references,
so we only recount essentials.

5.1 Extended field theories

There are several physics motivations for extending an n–dimensional Wick-rotated
field theory to lower-dimensional manifolds, and these are hardly restricted to the
topological case of interest here. First, the vector space of physical states attached to
an .n�1/–manifold Y depends locally on Y . This is familiar in nD 2 dimensions,
where a theory not only has a vector space attached to a circle, but also to an interval
with boundary conditions; the gluing laws for intervals lie in codimension two, since
intervals are glued along 0–manifolds in this 2–dimensional theory. The result is
sometimes called an open–closed theory [89].19 The labels on the boundary are objects

19There is a difference between an open–closed theory and a fully extended 2–dimensional theory
[85, Section 4.2].
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in a category, so it is natural to associate that category to the 0–manifold consisting of a
single point. As we are doing quantum mechanics, the category is linear and indeed the
vector space associated to the interval with boundary labels ˇ0 and ˇ1 is Hom.ˇ0; ˇ1/
in the category. The objects are boundary conditions, or D–branes. Another common
example is 3–dimensional Chern–Simons theory, in which a unitary modular tensor
category is associated to the 1–manifold S1 , which is a manifold of codimension two
in this theory.

Let Xn be a Riemannian n–manifold on which a theory F is defined, and fix x 2X.
We explained in Remark 2.35 that the vector space F.Sn�1x / attached to a small sphere
around x , in the limit of small radius, is the space of point operators at x . A field
theory also has extended operators, whose support may be a submanifold W � X
of dimension k > 0. An extended operator with k D 1 is called a line operator,
with k D 2 a surface operator, etc. The link of W at any x 2W is a sphere Sn�k�1x .
In an extended field theory F there is an invariant F.Sn�k�1x / which is a k–category
whose objects are the operators on W . Thus the line operators in a theory form a
1–category, the surface operators a 2–category, etc; see [66] for a thorough account.

We believe that every field theory of physical relevance should be fully extended. The
mathematical implementation is most developed in the topological case: a sampling
of references is [38; 81; 12; 85; 39; 11]. Invariants of manifolds of increasing codi-
mension are encoded in a higher categorical structure of increasing complexity. The
modern framework also includes invariants for families of manifolds; see [106] for
a nontopological version. The domain of an n–dimensional topological field theory
with symmetry group Hn is the bordism multicategory Bordn.Hn/ whose objects are
0–manifolds; 1–morphisms are bordisms of 0–manifolds, which are 1–manifolds with
boundary; 2–morphisms are bordisms of bordisms, which are 2–manifolds with corners;
and so on until we reach n–manifolds with arbitrary corners. At that point we con-
tinue to .nC`/–morphisms which are roughly `–dimensional families of n–manifolds,
where ` is an arbitrary positive integer. The entire structure is an .1; n/–category
[18; 85; 14; 92; 23; 99].

Definition 5.1 Let C be a symmetric monoidal .1; n/–category. A fully extended
n–dimensional topological field theory with Wick-rotated vector symmetry group Hn
and target C is a symmetric monoidal functor

.5.2/ F W Bordn.Hn/! C:
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We typically shorten this to ‘topological field theory’. In general there is no preferred
choice of target C, and it is an open issue to construct suitable general targets. In the
very special invertible case we study here there are two preferred targets; see Section 5.3.

5.2 Invertible topological field theories

There is a natural superposition of quantum systems which does not introduce inter-
actions between them. In the framework of Wick-rotated field theories on compact
manifolds this is implemented by tensoring theories together, and that tensor product
makes sense for fully extended theories too. There is a unit for the tensor product:
the trivial theory 1 in which the vector space attached to any .n�1/–manifold is C ,
all correlation functions equal 1, and a similar triviality in higher codimension. A
theory F is invertible if there exists F 0 such that F ˝F 0 Š 1.

Example 5.3 An n D 1 theory F with H1 D SO1 is determined by the vector
space F.ptC/ attached to a point with positive orientation; it is invertible if and only if
this vector space is one-dimensional. (A one-dimensional vector space is called a line.
A vector space V is invertible if and only if there exists V 0 such that V ˝V 0ŠC , and
this happens if and only if V is a line.) In an n–dimensional invertible field theory, the
vector space attached to any .n�1/–dimensional manifold is a line and all correlation
functions between nonzero operators are nonzero.

We first explain the transition to stable homotopy theory in the nonextended case, as
in Example 5.3. The codomain, or target, of a nonextended topological field theory
(Definition 2.33) is the ordinary category VectC whose objects are complex vector
spaces and whose morphisms are linear maps. To accommodate theories with fermionic
states, we use instead the codomain category sVectC of super vector spaces. An
invertible theory F factors through the subcategory sLineC whose objects are complex
super lines20 and whose morphisms are invertible linear maps:

.5.4/

Bordhn�1;ni.Hn/
F

//

''

sVectC

sLineC

, �

99

20A Z=2Z–graded line is either even or odd, which means the single quantum state is either bosonic
or fermionic.
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The category sLineC is a groupoid: every morphism is invertible. Even more, it is a
Picard groupoid: every object is invertible under tensor product. The main point is that
groupoids and Picard groupoids come from topology, as we quickly review.

One of the first constructions in algebraic topology goes in the opposite direction:

.5.5/ Spaces
��1
��! Groupoids:

To any topological space S is attached a groupoid ��1 S whose objects are the points
of S ; the set .�

�1S/.s0; s1/ of morphisms from s02S to s12S is the set of homotopy
classes of paths from s0 to s1 . If the space has no higher homotopy information —
S is a homotopy 1–type — then ��1 S captures the homotopy type of S completely.
There is an inverse construction that takes a groupoid G (or a category) and attaches a
homotopy 1–type kGk, the classifying space [101].

Example 5.6 Let S D ksLineCk. Then �0 S Š Z=2Z, since there are two isomor-
phism classes of super line; and �1 S Š C� , since the automorphism group of any
super line is the group C� of nonzero complex numbers under multiplication.

Remark 5.7 In Example 5.6 the groupoid sLineC is discrete: there is no topology
on objects or morphisms. If we use the standard topology on the morphism spaces
of linear maps, then the geometric realization ksLineCk is a homotopy 2–type with
�0ŠZ=2Z, �1D 0, and �2ŠZ. In other words, whereas in Example 5.6 the discrete
group C� of morphisms gives rise to �1ŠC� , with the usual topology the group C�

deformation retracts to the circle (�0 D 0 and �1 Š Z), and so its homotopy groups
show up one degree higher in the geometric realization.

A symmetric monoidal structure on a groupoid goes over to an infinite loop structure
on the classifying space S. That is, there exists a sequence XD fS0; S1; S2; : : : g of
pointed spaces equipped with homotopy equivalences Sq '�SqC1 , where S0 D S
and �SqC1 is the based loop space. These satisfy the condition that Sq is .q�1/–
connected. We call X a spectrum and we call S its 0–space. See Section 6 for a review
of spectra.

Example 5.8 The classifying space kLineCk has only one nontrivial homotopy group
�1 Š C� , so it is an Eilenberg–Mac Lane space K.C�; 1/. The corresponding
Eilenberg–Mac Lane spectrum is denoted †HC� : the 0–space of the spectrum HC�

is a K.C�; 0/, for which a simple model is the discrete group C� , and the ‘†’ indicates
a shift.
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The functor (5.5) is the first in a sequence of functors f�0; ��1; ��2; : : : g in which
the zeroth maps a space to its set of path components and the higher ones map to
higher groupoids. The classifying space construction also works in this context, and it
produces a space with potentially nonzero homotopy groups in any degree.

A symmetric monoidal .1; n/–category B has a higher Picard groupoid quotient B,
obtained by formally adjoining inverses for every object and morphism. Also, a
symmetric monoidal .1; n/–category C has a maximal Picard subgroupoid C� ,! C

constructed by removing the noninvertible objects and morphisms from C.

Definition 5.9 A fully extended field theory F W Bordn.Hn/! C is invertible if it
admits a factorization

.5.10/

Bordn.Hn/
F

//

����

C

Bordn.Hn/
zF

// C�
?�

OO

Passing to classifying spaces, zF is equivalent to an infinite loop map

.5.11/ kF kW kBordn.Hn/k! kC�k;

or equivalently a map of spectra. The homotopy type of the domain is given by the
following variation of the celebrated Galatius–Madsen–Tillmann–Weiss theorem [52].

Theorem 5.12 kBordn.Hn/k is the 0–space of the Madsen–Tillmann spectrum
†nMTHn .

One version of this theorem is proved in [18], though it is only for unoriented manifolds
and is carried out for “n–tuple categories” rather than .1; n/–categories. Proofs of
Theorem 5.12 in the context of .1; n/–categories have appeared in preprint form. The
theorem is stated in [85, Section 2.5] as a corollary of the cobordism hypothesis. A
preprint of Ayala and Francis [11] proves the cobordism hypothesis and Theorem 5.12
for framed manifolds. A preprint by Schommer-Pries [99] contains a complete proof
of Theorem 5.12 independent of the cobordism hypothesis. Nonetheless, because there
is currently no published proof, in this paper we only use Theorem 5.12 as motivation
and formally define an invertible field theory as a map of spectra (Ansatz 5.14 below).

See Section 7.1 for a review of Madsen–Tillmann spectra.
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5.3 Universal targets

There are two universal targets for invertible topological field theories, corresponding
to the discrete and continuous topologies on C� . These targets are spectra; there is no
need to define an .1; n/–category C with noninvertible morphisms and objects as we
only consider invertible theories.

The first target is constructed so that invertible n–dimensional field theories with that
target are determined by the partition function. The spectrum IC� is characterized in
the homotopy category of spectra by a functorial isomorphism

.5.13/ �0 W ŒB; IC��! Hom.�0B;C�/

from the abelian group of homotopy classes of spectrum maps B ! IC� to the
character group of �0B, for any spectrum B. The shift †nIC� satisfies a similar
universal property with �0 replaced by �n . The spectrum IC� is closely related to
the Brown–Comenetz dual to the sphere spectrum [19]. Combining with the discussion
in Section 5.2 we arrive at the following.

Ansatz 5.14 A discrete invertible n–dimensional extended topological field theory
with symmetry group Hn is a spectrum map

.5.15/ F W†nMTHn!†nIC�:

The space of theories of this type is Map.†nMTHn; †nIC�/.

Here ‘Map’ indicates the space of maps between the indicated spectra; see (6.8) below.
The word ‘discrete’ is meant to evoke the choice †nIC� for the codomain: C� has
the discrete topology.

Remark 5.16 The choice of codomain spectrum †nIC� , which implements the
dictum ‘the partition function determines the theory’, holds magic derived from the first
few stable homotopy groups of spheres. For example, the truncation to �hn�1;ni is a
nonextended theory, and it takes values in a groupoid equivalent to the groupoid sLineC

of super lines: the homotopy groups of spheres “knows about” the bosonic/fermionic
grading of quantum states. The next Z=2Z in the stable stem also has an interpretation
in terms of statistics of particles; see [50], where objects with nontrivial Z=2Z–grading
are termed ‘Majorana’.
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The spectrum †nIC� is appropriate for classifying isomorphism classes of topological
theories, but we are interested instead in deformation classes: we want to identify
two theories if there is a continuous path of theories connecting them. For example,
as maps into †nIC� the Euler theories F�0 and F�1 in Example 4.21 are noniso-
morphic if �0 ¤ �1 , whereas they are always deformation equivalent. The Anderson
dual †nC1IZ.1/ is the appropriate codomain to compute deformation classes.21

Roughly speaking, it results from †nIC� by taking the continuous topology on C� .
Its universal property is expressed in the short exact sequence

.5.17/ 0! Ext1.�nB;Z.1//! ŒB; †nC1IZ.1/�! Hom.�nC1B;Z.1//! 0;

which is noncanonically split. The kernel is the torsion subgroup:

.5.18/ ŒB; †nC1IZ.1/�tor Š Ext1.�nB;Z.1//:

There is a map

.5.19/ � W ŒB; †nIC��Š Hom.�nB;C�/! Ext1.�nB;Z.1//

onto the kernel of (5.17). It sends a homomorphism �nB!C� to the pullback of the
exponential group extension

.5.20/ 1! Z.1/!C
exp
��!C�! 1:

If we give C� its usual topology, then � may be regarded as mapping the topological
space Hom.�nB;C�/ to its group of path components.

Intuitively, to define the notion of deformation equivalence of theories (5.15) we want to
consider a second topology on Map.†nMTHn; †nIC�/ induced from the continuous
topology on C� , and then compute �0 . Instead we make use of the fibration

.5.21/ HC
exp
��! IC�!†IZ.1/

induced from (5.20) as follows.

Definition 5.22 Theories ˛0; ˛1 2Map.†nMTHn; †nIC�/ are deformation equiv-
alent if there exists � 2Hn.†nMTHnIC/ whose image under exp is the difference
Œ˛1�� Œ˛0� of the isomorphism classes Œ˛0�; Œ˛1� 2 Œ†nMTHn; †nIC��.

We immediately conclude the following.

21Z.1/D 2�
p
�1Z�C avoids the choice of a particular

p
�1 2C .
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Theorem 5.23 There is a 1W1 correspondence

.5.24/

8<:
deformation classes of discrete invertible
n–dimensional extended topological

field theories with symmetry group Hn

9=;Š Œ†nMTHn; †nC1IZ.1/�tor:

This appears, at least implicitly, in a joint paper [44] of the authors and Constantin
Teleman; Theorem 5.23 has been the basis of many investigations since.

It is natural to ask for a field-theoretic interpretation of a map of spectra †nMTHn!
†nC1IZ.1/ whose homotopy class is not torsion, so does not factor through †nIC� .
We give one in the next subsection (Ansatz 5.26).

5.4 Remarks on nontopological invertible theories and low-energy
approximations

The main immediate application of Theorem 1.1 in this paper is to low-energy approxi-
mations of gapped unitary quantum systems when that approximation is invertible. For
the heuristic discussion in this section we momentarily drop the invertibility hypothesis.

A typical example of the phenomenon we wish to highlight is 3–dimensional Yang–
Mills theory with a Chern–Simons term. The coupling constant of the Chern–Simons
term obeys an integrality constraint. Then the low-energy effective theory is quantum
“topological” Chern–Simons theory [115]. In fact, this low-energy theory is not topolog-
ical; there is a mild metric dependence [114]. One precise expression of the mildness
is that the energy–momentum tensor22 is a multiple of the identity operator, which is
the only point operator in the theory anyhow. (See the discussion in [50, Section 1.1].)
Witten observes that if one is willing to introduce some sort of framing, then the long-
distance topological Chern–Simons theory is the tensor product of a purely topological
theory and an invertible theory. The invertible theory is analogous to a gravitational
Chern–Simons theory, but more precisely its partition function is the exponential of
the Atiyah–Patodi–Singer �–invariant. The coupling constant does not obey the usual
integrality constraint, which is why the framing is required for this global decomposition.
The full quantum Yang–Mills theory with Chern–Simons term is a theory of oriented
Riemannian manifolds (the Wick rotated symmetry group is H3 D SO3 ), and so one
expects the same for the low-energy approximation. That indeed holds; it is only to
make a global decomposition into topological� invertible that a framing is introduced.

22The energy–momentum tensor is a multiple of the Cotton tensor of the Riemannian 3–manifold.
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This example violates the physical principle (ii) stated in Section 1. A more precise
expectation is that the low-energy physics of a gapped system is well-approximated
by a theory whose energy–momentum tensor may depend on the background fields,
but as an operator it is a multiple of the identity at each point. Or, at least locally we
suppose the low-energy theory is topological� invertible. If the low-energy theory
happens to be invertible, then we conclude that any nontopological invertible theory
can occur and that there is no shift of symmetry group, eg no extra tangential structure
is required. We expect that choices must be made in constructing the low-energy
effective theory, so a potential ‘low-energy approximation’ map from gapped theories
to theories that are locally topological times invertible may only be defined up to
homotopy. (See [41, Section 11.4] for another perspective on the appearance of a
possibly nontopological invertible theory.)

To illustrate the nature of the low-energy approximation, we contemplate the following
three geometric objects associated to a smooth manifold M :

(a) a principal C�–bundle P !M with connection,

(b) a principal C�–bundle P !M with flat connection, and

(c) a principal C�–bundle P !M (with no connection).

In particular, we track what information is induced on the free loop space

LM DMap.S1;M/

by integrating over the loop. In (a) we obtain a smooth function LM ! C� , the
holonomy, and if there is nonzero curvature then it has nonzero derivative. In (b) the
holonomy is a locally constant function LM ! C� , and therefore we can use the
discrete topology on C� : the holonomy represents a class in H 0.LM IC�/. In (c)
there is no connection, so no holonomy, but nonetheless we can extract a principal
Z.1/–bundle EP !LM, a fiber bundle of Z.1/–torsors. Namely, an element � 2C�

determines a Z.1/–torsor E� � C of all x 2 C such that exp.x/ D �, and so the
holonomy function LM ! C� of a connection ‚ 2 AP on P ! M determines
EP;‚! LM, so a Z.1/–torsor over AP �LM. Since the affine space AP of connec-
tions is contractible, the principal Z.1/–bundle over AP �LM descends to a principal
Z.1/–bundle EP ! LM. It may be regarded as the homotopical information in a
connection. It determines a class in the sheaf cohomology group H 0.LM IC�/ in
which C� has the continuous topology. Since C� is an Eilenberg–Mac Lane space
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with �1 Š Z.1/, there is an isomorphism

.5.25/ H 0.LM IC�/ Š�!H 1.LM IZ.1//:

Returning to invertible field theories23 we have the following situations:

(a) a nontopological theory, as contemplated in Remark 2.39;

(b) a discrete invertible topological theory, as in Ansatz 5.14; and

(c) a topological field theory whose partition “function” is a Z.1/–torsor rather than
a complex number.

While (a) and (b) have clear analogs for noninvertible field theories, it is unclear what
a noninvertible analog of (c) would be. In the invertible case we posit the following
definition of a type (c) theory.

Ansatz 5.26 A continuous invertible n–dimensional extended topological field theory
with symmetry group Hn is a spectrum map

.5.27/ ' W†nMTHn!†nC1IZ.1/:

The space of theories of this type is Map.†nMTHn; †nC1IZ.1//.

Remark 5.28 In differential geometry a principal C�–bundle P !M has a primary
topological invariant in H 2.M IZ.1//, its Chern class. A connection gives a secondary
geometric invariant, its holonomy. If the connection is flat, the secondary invariant
is also topological (discrete), and in that case the Chern class lies in the torsion
subgroup of H 2.M IZ.1//. The stable continuous invertible field theories we encounter
in Section 7.2 attach a primary Z.1/–valued invariant to closed .nC1/–manifolds.

A discrete invertible topological field theory F (Ansatz 5.14) gives rise to a continuous
invertible topological field theory ' , which retains the homotopical information in F , in
particular its deformation class. In this paper we do not develop the theory of nontopo-
logical field theories, but in the invertible case we use instead continuous topological
theories, which represent the homotopical information carried by a geometric theory.

Remark 5.29 In the application to low-energy approximations of gapped theories, we
expect that only this homotopical shadow of a geometric theory is well defined, due to
the choices in constructing a low-energy theory.

23Note that each of (a), (b), and (c) above determines the corresponding type of invertible 1–
dimensional field theory of oriented manifolds equipped with a map to M.
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6 Equivariant stable homotopy theory

Reflection symmetry in invertible topological theories is expressed by a Z=2–action
on the constituent spectra. This requires working in Z=2–equivariant stable homotopy
theory. What we will use here is Borel equivariant homotopy theory. This is somewhat
easier than the more general theory and, at the moment, is all that seems needed for
our main results. There are many places to read about equivariant stable homotopy
theory. The reader may wish to consult [1; 55; 59, Chapter 2; 100; 32, Chapter 8].

6.1 Spectra

Let T be the category of pointed topological spaces, and for A;B 2 T , write T .A;B/
for the set of basepoint-preserving continuous functions from A to B and T .A;B/
for the same set, regarded as a topological space with the compact–open topology.

A spectrum X is a sequence fX0; X1; : : : g of pointed spaces, equipped with structure
maps sn W S1^Xn!XnC1 . A map X!Y of spectra is a sequence of maps Xn!Yn

making the diagrams

S1 ^Xn
sXn

//

��

XnC1

��

S1 ^Yn
sYn

// YnC1

commute. The set of spectrum maps from X to Y is a subset ofY
n

T .Xn; Yn/

and so may be regarded as a topological space with the subspace topology. The space
of maps between spectra X and Y will be denoted S.X; Y /.

The homotopy groups �nX of a spectrum X are defined for n 2 Z by

.6.1/ �n.X/D lim
��!
k

�nCk XnCk;

in which the bonding maps are given by the suspension mapping

�nCk XnCk
†
�! �nCkC1†XnCk

snCk
���! �nCkC1XnCkC1:

The group �nCk XnCk is defined for any n 2 Z as soon as k � �n. A map X ! Y

is a weak equivalence if it induces an isomorphism of homotopy groups.
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Equipped with the weak equivalences, the category S of spectra becomes a bona fide
place for doing homotopy theory. A functor S! C to a category C is a homotopy
functor if it takes weak equivalences to isomorphisms. There is a universal homotopy
functor S! ho S characterized by the property that the restriction mapping gives an
equivalence between the category of functors ho S! C with the category of homotopy
functors S! C. The category ho S is the homotopy category of spectra, and the set
(in fact abelian group) ho S.X; Y / is called the abelian group of homotopy classes of
maps from X to Y . We will use the common abbreviation

ŒX; Y �D ho S.X; Y /:

Example 6.2 The suspension spectrum †1Z of a space Z is the spectrum

.†1Z/n D S
n
^Z

with the structure maps derived from the equivalence S1 ^ Sn D SnC1 . When the
context is clear it is customary to drop the †1 and not distinguish in notation between
a space and its suspension spectrum.

Example 6.3 For a nonnegative integer k � 0 let Sk be the suspension spectrum of
the k–sphere and S�k be the spectrum defined by

.S�k/n D

�
� for n < k;

Sn�k for n� k:

From the formula (6.1) one easily checks that for all k 2 Z one has an isomorphism

ŒSk; X�� �k X;

natural in X.

6.1.1 Smash product Suppose that X D fXng is a spectrum and Z is a space.
Define X ^Z to be the spectrum with

.X ^Z/n DXn ^Z

and the structure maps derived from those of X. This is the smash product of the
spectrum X with the space Z .

Example 6.4 The spectrum S0 ^Z is the suspension spectrum of Z .
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Example 6.5 The spectrum S�k ^Sk consists of the spaces

.S�k ^Sk/m D

�
� for m< k;
Sm for m� k:

There is an inclusion
S�k ^Sk! S0;

which is easily checked to be a weak equivalence.

For a spectrum X D fXng there is a functorial weak equivalence

.6.6/ ho lim
��!

S�n ^Xn
�
�!X:

(See for example [59, Section 2.2.1] where it is called the canonical homotopy presen-
tation.)

There is an enrichment ho S of ho S over the homotopy category of spaces. It is
characterized by the existence of an isomorphism

.6.7/ ho T .Z; ho S.X; Y //� ho S.X ^Z; Y /;

functorial in CW–complexes Z , and spectra X and Y . We will employ the abbreviation

.6.8/ Map.X; Y /D ho S.X; Y /:

Taking Z to be the space S0 in (6.7) gives the isomorphism

ŒX; Y �D �0 Map.X; Y /:

When the spectrum X D fXng has the property that each Xn is a CW–complex
and Y has the property that each map

Yn!�YnC1

is a weak equivalence, the homotopy type of Map.X; Y / is given by

.6.9/ ho S.X; Y /D ho lim
 ��

M.Xn; Yn/;

with M.Xn; Yn/ the homotopy limit of the diagram

T .Xn; Yn/

!!

T .Xn�1; Yn�1/

�
}} !!

�
}}

� � �

!!

T .X0; Y0/

�
}}

T .Xn�1; �Yn/ T .Xn�2; �Yn�1/ T .X0; �Y1/
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in which the southeast arrows are given by the compositions

T .Xm; Ym/! T .S1 ^Xm�1; Ym/� T .Xm�1�Ym/:

Note that the projection map M.Xn; Yn/ ! T .Xn; Yn/ is a weak equivalence, so
that (6.9) can heuristically be interpreted as giving a presentation of ho S.X; Y / as a
homotopy inverse limit of the spaces T .Xn; Yn/.

A spectrum Y with the property that for all n the map Yn ! �YnC1 is a weak
equivalence is called an �–spectrum (or a loop spectrum). Every spectrum Y is
naturally weakly equivalent to an �–spectrum. Indeed, given Y define LY by

LYn D ho lim
��!

�kYnCk :

Using the homeomorphism �.�kYnCk/ � �k�YnCk one sees that LY has the
structure of an �–spectrum and that the canonical map Y !LY is a weak equivalence.

6.1.2 Duality The operation X ^Z extends to a symmetric monoidal smash product
on spectra. In fact there is a unique extension having the property that it commutes
with colimits in both variables, and for spaces Z1 and Z2 and integers k; `� 0,

.S�k ^Z1/^ .S
�`
^Z2/' S

�.kC`/
^Z1 ^Z2:

The existence and uniqueness can be deduced from the canonical homotopy presenta-
tion (6.6).

Equipped with the smash product the categories ho S and ho S become symmetric
monoidal categories. By Example 6.5 the suspension spectra of spheres are dualizable
(in fact invertible). It follows that the suspension spectrum of any finite CW–complex
is also dualizable.

6.1.3 Stability An easy check (or an appeal to the invertibility of spheres) shows
that for all k and all X the map

�k X ! �kC1X ^S
1

is an isomorphism. This implies a map A!X gives rise to a long exact sequence

� � � ! �k A! �k X ! �k X [CA! �k�1A! � � �

in which X [CA is the spectrum

.X [CA/n DXn[CAn
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with CAD A� Œ0; 1�=A� f1g[�� Œ0; 1�. This, in turn, implies that the map from A

to the homotopy fiber of X !X [CA is a weak equivalence.

6.1.4 Thom spectra Let X be a space. Given a map V WX!BO , define a sequence
of maps Vn WXn! BOn by the homotopy pullback squares

.6.10/

Xn //

Vn
��

X

V
��

BOn // BO

The map Vn WXn! BOn classifies a vector bundle of rank n over Xn (which will
also be denoted Vn ). By construction, the pullback of VnC1! XnC1 to Xn comes
equipped with an isomorphism to Vn˚R!Xn . This give a map of Thom spaces

†Thom.XnIVn/D Thom.XnIVn˚ 1/! Thom.XnC1; VnC1/

making the sequence of spaces fThom.XnIVn/g into a spectrum. This is the Thom
spectrum of V , denoted Thom.X IV /. The canonical homotopy presentation of
Thom.X IV / takes the form

Thom.X IV /D ho lim
��!

S�n ^Thom.XnIVn/:

We will additionally encounter the Thom spectrum Thom.X I �V / associated to a
map V WX ! BO by composing with the “additive inverse” map .�1/ W BO ! BO

(see Section 7.1). With Xn and Vn defined as in (6.10), the isomorphism

VnC1jXn � Vn˚R

becomes

�VnC1jXn ��Vn�R:

This leads to maps

Thom.X I �Vn/! S1 ^Thom.XnC1I �VnC1/;

and an alternative presentation

.6.11/ Thom.X I �V /D ho lim
��!

Sn ^Thom.XnI �Vn/:

If V has virtual dimension d then V �Rd has virtual dimension 0 and one defines

Thom.X IV /D Sd ^Thom.X IV �Rd /:
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The Thom spectrum construction is a functor on the category of spaces over the
classifying space Z�BO of KO–theory. It is symmetric monoidal in the sense that
for V WX ! Z�BO and W W Y ! Z�BO there is a natural weak equivalence

Thom.X �Y I��XV ˚�
�
YW /� Thom.X IV /^Thom.Y IW /;

in which �X and �Y are the projections.

6.2 Borel equivariant stable homotopy theory

Now suppose that G is a compact Lie group (which in our case will be Z=2) and
let ShG be the category of spectra equipped with a G–action and equivariant maps. An
object of ShG consists of a sequence fXn; sng of left G–spaces Xn and equivariant
maps S1 ^Xn! XnC1 in which S1 has the trivial G–action. Sometimes what we
are calling a G–spectrum is called a naive G–spectrum.

Definition 6.12 A map X ! Y in ShG is a Borel weak equivalence if it is a weak
equivalence when regarded as a map in S.

Equipped with the Borel weak equivalences, the category ShG becomes a category in
which one can do homotopy theory. The homotopy category ho ShG is defined as the
target of the universal homotopy functor out of ShG . We will use the abbreviation

ŒX; Y �hG D ho ShG.X; Y /:

The construction of the smash product goes through in a straightforward way for the
Borel equivariant spectra, and there is a derived equivariant mapping space between
two equivariant spectra. In fact, it follows from the expression (6.9) that when X and Y
are G–spectra, the space ho S.X; Y / acquires the homotopy type of a G–space. The
derived equivariant mapping space works out to be the homotopy fixed-point space

MapG.X; Y /DMap.X; Y /hG ;

and the maps in the homotopy category of G–spectra are given by

ŒX; Y �hG D �0 Map.X; Y /hG :

In Borel equivariant homotopy theory the suspension spectra of finite G–sets (with
a disjoint basepoint added) are self-dual. This implies that the suspension spectra of
finite G–CW–complexes are dualizable and the suspension spectrum of the one-point
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compactification SV of a finite-dimensional representation V of G is invertible. These
facts are not quite immediate. If X is a finite G–set, then the evaluation map

XC ^XC! S0

is the map of suspension spectra induced by the map

X �X ! S0

sending the diagonal to the non-basepoint and the complement of the diagonal to the
basepoint. It is not so straightforward to write down the coevaluation map. Nevertheless,
for G–spectra W and Z , the composite

Map.Z;W ^XC/!Map.Z ^XC; W ^XC ^XC/!Map.Z ^XC; W /

is a G–equivariant map that is a weak equivalence of underlying spaces, and so gives
an equivalence

Map.Z;W ^XC/hG �Map.Z ^XC; W /hG

and an isomorphism

ŒZ;W ^XC�
hG
� ŒZ ^XC; W �

hG :

Once one knows that the finite G–sets are dualizable it follows that the suspension
spectrum of any finite G–CW–complex is dualizable. We denote the dual of X
as D.X/. This implies the invertibility of SV since the map

D.SV /^SV ! S0

is a weak equivalence of underlying spectra. It is customary to use the notation

S�V DDSV :

For more on virtual representation spheres see Example 6.17 of Section 6.2.2.

6.2.1 Homotopy fixed points and homotopy orbits Regarding a nonequivariant
spectrum as a G–spectrum with the trivial action gives a functor

S! ShG :

This functor preserves weak equivalences and so induces a functor on homotopy
categories. The homotopy orbit and fixed-point functors provide both a left and right
adjoint to this induced functor.
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Recall that the homotopy orbit space of a pointed G–space Z is the space

ZhG DEGC ^G Z;

and that the homotopy fixed-point space is the space

ZhG D T .EGC; Z/G

of equivariant basepoint-preserving maps from EGC to Z . These notions extend
componentwise to equivariant spectra. The homotopy orbit spectrum of a G–spectrum
X DfXng is the spectrum XhGDf.Xn/hGg and the prehomotopy fixed-point spectrum
is the spectrum Xh

0G D f.Xn/
hGg.

The functor XhG preserves weak equivalences and so directly induces a functor on
homotopy categories. The functor Xh

0G preserves weak equivalences between �–
spectra and so induces a homotopy fixed-point functor

.� /hG W ho ShG! ho S

sending X to .LX/h
0G .

These functors on the homotopy category are adjoints to the inclusion

ho S! ho ShG

in the sense that there are natural isomorphisms

ŒX;A�hG � ŒXhG ; A�;.6.13/

ŒA; Y �hG � ŒA; Y hG �;.6.14/

in which X and Y are G–spectra and A is a spectrum with trivial G–action. Also,
the fixed-point spectrum AhZ=2 is computed as

.6.15/ MapZ=2.S0; A/'Map.BZ=2C; A/ ' � A_Map.BZ=2; A/

'�! A�Map.BZ=2; A/;

in which the left-pointing map involves a choice of a basepoint x 2 BZ=2 and is the
sum of the map

BZ=2C! S0

sending BZ=2 to the non-basepoint and the map

BZ=2C! BZ=2

which is the identity map on BZ=2 and sends the disjoint basepoint on the left to the
new basepoint on the right.
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6.2.2 Equivariant Thom spectra Suppose that B is a space and p WX ! B is a
principal G–bundle. A map W W B! BO leads, as above, to a sequence of maps

Bn //

Wn
��

BnC1 //

WnC1
��

B

W
��

BOn // BOnC1 // BO

and a Thom spectrum Thom.BIW /D fThom.BnIWn/g. Define principal G–bundles
Xn! Bn by the pullback square

Xn //

pn
��

X

p

��

Bn // B

The bundle p�nWn is a G–equivariant vector bundle on Xn . In fact, by descent, the
data of a G–equivariant vector bundle on Xn is equivalent to the data of a vector bundle
over Bn . The G–action on .Xn; p�Wn/ induces a G–action on the Thom spectrum
Thom.X; p�W / D fThom.XnIp�nWn/g making it into an equivariant spectrum. By
construction the homotopy orbit spectrum is given by

.6.16/ Thom.X Ip�W /hG D Thom.BIW /:

As in Section 6.1.4, equivariant Thom spectra for maps B! Z�BO are defined by
subtracting a suitable trivial bundle and suspending the result.

Example 6.17 (representation spheres) An element V 2KO0.BG/ is classified by
a map

V W BG! Z�BO

and so gives rise to an equivariant Thom spectrum. When V corresponds to a repre-
sentation of G the equivariant Thom spectrum is the spectrum SV . This construction
sends sums of elements of KO0.BG/ to smash products of G–spectra. Composing
with the map

RO.G/!KO0.BG/

gives a construction of a sphere SV associated to every virtual representation V of G.
This gives another approach to the construction and invertibility of representation
spheres in Borel equivariant stable homotopy theory.
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6.2.3 The �–sphere We now specialize to the case G D Z=2, and write � for the
real sign representation. The sphere S� has an equivariant cell decomposition with
one non-basepoint fixed 0–cell, and one free 1–cell as shown here:

e1

�e1
This gives a pushout square

Z=2� @D1 //

��

Z=2�D1

��

S0 // S�

leading to a cofibration sequence

.6.18/ Z=2C! S0! S�

of equivariant spectra. Passing to duals and using the self-duality of finite G–sets gives
a cofibration sequence

.6.19/ S�� ! S0! Z=2C:

The map S0!Z=2C is the transfer map and, nonequivariantly, has degree 1 on each
summand of Z=2C D S0 _S0 .

Write

 D 1� �;

ı D � � 1:

For a Z=2–spectrum X we define

.6.20/
Xı D Sı ^X;

X
 D S
 ^X:

Smashing with (6.18) and (6.19) gives, for any X, (co)fibration sequences

Xı ! Z=2C ^X !X;.6.21/

X ! Z=2C ^X !X
 :.6.22/
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6.3 Real structures

Our next aim is to equip IC� and IZ.1/ with Z=2–actions corresponding to complex
conjugation, in such a way that the cofibration sequence (see (5.21))

.6.23/ IZ.1/!HC
exp
��! IC�

is a cofibration sequence of Z=2–equivariant spectra. Though there is no mystery about
the action on the abelian-group-valued functor Œ� ; IC��, there are infinitely many
refinements of this to an action on the spectrum IC� . Here we will motivate a specific
choice, and check it against three situations in which there is a naturally occurring action.

6.3.1 Z=2–actions The space of Z=2–actions on a spectrum X is the space of maps

BZ=2! BhAut.X/

from the classifying space of Z=2 to the classifying space of the monoid of self-
homotopy equivalences of X. Smashing a map S0! S0 with the identity map of X
gives a map

BhAut.S0/! BhAut.X/:

The maps BZ=2! BhAut.S0/ then correspond both to (i) Z=2–actions on S0 and
to (ii) Z=2–actions on all spectra which are natural in the sense that they commute
with all maps and are homotopy-colimit-preserving. Put more succinctly, the “natural”
Z=2–actions are homotopy-colimit-preserving sections of the forgetful functor

.6.24/ ShZ=2
! S:

Associating to a vector space its one-point compactification defines a map

BO! BhAut.S0/;

so that a virtual representation V of Z=2, of virtual dimension 0, determines a natural
Z=2–action via the composition

BZ=2
V
�! BO! BhAut.S0/:

The corresponding section of (6.24) is the one sending a spectrum X to SV ^X.

Remark 6.25 Because S0 is the tensor unit in S, the space BhAut.S0/ is actually
an infinite loop space. The map BO ! BhAut.S0/ also turns out to be an infinite
loop map. This means that “natural” Z=2–actions may be composed and that the
composition of actions corresponding to virtual representations V and W is the natural
action corresponding to V ˚W .
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Remark 6.26 From the defining property of IZ.1/ one can check that the map

Map.S0; S0/!Map.IZ.1/; IZ.1//;

f 7! f ^ id;

is a weak equivalence. Now the loop space of any component of the space of maps
BZ=2! BhAut.S0/ is the space of maps BZ=2! hAut.S0/. The homotopy type
of this latter space falls within the purview of the Segal conjecture and consists of the
path components of QBZ=2C �QS0 whose first component is a generator of

�0QBZ=2C � Z:

For this reason, one knows a lot about the space of actions of Z=2 on IZ.1/ and,
in particular, that there are infinitely many inequivalent actions inducing the sign
representation on �0 IZ.1/.

For the spectrum HC one has BhAut.HC/ � K.Aut.C/; 1/, in which Aut.C/ is
the group of abelian group automorphisms of C . In this case there is no difference
between Z=2–actions on HC and Z=2–actions on C , and complex conjugation is
uniquely specified.

6.3.2 Duality Spectra with no negative homotopy groups are modeled by (higher)
Picard groupoids. Picard groupoids come equipped with a Z=2–action sending each
object to its inverse. This corresponds to a natural Z=2–action on spectra which we
now determine.

Let C be a Picard category and consider the category of pairs .x; y/ equipped with an
isomorphism x˝y! 1. The functor .x; y/ 7! x is an equivalence of categories, so
the Z=2–action sending x to its inverse corresponds to the action on the category of
pairs sending

x˝y! 1

to

y˝ x! x˝y! 1:

If C corresponds to a spectrum X then the category of pairs corresponds to X _X �
X �X, and the category of pairs .x; y/ equipped with an isomorphism x˝y! 1 is
the homotopy fiber of the map

X _X !X:
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Writing this in terms of equivariant spectra we are looking at the homotopy fiber of

Z=2C ^X !X;

which by (6.21) is Xı .

Summarizing, we have the following.

Proposition 6.27 The natural Z=2–action corresponding to “duality” is given by the
map

BZ=2
ı
�! BO! BhAut.S0/

and associates to a spectrum X the Z=2–equivariant spectrum

Xı D Sı ^X D S��1 ^X:

6.3.3 Complex conjugation A complex conjugation on IZ.1/ corresponds to a map

� W BZ=2! BhAut.IZ.1//

having at least the property that its effect on �1 is the sign representation of Z=2

on Z.1/. Write
T
�
BZ=2; BhAut.IZ.1//

�
c

for the space of maps inducing this homomorphism on �1 . This space is a union of
infinitely many path components of T

�
BZ=2; BhAut.IZ.1//

�
(see Remark 6.26).

Similarly, complex conjugation on IC� corresponds to a map

�0 W BZ=2! BhAut.IC�/;

whose effect on �1 corresponds to the action of Z=2 by complex conjugation on C� .
Write T .BZ=2; BhAut.IC�//c for this space of maps.

Since the maps
Map.IZ.1/;HC/! Hom.Z.1/;C/;

Map.HC; IC�/! Hom.C;C�/

are weak equivalences, so are the maps

Map.IZ.1/;HC/hZ=2
! Hom.Z.1/;C/Z=2;

Map.HC; IC�/hZ=2
! Hom.C;C�/Z=2;

for any Z=2–actions on IZ.1/ and IC� . It follows that any action � as above extends
uniquely to a Z=2–equivariant map

IZ.1/�!HC
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and so induces a Z=2–action �0 on the cofiber IC� . Similarly an action �0 as above
induces a Z=2–action � on IZ.1/. In this way we have an equivalence

.6.28/ T
�
BZ=2; BhAut.IZ.1//

�
c
� T .BZ=2; BhAut.IC�//c :

The space of real structures on IZ.1/ and IC� will be defined to be a single path
component of the above spaces. Before specifying which one, we turn to a motivating
example.

Example 6.29 (Hermitian structures and positivity) Let f VectC be the topological
groupoid of finite-dimensional complex vector spaces and (complex) linear isomor-
phisms, endowed with the symmetric monoidal structure of ˝. For V 2 f VectC,
let V � be the dual vector space. We define a covariant “duality” functor V 7! V _ by

V _ D V �;

f _ D .f �/�1:

The canonical isomorphism V __ � V extends the functor V _ to a Z=2–action
on f VectC. (See Appendix B.) There is another Z=2–action

V 7! V

gotten by redefining scalar multiplication by x 2C to be scalar multiplication by xx .

Let f VectCpos be the topological groupoid of finite-dimensional complex vector spaces
equipped with a positive definite Hermitian inner product, and unitary transformations.
Since the inclusion U.n/� GLn.C / is a homotopy equivalence, the functor

f VectCpos
! f VectC

is a weak equivalence of topological categories. On f VectCpos the Hermitian inner
product gives a natural isomorphism V �� V , trivializing the composition “bar star” of
the two Z=2–actions defined above. This suggests that whatever complex conjugation
is, on the categories in which C is regarded as having a topology, the combined action
(in the sense of Remark 6.25) of complex conjugation and duality should be trivializable.
The trivialization is noncanonical, however. One might have chosen negative definite
vector spaces or, for each prime p , made a choice of positive or negative definite
Hermitian inner products on vector spaces of dimension p and then extended to all
finite-dimensional vector spaces by tensoring.

With Example 6.29 as motivation, and in view of Proposition 6.27, we propose the
following.
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Definition 6.30 The space of real structures on IZ.1/ is the path component of the
space

.6.31/ T
�
BZ=2; BhAut.IZ.1//

�
c

containing the map 1� � . The space of real structures on IC� is the path component
of the space T .BZ=2; BhAut.IC�//c corresponding to the space of real structures
on IZ.1/ under the equivalence (6.28).

As above, we write IZ.1/� for the Z=2–spectrum corresponding to a real structure
� W BZ=2 ! BhAut.IZ.1//. Any real structure fits canonically into a cofibration
sequence

.6.32/ IZ.1/�!HC�0 exp
��! .IC�/�

0

in which � and �0 correspond under the equivalence (6.28); the superscript on HC is
the unique complex conjugation, explained at the end of Section 6.3.1.

Remark 6.33 Since the space of real structures � on IZ.1/ is connected, but not
contractible, any IZ.1/� is noncanonically equivariantly equivalent to IZ.1/
 D

S1�� ^ IZ.1/.

Ansatz 6.34 We use the basepoint in (6.31) to fix once and for all � D 
 D 1� � .
Under the equivalence (6.28) this determines a real structure �00 on IC� . Our choices
render the cofibration sequence (6.32) as

.6.35/ IZ.1/
 !HC�00
exp
��! .IC�/�

0
0 :

Remark 6.36 The real structure 
 on IZ.1/ is the restriction of a natural action
of Z=2; the corresponding real structure �00 is not. However, in terms of the polar
decomposition C� D T �R>0 we have

.6.37/ .IC�/�
0
0 � IT ^S1�� _HR>0:

The spectrum IT is characterized in the homotopy category of spectra by a functorial
isomorphism

.6.38/ ŒB; IT � Š�! Hom.�0B;T /

for all spectra B, analogous to (5.13). The equivariant spectrum IT
 D IT ^S1��

fits into a cofibration sequence analogous to (6.35):

.6.39/ IZ.1/
 !HR.1/�
0
0

exp
��! IT �00 :
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Remark 6.40 This definition of real structure fits with the three cases in which one
has an algebraic interpretation of IZ.1/ (see Remark 5.16). The 0–space of †IZ.1/

is modeled by the unit complex numbers with the usual topology; that of †2IZ.1/

corresponds to the symmetric monoidal groupoid of Z=2–graded complex lines; and
†3IZ.1/ to the Brauer–Wall symmetric monoidal 2–groupoid of Z=2–graded simple
algebras over C , Z=2–graded bimodules and intertwiners. These three models come
equipped with natural real structures, coming from change of scalars. By direct
computation one can show that the homotopy fixed points of †iIZ.1/
 is modeled by
the corresponding real versions of the three categories described above. To check this
it suffices to do so when i D 3 as the other cases are gotten from it by passing to loop
spaces. The real Brauer–Wall category corresponds to a spectrum B with homotopy
groups

�i B D 0 for i … Œ0; 3�;

�0B D Z=8 (the eight real Clifford algebras);

�1B D Z=2 (the even and odd real line);

�2B D f˙1g

and has the property that the multiplication-by-� maps

�0B! �1B! �2B

are nonzero. A straightforward computation shows that any spectrum X with these
properties is homotopy equivalent to B . To verify the claim it therefore suffices to
show that the .�1/–connected cover of .†3IZ.1/
 /hZ=2 has these properties. We
therefore need to know the groups

�i .†
3IZ.1/
 /hZ=2 for i � 0

and the effect of multiplication by �. Now for the real structure 
 D 1� � one has

Map.S0; †3IZ.1/
 /hZ=2
�Map.S0; S .1��/ ^†3IZ.1//hZ=2

�Map.S .��1/; †3IZ.1//hZ=2

�Map.S .��1/
hZ=2 ; †

3IZ.1//

�Map.Thom.BZ=2I � � 1/; S3 ^ IZ.1//;

by (6.13) and (6.16). We therefore need information about

ŒThom.BZ=2I � � 1/; S i ^ IZ.1/� for 1� i � 3
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or, from the defining property of IZ.1/, the character groups of

�i Thom.BZ=2I � � 1/ for 0� i � 2:

As described in Section 10, these groups coincide with the same homotopy groups
of MTPin� and are shown in Figure 5 (the case s D 1) to be the groups Z=2, Z=2,
and Z=8 with both �–multiplications nonzero.

6.3.4 Terminology It will be convenient in the sequel to have names for the objects
assigned to closed manifolds of arbitrary codimension in an invertible field theory. In
codimension 0 we have a complex number and in codimension 1 an object in the
category of complex Z=2Z–graded lines with the monoidal structure of graded tensor
product and the Koszul sign in the symmetry. We refer to such an object as a ‘complex
super line’ or a ‘Z=2Z–graded line’. Hence in codimension k we introduce the term
‘complex super k–line’.24

Definition 6.41 (i) IZ.1/ is the spectrum of higher complex super lines.

(ii) .IZ.1/
 /hZ=2 is the spectrum of higher real super lines.

(iii) IZ.1/H WD .IZ.1/
 ^S��1/hZ=2 is the spectrum of higher Hermitian super
lines.

(iv) IC� is the spectrum of higher flat complex super lines.

(v) The kth space in the spectrum IZ.1/ is the space of complex super k–lines.

Example 6.29 is the motivation for (iii). There are analogs of (iv) and (v) for real and
Hermitian super lines. For example, the fixed-point spectrum

.6.42/ IC�H WD ..IC�/�
0
0 ^S��1/hZ=2

is the spectrum of higher flat Hermitian super lines, and the kth space of that spectrum
is the space of flat Hermitian super k–lines. As for the fixed-point spectrum in (iii),
since S1�� ^S��1 is the sphere spectrum with the trivial Z=2–action — the “bar star”
involution — we deduce from (6.15) a canonical identification

.6.43/ IZ.1/H DMap.BZ=2C; IZ.1//:

Pulling back along BZ=2! pt we obtain a map

.6.44/ IZ.1/! IZ.1/H I

the image is a summand, split by a choice of point in BZ=2.

24Kapranov [65, Section 3.4] suggests a higher use of super based on the sphere spectrum.
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Definition 6.45 The image IZ.1/pos of (6.44) is the spectrum of higher positive
definite Hermitian super lines.

The kth space in IZ.1/pos is the space of positive definite Hermitian super k–lines. De-
fine the spectrum of higher flat positive definite Hermitian super lines as the homotopy
pullback

.6.46/

IC�pos
//

��

†IZ.1/pos

��

IC�H
// †IZ.1/H

We examine this homotopy-theoretic definition of positivity by focusing on the top
piece, first in the ungraded case and then in the Z=2Z–graded case.

Example 6.47 (Hermitian lines) Consider the spectrum †2HZ. Its 0–space repre-
sents the ordinary groupoid of complex lines; morphisms have the continuous topology.
There is a contractible space of trivializable involutions, and we imagine a point in it
to represent bar star. The analog of (6.43) implies that the set of components of the
fixed-point spectrum of any such involution is

.6.48/ �0 Map.BZ=2C; †
2HZ/D �0†

2HZ˚�0 Map.BZ=2;†2HZ/

D f0g˚Z=2:

The 0–space of Map.BZ=2C; †2HZ/ represents the groupoid of Hermitian lines, and
the Z=2Z tracks the sign of the Hermitian form. The positive subspace, obtained by
pulling back along BZ=2! pt, picks out the positive definite forms.

Example 6.49 (super Hermitian lines) The 0–space of the spectrum †2IZ.1/ rep-
resents the groupoid of super lines L with continuous topology on morphisms. We
compute the set of components of the fixed-point spectrum of a trivializable involution:

.6.50/ �0 Map.BZ=2C; †
2IZ.1//D �0†

2IZ.1/˚�0 Map.BZ=2;†2IZ.1//

D Z=2˚Z=2:

This is the group of isomorphism classes of super Hermitian lines. The first Z=2Z

is the grading of the line, the second the “sign” of the form. But the sesquilinearity
condition

.6.51/ hx̀1; `2i D .�1/
j`1jj`2jhx̀2; `1i for `1; `2 2 L

implies that if L is odd then hx̀; `i 2
p
�1R for all ` 2 L. (The form is a bilinear
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map L�L!C .) The notion of positivity in this case chooses a ray in
p
�1R; there

is no canonical choice. In the literature, eg [31, (4.4.2)], an arbitrary choice is made. In
our homotopy-theoretic presentation, this choice lies in the identification of the space
of super Hermitian lines with the 0–space of †2IZ.1/. As we descend deeper into
extended field theories, there are further choices to be made; see Remark 6.26.

7 Reflection structures and stability

We begin in Section 7.1 by reviewing Madsen–Tillmann spectra; see [52, Section 3].
They give a filtration (7.6) of Thom spectra, which leads to an analysis of the obstructions
to extending invertible field theories to stable theories. In Section 7.2 we develop
the relation between naive positivity and stability in two situations: nonequivariant
discrete theories and equivariant continuous theories. In each case the only obstruction
in n spacetime dimensions arises from the partition function of the n–sphere. But
its positivity does not guarantee positive definite metrics on the state spaces attached
to arbitrary .n�1/–manifolds (Proposition 7.37), consideration of which is deferred
until Section 8. We conclude in Section 7.3 by analyzing the obstruction to extending
“H-type” theories to “L-type” theories.

7.1 Madsen–Tillmann and Thom spectra

The homomorphism �n WHn ! On in (2.3), which defines the symmetry type of a
theory, produces a rank n vector bundle Vn! BHn over the classifying space. We
refer to Section 6.1.4 for the general theory of Thom spectra.

Definition 7.1 The Madsen–Tillmann spectrum MTHn is the Thom spectrum of
�Vn! BHn .

More natural for us is a suspension, the connective spectrum

.7.2/ †nMTHn D Thom.BHnIRn�Vn/:

The general construction of Thom spectra is described in Section 6.1.4. Here is a
geometric description. Let Grn.RnCq/ denote the Grassmannian of n–dimensional
subspaces of RnCq . It approximates BOn , and the pullback

.7.3/

Xn;nCq //

��

BHn

��

Grn.RnCq/ // BOn
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is a finite-dimensional approximation to BHn . The qth space of the spectrum (7.2) can
be taken to be the Thom space Thom.Xn;nCqI Qq/ of the vector bundle Qq!Xn;nCq ,
which is the pullback of the rank q “quotient bundle” over the Grassmannian: the fiber
at a subspace W �RnCq is W ? .

Remark 7.4 The Pontrjagin–Thom construction provides the basic relationship to
Hn–manifolds. If a map SkCq! Thom.Xn;nCqI Qq/ is transverse to the 0–section
of Qq!Xn;nCq , then the inverse image of the 0–section is a k–manifold M � SkCq

whose stable tangent bundle is equipped with an isomorphism to the pullback of
the “tautological bundle”25 Vn!Xn;nCq , which is equipped with an Hn–structure.
Theorem 5.12 implies that the abelian group �k †nMTHn is generated by closed k–
dimensional Hn–manifolds under disjoint union. The class of a closed manifold M k

is zero if and only if M D @W , where W is a compact .kC1/–manifold whose stable
tangent bundle is isomorphic to a rank n bundle with an Hn–structure extending that
of M. This bordism group was introduced by Reinhart [97]; see also [34, Appendix].

Remark 7.5 Not every element of the homotopy group is represented by a manifold;
group completion of the semigroup of manifold classes is needed to obtain the homotopy
group. For example, �0 MTO0 Š Z but since a 0–dimensional manifold has a unique
O0–structure such manifolds only realize the submonoid of nonnegative integers. We
also remark that the sphere S2m represents a nonzero element in �2m†2mMTSO2m ,
but is zero in the next group �2mC1†

2mC1MTSO2mC1 : the closed ball D2mC1

has nonzero Euler characteristic so no SO2m–structure. As another illustration, the
2–sphere and the genus 2 surface represent opposite elements of �2†2MTSO2 : a
genus 2 handlebody with a 3–ball excised admits an SO2–structure.

The stabilization result Theorem 2.19 provides a sequence of spectra26

.7.6/ †nMTHn!†nC1MTHnC1!†nC2MTHnC2! � � �

whose colimit, denoted MTH , is the Thom spectrum of the stable vector bundle

.7.7/ �V ! BH

classified by the negative of the classifying map of (2.28); see the construction in
Section 6.1.4, especially the presentation (6.11), which is equivalent to (7.6). From

25The fiber of the tautological bundle at a point W �RnCq in Grn.RnCq/ is W .
26That theorem supplies a stable tangential structure BH from which BHn is constructed by pullback;

recall (2.27).
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the geometric description in Remark 7.4 the homotopy groups �k †nMTHn stabilize
once n > k ; then �k MTH is the bordism group of k–dimensional manifolds with
a stable tangential H–structure. We identify MTH with the Thom spectrum MH?

of the perpendicular stable normal structure. In many cases H? DH ; however, for
example, .Pin˙/? D Pin� .

Remark The classifying space BH? is the pullback

.7.8/
BH? //

��

BH

��

BO // BO

in which the bottom map classifies the negative of the universal bundle (of rank
zero). There is a sequence of inclusions � � �H?n ,!H?nC1 ,!H?nC2 � � � of compact Lie
groups such that BH? is the colimit of BH?n . Namely, define zH?n as the pullback
(see (2.10))

.7.9/

1 // K // zH?n

����

// Pin�n

����

// 1

1 // K // J // f˙1g // 1

and then set

.7.10/ H?n Š
zH?n =h.�1; k0/i:

One checks that BH?n is the pullback

.7.11/
BH?n

//

��

BH

��

BOn // BO G

Following Ansatz 5.14 an invertible topological field theory is a map with domain
†nMTHn . To investigate extensions along the sequence (7.6) we will use the following
in Section 7.2.

Proposition 7.12 The map †nMTHn ! †nC1MTHnC1 has fiber †n.BHnC1/C .
The map †n.BHnC1/C!†nMTHn is represented by BHn!BHnC1 , the universal
family of Hn–spheres.

See [52, Section 3.1; 44, Lemma 3.1] for a proof. The universal family of spheres was
mentioned in Remark 4.32. We recall that spectra are built out of based spaces; for a
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based space X the spectrum †nXC is the one-point union of Sn and the suspension
spectrum †nX, and the latter is .n�1/–connected if X is connected.

Our final task in this section is to refine Ansätze 5.14 and 5.26, which formulate
invertible field theories as maps of spectra, to include reflection structures. Recall
from Section 4 that the reflection structure on the bordism category maps a manifold
with Hn–structure to the same manifold with the opposite Hn–structure, which is
defined using the group extension (3.14). Turning to bordism spectra we observe
that this group extension induces a Z=2–action on BHn and makes the vector bundle
Vn! BHn into an equivariant vector bundle V ˇn ! BH

ˇ
n . Applying the discussion

in Section 6.2.2 we refine the Thom spectrum (7.2) to a Z=2–equivariant spectrum
we denote by †nMTHˇ

n . There is an equivariant lift of (7.6). Recall the involutions
on IZ.1/ and IC� chosen after Remark 6.33.

Ansatz 7.13 (i) A discrete invertible n–dimensional extended topological field
theory with symmetry group Hn and reflection structure is an equivariant map

.7.14/ F W†nMTHˇ
n !†n.IC�/�

0
0 :

(ii) A continuous invertible n–dimensional extended topological field theory with
symmetry group Hn and reflection structure is an equivariant map

.7.15/ ' W†nMTHˇ
n !†nC1IZ.1/
 :

The space of theories of this type is

.7.16/ In.Hn/reflection DMapZ=2.†nMTHˇ
n ; †

nC1IZ.1/
 /:

7.2 Naive positivity and stability

We first prove that the double of an Hn–manifold is null-bordant through an HnC1–
manifold. Recall the evaluation bordism (4.7), the identification of duals and bars in
Proposition 4.8, and Definition 4.24 of a double.

Proposition 7.17 Let Y0 and Y1 be closed .n�1/–dimensional Hn–manifolds and
X W Y0! Y1 an Hn–bordism. Then

.7.18/ ˇX q eY1qX W ˇY0qY0!∅n�1

is HnC1–bordant to eY0 .
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Proof The bordism27 is Œ0; 1��X.

Corollary 7.19 The double �X of a compact Hn–manifold with boundary is null-
bordant through an HnC1–manifold.

By Corollary 4.30 this applies to Sn with its canonical Hn–structure, and so every
double is HnC1–bordant to Sn .

Proof Apply Proposition 7.17 to the bordism X W∅n�1!@X (and smooth the corners
of Œ0; 1��X ).

Remark 7.20 If X is the 2–dimensional disk, viewed as a bordism from the empty
1–manifold to the circle, then �X is the 2–dimensional sphere S2 and the null-
bordism Œ0; 1��X is the 3–dimensional ball D3 . The Euler characteristic obstructs the
existence of an H2–structure on D3 which restricts to the given H2–structure on S2

(for any stable tangential structure H ).

The sequence of bordism spectra (7.6) results in a special type of invertible field theory.
The following applies to both discrete (Ansatz 5.14) and continuous (Ansatz 5.26)
invertible field theories, possibly with reflection structure (Ansatz 7.13).

Definition 7.21 An n–dimensional invertible topological field theory with domain
†nMTHn is stable if it is the restriction of a theory defined on MTH .

Stability can be investigated one step at a time in the sequence (7.6) using obstruction
theory. We first carry this out for discrete invertible topological field theories without
reflection structure. Recall that the sphere has a canonical Hn–structure given by the
principal bundle HnC1!HnC1=Hn .

Theorem 7.22 A discrete invertible theory F W†nMTHn!†nIC� is stable if and
only if F.Sn/D 1. The subspace of Map.†nMTHn; †nIC�/ consisting of theories
F with F.Sn/D1 is homotopy equivalent to the mapping space Map.MTH;†nIC�/.

By Corollary 7.19 the condition is equivalent to F.�X/D 1 for all compact Xn with
boundary.

27It is a bordism of manifolds with boundary or, better, a higher morphism in a multibordism category.
We only use Y0 D ∅n�1 , as in Corollary 7.19, in which case Œ0; 1��X is a null-bordism of a closed
manifold.
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Proof If F is the restriction of zF WMTH ! †nIC� , then F.Sn/ D zF .Sn/ D 1
since Sn is null-bordant as an HnC1–manifold. Conversely, by Proposition 7.12 the
map F extends over †nC1MTHnC1 if and only if it evaluates trivially on the universal
family of Hn–spheres. But that evaluation is the constant function BHnC1 ! C�

with value F.Sn/. There is no further obstruction in the sequence (7.6), because the
subsequent fibers have vanishing homotopy groups in degrees � n and �q †nIC�D 0

for q > n.

To analyze the space of discrete stable theories we note that the cofibration sequence

.7.23/ †nMTHn!†nC1MTHnC1!†nC1.BHnC1/C

of spectra induces a fibration sequence

.7.24/ Map.†nC1.BHnC1/C; †nIC�/!Map.†nC1MTHnC1; †nIC�/

!Map.†nMTHn; †nIC�/!Map.†n.BHnC1/C; †nIC�/

of mapping spaces. The first space is contractible, since †nC1.BHnC1/C is n–
connected. The fiber of the last map is the subspace indicated in the theorem, by
the obstruction argument in the previous paragraph. To pass to stable maps make a
similar argument with the cofibration sequence

.7.25/ †nC1MTHnC1!MTH ! C

and the induced fibration on mapping spaces.

Remark 7.26 If Xn is a closed Hn–manifold, then Œ0; 1� � X is a null-bordism
of ˇX qX. Thus if F is stable and has a reflection structure, then kF.X/k2 D 1.

Next, we turn to continuous invertible field theories with reflection structure, which
according to Ansatz 7.13(ii) are Z=2Z–equivariant maps

.7.27/ ' W†nMTHˇ
n !†nC1IZ.1/
 :

We investigate stability for these equivariant theories.

Remark 7.28 As explained after (5.25) a continuous invertible field theory assigns a
Z.1/–torsor to a closed Hn–manifold, hence an equivariant theory (7.27) assigns to
a ˇ–equivariant family X! S of closed Hn–manifolds an equivariant Z.1/–torsor
over S, where the action on Z.1/–torsors is that in Example B.5; see also Remark 6.40.
The universal model is the map exp WC!C� , equivariant for complex conjugation,
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with fibers Z.1/–torsors. Over the fixed-point set R� D R>0qR<0 the fibers are
Z.1/–torsors of Type P and Type N; see Example B.5. As discussed in Section 5.4
a nontopological invertible field theory (type (a) in that discussion) has a homotopy
class that is a continuous theory. If we have a reflection structure, then the partition
function of a ˇ–fixed Hn–manifold is real, and if it is positive then the corresponding
Z.1/–torsor has Type P.

Remark 7.29 A stable continuous theory z' assigns an integer (better, element
of Z.1/) to a closed .nC1/–manifold. The universal property (5.17) of maps into the
Anderson dual implies that the topological field theory associated to z' is determined
by its truncation to n– and .nC1/–manifolds.

Theorem 7.30 An equivariant continuous invertible field theory

' W†nMTHˇ
n !†nC1IZ.1/


is stable if and only if '.Sn/ has Type P. The subspace of

MapZ=2.†nMTHˇ
n ; †

nC1IZ.1/
 /

consisting of equivariant continuous invertible field theories with Type P partition
function on Sn is homotopy equivalent to the mapping space

MapZ=2.MTHˇ ; †nC1IZ.1/
 /:

Proof Because Sn is diffeomorphic to ˇSn , the partition function '.Sn/ is a
Z.1/–torsor with involution. The partition function of the universal family of n–
spheres is then a Z.1/–torsor over BHnC1 with involution covering the trivial invo-
lution on the base. It is classified by a map BHnC1 ! R� whose homotopy class
in H 0.BHnC1I f˙1g/Š f˙1g encodes the type (P or N) of '.Sn/.

Now use the stabilization sequence (7.6) as before. If ' is stable, then it is trivial on
the fiber †n.BHnC1/C of the first map, which is represented by the universal family
of n–spheres. The argument in the preceding paragraph shows that '.Sn/ has Type P.
To prove the converse, if '.Sn/ has Type P then the first obstruction vanishes, so ' is
the restriction of a map †nC1MTHˇ

nC1!†nC1IZ.1/
 . The obstruction at the next
stage is a map †nC1.BHˇ

nC2/C!†nC1IZ.1/
 . But

†nC1.BH
ˇ
nC2/C ' S

nC1
_†nC1BH

ˇ
nC2
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with Z=2 acting trivially on the suspension SnC1 of the basepoint. Since †nC1BHˇ
nC2

is .nC1/–connected, the obstruction lies in

.7.31/ ŒSnC1; †nC1IZ.1/
 �Z=2 Š ŒS��1; IZ.1/�Z=2

Š ŒEZ=2C ^Z=2 S
��1; IZ.1/�

Š Hom.�0 EZ=2C ^Z=2 S
��1;Z.1//D 0;

since
�0 EZ=2C ^Z=2 S

��1
D �1RP1 D Z=2:

There are no further obstructions to extending to MTH , because the fibers have
nonvanishing homotopy groups only in degrees greater than nC1 and �q †nC1IZ.1/D

0 for q > nC 1.

The equivariant version of (7.23) with the ˇ–involution leads to the fibration sequence

.7.32/ MapZ=2.†nC1.BH
ˇ
nC1/C; †

nC1IZ.1/
 /

!MapZ=2.†nC1MTHˇ
nC1; †

nC1IZ.1/
 /

!MapZ=2.†nMTHˇ
n ; †

nC1IZ.1/
 /

!MapZ=2.†n.BH
ˇ
nC1/C; †

nC1IZ.1/
 /:

As in (7.24) the first space is contractible. The obstruction argument above identifies
the fiber of the last map as equivariant continuous theories with positive sphere partition
function. To pass to stable maps use an equivariant version of (7.25).

Corollary 7.33 There is a 1W1 correspondence

.7.34/

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

isomorphism classes of continuous
invertible n–dimensional extended

topological field theories with
(i) symmetry group Hn,

(ii) reflection structure, and
(iii) partition function on Sn of Type P

9>>>>>>>=>>>>>>>;
Š ŒMTHˇ ; †nC1IZ.1/
 �Z=2:

Example 7.35 The restriction map28

.7.36/ ŒMTSOˇ ; †4IZ.1/
 �Z=2! Œ†3MTSOˇ3 ; †
4IZ.1/
 �Z=2

28The involution on �4 MTSO and �4†
3MTSO3 acts as �1 : both groups are detected by the

signature, which negates under orientation-reversal.
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is an index-two inclusion of infinite cyclic groups. It follows that there exist con-
tinuous invertible 3–dimensional oriented theories ' with reflection structure such
that '.S3/ has Type N. In turn, this suggests the existence of invertible nontopo-
logical theories with reflection structure whose real-valued partition function on S3

is negative; see Section 5.4. Here is an explicit example. The domain is the geo-
metric bordism category of oriented Riemannian manifolds. The partition function
is F.X3/ D exp.2�i�X /, where �X is the Atiyah–Patodi–Singer invariant (of the
operator ‘Bev ’ in [9]). To apply the arguments in Theorem 7.30 we need to use a
Riemannian sphere that is a double — the round sphere does nicely — in which case
the spectrum of the APS operator is symmetric about zero and so the �–invariant
vanishes. The dimension of the kernel is one, �X D

1
2

, and so F.S3/ D �1. We
remark that the corresponding integer invariant of a closed oriented 4–manifold W
is 1

2
.Sign.W / ˙ Euler.W //; either sign works. Also, the square of this theory,

whose deformation class generates ŒMTSOˇ ; †4IZ.1/
 �Z=2 , represents “Kitaev’s
E8–phase” [73].

Let F be a invertible topological n–dimensional theory, and suppose that F.Sn/ > 0.
Then the Hermitian form on F.Sn�1/ is positive definite; see (4.27). The positivity
holds for any null-bordant .n�1/–manifold, but on other manifolds there is no guarantee
of positivity (Definition 4.18), even for stable theories.

Proposition 7.37 Let F be an invertible n–dimensional topological field theory of
Hn–manifolds with F.Sn/ > 0. Suppose F has a reflection structure. Then the sign
of the Hermitian form (4.16) on a closed .n�1/–manifold is a bordism invariant and
determines a homomorphism

.7.38/ �n�1†
n�1MTHn�1! f˙1g:

Proof If X W Y0! Y1 is an Hn–bordism, then by reversing the arrow of time on the
incoming boundary we obtain X 0 W∅n�1! ˇY0qY1 . Hence by Corollary 7.19 and
the remark which follows, we deduce that the Hermitian line F.Y0/˝F.Y1/ is positive
definite. Therefore, F.Y0/ and F.Y1/ are simultaneously positive or simultaneously
negative.

We conclude this section with a lemma we will use in Section 8.

Lemma 7.39 The map †nMTHn!MTH induces a surjection on HnC1.�IR/.

We remark that �nC1.B/˝R!HnC1.BIR/ is an isomorphism for any spectrum B.
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Proof Arrange the stabilization (7.6) and cofibration sequences (7.23) as follows:

.7.40/

†n.BHnC1/C

��

†nC1.BHnC2/C

s
��

†nMTHn
i

//

��

†nC1MTHnC1
j

//

�

��

†nC2MTHnC2

��

†n.BHn/C †nC1.BHnC1/C †nC2.BHnC2/C

The two compositions with shape
�

��
� // �

��
�

are cofibration sequences. The map s� on �nC1 sends the generator of the infi-
nite cyclic group �nC1†

nC1.BHnC2/C to the class of SnC1 , and the map ��

on �nC1 sends the class of a closed .nC1/–manifold to its Euler number. Also,
�nC1†

nC2.BHnC2/CD 0. It follows that j� on �nC1 is surjective. If n is even, then
��D0 on �nC1 and by exactness i� is surjective. If n is odd, then ��ıs� is multiplica-
tion by 2. Working now on �nC1˝R we can lift any class in �nC1†nC2MTHnC2˝R

through j� to have zero image under �� and hence, by exactness, to be in the image
of i�˝R. In other words, .j ı i/�˝R is surjective. Finally, the stabilization map
†nC2MTHnC2!MTH induces an isomorphism on �nC1 .

7.3 H-type theories

Wen [113] and Morrison and Walker [90] introduced the notion of n–dimensional
topological field theories defined only on n–manifolds with an infinitesimal time
direction. These are of Hamiltonian type, or H-type, and are the minimal expectation
for the low-energy effective theory describing a Hamiltonian system. In this paper
we assume emergent relativistic invariance, so do not engage with H-type theories
in a serious way. Nonetheless, in this subsection we indicate briefly how to analyze
invertible theories of H-type.

The first issue is definitional: Do the n–manifolds in the bordism category have (i) an
oriented time direction or merely (ii) a time direction? In unoriented theories this means
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a reduction of On to either (i) On�1 or (ii) O1�On�1 . We opt for (i). After all, a Hamil-
tonian system does have a definite orientation of time, and even in relativistic quantum
field theory we assume a time orientation of Minkowski spacetime (Section 2.1). Then
a more general symmetry group Hn is reduced to Hn�1 , and an invertible theory of
H-type is a map out of the spectrum †n�1MTHn�1 .

Now to the extension question, as in our study of stability: Does an equivariant
map ' W†n�1MTHˇ

n�1!†nC1IZ.1/
 extend to an equivariant map †nMTHˇ
n !

†nC1IZ.1/
 ? (In Wen’s language this is an extension from H-type to L-type.) The ob-
struction is the value of ' on the universal family of Hn�1–spheres Sn�1 parametrized
by BHn . Without the equivariance the value29 is a Z=2Z–graded complex line bundle
over BHn ; the equivariance implies the value is a Z=2Z–graded real line bundle. (See
Remark 6.40 for the connective cover of †2IZ.1/ and its bar involution 
 .) The first
obstruction is the grading: the single quantum state on Sn�1 should be bosonic. If
so, the remaining obstruction is a class in H 1.BHnIZ=2Z/ Š Hom.Hn;Z=2Z/ Š
Hom.�0Hn;Z=2Z/. For example, if Hn D On or Hn D Pin˙n , then a hyperplane
reflection should act trivially on the line '.Sn�1/.

Example 7.41 Continuing Example 7.35, the restriction map

.7.42/ Œ†3MTSOˇ3 ; †
4IZ.1/
 �Z=2! Œ†2MTSOˇ2 ; †

4IZ.1/
 �Z=2

is an index-two inclusion of infinite cyclic groups. So there exists a continuous invertible
theory ' of H-type with reflection structure that does not extend to all oriented 3–
manifolds. Here is an example defined on the category of oriented Riemannian 2–
manifolds: assign the Z=2Z–graded determinant line '.Y / of the x@–operator to a
closed 2–manifold Y . Then index x@S2 D 1 implies that '.Y / is odd.

8 Positivity in extended invertible topological theories

In this section we develop the theory of extended positivity in invertible field theories.
We already introduced a homotopy-theoretic manifestation of extended positivity for
higher super lines in Definition 6.41. Here, in Section 8.1, we begin by introducing
spaces of invertible field theories leading up to the space of invertible reflection positive

29Parallel to the Z.1/–torsors attached to n–manifolds are graded gerbes attached to .n�1/–manifolds.
The construction of a line may depend on a choice of metric, for example, so may be part of a nontopolog-
ical theory.
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theories. Our main result, Theorem 8.20, identifies the homotopy type of the space of
invertible continuous reflection positive theories as the 0–space of the Anderson dual
to a Thom spectrum. The homotopy type of the corresponding space in the discrete
case, worked out in Theorem 8.29, is a corollary, as is Theorem 1.1 in the introduction.
The proof of Theorem 8.20 appears in Sections 8.2 and 8.3.

8.1 Spaces of invertible field theories, extended positivity, and stability

8.1.1 Preliminary: splitting off a reflection Fix n > 0. Recall that if .Hn; �n/ is
a symmetry type (Definition 2.4), then we have a canonical coextension (3.14) of Hn
by f˙1g to a group yHn . It is this extension that determines the ˇ–involution on the
Madsen–Tillmann spectrum MTHn , as in the discussion preceding Ansatz 7.13; the
homotopy quotient of MTHˇ

n is MT yHn .

The splitting of interest is contained in (3.25) (and is also implicit in Proposition 4.8).
It exists whenever there is an “auxiliary” direction. The middle vertical homomorphism
in (3.25) induces

BHn�1 �BZ=2! B yHn;

which factors the projection

BHn�1 �BZ=2! B yHn! BZ=2:

This, in turn, gives a sequence of equivariant maps

.8.1/ †n�1MTHn�1 ^S1�� !†nMTHˇ
n !MTH ^S1��

factoring the smash product of the identity map of S1�� with the defining inclusion of
†n�1MTHn�1 into MTH .

The stable form of the splitting implies the following.

Proposition 8.2 The Z=2–equivariant spectra MTHˇ and MTH 
 are canonically
equivariantly weakly equivalent.

We recall that, despite the similarity of notation, the ˇ–involution is defined by the group
coextension whereas the 
–involution is natural, obtained by smashing with S1�� .

Proof Take n!1 in (8.1). The colimit of the first term is MTH ^S1�� and the
composition is homotopic to the identity map.
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8.1.2 Spaces of theories Let n > 0 be the spacetime dimension and fix a positive
integer k � n. Let G be a Lie group equipped with a homomorphism � WG ! Ok .
The map � is used to form the Thom spectrum MTG D Thom.BGI ��/. Define the
space of continuous invertible k–truncated n–dimensional topological field theories of
symmetry type .G; �/ as30

In.G/D In.G; �/DMap.†kMTG;†nC1IZ.1//:

Usually � is understood in the notation. A point of In.G/ may be thought of as a k–
dimensional field theory that associates a super .n�`/–line to a closed `–manifold M,
`� k .

Different flavors of field theories are obtained by changing the target, as in Definitions
6.41 and 6.45. We give the definitions for continuous invertible theories; there are
analogous definitions for discrete invertible theories.

Definition 8.3 Fix integers n > 0 and k � n.

(i) The space of continuous invertible k–truncated n–dimensional Hermitian ex-
tended topological field theories with symmetry type .G; �/ is

In.G; �/Hermitian DMap.†kMTG;†nC1IZ.1/H /:

(ii) The space of continuous invertible k–truncated n–dimensional positive definite
extended topological field theories with symmetry type .G; �/ is

In.G; �/positive DMap.†kMTG;†nC1IZ.1/pos/:

Note that composition with the map IZ.1/pos! IZ.1/H induces a map

.8.4/ In.G; �/positive! In.G; �/Hermitian:

Assume the symmetry type is a pair .Hn; �n/ as in Definition 2.4. We recall the
notation (7.16) for the space of theories with reflection structure:

.8.5/ In.Hn/reflection DMapZ=2.†nMTHˇ
n ; †

nC1IZ.1/
 /:

Composition with the first map in (8.1) produces a map

.8.6/ In.Hn/reflection! In.Hn�1/Hermitian:

30The ‘k ’ usually appears in the notation for G, as in (8.9) below, so we do not adorn ‘I’ with it.
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Therefore, the value of a theory with reflection structure on a closed manifold of
dimension `�n�1 is a Hermitian super .n�`/–line. (The Hermitian line for `Dn�1
is described in Section 4.3 for not necessarily invertible theories.) Recall the stabiliza-
tion � WH !O in (2.28), and define

.8.7/ In.H/stable DMap.MTH;†nC1IZ.1//;

the space of stable n–dimensional invertible topological field theories of symmetry
type H.

We use the notation Iın.G/Hermitian , Iın.G/positive , and Iın.Hn/reflection for the corre-
sponding spaces of discrete field theories, which are mapping spaces with codomain
†nIC�H , †nIC�pos , and †n.IC�/�

0
0 , respectively. (See (6.42) and (6.46).)

The main objects of interest are invertible reflection positive theories. As stated
after (8.6), an invertible theory with reflection structure has values on closed manifolds
of dimension � .n� 1/ that are higher Hermitian super lines. The following definition
uses (8.4) to impose positivity, which in dimension n�1 is a condition (Definition 4.18)
and in dimensions < .n� 1/ is a structure.

Definition 8.8 Fix n> 0 and a symmetry type .Hn; �n/ in the sense of Definition 2.4.
Define the spaces

In.Hn/reflection
positive

and Iın.Hn/reflection
positive

of n–dimensional continuous (resp. discrete) invertible reflection positive topological
field theories with symmetry type .Hn; �n/ and maps out of these spaces so that each
square in the diagram

.8.9/

Iın.Hn/reflection
positive

//

��

In.Hn/reflection
positive

//

��

In.Hn�1/positive

��

Iın.Hn/reflection // In.Hn/reflection
(8.6)

// In.Hn�1/Hermitian

is a homotopy pullback.

For the spaces of theories in the right-hand column we use Definition 8.3 with
k D n � 1, G D Hn�1 , and � D �n�1 . Our task is to determine the homotopy
types of In.Hn/reflection

positive
and Iın.Hn/reflection

positive
.
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8.1.3 Extended positivity structure Definition 8.8 is natural given our homotopy-
theoretic implementation (in Definition 6.45) of higher positive definite Hermitian super
lines. We now make a short digression to identify extended positivity in an invertible
n–dimensional field theory as a structure that trivializes an associated invertible .n�1/–
dimensional field theory. For this we need yet an additional space of invertible field
theories, based on the target spectrum of higher real super lines (Definition 6.41(ii)).

Definition 8.10 The space of continuous invertible .n�1/–dimensional real extended
topological field theories with symmetry type .Hn�1; �n�1/ is

.8.11/ IR
n�1.Hn�1/DMap

�
†n�1MTHn�1; .†nIZ.1/
 /hZ=2�:

The partition function on a closed .n�1/–manifold lies in f˙1g, the value on a closed
.n�2/–manifold is a real super line, etc. (See Remark 6.40 for the top few homotopy
groups of .IZ.1/
 /hZ=2 .)

To begin, for any pointed space X there is an equivalence of spectra XC �X _S0 ,
which leads to a cofibration sequence

.8.12/ X !XC! S0:

Set XDBZ=2, smash with †n�1MTHn�1 , and apply Map.�; †nC1IZ.1// to obtain
the fibration sequence

.8.13/ In.Hn�1/positive! In.Hn�1/Hermitian! IR
n�1.Hn�1/:

For the middle term use (6.43) and for the last the identification

Map.†n�1MTHn�1 ^BZ=2;†nC1IZ.1//

�MapZ=2.†nMTHn�1 ^S��1; †nC1IZ.1//

�MapZ=2.†nMTHn�1; †nC1IZ.1/
 /

�MapZ=2.†n�1MTHn�1; †nIZ.1/
 /

�Map.†n�1MTHn�1; †n.IZ.1/
 /hZ=2/:

Therefore, the space In.Hn/reflection
positive

may also be defined as the homotopy fiber of the
composition

.8.14/ � W In.Hn/reflection! In.Hn�1/Hermitian! IR
n�1.Hn�1/:

This leads to the following definition.
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Definition 8.15 An (extended) positivity structure on a continuous n–dimensional
field theory ' 2 In.Hn/reflection is a trivialization of �.'/.

That is, a positivity structure is a path from �.'/ to the basepoint in IR
n�1.Hn�1/. This

discussion identifies the space of continuous reflection positive invertible field theories
as the space of continuous invertible field theories with both a reflection structure and
a positivity structure.

Remark 8.16 The partition function of the field theory

�.'/ W†n�1MTHn�1!†n.IZ.1/
 /hZ=2

is the homomorphism

.8.17/ �n�1†
n�1MTHn�1! f˙1g

induced on �n�1 , and it agrees with the homomorphism (7.38) which tracks the sign
of the Hermitian lines in the theory ' . The highest piece of the positivity structure is
therefore the standard positivity constraint in Definition 4.18. The theory �.'/ assigns
a real super line to a closed .n�2/–manifold and more complicated objects in lower
dimensions; their trivializations are data.

8.1.4 Main theorems We apply the splitting of Section 8.1.1 to construct a map

.8.18/ In.H/stable! In.Hn/reflection
positive

as follows. (These spaces of invertible field theories are defined in (8.7) and (8.9).)
Map

.8.19/ †n�1MTHn�1 ^BZ=2C!†n�1MTHn�1!MTH

into †nC1IZ.1/ to obtain a map of In.H/stable into the upper-right corner of (8.9).
Use equivariant maps of the sequence (8.1) into †nC1IZ.1/
 to map In.H/stable into
the middle of the bottom row of (8.9) . The two compositions into the lower-right
corner are canonically homotopic, so the fact that the right square in (8.9) is a homotopy
pullback yields (8.18).

Theorem 8.20 The map In.H/stable! In.Hn/reflection
positive

in (8.18) is a homotopy equiv-
alence.

We give the proof of Theorem 8.20 in Sections 8.2 and 8.3.

Geometry & Topology, Volume 25 (2021)



Reflection positivity and invertible topological phases 1245

Corollary 8.21 There is an isomorphism

.8.22/ �0 In.Hn/reflection
positive

Š ŒMTH;†nC1IZ.1/�:

Next, we turn to discrete invertible theories. First, observe that the Z=2–action on C

by complex conjugation is equivalent to the Z=2–action on Map.Z=2;R/, so for any
Z=2–spectrum X one has

.8.23/ MapZ=2.X;HC�00/�Map.X;HR/:

The spectrum Map.X;HR/ carries a residual Z=2–action, induced from the Z=2–
action on X ; it splits as a wedge of the .C1/– and .�1/–eigenspaces. The exponential
sequence (6.35) of Z=2–equivariant spectra implies that the left map in the bottom row
of (8.9) extends to a fibration sequence

.8.24/ MapZ=2.†nMTHˇ
n ; †

n.IC�/�
0
0/!MapZ=2.†nMTHˇ

n ; †
nC1IZ.1/
 /

!MapZ=2.†nMTHˇ
n ; †

nC1HC�00/:

Apply (8.23) to the last term and use the fact that the left-hand square in (8.9) is a
homotopy pullback to obtain a fibration sequence

.8.25/ Iın.Hn/reflection
positive

! In.Hn/reflection
positive

!Map.†nMTHn; †nC1HR/:

Proposition 8.26 The image of the homomorphism

.8.27/ �0 I
ı
n.Hn/reflection

positive
! �0 In.Hn/reflection

positive

is the torsion subgroup of �0 In.Hn/reflection
positive

.

Theorem 1.1 in the introduction follows from Proposition 8.26 and (8.22). In Theorem
8.29 below we determine the homotopy type of the space of discrete invertible reflection
positive field theories.

Proof Since (8.25) is a fibration sequence of spectra, applying �0 we obtain an exact
sequence of abelian groups in which, after applying (8.22), the second map is31

.8.28/ ŒMTH;†nC1IZ.1/�! Œ†nMTHn; †nC1HR.1/�:

31The map (8.28) is Z=2–equivariant for the ˇ–involution on MTH and †nMTHn . By Proposition
8.2 the ˇ– and 
–involutions on MTH agree, from which Z=2 acts as �1 on the domain. It follows that
the image is contained in the .�1/–eigenspace of the codomain, which is why we write ‘HR.1/’ in place
of ‘HR’.
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The construction following (8.19) implies that this map is pullback along the defining
inclusion of †nMTHn into MTH . The proposition follows if we prove (8.28) is injec-
tive after tensoring the domain with R. This follows immediately from Lemma 7.39.

We parlay (8.25) into a more useful expression for the homotopy type of the space of
discrete invertible reflection positive field theories. Recall the spectrum IT introduced
in Remark 6.36.

Theorem 8.29 For n odd there is a homotopy equivalence

.8.30/ Map.MTH;†nIT /
�
�! Iın.Hn/reflection

positive
:

For n even there is a fibration sequence

.8.31/ Map.MTH;†nIT /! Iın.Hn/reflection
positive

s
�!R>0

in which R>0 has the discrete topology and s maps a discrete theory F to F.Sn/.

Compare with the more rigid Theorem 7.22 in the absence of reflection structures. Also,
note that for any n–manifold X the disjoint union ˇX qX is null-bordant, and so in
a stable theory the partition functions have unit norm, consistent with the appearance
of IT in (8.30) and (8.31). There is a canonical section of s given by Euler theories
(Example 4.21): given x 2R>0 define the Euler theory as the composition

.8.32/ †nMTHˇ
n !†n.BHˇ

n /C!†nS0
p
x

��!†nHR>0!†n.IC�/�
0
0 :

The restriction to †n�1MTHˇ
n�1 is trivialized; using (8.9) we obtain a reflection

positive theory.

Proof For any pointed space Cn use the nonequivariant version of the exponential
sequence (6.39) and the fibration sequence (8.25) to construct the diagram

.8.33/

Map.MTH;†nIT / //

��

Map.MTH;†nC1IZ.1// //

��

Map.MTH;†nC1HR.1//

��

Iın.Hn/reflection
positive

//

��

In.Hn/reflection
positive

//

��

Map.†nMTHn; †nC1HR/

��

�Cn // � // Cn

in which the rows are fibration sequences, as is the middle column, by Theorem 8.20.
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We claim

.8.34/ Cn D

�
� for n odd;

K.R; 1/ for n even;

renders the last column a fibration sequence; it follows that the first column is as well.
(Here K.R; 1/ is an Eilenberg–Mac Lane space.) There is an exponential to pass from
the third column to the first column in (8.33), and so naturally �Cn �R>0 with the
discrete topology.

To prove the claim observe first that we can replace the upper-right entry of (8.33) with
the homotopy equivalent space Map.†nC2MTHnC2; †nC1HR.1//, using arguments
similar to those in Section 7.2. To analyze the resulting right vertical map consider the
composition

.8.35/ �q †nMTHn˝R
i�
�! �q †

nC1MTHnC1˝R
j�
�! �q †

nC2MTHnC2˝R:

The composition j� ı i� is an isomorphism for q < n, and since we map to †nC1HR

only q � nC 1 is relevant. Use (7.40) and the exact sequence

.8.36/ �mC1†
mC1MTHmC1

Euler
���! Z

ŒSm�
���! �m†

mMTHm

! �m†
mC1MTHmC1! 0

to verify the following four assertions. If n is odd, then j� ı i� is an isomorphism
for qDn and qDnC1. If n is even, then j�ıi� is an isomorphism for qDnC1 and is
surjective for qDn with kernel generated by ŒSn�. Observe that ŒSn�D Œ yHnC1= yHn� is
fixed by the ˇ–involution. It follows that the upper-right arrow in (8.33) is injective with
image the .�1/–eigenspace of the ˇ–involution and cokernel the .C1/–eigenspace gen-
erated by ŒSn�. (Compare with footnote 31.) The claim, and so the theorem, follows.

We conclude this subsection with a comment about our application of these theorems
to computations. Namely, the considerations in Section 5.4 lead to the following
conjecture, which uses nontopological invertible theories (for which we do not develop
mathematical foundations in this paper).

Conjecture 8.37 There is a 1W1 correspondence

.8.38/

8<:
deformation classes of reflection positive

invertible n–dimensional extended
field theories with symmetry type .Hn; �n/

9=;Š ŒMTH;†nC1IZ.1/�:
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We remark that since the rational cohomology of BH vanishes in odd degrees, elements
of infinite order in (8.38) occur only for n odd.

Remark 8.39 A restatement of Corollary 8.21 is the 1W1 correspondence

.8.40/

8̂̂<̂
:̂

isomorphism classes of reflection positive
continuous invertible n–dimensional
extended topological field theories

with symmetry type .Hn; �n/

9>>=>>;Š ŒMTH;†nC1IZ.1/�:

If we accept that the effective low-energy theory of an invertible gapped system
is a continuous invertible topological field theory, as in Remark 5.29, then we can
apply (8.40) to the computations in Section 9 rather than (8.38). This has an advantage:
(8.40) is a theorem in the context of this paper.

Remark 8.41 A homotopy class of maps MTH !†nC1IZ.1/ leads to a canonical
isomorphism class of invertible field theories via the following sketch; the theories are
topological if and only if the homotopy class has finite order. By the twisted Thom
isomorphism the homotopy classes are elements of IZ.1/�CnC1.BH/, where � is the
canonical “density twisting”: the pullback to manifolds with tangential H–structure
can be integrated. According to the main theorem in [42] there is a unique lift to the dif-
ferential cohomology group 1IZ.1/�CnC1.B

r
H/. Choose a “cocycle” representative.

Then on any manifold with a differential H–structure we can integrate to construct an
invariant, and these invariants fit to an invertible field theory on Bordrn .H/.

8.2 Proof of Theorem 8.20

We restate the theorem in the language of stable homotopy theory.

Proposition 8.42 The square

.8.43/

Map.MTH;†nC1IZ.1// //

��

Map.†n�1MTHn�1; †nC1IZ.1//

��

MapZ=2.†nMTHˇ
n ; †

nC1IZ.1/
 / // MapZ=2.†n�1MTH 

n�1; †

nC1IZ.1/
 /

is a homotopy pullback square of spaces.

The analysis of this square becomes cleaner if we replace every term of the form
MapZ=2.X;†nC1IZ.1/
 / with Map..X^S��1/hZ=2; †

nC1IZ.1//. Once we do so,
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Proposition 8.42 becomes the assertion that the square

.8.44/

†n�1MTHn�1 ^BZ=2C //

��

†nMT yH .��1/
n

��

†n�1MTHn�1 // MTH

becomes a homotopy pullback square after applying Map.� ; †nC1IZ.1//, where

.8.45/ MT yH .��1/
n D Thom.B yHnI �y�nC � � 1/:

To clarify the argument we state this as:

Proposition 8.46 For any m� n, the square

.8.47/

†m�1MTHm�1 ^BZ=2C //

��

†mMT yH .��1/
m

��

†m�1MTHm�1 // MTH

becomes a homotopy pullback square after applying Map.� ; †nC1IZ.1//.

The proof of Proposition 8.46 will make repeated use of the following result, which
follows from the universal property (5.17) of IZ.1/.

Lemma 8.48 Suppose A is a spectrum having the property that �i AD 0 for i � n
and �nC1A is a torsion group. If A!X ! Y is a cofibration sequence then

Map.Y;†nC1IZ.1//!Map.X;†nC1IZ.1//

is a weak equivalence of spaces.

The proof of Proposition 8.46 is by decreasing induction on m. As m ! 1 the
square (8.47) becomes

MTH ^BZ=2C //

��

MTH ^BZ=2C

��

MTH // MTH

which is obviously a pushout. On the other hand for m> .nC 2/ the maps

†m�1MTHm�1!MTH;

†mMT yH .��1/
m !MTH ^BZ=2C
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become equivalences after applying Map.� ; †nC1IZ.1//, so the result is true for all
m> nC 2. (Compare with the proof of Theorem 7.30.)

Since the homotopy fiber of the left vertical map in (8.47) is †m�1MTHm�1^BZ=2,
Proposition 8.46 is equivalent to the assertion that for all m� n, the sequence

†m�1MTHm�1 ^BZ=2!†mMT yH .��1/
m !MTH

becomes a fibration sequence after applying Map.� ; †nC1IZ.1//. The induction
step therefore follows from:

Proposition 8.49 For m� n, the square

.8.50/

†m�1MTHm�1 ^BZ=2 //

��

†mMT yH .��1/
m

��

†mMTHm ^BZ=2 // †mC1MT yH .��1/
mC1

becomes a homotopy pullback square after applying Map.� ; †nC1IZ.1//.

What is at stake in Proposition 8.49 is to prove that the induced map

.8.51/ †m�1.BHm/C ^BZ=2!†m Thom.B yHmC1I � � 1/

of homotopy fibers of the vertical maps in (8.50) becomes a homotopy equivalence after
applying Map.�; †nC1IZ.1//. The following result will be proved in Section 8.3.

Lemma 8.52 The map (8.51) is the .m�1/st suspension of the map of Thom spectra
(of the bundle .� � 1/) associated to the map

.8.53/ BHm �BZ=2! B yHmC1

given by the choice of reflection in the last coordinate.

Assuming Lemma 8.52 we can prove Proposition 8.49.

Proof of Proposition 8.49 It suffices to show that the induced map (8.51) becomes
a weak equivalence after applying Map.� ; †nC1IZ.1//. The map (8.53) fits into a
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Cartesian square

Sm

��

Sm

��

BHm //

��

BHm �BZ=2 //

��

BZ=2

BHmC1 // B yHmC1 // BZ=2

so Lemma 8.52 implies that the cofiber of (8.51) is 2m–connected. Since m� n� 1,
one has 2m� n and so the cofiber is n–connected. Both terms in (8.51) are rationally
acyclic. The result then follows from Lemma 8.48.

8.3 Transfers

Suppose that M ! X is a fiber bundle with fibers closed smooth manifolds Mx of
dimension n. Let TM=X be the vector bundle over M whose fiber at a 2Mx is the
tangent space TaMx . There is functorial stable map

†1XC! Thom.M;�TM=X /;

called the transfer map. When there is an embedding M �X �Rn for some n it can
be constructed from the Pontrjagin–Thom collapse

Thom.X;Rn/! Thom.M;Rn�TM=X /

by passing to suspension spectra and desuspending n times. The transfer map is
constructed in the general case by passing to the colimit over the category of pairs

X˛!X;

i˛ WM˛ ,!X˛ �R
N˛ ;

in which M˛!X˛ is the pullback of M !X along the map X˛!X.

When there is an embedding M �W over B , the Pontrjagin–Thom construction leads
to a twisted transfer map

Thom.BIW /! Thom.X IW �TM=X /:

The twisted transfer extends in the evident manner to the case of virtual bundles W .
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Proposition 8.54 Suppose that W is a vector bundle over X and that f WM ! W

is a map over X transverse to the zero section, and let N be the inverse image of 0.
There is a commutative diagram

Thom.X I 0/ //

��

Thom.N I �TN=X /

��

Thom.X IW / // Thom.M IW �TM=X /

in which the left vertical map is derived from the zero section , and the right is the natural
map of Thom complexes coming from the inclusion N �M and the isomorphism

TM=X � TN=X ˚W:

Proof It suffices to establish the case in which there is an embedding

� WM ,!Rn:

Applying the Pontrjagin–Thom constructions to the rows in the transverse pullback
square

N //

��

X �Rn

��

M
.f;�/

// W �Rn

gives a diagram

Thom.X IRn/ //

��

Thom.N IRn�TN=X /

��

Thom.X IW ˚Rn/ // Thom.M IW CRn�TM=X /

in which the left vertical map is the inclusion of the zero section. Desuspending, the
claim follows easily from this.

Proof of Lemma 8.52 The idea is to apply Proposition 8.54 to the left triangle in the
diagram

.8.55/

S.�m/�BZ=2 //

((

S.�m˚ �/ //

��

S.y�mC1/

��

BHm �BZ=2 // B yHmC1
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with
X D BHm �BZ=2;

W D �;

M D S.�m˚ �/;

N D S.�m/�BZ=2:

The diagram is written in order to clarify the relationship with manifolds. Note that
there are equivalences

S.y�mC1/� B yHm;

S.�m/� BHm�1:

Also, for a vector bundle V !X the relative tangent bundle of p W S.V /!X is given
by TS.V /=X ˚RD p�V . Proposition 8.54 then gives the left square in the diagram

.8.56/

†m�1.BHm/C ^BZ=2C //

��

†m�1.BHm/C ^BZ=2 //

��

†m Thom.B yHmC1I � � 1/

��

†m�1MTHm�1 ^BZ=2C // Y // †mMT yH .��1/
m

with

Y D†m Thom.S.�m˚ �/I 1� �m� � � 1C �/I

the right square in (8.56) is the pullback of transfer maps induced from the pullback
square in (8.55). The map (8.51) is the composition of

.8.57/ †m�1.BHm/C ^BZ=2!†m�1.BHm/C ^BZ=2C

with the top row of (8.56). Lemma 8.52 now follows from the fact that the composition
of (8.57) with the left map in the top row of (8.56) is the identity.

9 Fermionic theories with scalar internal symmetry group

In this section we apply Theorem 1.1 to some basic symmetry groups, namely those
whose subgroup K of internal symmetries is the group O1 , U1 , or Sp1 of unit
norm elements in the normed division algebras R, C , or H , respectively. (We use the
names f˙1g, T , and SU2 for these three groups.) The internal symmetry group KDT

is the basic charge symmetry of electromagnetism; in quantum mechanical models
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the presence of a so-called particle-hole symmetry “breaks”32 it to either K D f˙1g
or K D SU2 . In Section 9.1 we classify the possible symmetry groups Hn with these
internal symmetries, and restricting to fermionic symmetry groups we recover the
10–fold way; see tables (9.24) and (9.25). (Wang and Senthil [112] list many of these
groups — in a nonrelativistic form, (9.34) and (9.35) — and the corresponding “Cartan
label”. Metlitski [87] introduces the group PinzcC, which provided guidance for our
treatment here. This twisted form of Pinc also appears implicitly in [104, Section A.4].)
Lemma 9.27 relates the relativistic 10–fold way to the 10 real and complex Clifford
algebras, thus providing a link to other 10–fold ways.

In Section 9.2 we sketch two ways in which a theory of free fermions in Minkowski
spacetime gives rise to a deformation class of reflection positive invertible field the-
ories or to a reflection positive continuous invertible topological field theory. If one
begins with an .n�1/–dimensional free fermion theory, then there is an associated
n–dimensional invertible anomaly theory; if the original free fermion theory admits a
mass term, then the anomaly is trivializable. In this paper we do not attempt a complete
treatment, so state the main result as a conjecture, Conjecture 9.70. It expresses the defor-
mation class of the anomaly theory as a composition of a twisted Atiyah–Bott–Shapiro
map and a Pfaffian map on real K–theory. This K–theory interpretation depends on
Lemma 9.55, which expresses the existence of a mass in terms of Clifford algebras.

The second scenario is to begin with a massive free fermion theory in n dimensions,
as we sketch in Section 9.2.6. The low-energy effective field theory is invertible,
and (9.71) is a formula for its deformation class. It is this scenario about gapped
theories that is relevant to this paper.

We carry out computations in low dimensions in Section 9.3. For each of the 10 electron
symmetry groups we list the groups of deformation classes of reflection positive
invertible topological theories and compute the map from free fermions to it. There is
no further physical reasoning; we compute directly from the results in Theorem 1.1
and (9.71). The techniques lie in stable homotopy theory, and in the next section we
give some details to illustrate how the computations are made. As discussed in Section 1
these classification results apply to invertible topological phases of condensed matter
systems, often called SPT phases. The fermionic symmetry groups with KDT pertain

32We do not have any fundamental understanding of this mechanism, especially the appearance of SU2 .
In Section 9.1 we simply offer it as a storyline in relativistic theory that matches the condensed matter
literature.
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to topological insulators; those with K D f˙1g and K D SU2 pertain to topological
superconductors.

Remark 9.1 Most of the interacting groups we compute are torsion so are covered
by Theorem 1.1. In the general case we interpret the computations as theorems by
using (8.40), in which the interacting group is a group of isomorphism classes of
reflection positive continuous invertible topological field theories. See Section 5.4 for
a discussion of expectations for low-energy effective field theories.

In the theoretical discussions we assume n � 3; in the computations we apply the
results to all n.

9.1 Symmetry groups of fermionic systems

We already classified symmetry groups Hn with K D f˙1g in Proposition 2.16. The
fermionic groups are the ones for which �1 2K is the distinguished element k0 of
Theorem 2.7 and Corollary 2.12.33 (The other possibility is k0 D 1, in which case the
symmetry group is bosonic.) Those fermionic groups are Spinn , PinCn , and Pin�n .

Next, we classify symmetry groups with K D T . These are group extensions

.9.2/ 1! T ! SHn! SOn! 1

if there is no time-reversal symmetry and

.9.3/ 1! T !Hn!On! 1

if there is time-reversal symmetry. Recall the group En defined before Proposition 2.16.

Proposition 9.4 (K D T ) Up to isomorphism there are two distinct group exten-
sions (9.2) with n � 3, and the groups SHn that appear are SOn � T and Spincn .
Up to isomorphism there are six distinct group extensions (9.3) with n � 3, and the
groups Hn that appear are mutually nonisomorphic. Three of the groups have identity
component SOn �T :

On �T ;.9.5/

On Ë T ;.9.6/

En Ë T=f˙1g:.9.7/

33This implies the “spin/charge relation” of condensed matter physics, which is emphasized in [104]:
bosons have even charge and fermions have odd charge.
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The identity component of the remaining three groups is Spincn :

Pincn D PinCn �T=f˙1g;.9.8/

PinzcCn D PinCn Ë T=f˙1g;.9.9/

Pinzc�n D Pin�n Ë T=f˙1g:.9.10/

The group Pincn is also isomorphic to Pin�n �T=f˙1g. It sits in the complex Clifford
algebra generated by Rn with a nondegenerate symmetric bilinear form [8]. In Pinzc˙n
the action of Pin˙n on T factors through �0 Pin˙n and is via inversion � 7! ��1 . In
each case we divide out by the diagonal subgroup f˙1g. The groups with identity
component Spincn are fermionic.

Proof The extension (9.2) is central, so up to isomorphism classified by the cohomol-
ogy group

.9.11/ H 2.BSOnIT /ŠH 3.BSOnIZ/Š Z=2Z:

The underline indicates the sheaf cohomology of continuous functions into T with the
standard topology. It is well known that Spincn corresponds to the nonzero element.

The only nontrivial automorphism of T is inversion, so in the extension (9.3) ei-
ther On acts trivially or it acts through its components with elements of determinant �1
acting by inversion. In each case the group extensions are classified by a cohomology
group of the classifying space BOn :

H 2.BOnIT /ŠH
3.BOnIZ/Š Z=2Z;.9.12/

H 2.BOnIeT /ŠH 3.BOnIeZ/Š Z=2Z�Z=2Z:.9.13/

The tilde indicates coefficients twisted by inversion. The product (9.5) and semidirect
product (9.6) account for the zero element of (9.12) and (9.13), and the remaining four
groups (9.7)–(9.10) account for the nonzero elements, as can be seen from cohomolog-
ical computations we omit.

According to the arguments in Appendix A, the anti-Wick rotation of PinzcC con-
tains a time-reversal symmetry T with T 2 D .�1/F and the anti-Wick rotation
of Pinzc� contains a time-reversal symmetry T with T 2 D 1. More precisely, the
groups (9.8) and (9.5) are Wick rotations of relativistic symmetry groups that include

Geometry & Topology, Volume 25 (2021)



Reflection positivity and invertible topological phases 1257

CT symmetry; the remaining groups are Wick rotations of relativistic symmetry groups
that include T symmetry.34

Finally, we classify symmetry groups with KDSU2 . Now we have possible extensions

.9.14/ 1! SU2! SHn! SOn! 1

and

.9.15/ 1! SU2!Hn!On! 1:

Proposition 9.16 (K D SU2 ) Up to isomorphism there are two distinct group exten-
sions (9.14) with n� 3, and the groups SHn that appear are SOn �SU2 and

.9.17/ G0 D Spinn �f˙1g SU2:

Up to isomorphism there are four distinct group extensions (9.15) with n� 3, and the
groups Hn that appear are mutually nonisomorphic. Two of the groups have identity
component SOn �SU2 :

On �SU2;.9.18/

En �f˙1g SU2:.9.19/

The identity component of the remaining two groups is G0 :

GCn D PinCn �f˙1gSU2;.9.20/

G�n D Pin�n �f˙1gSU2:.9.21/

The symmetry groups with identity component G0 are fermionic.

Proof The classification of the identity component SHn follows from Theorem 2.7(2):
there are two central elements k0 2 SU2 with k20 D 1. To classify the two-component
group Hn we apply a useful general result [45, Corollary 7.3]. Namely, for any compact
Lie group H, let H 0 denote the component of the identity element, Z0 � H 0 its
center, and � D �0H the abelian group of components. Then there exists a group L

34This is our interpretation of [116, Section 3.7]. There are more general possibilities with larger
internal symmetry group K . This occurs in [104, Section 3], for example, in a theory with both T
and CT symmetry.
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that fits into the diagram

.9.22/

1 // Z0 //

��

L //

��

� // 1

1 // H 0 // H // � // 1

of group extensions. Furthermore, the group L acts on H 0 by conjugation — the
action descends to an action of � since Z0 is central, but it depends on the choice
of L — and the group H is reconstructed from H 0 and L as a semidirect product

.9.23/ H Š LË
Z0
H 0
D LËH 0=Z0:

By the stabilization result Theorem 2.19 we may assume that n is odd, because
for n even Hn is obtained by pullback, so the center of SOn is trivial and the center
of Spinn is f˙1g. First, assume H 0D SHnD SOn�SU2 , so that Z0D f˙1g. There
are two possibilities: L Š f˙1g�2 or L Š �4 . We can take the image of L in On
to be the central subgroup f˙1g. The conjugation action on SOn is trivial, and as all
automorphisms of SU2 are inner we can take the entire action on H 0 to be trivial.
Then (9.23) (with a direct product in place of a semidirect product) yields the two
groups (9.18) and (9.19). The argument for H 0 D Spinn �f˙1g SU2 is similar; again
Z0 Š f˙1g.

9.2 Free fermions and twisted Dirac operators

In this section we take up the homotopy theory of relativistic free fermions. We
treat the 10 fermionic symmetry groups simultaneously via embeddings into Clif-
ford algebras (Section 9.2.1). For each we define a twisted Atiyah–Bott–Shapiro
map (Section 9.2.2) that encodes the index of twisted Dirac operators (Section 9.2.3) on
compact Riemannian manifolds. The relativistic story begins on Minkowski spacetime
in Lorentz signature, where a free fermion theory is specified by a real Clifford module
for a Lorentz signature Clifford algebra (Section 9.2.4). We develop that algebraic theory
for the fermionic symmetry groups and in particular determine those theories that admit
a nondegenerate mass term (Lemma 9.55). A massless theory has an anomaly, which
is an invertible field theory, and we conjecture its deformation class in Section 9.2.5. A
formally similar setup (Section 9.2.6) attaches an invertible field theory to a massive
free fermion theory, and we conjecture that its deformation class is given by the same
formula. It is this formula that we use in the computations in Section 9.3.
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9.2.1 A relativistic 10–fold way Propositions 2.16, 9.4, and 9.16 combine to yield
3C 4C 3D 10 fermionic symmetry groups, which we arrange into two tables:

s H c K Cartan D

0 Spinc T A C

1 Pinc T AIII CliffC
�1

.9.24/

s H K Cartan D

0 Spin f˙1g D R

–1 PinC f˙1g DIII Cliff�1
–2 PinC Ë

f˙1g
T T AII Cliff�2

–3 Pin� �
f˙1g

SU2 SU2 CII Cliff�3
4 Spin�

f˙1g
SU2 SU2 C H

3 PinC �
f˙1g

SU2 SU2 CI CliffC3
2 Pin� Ë

f˙1g
T T AI CliffC2

1 Pin� f˙1g BDI CliffC1

.9.25/

In addition to the fermionic symmetry group H or H c and its internal group K , we
list the Cartan label, an integer s called the “type”, and a super division algebra D.
The type is defined mod 2 in (9.24) and mod 8 in (9.25); we choose a convenient
integer representative. We use the notation H.s/, H c.s/, K.s/, and D.s/ when we
make the type explicit. The Cartan label is used in the condensed matter literature,
where this 10–fold way has many incarnations: see [33; 3; 58; 74; 98; 48; 70; 112]. In
those references the particle-hole symmetry determines the internal symmetry group K :
in its absence K D T ; if particle-hole symmetry is present and squares to C1, then
K Df˙1g; and if particle-hole symmetry is present and squares to �1, then K D SU2 .
The existence (and square) of time-reversal symmetry in the references above matches
that in our account except for the entry AIII, which is usually listed as not having
time-reversal symmetry (but see [112, Section III]). The super division algebra D is
the unique super division algebra in the Morita class of the Clifford algebra35 Cliffs .
The groups Spinc and Pinc in the first table (9.24) are distinguished as having a central
subgroup isomorphic to T , so are called complex; the center of the groups in (9.25)
is f˙1g, and so they are called real.

35The Clifford algebra Cliff˙jsj is generated by e1; : : : ; ejsj subject to eaebCebeaD˙2ıab ; see [8].
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Remark 9.26 We would have found it more natural from a mathematical point of
view in several places to define H.4/D Spin�

f˙1g
Spin4 rather than Spin�

f˙1g
Spin3 ,

but we lack a physics motivation to do so.

The following embedding allows a uniform treatment of these symmetry groups, and
it opens a path to relating this relativistic 10–fold way to other 10–fold ways in the
literature. Fix n� 0.

Lemma 9.27 Fix a real type s as in (9.25), and let Hn.s/ denote the n–dimensional
version of the group H.s/ of type s in table (9.25). Write An.s/ D CliffCn˝D.s/.
Then there is an embedding

.9.28/ � WHn.s/! An.s/

such that the natural map

.9.29/ c WRn �An.s/! An.s/

is Hn.s/–equivariant and graded commutes with right multiplication by An.s/.

Here c is the extension of scalars of Clifford multiplication Rn �CliffCn! CliffCn .
(Recall Rn � CliffCn .) Note An.s/ is Morita equivalent to CliffC.nCs/ ; we specify a
Morita equivalence in Section 9.2.2. We regard Hn.s/ as an ungraded group, and in
fact �.Hn.s// is contained in the even part of the superalgebra An.s/. In the complex
case (9.24) there is an embedding �C W Pincn ,! CliffC

n ˝CliffC
�1 constructed using the

same formulas as the real case s D 1. Of course, there is also the usual embedding
�C W Spincn ,! CliffC

n .

Proof The case s D 0 requires no comment. For s D 4 we use the fact that
SU2 Š Sp1 �H . The scalar �1 passes between the factors in the real tensor product
CliffCn˝H , which explains the division by f˙1g in the group H. In the remaining
six cases D.s/ is a Clifford algebra on jsj generators, and the group Spinjsj �Cliffs is
isomorphic to f˙1g, T , and SU2 for jsj D 1, 2, and 3, respectively. For jsj D 1 or 2
fix a unit vector e 2Rjsj �D.s/; for jsj D 3 define the volume form ! D e1e2e3 as
the ordered product of the generators of Cliffjsj . Define � by

.9.30/

g 7! g˝ 1 for g 2 Spinn

g 7!

�
g˝ e if jsj D 1; 2;
g˝! if jsj D 3

for g 2 Pin˙n nSpinn;

� 7! 1˝� for � 2 T or SU2.
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A case-by-case check completes the proof. To illustrate, we check the equivariance
of c for g 2 Pinn nSpinn and jsj D 1; 2; it suffices to take g D ei for some standard
basis element ei 2 Rn . For � 2 Rn � CliffCn , we have ei � .� ˝ 1/D �ei�e�1i ˝ 1.
For  2 CliffCn homogeneous of parity j j and x 2D.s/, we have ei � . ˝ x/D
.�1/j jei ˝ex , since ei acts as left multiplication in An.s/ by �.ei / and the Koszul
sign rule applies in the superalgebra An.s/. Their Clifford product is

.9.31/ �.�1/j jei� ˝ ex D ei � .� ˝ x/;

which proves the equivariance. We leave the other checks to the reader.

Remark 9.32 In the condensed matter literature free fermion systems are often treated
nonrelativistically and so are organized by nonrelativistic symmetry groups. More
specifically, they are organized by the subgroup I of internal vector symmetries that
fix the points of space. (The internal symmetry group K in our account, which starts
from a relativistic theory, is the subgroup that fixes the points of spacetime.) We
can easily compute the group In in spacetime dimension n for a general group of
symmetries, as in Section 1. Namely, let �n WHn!On be a Wick-rotated symmetry
group. Fix a splitting Rn D R�Rn�1 of translations of En into Wick-rotated-time
translations cross spatial translations. The subgroup O1 �On�1 �On preserves that
splitting, and O1�fidg �O1�On�1 is the vector subgroup of transformations that fix
space pointwise. So for the symmetry group Hn we define the nonrelativistic internal
subgroup In as the pullback

.9.33/

In
� � //

��

Hn

�n

��

O1 � fidg
� � // O1 �On�1

� � // On

The inclusion Hn ,!HnC1 induces an isomorphism In
Š�! InC1 ; denote the colimit

of these groups as I. We tabulate I for each of the ten fermionic symmetry groups in
tables (9.24) and (9.25):

s H c I Cartan

0 Spinc T (Spinc1) A

1 Pinc Z=2Z�T (Pinc1) AIII

.9.34/
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s H I Cartan

0 Spin f˙1g (Spin1) D
–1 PinC Z=2Z� f˙1g (PinC1 ) DIII
–2 PinC Ë

f˙1g
T Z=2Z Ë T (PinC2 ) AII

–3 Pin� �
f˙1g

SU2 Z=4Z�
f˙1g

SU2 (PinC3 ) CII

4 Spin�
f˙1g

SU2 SU2 (Spin3) C

3 PinC �
f˙1g

SU2 Z=2Z�SU2 (Pin�3 ) CI

2 Pin� Ë
f˙1g

T Z=4Z Ë
f˙1g

T (Pin�2 ) AI

1 Pin� Z=4Z (Pin�1 ) BDI

.9.35/

In the physics literature a Z=2Z subgroup of I containing a time-reversal symme-
try, if it exists, is labeled ‘Z=2ZT ’. The f˙1g subgroup is often labeled ‘Z=2Zf ’,
where ‘f ’ means ‘fermionic’ since the nontrivial element is the center of the spin
group. The groups in parentheses are abstractly isomorphic to the group I.

Remark 9.36 In the pullback (9.33) the group In has two extra pieces of structure:
the canonical central element k0 2K � In of order dividing two (Theorem 2.7(2)) and
a Z=2Z–grading � W In!O1 D f˙1g with K D ker� . In condensed matter models
we are given .In; k0; �/ and part of the determination of the low-energy effective
field theory is the (re)construction of the symmetry type .Hn; �n/. We achieve this as
follows. If � is trivial then InDK , so set fSHn W D Spinn�In ; then define HnD SHn
by (2.8). If � is surjective, consider the commutative diagram

.9.37/

Spin1 //

##

Spinn

##
zIn //

{{

��

zHn

{{ ##

��

In

��

// Hn

��

J

����

PinC1

{{

// PinCn

##

O1 // On // f˙1g

in which every parallelogram is a pullback, the kernel of every vertical map is K , and
the northeast diagonal composition is exact. Given .In; k0; �/ define zIn by pullback,
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set K D ker� , set J D zIn=Spin1 , let zHn be the pullback (2.10), and define Hn
using (2.11).

9.2.2 Twisted Atiyah–Bott–Shapiro map Atiyah, Bott, and Shapiro [8, Section 11]
give a canonical construction of K–theory elements on Thom complexes. The universal
incarnation [60, Section 6.1] is a map of spectra

.9.38/ � WMSpin!KO:

Following their arguments we produce similar maps for the group H.s/ of type s in
table (9.25). Fix a dimension n 2 Z�0 .

As a first step we stipulate a Morita equivalence

.9.39/ An.s/�Morita CliffC.nCs/ :

There is a sign at stake — for any Clifford algebra A the groupoid of invertible .A;A/–
bimodules is equivalent to the groupoid of Z=2Z–graded lines: the sign is the parity
of the line. Define the isomorphism

.9.40/ CliffCn˝CliffCs Š�! CliffC.nCs/

as in [8, (1.6)], and choose [8, (6.9)] a Cliff˙8–module M D M 0 ˚M 1 of di-
mension 8 j 8 such that the volume form acts as C1 on M 0 . There result Morita
equivalences (9.39) for all cases except s D 4. For that we fix a quaternionic Cliff˙4–
module N DN 0˚N 1 of quaternionic dimension 1 j 1 such that the volume form acts
as C1 on N 0 .

Now to the twisted Atiyah–Bott–Shapiro construction. Let � W Vn! BHn.s/ be the
universal bundle associated to �n WHn.s/!On . Define the spinor bundle36

.9.41/ S WDEHn.s/�Hn.s/
An.s/

op
! BHn.s/:

This is a vector bundle of right An.s/op–modules or, equivalently, of left An.s/–
modules. Left Clifford multiplication (9.29) defines a family of odd skew-adjoint
endomorphisms of ��S! Vn . These operators are invertible off the zero section,
and they commute with the left An.s/–module structure. Therefore, using the Morita
equivalence (9.39), they define an element in KOnCs.Thom.BHn.s/IVn//, where
Thom.BHn.s/IVn/ is the Thom space of the universal bundle � W Vn!BHn.s/. Take

36Our choice of Aop in (9.41), rather than A , is essentially a sign choice. We use a geometric
model [10] in which a class in KOm.X/ is represented by a Z=2Z–graded vector bundle over X that is a
left module for Cliffm equipped with a family of commuting odd skew-adjoint (Fredholm) operators.
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the limit n!1 after subtracting a trivial rank n bundle from Vn to obtain

.9.42/ � WMH.s/!†sKO

out of the Thom spectrum associated to the stable normal structure H. For s D 0
this is the Atiyah–Bott–Shapiro (ABS) map [60, Section 6.1]. We rewrite in terms
of the stable tangential structure H ; see the comments following (7.6). That perp
maneuver exchanges PinC and Pin� , which in table (9.25) makes the exchange s$�s .
Therefore, (9.42) is a generalized ABS map

.9.43/ � WMTH.s/!†�sKO:

In the complex case we obtain a generalized ABS map

.9.44/ � WMTH c.s/!†�sK:

9.2.3 Twisted Dirac operators Next, following [82, Section II.7], we define twisted
Dirac operators for the structure groups in table (9.25). Suppose X is an n–dimensional
Riemannian manifold equipped with an Hn.s/–structure P !X. We assume given a
connection on P !X compatible with the Levi-Civita connection on the orthonormal
frame bundle. Use the embedding (9.28) to form the Z=2Z–graded spinor bundle

.9.45/ S0 WD P �
Hn.s/

An.s/!X:

Clifford multiplication (9.29) defines a vector bundle map T �X˝S0! S0, and as usual
the Dirac operator =DX acts on smooth sections of S0 as the covariant derivative followed
by Clifford multiplication. The Dirac operator is odd and skew-adjoint. (See footnote 36
for our conventions.) It commutes with the right An.s/–module structure on S0 or,
equivalently, with the left An.s/op–module structure.

There are topological and geometric indices of Dirac operators on compact manifolds.
The topological index is defined using Fredholm operators [10]. Namely, if X is closed,
then =DX extends to a Fredholm operator on Sobolev completions of the space of smooth
sections of S0. This construction works in families: from a fiber bundle X!S of closed
Riemannian n–manifolds with Hn.s/–structure we obtain a family of odd skew-adjoint
Fredholm operators parametrized by S. Recalling that An.s/op is Morita equivalent
to Cliff�.nCs/ , via (9.39), we deduce that this family of operators has a topological
index that lies in KO�.nCs/.S/. For s D 0 this reduces to the usual Clifford-linear
Dirac operator definition of the topological index. The Atiyah–Singer index theorem
equates this topological index with an analytic index. If S is a smooth manifold and
X! S a smooth family of Riemannian manifolds with Hn.s/–structure, then there
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is a geometric index that lies in the differential cohomology group bKO�.nCs/.S/;
see [46] for the differential complex K–theory version as well as the Atiyah–Singer
theorem in this differential context.

Remark 9.46 For sD˙1 this discussion specializes to an effective approach to Dirac
operators and index theory on unoriented manifolds with a Pin˙–structure.

Remark 9.47 There is an analogous discussion in the complex case: replace H!H c

and KO!K .

9.2.4 Free fermion theories on Minkowski spacetime Mn�1 As before we only
treat the eight real fermionic symmetry groups. Fix a type s in table (9.25). Let
H1;n�2.s/ be the Lorentz signature anti-Wick rotation of Hn�1.s/, as in (2.1). If
s D 0, which is the basic case, then H1;n�2.s/D Spin1;n�2 is the Lorentz spin group.
The analog of (9.28) is an embedding (see (A.3) for Cliffp;q conventions)

.9.48/ � WH1;n�2.s/! Cliffn�2;1˝D.s/DW Bn�1.s/;

and there is a Morita equivalence of superalgebras

.9.49/ Bn�1.s/�Morita CliffC.n�3Cs/ :

We use the conventions following (9.39) to define the Morita equivalence. The image
of � lies in the even subalgebra Bn�1.s/0�Bn�1.s/. A free fermionic field is specified
by a real spinor representation of H1;n�2.s/, which by definition is an ungraded real
module S of Bn�1.s/0 . A spinor field is then a function  WM n�1! S .

Remark 9.50 The CRT theorem, which is reviewed in Appendix A, implies that
the free fermion theory has a larger Lie group H1;n�2.s/

ˇ � H1;n�2.s/ of sym-
metries; the nonidentity component acts antilinearly on the Hilbert space of states.
Proposition A.15(3) implies that the embedding (9.48) extends to H1;n�2.s/ˇ , and so
H1;n�2.s/

ˇ acts on the real vector space S , consistent with Proposition A.20(2).

We quickly summarize special facts about a real spinor representation S of the Lorentz
spin group Spin1;n�2 ; proofs may be found in [30, Section 6]. Fix a component C of
timelike vectors � 2R1;n�2 with j�j2 > 0. The first special property is the existence
of symmetric Spin1;n�2–invariant maps

.9.51/ � W S�S!R1;n�2:

If S is irreducible, then � is unique up to a real factor, and nonzero � are definite.
Choose � positive definite in the sense that �. ; /2C for all  2S . This fixes � up

Geometry & Topology, Volume 25 (2021)



1266 Daniel S Freed and Michael J Hopkins

to a positive real factor. There are two isomorphism classes of real irreducible represen-
tations for n�1� 2; 6 .mod 8/ and a unique irreducible in other cases. Let S1 and S2
be representative irreducibles (in dimensions with a unique irreducible, set S2 D 0);
let Z be the commutant of the spin action, so Z D R, C , or H; and fix positive
definite � for S1 and S2 . A general real spinor representation S decomposes as

.9.52/ SŠ .W1˝Z S1/˚ .W2˝Z S2/

for right Z–modules W1 and W2 . Then positive definite pairings � in (9.51) correspond
to positive definite Hermitian forms on W1 and W2 . For each choice there is a unique
compatible Z=2Z–graded Cliffn�2;1–module structure on S˚S� , where S is in even
degree and S� in odd degree; in particular, the duality pairing S�˝S!R is Spin1;n�2–
invariant. Conversely, if S0˚S1 is a Cliffn�2;1–module, then there is a duality pairing
S0˝S1!R that makes the resulting symmetric form (9.51) positive definite. (Deligne
proves this for simple modules in [30, (6.1)]; any module is a sum of simples and the
argument applies to each summand.) Observe that � is a contractible choice.

The group H1;n�2.s/ contains the spin group Spin1;n�2 as a subgroup and the quo-
tient Qn�1.s/ is compact and independent of n up to isomorphism. An irreducible
real representation of H1;n�2.s/ decomposes under the subgroup Spin1;n�2 as (9.52),
and a central extension 3Qn�1.s/ of Qn�1.s/ acts on each Wi . A choice of 3Qn�1.s/–
invariant positive definite Hermitian form on Wi yields a H1;n�2.s/–invariant pair-
ing (9.51), and then a Bn�1.s/–module S˚S� . Conversely, every Bn�1.s/–module
has this form.

Definition 9.53 The module S admits a mass term if there is a nondegenerate skew-
symmetric H1;n�2.s/–invariant bilinear form

.9.54/ m W S�S!R:

We call m the mass form.

Lemma 9.55 The module S admits a mass term if and only if S˚S� extends to a
super module of the superalgebra Bn�1.s/Œe�, where e is odd , e2D�1, and e (graded )
commutes with the Clifford generators of Bn�1.s/.

If s D 4 the hypothesis is that e commutes with D DH . As always, the commutation
with Clifford generators obeys the Koszul sign rule.

Proof Given a Bn�1.s/Œe�–module structure on S˚S� , define m by

.9.56/ m.s1; s2/D hEs1; s2i for s1; s2 2 S;
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where E W S! S� is part of the action of e D
�
0
E
�E�1

0

�
on S˚S� . Since e2 D�1,

the form m is nondegenerate, and since e (graded) commutes with Bn�1.s/, the
form m is H1;n�2.s/–invariant. We must prove that m is skew-symmetric. It suffices
to assume that S˚S� is a simple Bn�1.s/Œe�–module, since any module is a direct
sum of simples. Then m is either symmetric or skew-symmetric. Let f 2R1;n�2 �

Cliffn�2;1 � Bn�1.s/ be the Clifford generator with f 2 D �1. So f is a timelike
vector, and we choose it to lie in C. Write f D

�
0
F
�F�1

0

�
for its action on S˚S� .

The positive definiteness of � implies that

.9.57/ .s1; s2/S WD hF s1; s2i for s1; s2 2 S

is a positive definite inner product on S . The mass form is m.s1; s2/D .F�1Es1; s2/S .
Set A D F�1E 2 End.S/. Since m is either symmetric or skew-symmetric, either
A�DA or A�D�A, where � is with respect to the inner product (9.57). But ef D�fe
implies A2 D� idS , which rules out A� D A since A�A is a nonnegative operator.

Conversely, let m be a mass form. Using the inner product (9.57) write

.9.58/ m.s1; s2/D .Bs1; s2/S for s1; s2 2 S;

for an invertible skew-symmetric operator B W S ! S . Define P D
p
B�B and

AD P�1B D BP�1 . Then set E D FA and let e 2 Bn�1.s/Œe� act on S˚S� via�
0
E
�E�1

0

�
, where as above f 2Bn�1.s/Œe� acts as

�
0
F
�F�1

0

�
. We must check that this

determines a well-defined action of Bn�1.s/Œe�. It is easy to verify that e2D� idS˚S� ,
and ef D �fe follows from F�1E D �E�1F, which in turn follows from A D

�A�1 . For later use we observe the commutation relation PF�1E D F�1EP. Let37

c 2R1;n�2˚Rjsj�Bn�1.s/ be a vector perpendicular to f , and write its action on the
module S˚S� as

�
0
C
˙C�1

0

�
, the sign determined according as c2 D˙1 in Bn�1.s/.

It remains to show that ec D�ce as operators on S˚S� or, equivalently, that

.9.59/ .EC�1/2 D˙ idS :

First, we use (9.56)–(9.58) to write

.9.60/ m.s1; s2/D hFBs1; s2i D hEPs1; s2i for s1; s2 2 S:

Since cf D �fc in Bn�1.s/ we have C�1F D˙F�1C. Next, cf 2H1;n�2.s/ �
Bn�1.s/ preserves the duality pairing S�˝S!R, from which

.9.61/ hCF�1s�; C�1F si D �hs�; si for s� 2 S� and s 2 S:

37We leave the reader to give the appropriate modification for s D 4 .
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Now, since m is H1;n�2.s/–invariant,

.9.62/ m.C�1F s1; C
�1F s2/Dm.s1; s2/ for s1; s2 2 S:

Use the first expression in (9.60) together with the previous identities to conclude that
C�1FB D�BC�1F. It follows that C�1F commutes with P. Then rewrite (9.62)
using the second expression in (9.60) to deduce FC�1EPC�1F D�EP. Apply the
foregoing to arrive at (9.59).

There is an abelian group law on free fermion theories: direct sum of Clifford modules S .
The relationship [8, (11.4); 6, page 383] between Clifford modules and K–theory yields
the following.

Theorem 9.63 The abelian group of relativistic free fermion field theories in dimen-
sion n� 1 with type s , modulo those that admit a mass term , is isomorphic to

.9.64/ KOn�3Cs.pt/Š �3�s�n.KO/:

Massive free fermions are anomaly-free; see [116, Section 1.2] for a recent exposition.
So the map from a free fermion theory to the isomorphism class of its anomaly factors
through the quotient (9.64).

Remark 9.65 The nature of an irreducible real twisted spin representation S0 depends
on the value of t D n� 1C s .mod 8/. We ask if it is self-conjugate — if S�0 Š S0 —
and if so whether the induced nondegenerate bilinear form S0˝S0!R is symmetric
(S0 orthogonal) or skew-symmetric (S0 symplectic). Also, the commutant is a real
division algebra, so is isomorphic to R, C , or H . We list the types. If t � 3; 4; 7,
then S0 is symplectic, and the commutant is R, C , or H , respectively. If t � 0; 1; 5,
then S0 is orthogonal and the commutant is C , R, or H , respectively. If t � 2; 6,
then there are two nonisomorphic irreducible spin representations that are each other’s
dual; the commutant is R or H , respectively. For t � 3; 4; 7 the K–group (9.64)
vanishes, as it must since there is always a mass term. For t � 0; 1 the K–group is
isomorphic to Z=2Z — the direct sum of two copies of the irreducible module admits
a mass term — and for t � 5 it vanishes. For t � 2; 6 the K–group is isomorphic to Z.
These are the cases for which the anomaly theory is not topological.

9.2.5 The anomaly theory and its deformation class Our starting point is the
Bn�1.s/

0–module S that defines a free fermion theory on Minkowski spacetime M n�1

in .n� 1/ dimensions, as in Section 9.2.4. In this subsection we sketch the associ-
ated n–dimensional anomaly theory, an invertible field theory in n dimensions. (See
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[40; 41, Section 11] for expositions of anomalies from this viewpoint.) The anomaly
theory is not necessarily topological, but it has a deformation class that is topological —
or which can be regarded as a continuous invertible topological theory — and we
propose a general formula for it. See [116] for a discussion of many special cases from
a more physical viewpoint.

First, the real representation S of H1;n�2.s/ extends to a complex representation SC of
the complexification H1;n�2.s/.C/, which then restricts to a complex representation
of Hn�1.s/. On a curved Riemannian manifold Xn�1 with differential Hn�1.s/–
structure P !X there is an associated complex vector bundle P �

Hn�1.s/
SC!X

whose sections are complex spinor fields. There is a Wick-rotated Dirac lagrangian,
possibly with mass term, which is a skew-symmetric form on the space of spinor fields.
If X is closed, then the fermionic functional integral over the space of spinor fields is
the pfaffian of the Dirac operator on X. In a smooth family X! S the pfaffian is not
a function, but rather is a section of the pfaffian line bundle

.9.66/ PfaffX=S ! S:

The bundle PfaffX=S!S carries a canonical Hermitian metric and compatible covariant
derivative; it is Z=2Z–graded by the mod 2 index. It is part of the anomaly theory
associated to the module S .

We now give a conjectural description of the entire anomaly theory. Fix k 2 Z�0 ,
which is the codimension in the n–dimensional theory. Let Xn�k be a closed .n�k/–
dimensional Riemannian manifold with differential Hn�k.s/–structure. The universal
Dirac operator (Section 9.2.3) acts on sections of a real vector bundle S0 ! X of
left An�k.s/op–modules, where An�k.s/D CliffC.n�k/˝D.s/ is Morita equivalent
to CliffC.n�kCs/ ; see (9.39). Let S˚S� ! X be the constant vector bundle with
fiber S˚ S� . Then S0˝R .S˚S�/! X is a real vector bundle of Z=2Z–graded
An�k.s/

op˝Bn�1.s/–modules. Our conventions in Section 9.2.2 give a definite Morita
equivalence An�k.s/

op ˝ Bn�1.s/ �Morita Cliff�.3�k/ . For a family X ! S the
geometric index of the Dirac operator38 with coefficients in S0 ˝R .S˚S�/ lies
in the differential cohomology group bKO�.3�k/.S/. Note that it is independent of n
and s . The anomaly picks off the lowest piece of the index via the canonical Pfaffian
homomorphism

.9.67/ Pfaff W cKO�.3�k/.S/! 1IZ.1/1Ck.S/:

38Some details of this construction appear in [43, Appendix].
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The invariants in differential IZ.1/ fit together into an invertible field theory; see [61].

Example 9.68 For kD 0, so X!S of relative dimension n, there is an isomorphism
1IZ.1/1.S/Š yH 1.S/ŠMap.S;T /. The corresponding lowest piece of the index is

the partition function e2�i.�=2/ of the anomaly theory on an n–manifold, where � is
the Atiyah–Patodi–Singer invariant [9]. The division by 2 is due to the skew-symmetry
of the Dirac form, the same division by 2 that passes from determinant to pfaffian.
The equality between the exponentiated �–invariant and the integral in differential
K–theory has only been proved in a basic case [79; 93; 22; 46] as far as we know.

Example 9.69 For kD1, so X!S of relative dimension n�1, the group 1IZ.1/2.S/

is isomorphic to the group of isomorphism classes of Z=2Z–graded Hermitian line
bundles L! S with compatible covariant derivative. For the anomaly theory that
element is the pfaffian line bundle PfaffX=S ! S. The main theorem in [29] is the
gluing law in the nonextended invertible field theory in dimensions n� 1 and n with
partition function the exponentiated �–invariant.

The story continues to lower-dimensional manifolds, on which the invariants are graded
gerbes [83; 21] and higher analogs.

The deformation class of an invertible field theory gotten from integration in differential
cohomology is the underlying topological cohomology theory. In the background are
techniques from [61], which lead to the following.

Conjecture 9.70 Fix a type s in table (9.25) and a dimension n. Fix an isomorphism
class of free fermion theories modulo those that admit a mass term , ie an element
ŒS� 2 �3�s�n.KO/. Then the deformation class of the n–dimensional anomaly theory
is the homotopy class of the composition

.9.71/ MTH.s/ �^ŒS����!†�sKO ^†�3CsCnKO
�
�!†n�3KO

Pfaff
��!†nC1IZ.1/;

where � is the Atiyah–Bott–Shapiro map (9.43), � is multiplication in the ring spec-
trum KO, and Pfaff is the topological version of (9.67).

There is a similar conjecture in the complex case (9.24) with the usual replacements
H !H c and KO!K . We hope to address this conjecture in the future. We use it
in our computations below.

Remark 9.72 If the group �3�s�n.KO/ is finite, hence is isomorphic to Z=2Z, then
there is a reflection positive invertible topological field theory in the deformation
class whose partition function is the mod 2 index. If the group is free cyclic, hence
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isomorphic to Z, then the deformation class is represented by a reflection positive
invertible field theory whose partition function is the exponentiated �–invariant of
Atiyah, Patodi, and Singer, the secondary invariant for a Z–valued topological index
in .nC 1/ dimensions. This is the case in which there are local anomalies as well as
global anomalies, and because of the shift s it happens in both even and odd dimensions.

9.2.6 Massive free fermion theories In Section 9.2.5 we explained how a free
fermion theory in .n � 1/ dimensions has an associated n–dimensional invertible
anomaly theory, and Conjecture 9.70 states its deformation class. Here we show that
a second scenario leading to invertible n–dimensional theories has the same starting
data. This is the scenario we apply in Section 9.3. Namely, begin with a massive free
fermion theory in n dimensions. Because the theory has a mass gap its long-range
physics is described by a field theory, which naturally is also n–dimensional. As argued
in Section 5.4 we expect that theory to be, at least locally, the product of a topological
theory and an invertible theory. But a massive free fermion theory has a unique vacuum
on each spatial manifold — the vacuum in the fermionic Fock space — so in fact the
long-range effective theory is invertible.

Remark 9.73 One must make choices to define the massive free fermion theory, and
they can be summarized as a trivialization of an anomaly; see [41, Section 11] for a gen-
eral discussion. There is a canonical choice for each fixed mass, and it is implicitly used
in the discussion below as well as in Section 9.3. However, when the mass is a not nec-
essarily constant function then there is an anomaly; see [28] for discussion and details.

As in previous sections fix a type s in table (9.25) and let H1;n�1.s/ be the Lorentz
signature anti-Wick rotation of the corresponding group Hn.s/. In the notation of (9.48)
there is an embedding H1;n�1.s/ ,! Bn�1.s/Œe

0�, where e0 is an extra Clifford gener-
ator with .e0/2 DC1. By Lemma 9.55 spinor representations of H1;n�1.s/ that admit
a mass term are in bijection with super modules over the superalgebra Bn�1.s/Œe0; e�,
where e is an extra Clifford generator with e2 D�1. Observe that Bn�1.s/Œe0; e� is
Morita equivalent to CliffC.n�3Cs/ . We speculate that

.9.74/
the resulting low-energy theory is trivial if the Bn�1.s/Œe0; e�–module is
extended to a module over the algebra Bn�1.s/Œe0; e; f � with f 2 D�1.

The group of equivalence classes of Bn�1.s/Œe; f �–modules modulo those that extend
is the K–group (9.64). The Morita equivalence to massless theories in dimension n�1
and the vanishing of the anomaly for theories that admit a mass term are evidence in
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favor of (9.74). Furthermore, we speculate that

.9.75/ the low-energy theory is invertible and its deformation class is (9.71).

As some evidence supporting (9.75) we point out that the partition function in special
cases is computed in [116, Sections 2.1.6, 2.2.3, 3.4, 4.3 and 5]. The universal part
of the partition function of the low-energy theory is an exponentiated �–invariant, as
in Example 9.68.

9.3 Phases of topological insulators and topological superconductors

We apply Conjecture 8.37 to compute possible topological phases for each of the
10 fermionic symmetry types (9.24) and (9.25). We recall that the fermionic symmetry
groups with K D T pertain to topological insulators; those with K D f˙1g and
K D SU2 pertain to topological superconductors. The abelian group of topological
phases — that is, the group of deformation classes of reflection positive invertible
topological field theories with symmetry group H in n spacetime dimensions — is

.9.76/ TPn.H/ WD ŒMTH;†nC1IZ.1/�:

It may be computed from the homotopy groups39 �q MTH ; see the universal prop-
erty (5.17). Since we are only interested in n� 5, we need only compute for q � 6,
and for q D 6 we only need to know �6 MTH = torsion, because that determines
Hom.�6 MTH;Z/. The abelian group TPn.H/ classifies deformation classes of
interacting theories. The abelian group of deformation classes of massive (gapped)
free fermion theories in n dimensions modulo those with trivial long-range effective
theory is given by Lemma 9.55 and (9.74), at least conjecturally:

.9.77/ FFn.H.s// WD
�
�3�s�n.K/ for H c.s/ a complex symmetry type;
�3�s�n.KO/ for H.s/ a real symmetry type;

Š

�
Œ†�sK;†nC1IZ.1/�;

Œ†�sKO;†nC1IZ.1/�;

where s is the parameter in (9.24) or (9.25). (See Remark 9.65 for an enumeration of
the K–theory groups in the real case via the types of spin representation.) According
to (9.75) and (9.71) the natural homomorphism

.9.78/ ˆ W FFn.H/! TPn.H/

39These are Thom’s bordism groups, but for the perpendicular tangential structure on the stable normal
bundle (see the remark on page 1231). Note that PinC=Pin� and PinzcC=Pinzc� exchange when passing
from tangential to normal.
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from the group of deformation classes of free fermion theories to the group of all theories
is the product with the ABS map (9.43). We compute ˆ for each symmetry class.

The results are organized by internal symmetry group. Some of the bordism groups
appear in the mathematics literature, whereas for the more exotic symmetry groups
the computations are new. With the bordism groups in hand, the classification of
interacting theories is an immediate consequence of Conjecture 8.37 and the universal
property expressed in the short exact sequence (5.17). The free fermion computation
is (9.64). The map (9.78) from massive free fermion phases to interacting phases does
not follow from the rest — it must also be computed. We give a uniform treatment
based on Lemma 9.27 and Section 9.2.2. Manifold generators and formulas for partition
functions in 4 dimensions are worked out in [57].

We check our computations against the condensed matter literature, where groups of
SPT phases are deduced using very different arguments. There is almost total agreement,
and in the few places we differ we use the homotopy computations to predict what
should happen in the physics. The computations that we did not find in the physics
literature should be considered predictions.

9.3.1 Internal symmetry group K D f˙1g The symmetry groups are classified
in Proposition 2.16. The low-degree spin and pin bordism groups are described in a
geometric way in [72]. The general structure of spin bordism is elucidated in [4]. The
computation of pin bordism groups in all degrees may be found in [5] and [71].

Theorem 9.79 The low-degree bordism groups for K D f˙1g are:

.9.80/

q �q MTSpin �q MTPinC �q MTPin�

6 0 0 Z=16Z

5 0 0 0

4 Z Z=16Z 0

3 0 Z=2Z 0

2 Z=2Z Z=2Z Z=8Z

1 Z=2Z 0 Z=2Z

0 Z Z=2Z Z=2Z

Corollary 9.81 (symmetry class D) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group Spin
are isomorphic to:
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.9.82/

n kerˆ ! FFn.Spin/ ˆ
�! TPn.Spin/ ! cokerˆ

5 0 0 0 0

4 0 0 0 0

3 0 Z Z 0

2 0 Z=2Z Z=2Z 0

1 0 Z=2Z Z=2Z 0

0 0 0 0 0

Literature note The groups TP1.Spin/ and TP2.Spin/ were computed by the “group
super cohomology theory” in [56]; see Table II. That theory is a 2–stage Postnikov
truncation of IZ.1/, so in general only computes a subgroup of topological phases; it
is the entire group in very low dimensions. The interacting classification TPn.Spin/
appears in [95]: see Section IIA for n D 3, Section IID for n D 2, and Section IIE
for nD 1. The group TP3.Spin/ is discussed in [84, Section V A], but their restriction
to “nonchiral” phases means that the E8 phases that generate TP3.Spin/ were not
accounted for. All of the groups in the table, but not the map from free fermions to
interacting theories, appear in [68]. Those authors conjecture a cobordism classification
of interacting fermionic SPT phases.

Proof That ˆ is an isomorphism in low dimensions follows since the ABS map
MSpin!KO induces an isomorphism on ��7 .

In the next example we meet a nontrivial kernel of ˆ, which is to say, free fermion
phases that become trivial when interactions are allowed.

Corollary 9.83 (symmetry class DIII) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group PinC

are isomorphic to:

.9.84/

n kerˆ ! FFn.PinC/ ˆ
�! TPn.PinC/ ! cokerˆ

5 0 0 0 0

4 16Z Z Z=16Z 0

3 0 Z=2Z Z=2Z 0

2 0 Z=2Z Z=2Z 0

1 0 0 0 0

0 2Z Z Z=2Z 0
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Literature note There are many arguments in the physics literature that 16 copies
of the basic free fermion theory in 4 dimensions has a trivial phase once interac-
tions are allowed, and that this does not occur with fewer copies. (As noted in
Remark 8.41, the group TP4.PinC/ is torsion, hence a priori some multiple of the free
theory necessarily becomes trivial once interactions are allowed.) A sample includes
[75; 35; 112; 88; 78] and [116, Section 4]. The interacting case in 3 dimensions is
investigated in [116, Section 3], and various aspects of the invertible field theory are
described explicitly. It is also discussed in [84, Section V B], but the nonzero element
is missed within the “K–formalism”, as the authors explain. The groups TPn.PinC/
as computed here also appear in [68, Table 2].

Corollary 9.85 (symmetry class BDI) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group Pin�

are isomorphic to:

.9.86/

n kerˆ ! FFn.Pin�/ ˆ
�! TPn.Pin�/ ! cokerˆ

5 0 0 0 0

4 0 0 0 0

3 0 0 0 0

2 8Z Z Z=8Z 0

1 0 Z=2Z Z=2Z 0

0 0 Z=2Z Z=2Z 0

Literature note The breaking of the Z classification of free fermions in 2 space-
time dimensions to the Z=8Z classification of interacting fermions is treated in
[37; 36; 110; 117] and [116, Section 5]. The groups TPn.Pin�/ for n D 1; 2 are
computed by the group super cohomology in [56, Table II]. The vanishing of TP3.Pin�/
is argued in [84, Section V B]. The groups TPn.Pin�/ as computed here also appear
in [68, Table 2].

9.3.2 Internal symmetry group K D T The symmetry groups are classified in
Proposition 9.4. Spinc bordism groups are computed in [4]; compare [107, Chapter XI].
Pinc bordism groups are computed in [13]. The twisted Pinc bordism computations
are new.

Theorem 9.87 The low-degree bordism groups for K D T are:
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.9.88/

q �q MTSpinc �q MTPinc �q MTPinzcC �q MTPinzc�

6 Z2 Z=16Z�Z=4Z Z2 �Z=2Z Z2 �Z=2Z

5 0 0 0 0

4 Z2 Z=8Z�Z=2Z .Z=2Z/3 Z=2Z

3 0 0 Z=2Z 0

2 Z Z=4Z Z Z�Z=2Z

1 0 0 0 0

0 Z Z=2Z Z=2Z Z=2Z

Corollary 9.89 (symmetry class A) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
Spinc are isomorphic to:

.9.90/

n kerˆ ! FFn.Spinc/ ˆ
�! TPn.Spinc/ ! cokerˆ

5 0 Z Z2 Z

4 0 0 0 0

3 0 Z Z2 Z

2 0 0 0 0

1 0 Z Z 0

0 0 0 0 0

Literature note The vanishing of the group TP4.Spinc/ is mentioned in [111] at the
end of Appendix F.

Corollary 9.91 (symmetry class AIII) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group Pinc

are isomorphic to:

.9.92/

n kerˆ ! FFn.Pinc/ ˆ
�! TPn.Pinc/ ! cokerˆ

5 0 0 0 0

4 8Z Z Z=8Z�Z=2Z Z=2Z

3 0 0 0 0

2 4Z Z Z=4Z 0

1 0 0 0 0

0 2Z Z Z=2Z 0
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Literature note The group TP4.Pinc/ and the map from free fermions is discussed
in [112, Section III]; see also [104, Section A.4] for the map from free fermions. The
vanishing of the group TP3.Pinc/ is discussed in [84, Section V D] as well as in the
last paragraph of [116, Section 3.7].

Corollary 9.93 (symmetry class AII) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
PinzcC are isomorphic to:

.9.94/

n kerˆ ! FFn.PinzcC/ ˆ
�! TPn.PinzcC/ ! cokerˆ

5 0 Z Z2 Z

4 0 Z=2Z .Z=2Z/3 .Z=2Z/2

3 0 Z=2Z Z=2Z 0

2 0 0 0 0

1 0 Z Z 0

0 0 0 Z=2Z Z=2Z

Literature note The Z=2Z invariant of free fermion systems in 3 and 4 spacetime
dimensions was introduced by Kane and Mele [64] and Fu, Kane, and Mele [49] and
has been further studied in many papers. The interacting case in 4 dimensions is
investigated in [111] and in 3 dimensions in [116, Section 3.7]; their results agree
with ours. The initial computation in [84, Section V C 2] of TP3.PinzcC/Š .Z=2Z/2

was corrected in a subsequent erratum. The original argument in that paper asserts
a Z=2Z subgroup of bosonic phases, which would have symmetry group O Ë T ,
as in (9.6). We computed that �3.M.O Ë T // Š Z=2Z and the natural projection
PinzcC!O Ë T induces the zero map on �3 of the Thom spectra. This implies that
the group of bosonic phases is Z=2Z, as claimed, but that the lift of that bosonic phase
to a fermionic phase is trivial. This triviality of the pullback was not noticed initially;
our homotopy-theoretic methods give a systematic approach, and we encounter this
issue again in the literature note following (9.96). The physical results in 4 dimensions
were recounted in [87] at the end of Section VI, where the question of agreement with a
bordism computation was raised. This provided strong motivation for the computations
in this section. We remark that the description of the partition function of some phases
in terms of Stiefel–Whitney classes matches our bordism computations as well. Also,
Section 4.7 of [116] treats the invertible topological field theory in 4 dimensions defined
by the free fermion theory, so only detects the image of ˆ in TP4.PinzcC/.
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Corollary 9.95 (symmetry class AI) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
Pinzc� are isomorphic to:

.9.96/

n kerˆ ! FFn.Pinzc�/ ˆ
�! TPn.Pinzc�/ ! cokerˆ

5 0 Z Z2 Z

4 0 0 Z=2Z Z=2Z

3 0 0 0 0

2 0 0 Z=2Z Z=2Z

1 0 Z Z 0

0 0 Z=2Z Z=2Z 0

Literature note The group TP4.Pinzc�/ is discussed in detail in the erratum to [112].
The group TP3.Pinzc�/ is asserted to be cyclic of order two in [84, Section V C 1],
generated by a bosonic phase. The bosonic phase is the same one identified for the
symmetry class AII — see the literature note following (9.94) — and again we compute
that its lift to a fermionic phase with symmetry group Pinzc� vanishes, which explains
the discrepancy.

9.3.3 Internal symmetry group K DSU2 The symmetry groups G0 , GC , and G�

are defined and classified in Proposition 9.16.

Theorem 9.97 The low-degree bordism groups for K D SU2 are:

.9.98/

q �q MTG0 �q MTGC �q MTG�

6 Z=2Z�Z=2Z .Z=2Z/4 Z=2Z�Z=4Z�Z=16Z

5 Z=2Z�Z=2Z Z=2Z .Z=2Z/2

4 Z2 Z=4Z�Z=2Z .Z=2Z/3

3 0 0 0

2 0 Z=2Z Z=2Z

1 0 0 0

0 Z Z=2Z Z=2Z

Corollary 9.99 (symmetry class C) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
G0 D Spin�

f˙1g
SU2 are isomorphic to:
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.9.100/

n kerˆ ! FFn.G0/
ˆ
�! TPn.G0/ ! cokerˆ

5 0 Z=2Z Z=2Z�Z=2Z Z=2Z

4 0 0 0 0

3 0 Z Z2 Z

2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

Literature note That TP4.G0/ D 0 was suggested in [112] in the last paragraph
preceding Section V A.

Corollary 9.101 (symmetry class CI) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
GC D PinC �

f˙1g
SU2 are isomorphic to:

.9.102/

n kerˆ ! FFn.GC/
ˆ
�! TPn.GC/ ! cokerˆ

5 0 0 Z=2Z Z=2Z

4 4Z Z Z=4Z�Z=2Z Z=2Z

3 0 0 0 0

2 0 0 Z=2Z Z=2Z

1 0 0 0 0

0 2Z Z Z=2Z 0

Our computations prove ˆ maps the generator of FF4.GC/ to an element of order 4
in TP4.GC/.

Literature note Wang and Senthil [112, Section V] discuss the n D 4 case and
conjecture the same group TP4.GC/ŠZ=4Z�Z=2Z that we compute; the map from
free fermions also agrees.

Corollary 9.103 (symmetry class CII) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
G� D Pin� �

f˙1g
SU2 are isomorphic to:
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.9.104/

n kerˆ ! FFn.G�/
ˆ
�! TPn.G�/ ! cokerˆ

5 0 Z=2Z .Z=2Z/2 Z=2Z

4 0 Z=2Z .Z=2Z/3 .Z=2Z/2

3 0 0 0 0

2 2Z Z Z=2Z 0

1 0 0 0 0

0 0 0 Z=2Z Z=2Z

Literature note The 4–dimensional case is treated in [112, Section VI]; the answer
they obtain for TP4.G�/ is .Z=2Z/5 , which disagrees with the corresponding entry
in (9.104), but it may be a different symmetry group they are considering. In any case,
in the note following Corollary 9.93, we compute the group of bosonic phases with
symmetry group O �

f˙1g
SU2 and find .Z=2Z/4 , but the lift to fermionic phases kills

a .Z=2Z/2 subgroup.

10 Computations

The computations in Section 9.3 involve finitely generated abelian groups having no
odd torsion, so it suffices then to make them after completing at 2. This can be done
using the Adams spectral sequence

.10.1/ Exts;tA .H�.MTH/;Z=2/) �t�s MTH;

where A is the mod 2 Steenrod algebra and, though not indicated in the notation, the
homotopy groups have been completed at 2.

What makes this approach tractable is an identification40 of the spectrum †sMTH.s/
with

.10.2/

MSpin^MTOjsj for �3� s � 0;

MSpin^MOjsj for 0� s � 3;

†MSpin^MSO3 for s D 4

and, in the complex case, of †sMTH c.s/ with

.10.3/ MSpinc
^MOs �†

�2MSpin^MU1 ^MOs:

40Corollary 2.12 implies that for any symmetry type .H; �/ , the spectrum MTH is an MSpin–module.
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Let A1 � A be the subalgebra generated by Sq1 and Sq2 . Anderson, Brown, and
Peterson [4] give an isomorphism

.10.4/ H�MSpin� A˝A1 fZ=2˚M g

in which M is a graded A1–module with Mi D0 for i <8. This means that for t�s <8
one can identify the E2–term of the Adams spectral sequence for41 ��MTH.d/
with

Exts;tA1.H
��dMTOjd j;Z=2/ for �3� d � 0;

Exts;tA1.H
�CdMOjd j;Z=2/ for �0� d � 3;

Exts;tA1.H
�C3MSO3;Z=2/ for d D 4

and for ��MTH c.d/ with

Exts;tA1.H
�C2CdMU1 ^MOd ;Z=2/ for d D 0; 1:

These groups are computed by standard methods, and the computations, as well as
the spectral sequences (which collapse), are described in Figure 5 and give the results
described in tables (9.80), (9.88), and (9.9).

The relationship with the free fermion theories is given by maps of spectra

MTH.s/!†�sKO;.10.5/

MTH c.s/!†�sK.10.6/

or, under the above identifications, maps

.10.7/

MSpin^MTOjsj!KO for �3� s � 0;

MSpin^MOjsj!KO for 3� s � 0;

†MSpin^MSO3!KO for s D 4;

MSpinc
^MOs!K for s D 0; 1:

These are all maps of MSpin (or MSpinc ) modules, in which KO and K are into
MSpin and MSpinc modules using the Atiyah–Bott–Shapiro orientation. They are

41Here only we use the notation ‘H.d/’ in place of ‘H.s/’ to avoid the conflict with Adams’
homological grading index ‘s ’.
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therefore determined by their restrictions

.10.8/

MTOjsj!KO for �3� s � 0;

MOjsj!KO for 3� s � 0;

†MSO3!KO for s D 4;

MOs!K for s D 0; 1:

These are described in Propositions 10.24, 10.27, and 10.35 below, and using them, the
assertions about the maps in tables (9.82), (9.84), (9.86), (9.90), (9.92), (9.94), (9.96),
(9.100), (9.102), and (9.104) can be verified. The details are summarized in the charts
in Figure 5. The complex case is easier and left to the reader. See [24; 15] for a detailed
account of the computations.

For the identifications (10.2) and the maps (10.8) we begin with a uniform description
of the groups BH.˙s/ (for s ¤ 4). Write

.10.9/ P DK.Z=2; 1/�K.Z=2; 2/

with the group structure

.10.10/ .x1; x2/� .y1; y2/D .x1Cy1; x2Cy2C x1y1/

in which xi ; yi 2H i .� ;Z=2/. With this choice the map

.10.11/ BO
.w1;w2/
����!P

is a group homomorphism.

For s � 0 define a map B zH.s/! BO by the homotopy pullback square

.10.12/

B zH.s/ //

��

BOs

.w1;w2/

��

BO
.w1;w2Cw

2
1 /

// P

and set B zH.�s/! BO to be the composite

.10.13/ B zH.s/! BO
� id
��! BO:
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MT Pin� sD 1 MT PinC sD�1

MT Pinzc� sD 2 MT PinzcC sD�2

MTGC sD 3 MTG� sD�3

MTG0 sD 4

S�1 ^MO1 S1 ^MTO1

S�2 ^MO2 S2 ^MTO2

S�3 ^MO3 S3 ^MTO3

S�3 ^MSO3

Figure 5: The Adams spectral sequences.

The space B zH.�s/! BO fits into a homotopy pullback square

.10.14/

B zH.�s/ //

��

BOs

.w1;w2/

��

BO
.w1;w2/

// P

Geometry & Topology, Volume 25 (2021)



1284 Daniel S Freed and Michael J Hopkins

For later reference we note:

Remark 10.15 The homotopy fiber of

B zH.˙s/! BO;

being the same as the homotopy fiber of BOs!P , is

.10.16/
BSpins for s � 1;

Z=2�BZ=2 for s D 0:

For �3 � s � 3 one may identify B zH.s/ ! BO with BH.s/ ! BO . The map
BH.4/! BO fits into a homotopy pullback diagram

.10.17/

BH.4/ //

��

BSO3

w2
��

BO
.w1;w2/

// P

We leave the verification of these assertions to the reader.

With s � 0, the maps B zH.˙s/!BO and B zH.˙s/!BOs can also be expressed in
terms of the diagrams of homotopy pullback squares,

.10.18/

B zH.s/ //

��

BSpin

��

BO �BOs
� id�.Vs�s/

// BO
.w1;w2/

// P

and

.10.19/

B zH.�s/ //

��

BSpin

��

BO �BOs
id�.Vs�s/

// BO
.w1;w2/

// P

A map X ! B zH.s/ therefore classifies a pair .V; Vs/ consisting of a stable vector
bundle V (of virtual dimension 0), a vector bundle Vs of dimension s , and a Spin
structure on �V � .Vs� s/. Writing W D�V � .Vs� s/, so that V D�W � .Vs� s/,
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one sees that B zH.s/ classifies pairs .W; Vs/ in which W is a stable Spin–bundle of
virtual dimension zero. Thus B zH.s/! BO may be identified with the map

BSpin�BOs! BO;

.W; Vs/ 7! �W � .Vs � s/:

Similarly B zH.�s/! BO may be identified with

BSpin�BOs! BO;

.W; Vs/ 7! �W C .Vs � s/;

and BH.4/! BO with
BSpin�BSO3! BO

via either of the maps
.W; V3/ 7! �W C .V3� 3/

or
.W; V3/ 7! �W � .V3� 3/:

This leads to the identifications

.10.20/

MT zH.s/�†�sMSpin^MOs;

MT zH.�s/�†sMSpin^MTOs;

MTH.4/�†�3MSpin^MSO.3/�†3MSpin^MTSO.3/:

We define B zH.˙s/n! BOn by the pullback square

.10.21/

B zH.˙s/n //

��

B zH.˙s/

��

BOn // BO

The space B zHn.s/ classifies pairs .Vn; Vs/ consisting of vector bundles of dimensions
n and s and a Spin structure on �Vn � Vs (or, equivalently, on Vn C Vs ), while
B zH.�s/n classifies pairs .Vn; Vs/ with a Spin structure on �VnCVs . For s � 0 there
is therefore a pullback square

.10.22/

B zHn.s/ //

��

BSpinnCs

��

BOn �BOs // BOnCs
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Proposition 10.23 The space B zH.˙s/n is the classifying space of a compact Lie
group zH.˙s/n . The group zHn.s/ is the stabilizer in SpinnCs of a s–plane in RnCs .

Proof The first assertion is a consequence of the pullback square (10.21) and Remark
10.15. The second is immediate from (10.22)

The construction of Section 9.2.2 leads to maps

MT zH.s/!†�sKO

and so, by (10.20), to maps

MSpin^MTOs!KO;

MSpin^MOs!KO;

†MSpin^MSO3!KO:

These are maps of MSpin modules, so to describe them it suffices to describe the
restricted maps

MOs!KO;

MTOs!KO;

†MSO3!KO:

Proposition 10.24 Let V ! BOs be the universal vector bundle. Then the map
MOs ! KO corresponds to the element of KO.V; V � 0/ given by applying the
difference bundle construction to

V �ƒ�.V /!ƒ�.V /;

.v; !/ 7! v^!:

Proof In the notation of Lemma 9.27, the algebra A.s/ is CliffCs˝Cliff�s , so
that Aop is also CliffCs˝Cliff�s , but with left Clifford multiplication by v 2 Rs

sending x˝y to .�1/jxjx˝ vy . The composed embedding Os!Hs! Aop is the
map

.10.25/ Os! CliffCs˝Cliff�s

sending reflection through the hyperplane perpendicular to v 2Rs to v˝ v .

Let P ! BOs be the universal principal Os–bundle. The K–theory class described
in Section 9.2.2 is the difference bundle on .V; V �0/ associated to the Os–equivariant
“Clifford multiplication” map

.10.26/ Rs � .Aop
˝Aop M/! .Aop

˝Aop M/
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in which M DCliffs is the left Aop–bimodule specified in Section 9.2.2 and giving the
Morita equivalence of Aop with R. Passing to associated bundles, this works out to be

V �Cliff.V /! Cliff.V /;

.v; !/ 7! .�1/j!j!v:

The antiautomorphism of Cliff.V / extending the identity map of V gives an isomor-
phism of this with

V �Cliff.V /! Cliff.V /;

.v; !/ 7! v!:

The claim now follows from the standard method of “wrapping up” the complex
V � ƒ.V / ! ƒ.V / using v ˙ �v (see [8, Proposition 11.6] and the surrounding
discussion for the complex case).

Proposition 10.27 The map MTOs!KO factors as

.10.28/ MTOs! .BOs/C!KO;

in which the first map is the map

.10.29/ Thom.BOs;�V /! Thom.BOs; .�V /˚V /

and the second corresponds to the trivial line bundle 1 2KO0.BOs/.

Proof Write Grs.RnCs/ for the Grassmannian of s–planes in .nCs/–space, and
let Vn and Vs be the universal n–plane and s–plane bundles. These bundles come
equipped with a trivialization

.10.30/ Vs˚Vn � Grs.RnCs/�RnCs:

From the identification Grs.RnCs/D SpinnCs =Hn of Proposition 10.23 it follows that
the bundle Vn comes equipped with an Hn–structure. The construction of Section 9.2.2
gives an element U 2KOnCs.Thom.Grs.RnCs/; Vn//. The assertion is that this pulled
back from the canonical generator (the suspension of 1 2KO0.pt/) of zKOnCs.SnCs/
along the map

Thom.Grs.RnCs/IVn/! Thom.Grs.RnCs/IVs˚Vn/

� SnCs ^Grs.RnCs/C! SnCs:
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This is immediate from the construction. The algebra A.s/op is Cliff�s˝Cliff�n .
The class U is the complex of left A–modules (which come as right Aop–modules)
obtained by applying

.10.31/ SpinsCn �Hn .� /

to the Hn–equivariant Clifford multiplication map

.10.32/ Rn �Cliff�s˝Cliff�n! Cliff�s˝Cliff�n :

This map evidently extends to the SpinsCn–equivariant Clifford multiplication map

.10.33/ Rs˚Rn �Cliff�s˝Cliff�n! Cliff�s˝Cliff�n;

so the class U is pulled back from the bundle of left A–modules on .RsCn;RsCn�f0g/
obtained by applying

.10.34/ SpinnCs �SpinnCs .� /

to (10.33). This class represents the suspension of 1.

For the case s D 4 what we require is the following:

Proposition 10.35 The restriction of the map

S1 ^MSO3!KO

to S4!KO is the generator of zKO0.S4/.

Proof From the diagram (10.17) a map to BH.4/ can be thought of as consisting
of a stable vector bundle V , an oriented 3–plane bundle V3 and a Spin–structure
on V ˚ V3 . We map BSO.4/! BH.4/ by taking V to correspond to the defining
representation and V3 to be one of the two irreducible representations of dimension 3.
The construction of Section 9.2.2 then leads to the bundle on MSO.4/ corresponding
to the SO.4/–equivariant map

R4 �N !N;

where N is the irreducible quaternionic Cliff4–module specified in Section 9.2.2
with SO.4/–action from the embedding above. This restricts to the generator of
KO.R4;R4�f0g/, by [8, Theorem 11.5].
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The two complex cases are handled similarly, using either the pullback squares

.10.36/

BH c.s/ //

��

BOs

.w1;ˇw2/

��

BO
.w1;ˇw2/

// K.Z=2; 1/�K.Z; 3/

for the identification

.10.37/ MTH c.s/�†�sMSpinc
^MOs

or

.10.38/

BH c.s/ //

��

BOs �BU1

.w1;w2Cc1/
��

BO
.w1;w2/

// P

for the identification

.10.39/ MTH c.s/�†�s�2MSpin^MU1 ^MOs:

11 A topological spin-statistics theorem

In a relativistic quantum field theory the spin-statistics theorem states that the central
element of the Lorentz spin group acts on the Hilbert space of the theory as .�1/F ,
where F is the Z=2Z–valued grading operator;42 see [108; 53; 69] for proofs in the
framework of Wightman quantum field theory. In this section we prove the analog
for reflection positive nonextended invertible topological theories. We do not know a
version for fully extended theories. See [62] for another account of spin-statistics in
topological field theory, but without positivity. A topological version of spin-statistics
also enters into [50] in the context of fermionic lattice models.

To formulate the statement we Wick rotate the central element of the Lorentz spin
group to the central element of the Euclidean spin group. On a curved Riemannian spin
manifold M, it acts as the spin flip: the identity diffeomorphism of M covered by the
action of �1 on the spin frames. For a general symmetry group Hn it is the action of the
distinguished central element k02K in the internal symmetry group; see Corollary 2.12.

42F vanishes on bosonic states and is the identity on fermionic states. In a free theory there is a dense
Fock space of states with a finite number of particles on which F counts the number of fermionic particles
modulo two. In any theory .�1/F is the grading operator on the Z=2Z–graded Hilbert space of states.
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Let sVectC be the symmetric monoidal category of super vector spaces; the symmetry
incorporates the Koszul sign rule. Recall the notation (Remark 2.39) for the domain of
a not necessarily topological field theory.

Definition 11.1 Let F W Bordr
hn�1;ni.Hn/! sVectC be a field theory. We say F sat-

isfies spin-statistics if it maps the spin flip on every .n�1/–manifold Y to the expo-
nentiated grading operator .�1/F on the super vector space F.Y /.

Example 11.2 The spin-statistics connection fails without reflection positivity. Con-
sider a 1–dimensional invertible topological theory F of spin manifolds with values in
the category of Z=2Z–graded complex lines. There are 4 theories up to isomorphism:43

F.ptC/ is either even or odd, the spin flip acts as either C1 or �1, and these choices
are independent. Half of these theories satisfy spin statistics, and they are precisely
the ones for which F.S1bounding/ D C1, which by Theorem 7.22 is the condition for
stability, and so for reflection positivity.

Theorem 11.3 Let F W Bordhn�1;ni.Hn/! sLineC be a reflection positive invertible
topological field theory. Then F satisfies spin-statistics.

Proof We first treat the case in which Hn D Spinn . Let Y be a closed Hn–manifold
and set L D F.Y /. Recall from Section 4.2 and Definition B.8 the coevaluation
cY W∅n�1! Y qY _ and the evaluation eY W Y _qY !∅n�1 . Let

� W Y qY _! Y _qY

be the symmetry map. The composition eY ı � ı cY is S1nonbounding �Y (see Figure 6),
and under F it maps to the composition C! L˝L�! L�˝L!C . The Koszul
sign rule in the symmetry gives

.11.4/ F.S1nonbounding �Y /D trs idL D tr.�1/F D
�
C1 for L even;
�1 for L odd;

where trs is the supertrace. The nonbounding circle is obtained by cutting the bounding
circle at two points and regluing using the spin-flip diffeomorphism of one of the points
and the identity of the other. In other words, it is a triple composition of coevaluation,
the indicated diffeomorphism, and evaluation. Take the Cartesian product with Y and

43We compute using Theorem 5.23: Œ†1MTSpin1; †
1IC��ŠHom.�1†1MTSpin1;C

�/ , the Thom
spectrum †1MTSpin1 is the suspension spectrum of RP1C , and �1RP1C ŠZ=2Z�Z=2Z . By contrast,
�1 MTSpin Š Z=2Z , hence ŒMTSpin; †1IC�� Š Z=2Z , and so by Theorem 1.1 there are only two
reflection positive theories.
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cY � eY

Figure 6: The composition eY ı � ı cY .

apply F to conclude that the ratio of (11.4) with F.S1bounding � Y / is the supertrace
of the spin flip on Y , and since the spin flip has order two this ratio equals ˙1. But
S1bounding �Y is the spin double of cY (see Example 4.31), so by reflection positivity
we conclude from Proposition 4.26 that F.S1bounding �Y /D 1, hence the spin flip acts
as .�1/F .

In the general case we use Corollary 2.12 to construct an HkC`–structure on the
Cartesian product of a Spink–manifold and an H`–manifold. Then the argument in
the preceding paragraph goes through for Y an Hn�1–manifold and the same spin
circles.

Appendix A The CRT theorem for general symmetry types

In Section A.3 we take as our starting point a relativistic quantum field theory in
Minkowski spacetime. Positivity of energy gives analytic correlation functions for
which the Minkowski correlation functions are boundary values; Euclidean correlation
functions are the restriction to a suitable subdomain. This leads to the CRT theorem
(Theorem A.23),44 and we outline Jost’s proof [63], extended to general symmetry
types. Recall that the symmetry group H1;n�1 of a relativistic quantum field theory acts
by time-orientation-preserving transformations; see (2.1). The CRT theorem asserts
that a larger symmetry group, including time-orientation-reversing transformations,
also acts; the time-reversing elements act antilinearly. There is a subtlety in the
Lorentz spin central extensions, flagged in [54],45 which we elucidate and generalize to

44It is usually called the CPT theorem, but we follow the nomenclature in [116], which is more
appropriate for arbitrary dimensions: the ‘P’ in ‘CPT’ is understood to be the parity transformation that
acts as �1 on space and so is orientation-preserving if the dimension of spacetime is odd; by contrast,
the ‘R’ in ‘CRT’ denotes reflection in a single spatial direction and is orientation-reversing in all dimensions.
The ‘C’ is best read as ‘complex conjugation’.

45The setting of [54] is “formal field theory” as opposed to that in the Wightman axioms.
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arbitrary symmetry types in Section A.2. This subtlety is present even in the spin case
without time-reversal symmetry. It implies, for example, that the ten Lorentz signature
symmetry groups for free fermion theories (Section 9) embed in Clifford algebras, a
fact which is implicit in Section 9.2.4. In this appendix we work in the framework of
Wightman quantum field theory. One consequence of our discussion (Remark A.42) is
a justification of the correspondence between the alternatives

.A.1/ pinC–structure vs pin�–structure

in Wick-rotated field theory and the alternatives

.A.2/ T 2 D .�1/F vs T 2 D 1

for the action of time-reversal T on the Hilbert space H of states. We begin in
Section A.1 with a review of pin groups and pin manifolds, which also serves to fix
some conventions about Clifford algebras.

We assume the dimension of spacetime is n� 3.

A.1 Pin groups and pin manifolds

References for this section include [8; 16; 72]. While we assume the dimension n is at
least 3, with minor modifications the discussion goes through for nD 1; 2 as well.

A.1.1 Pin groups and Clifford algebras We take Lorentz signature as our starting
point. Let R1;n�1 be the standard vector space with basis e0; e1; : : : ; en�1 and the
standard inner product: he0; e0iD1, hei ; ei iD�1 for iD1; : : : ; n�1, and he�; e�iD0
for �¤� . Its isometry group is the orthogonal group O1;n�1 . The group of components
of O1;n�1 is isomorphic to f˙1g�f˙1g; an orthogonal transformation either preserves
or exchanges the two components of timelike vectors � (vectors with h�; �i> 0), and
it either preserves or reverses the orientation of any spacelike codimension 1 subspace.
In terms of the block matrix

�
a
�
˛
A

�
2O1;n�1 the first question is the sign of the real

number a and the second the determinant of the .n� 1/ � .n� 1/ matrix A. The
identity component of O1;n�1 has a unique (up to isomorphism) connected double
covering group Spin1;n�1 . It is contained in the even subalgebra of a real Clifford
algebra, and there are two equally good choices for the signs:

.A.3/
Cliff1;n�1W e20 DC1 and e2i D�1 for i D 1; : : : ; n� 1;

Cliffn�1;1W e20 D�1 and e2i DC1 for i D 1; : : : ; n� 1:
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The Lorentz orthogonal group O1;n�1 has a complexification On.C/ consisting of
complex n � n orthogonal matrices. This complex group has two components dis-
tinguished by the determinant, which is ˙1. The identity component SOn.C/ has a
subgroup that is the union of the two components of O1;n�1 of matrices with deter-
minant 1. Also, SOn.C/ has a unique connected double covering group Spinn.C/,
which contains Spin1;n�1 as a subgroup. The complex Lie group On.C/ deformation
retracts onto its maximal compact subgroup On , which is the group of orthogonal
symmetries of the real vector space spanned by

.A.4/ f0 D ie0; f1 D e1; : : : ; fn�1 D en�1

with its inherited negative definite inner product. Here i is a choice of complex number
with i2 D�1. The identity component SOn has a unique connected double covering
group Spinn , which is the maximal compact subgroup of Spinn.C/. It is contained in
the even subalgebra of a real Clifford algebra, and again there are two equally good
choices for the signs:

.A.5/
Cliff�nW f 2� D�1 for �D 0; : : : ; n� 1;

CliffCnW f 2� DC1 for �D 0; : : : ; n� 1:

The four-component orthogonal group O1;n�1 has many double cover groups with
identity component Spin1;n�1 ; we discuss two of them in Section A.2. In the remainder
of this subsection we focus on the two-component compact orthogonal group On , which
has two double covers Pin˙n with identity component Spinn . Each is a subgroup of in-
vertible elements in a real Clifford algebra: Pin˙n �Cliff˙n . They are group extensions

.A.6/ 1! f˙1g ! Pin˙n !On! 1:

Observe that PinC1 Š Z=2Z�Z=2Z and Pin�1 Š Z=4Z.

A.1.2 Pin manifolds A Riemannian manifold X has a principal On–bundle of
frames BO.X/!X whose points represent orthonormal bases of the tangent spaces
to X. The following is a special case of Definition 2.29.

Definition A.7 A pin˙–structure on X is a pair .P; �/ consisting of a principal Pin˙n –
bundle P !X and an isomorphism BO.X/

�
�! P=f˙1g of principal On–bundles.

Pin structures, as spin structures, do not necessarily exist. The obstructions are given by
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Stiefel–Whitney classes: a pinC–structure exists on X if and only if46 w2.X/D 0 and
a pin�–structure exists if and only if .w21Cw2/.X/D0. Double covers of X act on pin
structures as follows. If Q!X is a double cover, viewed as a principal f˙1g–bundle,
and .P; �/ is a pin˙–structure, then Q �X P ! X is a principal .f˙1g � Pin˙n /–
bundle. The Pin˙n –bundle .Q�X P / = f˙1g ! X associated to the homomorphism
f˙1g � Pin˙n ! Pin˙n (multiplication in Pin˙n with first argument restricted to the
central subgroup in (A.6)), along with a canonical isomorphism of underlying On–
bundles obtained from � , is a pin˙–structure. The set of isomorphism classes of
pin˙–structures, if nonempty, is a torsor over the abelian group H 1.X IZ=2Z/; that
is, this group acts freely and transitively on the set of isomorphism classes. There is
a canonical double cover of X, the orientation double cover, whose points represent
orientations of the tangent spaces to X.

Definition A.8 The w1–involution is the action of the orientation double cover on pin
structures.

Recall that the equivalence class of the orientation double cover is classified by w1.X/2
H 1.X IZ=2Z/.

Remark A.9 Let y̨ be the automorphism of Pin˙n that is the identity on Spinn and
multiplication by the central element �1 on the complement; it covers the identity
automorphism of On . An alternative description of the w1–transform .P�; �/ of
a pin-structure .P; �/ is the same manifold P with the same map � , but with the
Pin˙n –action altered by precomposition with y̨ . (To see this, write the orientation
double cover as P=Spinn and construct the isomorphism of Pin˙n –bundles

.A.10/ P=Spinn �P ! P�

which maps .o; p/ 7! p if p 2 o and .o; p/ 7! p � .�1/ if p … o. Here o � P is a
Spinn–orbit.)

A.2 Lorentz signature symmetry groups

This section is an exposition and elaboration of ideas in [54]. We continue with the
hypothesis n� 3, largely for convenience of exposition; with minor modifications the
discussion goes through for nD 1; 2 as well.

46These are Stiefel–Whitney classes of the tangent bundle: wq.X/D wq.TX/ . There is a potential
confusion with Stiefel–Whitney classes of the stable normal bundle, which is what appears naturally in
bordism theory.
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A.2.1 Complex pin groups The complex orthogonal group On.C/ has two compo-
nents. The identity component SOn.C/�On.C/ has a unique isomorphism class of
nontrivial double cover groups, any representative of which is called Spinn.C/.

Proposition A.11 There are unique complex Lie groups Pin˙n .C/ with identity com-
ponent Spinn.C/, which double cover On.C/, and which contain Pin˙n as maximal
compact subgroups. Furthermore , any complex Lie group that double covers On.C/
and has identity component isomorphic to Spinn.C/ is isomorphic to either PinCn .C/
or Pin�n .C/.

Remark A.12 We remind the reader that Pin˙n .C/ are complex Lie groups, whereas
the group ‘Pincn ’, which is defined in [8, Section 3] as a subgroup of the complex
Clifford algebra, is a compact real Lie group; it and twisted variants appear in Section 9.

Proof Up to isomorphism there is a unique double covering space X ! On.C/

whose inverse image over each component of On.C/ is connected. The restriction
over On �On.C/ is isomorphic as a double covering space to Pin˙n !On . Choose
an isomorphism of double covers and transport the group structure, then extend the
group structure on the identity component Spinn to that of Spinn.C/ on the entire
component XC � X containing Spinn . Now use covering space theory to extend
the group structure to all of X. For example, setting X� D X n XC , lift the map
XC �X�!On.C/� to a map XC �X�!X� using basepoints in the compact pin
group. In fact, the extension of the group structure is determined by the square of a lift
of a single hyperplane reflection, for which there are two choices, and this implies the
last assertion.

A.2.2 Double covers of Lorentz isometry groups The two-component group
SO1;n�1�O1;n�1 consists of isometries that preserve the overall orientation of R1;n�1 .
Let �m �C� be the group of mth roots of unity. Using the diagram

.A.13/

Spinn.C/
� � //

�2
""

Spinn.C/��2 �4

�4
yy

SOn.C/

set fSO˛
1;n�1D �2

�1.SO1;n�1/, and let fSOˇ
1;n�1 � Spinn.C/��2 �4 be the union of

Spin1;n�1 and the complement of �2�1.SO#1;n�1/ in �4�1.SO#1;n�1/, where SO#1;n�1
is the nonidentity component of SO1;n�1 . For the pin groups let zO˛n�1;1 and zO˛1;n�1
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be the inverse image of O1;n�1 � On.C/ under the double cover homomorphisms
PinCn .C/!On.C/ and Pin�n .C/!On.C/, respectively. Finally, using the diagram

.A.14/

Pin˙n .C/
� � //

�2
!!

Pin˙n .C/��2 �4

�4
zz

On.C/

let zOˇn�1;1 and zOˇ1;n�1 be the union of �2�1.O
"

1;n�1/ and the complement of
�2
�1.O

#

1;n�1/ in �4�1.O
#

1;n�1/, where we use the C and � pin groups, respectively.
Here O#1;n�1 is the complement of O"1;n�1�O1;n�1 , the components of time-reversing
linear isometries.

Proposition A.15 (1) Every double cover group of SO1;n�1 whose identity com-
ponent is isomorphic to Spin1;n�1 is isomorphic to either fSO˛

1;n�1 or fSOˇ
1;n�1 .

(2) The double cover group fSOˇ
1;n�1 of SO1;n�1 is a subgroup of the even subal-

gebras of Cliffn�1;1 and Cliff1;n�1 .

(3) The double cover groups zOˇn�1;1 and zOˇ1;n�1 of O1;n�1 are subgroups of
Cliffn�1;1 and Cliff1;n�1 , respectively.

Summary: the ˛–double covers are subgroups of complex (s)pin groups; the ˇ–double
covers are subgroups of Lorentz signature Clifford algebras.

Proof For (1), let g 2 SO#1;n�1 be the diagonal matrix diag.�1;�1;C1; : : : ;C1/.
Then the square of a lift of g to a double cover of SO1;n�1 has square the identity C1
or the central element �1 of Spin1;n�1 . By covering space theory, as in the proof of
Proposition A.11, we can deduce that this dichotomy determines the group structure
on the double cover.

The element e0e1 in the Clifford algebra (of either signature .n� 1; 1/ or .1; n� 1/)
acts on R1;n�1 as g and squares to C1. On the other hand, g lies in SO1;n�1\SOn�
SOn.C/, so a lift of g to Spinn.C/ lies in the compact spin group Spinn , where it
squares to �1, as we compute in the Clifford algebra Cliff˙n . This is the essential
point in the proof of (2).

As for (3) there are double covers Pinn�1;1 � Cliffn�1;1 and Pin1;n�1 � Cliff1;n�1
of O1;n�1 , as defined in [8; 82, Section 1.2]. By (2) the restriction over SO1;n�1 is
isomorphic to fSOˇ

1;n�1 . The element diag.�1;C1; : : : ;C1/ 2O#1;n�1 lifts to e0 in
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the Clifford algebra, and its square is given in (A.3). Arguing as above with the compact
pin groups we deduce that this is opposite the square of a lift in the corresponding
complex pin group. This is the new step in proving the isomorphisms

.A.16/
Pinn�1;1 Š zO

ˇ
n�1;1;

Pin1;n�1 Š zO
ˇ
1;n�1:

A.2.3 General Lorentz signature symmetry groups There are analogs of the ˛–
and ˇ–extensions of the Lorentz signature vector symmetry group H1;n�1 for an
arbitrary symmetry type, which, as in Section 2.1, is the quotient of the full symmetry
group of a relativistic quantum field theory by translations. It comes equipped with
a homomorphism �n WH1;n�1!O

"

1;n�1 . We use the structure theorem Theorem 2.7

and in particular (2.8), (2.10), and (2.11) to define the ˛– and ˇ–extensions H˛=ˇ
1;n�1

of H1;n�1 simultaneously. Set

.A.17/ SH˛=ˇ1;n�1 Š fSO˛=ˇ1;n�1 �K=h.�1; k0/i:

If the image of �n is SO"1;n�1 , set H˛=ˇ
1;n�1 D SH˛=ˇ1;n�1 . If �n is surjective, de-

fine zH˛=ˇ
1;n�1 by the pullback

.A.18/

1 // K // zH
˛=ˇ
1;n�1

����

// zO
˛=ˇ
n�1;1

����

// 1

1 // K // J // f˙1g // 1

where the right vertical map is the determinant homomorphism. Then let

.A.19/ H
˛=ˇ
1;n�1 Š

zH
˛=ˇ
1;n�1=h.�1; k0/i:

We observe that H˛
1;n�1 is a real subgroup of the complex Lie group Hn.C/, the

inverse image of O1;n�1 under the homomorphism �n WHn.C/! On.C/ in (2.2).
Also, our notation is set up so that Spin˛=ˇ1;n�1 Š fSO˛=ˇ

1;n�1 .

A.2.4 Extensions of real representations As just remarked, the ˛–extension sits as
a subgroup of the complex symmetry group. One key feature of the ˇ–extension is the
following.

Proposition A.20 Let RDR0˚R1 be a Z=2Z–graded real representation of H1;n�1
such that k0 2K �H1;n�1 acts as the grading operator. Let RC WDR˝R C denote
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the complexification , which carries an action of the complex Lie group Hn.C/, hence
of the subgroup H˛

1;n�1 .

(1) If h 2H˛
1;n�1 nH1;n�1 , then h.R0/DR0 and h.R1/D

p
�1R1 .

(2) There is a canonical extension of the action of H1;n�1 on R to an action
of Hˇ

1;n�1 .

All Lie groups that appear are ungraded, so act by even transformations of R . The
conclusion is that the ˇ–extension acts on real representations of H1;n�1 .

Proof For (1) it suffices to check for a single element h 2 H˛
1;n�1 nH1;n�1 . By

Corollary 2.12, anti-Wick rotated to Lorentz signature, we choose h to be the image
in H˛

1;n�1 of a lift of

.A.21/
�
�1 0

0 �1

�
2 SO1;1\SO2 � SO2.C/� SOn.C/

to Spinn.C/. In the compact spin group Spin2 � Spin2.C/ the element h is repre-
sented as f0f1 and is connected to the identity by the curve cos 1

2
t C

�
sin 1

2
t
�
f0f1

for 0 � t � � , where we embed Spin2 � Cliff�2 ; see (A.5). Complex conju-
gation, defined so that Spin1;1 � Spin2.C/ is real, takes this curve to the curve
cos 1

2
t �

�
sin 1

2
t
�
f0f1 for 0� t � � in Spin2 � Spin2.C/. In particular, the complex

conjugate of f0f1 is �f0f1 . Since �1 maps to k0 and acts as the grading operator,
f0f1 is a real operator on R0C and a purely imaginary operator on R1C . This proves (1).

Consider the diagram

.A.22/

H
˛
1;n�1

� � //

�2
!!

H
˛
1;n�1 ��2 �4

�4
zz

O1;n�1

in which �2�H
˛
1;n�1 is generated by k0 . Then Hˇ

1;n�1�H
˛
1;n�1��2 �4 is the union

of H1;n�1 and the complement of �2�1.O
#

1;n�1/ in �4�1.O
#

1;n�1/. Let �4 � C�

act on R1C via scalar multiplication and on R0C trivially. Then by (1) the restriction to
H
ˇ
1;n�1 �H

˛
1;n�1 ��2 �4 is real, ie preserves R �RC . This proves (2).

A.3 Wick rotation and the CRT theorem

In this section we sketch a rigorous argument for the CRT theorem in relativistic
quantum field theory. We use the analytic continuation of correlation functions,
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working in the framework of Wightman quantum field theory [108; 53; 69]. Our
purpose is to treat general symmetry types. Even for theories with Lorentz symmetry
group H1;n�1 D Spin1;n�1 there is a subtlety: the group fSO˛

1;n�1 acts on the holo-
morphic correlation functions, whereas the group fSOˇ

1;n�1 acts on the Minkowski
spacetime correlation functions. (See Section A.2.2 for the definitions of these Lie
groups.) This argument also demonstrates why only the “Cliffordian” [16] Lorentz
signature pin groups Pinn�1;1 and Pin1;n�1 can be symmetries of a relativistic quantum
field theory instead of more general possible double covers of O1;n�1 ; see Remark A.42.
We assume n� 3.

Recall from Section 2.1 that Minkowski spacetime M n is an n–dimensional affine space
whose vector space V DR1;n�1 of translations is equipped with an inner product of sig-
nature .1; n�1/ and a choice of component VC of the space f� W h�; �i>0g of timelike
vectors.47 To Wick rotate to imaginary time, fix an orthogonal splitting V D U ˚U?

with U a 1–dimensional timelike subspace. Then the Euclidean translation group
is VE D

p
�1U ˚ U? and the corresponding Euclidean space is E D M �V VE ,

an affine space over VE . Complexified Minkowski spacetime is MC DM �V VC ,
where VC is the complexification of V . The symmetry group H1;n�1 of a relativistic
quantum field theory acts on M n by time-orientation-preserving transformations via a
homomorphism �n WH1;n�1!O

"

1;n�1 , as in (2.1).

Theorem A.23 (CRT theorem) Let Q denote a relativistic quantum field theory
with symmetry group H1;n�1 . Then the symmetry extends to Hˇ

1;n�1 ; elements of
H
ˇ
1;n�1 nH1;n�1 act antilinearly.

Here Q is a quantum field theory in the Wightman axiomatic framework. It is determined
by its correlation functions, called Wightman functions; see [69, Section 1.3]. For
simplicity of notation we only discuss 2–point functions in this account. A precise
version of Theorem A.23 is (A.41) below.

The fields in Q are defined by a finite-dimensional Z=2Z–graded real representation

.A.24/ � WH1;n�1! Aut.R/:

We write R D R0˚R1 according to the grading; elements of H1;n�1 preserve the
grading. The spin-statistics theorem, which we assume in this account, asserts that the
special element k02K�H1;n�1 defined in Theorem 2.7(2) acts as the grading operator
on R . Write RC D R˝R C for the complexification. Classical fields are functions

47The latter choice is required in order to formulate the positivity of energy.
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M n!R . Quantum fields are R–valued operator-valued distributions ˆDˆ0Cˆ1

on M n . The 2–point “function” is a complex distribution whose value on Schwartz
functions fi WM n!R� is written

.A.25/ hˆ.f1/ˆ.f2/i D

Z
M2

dp1 dp2 f1.p1/f2.p2/ hˆ.p1/ˆ.p2/i;

where hˆ.p1/ˆ.p2/i denotes the kernel of the R˝2C –valued distribution on M�2 .
The theory Q has a Z=2Z–graded Hilbert space HDH0˚H1 of states, constructed
from the correlation functions, and a distinguished vacuum vector � 2H0 . The field
operators ˆ.f / act as unbounded operators on H , and the 2–point function is the
vacuum expectation value of the product of the field operators:

.A.26/ hˆ.f1/ˆ.f2/i D h�;ˆ.f1/ˆ.f2/�iH:

There is a unitary representation of the affine extension of H1;n�1 on H — all sym-
metries preserve the Z=2Z–grading. The vacuum vector and 2–point function are
invariant under that action, in particular under translations. Hence there is an R˝2C –
valued distribution on V with kernel

.A.27/ W.�/ WD hˆ.p/ˆ.pC �/i; p 2M n and � 2 V;

which is independent of p .

The important step in Jost’s proof is the construction of holomorphic correlation
functions from which the Wightman functions are recovered as boundary values
[69, Section 2.1]. This is a consequence of the positivity of energy and geometric
arguments. The holomorphic 2–point function

.A.28/ WC WD!R˝2C

has domain D � VC that is connected and Hn.C/–invariant. Define the backward
tube T D V � iVC � VC , where i is a choice of square root of �1. Then48

.A.29/ DD SOn.C/.T/[�SOn.C/.T/:

An important feature of D is that it contains Jost points,49 which in this case of 2–point
functions are the real spacelike vectors � 2V �VC that satisfy h�; �i>0. From (A.29)
we see T �D, and, as stated, W is a boundary value of WC :

.A.30/ W.�/D lim
�!0C

WC.� � �i�/; � 2 V and � 2 VC;

48Note SOn.C/.T/DOn.C/.T/ .
49Here we use n� 3 .
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and the limit is independent of �. We also have VE n f0g �D, and the Wick-rotated
Euclidean 2–point function is the restriction of WC to VE n f0g.

We collect some properties of the holomorphic correlation functions. First, since the
inner product on H is even, it follows that

.A.31/ WC DW
0

CCW
1

C;

where W q
C takes values in .RqC/

˝2 for qD 0; 1. Note that both W 0
C and W 1

C are even.
Next, as already stated, WC is Hn.C/–invariant, hence invariant under the subgroup
H˛
1;n�1 �Hn.C/:

.A.32/ WC.�/D �.h
˛/˝2WC.�n.h

˛/�/; h˛ 2H˛
1;n�1 and � 2D:

Now if � is real and spacelike, then, since field operators at spacelike separated points
commute (in the graded sense) and since real spacelike (Jost) points are in the domain D ,

.A.33/
W 0

C.��/DW
0

C.�/;

W 1
C.��/D�W

1
C.�/:

Continuing with � real and spacelike, we claim

.A.34/
W 0

C.�/DW
0

C.�/;

W 1
C.�/D�W

1
C.�/:

Since such � lie in D, and D is connected, we deduce a Schwarz reflection formula
valid for all � 2D:

.A.35/
W 0

C.�/DW
0

C.
x�/;

W 1
C.�/D�W

1
C.
x�/:

The manipulation that justifies (A.34) is, for any p 2M n and � 2 V ,

.A.36/ WC.�/D hˆ.p/ˆ.pC �/�;�i D h�;ˆ.pC �/ˆ.p/�i DWC.��/I

then we apply (A.33). The middle step is straightforward in the even case: ˆ0.q/ is
self-adjoint for q real. The corresponding manipulation in the odd case uses the adjoint
of the odd operator ˆ1.q/, which involves a tricky sign50 as we explain in the following
remark.

Remark A.37 The usual physics conventions are: the norm square of an odd vector
in H is real and positive; for any two operators A and B we have .AB/� D B�A� —

50We thank Greg Moore for help straightening this out.
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there is no sign even if both A and B are odd; and the odd field operator ˆ1.q/ is
self-adjoint in the usual sense. However, the Koszul sign rule demands that the first two
of these be modified to: the norm square of an odd vector in H is purely imaginary
and lies on one of the two rays of nonzero purely imaginary numbers, the choice of
which is a convention (Example 6.49); if A and B are operators that have definite
parities jAj and jBj, then [31, Section 4.4]

.A.38/ .AB/� D .�1/jAjjBjB�A�:

Under these conventions, the odd field operator ˆ1.q/ is not self-adjoint, but rather

.A.39/ ˆ1.q/� D i ˆ1.q/:

One justification for (A.39) is to consider the �–structure on the complex operator
algebra, and to note that (A.38) implies that the square of an odd self-adjoint operator is
even skew-adjoint, and so if ˆ1.q/ were self-adjoint we would contradict expectations
for the quantization of real fields. We remark that the factor i in (A.39) already
occurs in quantum mechanics; see [48, (4.10)]. The middle step in (A.36) is valid with
either the standard physics conventions or the Koszul-compatible notion of adjointness
supplemented with (A.39).

Proof of Theorem A.23 Fix h˛ 2 H˛
1;n�1 nH1;n�1 . Then h˛ reverses the time

orientation, in other words, H˛.VC/D�VC . Hence for � 2 V we use (A.30), (A.32),
and (A.35) to deduce that for � 2 V and q D 0; 1 we have

.A.40/ W q.�/D lim
�!0C

W
q

C.� � �i�/

D lim
�!0C

�.h˛/˝2W
q

C.�n.h
˛/� � �i�n.h˛/�/

D lim
�!0C

.�1/q�.h˛/˝2WC.�n.h
˛/�C �i�n.h

˛/�/

D .�1/q�.h˛/˝2W.�n.h
˛/�/:

To pass to the third equation we use the fact that �.h˛/ is real on even vectors
(Proposition A.20(1)). The construction that proves Proposition A.20(2) combines
with (A.40) to yield

.A.41/ W q.�/D �.hˇ /˝2W.�n.h
ˇ /�/; hˇ 2H

ˇ
1;n�1 nH1;n�1 and � 2 V:

This is the precise statement that the Minkowski spacetime 2–point function is antilinear-
invariant under elements of Hˇ

1;n�1 nH1;n�1 .
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Remark A.42 If Q is a relativistic quantum field theory with fermionic states and
time-reversal symmetry, and no other internal symmetries, then H1;n�1 is a double
cover of SO"1;n�1 whose identity component is isomorphic to Spin1;n�1 . The complex
Lie group Hn.C/ is then a double cover of On.C/ whose identity component is iso-
morphic to Spinn.C/. Proposition A.11 implies that Hn.C/ is isomorphic to PinCn .C/
or Pin�n .C/. The construction with (A.14) and (A.16) tells that the group Hˇ

1;n�1

is Pinn�1;1 and Pin1;n�1 , respectively. Recalling the sign convention (A.3) for Clifford
algebras, this proves the correspondence between (A.1) and (A.2) and also limits the
possible symmetry groups on relativistic quantum field theories to the Cliffordian pin
groups.

Appendix B Involutions on categories and duality

Definition B.1 Let C be a category.

(1) An involution of C is a pair .�; �/ of a functor � W C! C and a natural isomor-
phism � W idC! �2 such that for any x 2 C we have ��x D ��x as morphisms
�x! �3x .

(2) A fixed point of � is a pair .x; �/ of an object x 2 C and an isomorphism
x �
�! �x such that �� ı � D �x as morphisms x! �2x .

If C is a symmetric monoidal category, then the involution � is required to be a
symmetric monoidal functor: for x; y 2 C there is given an isomorphism �x˝ �y Š�!

�.x˝y/ and these isomorphisms are compatible with the symmetry and with �.

Example B.2 Let C D VectC be the category of complex vector spaces and linear
maps. Define � W C! C to be the functor that takes complex vector spaces and linear
maps to their complex conjugates. (The complex conjugate vector space is the same
underlying real vector space with the sign of multiplication by

p
�1 2 C reversed;

the complex conjugate of a linear map is the same map of sets.) Then there is a
canonical identification of �2 with idC . A fixed point is a complex vector space with a
real structure. As a variation, if CD sVectC is the category of super (Z=2Z–graded)
vector spaces and � complex conjugation as above, but now � is composed with
the exponentiated grading automorphism (denoted ‘.�1/F ’ in the physics literature),
then a fixed point is a super vector space with a real structure on its even part and a
quaternionic structure on its odd part. If we restrict to the subgroupoid C� of super
lines and isomorphisms, then all fixed points are even.
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Definition B.3 Let .�; �/ be an involution on a category C. The fixed-point cate-
gory C� has as objects fixed points .x; �/, and a morphism .x; �/! .x0; � 0/ in C�

is a morphism .x
f
�! x0/ 2 C such that the diagram

.B.4/
x

f
//

�

��

x0

� 0

��

�x
�f

// �x0

commutes. There is a forgetful functor C� ! C that maps .x; �/ 7! x .

Example B.5 Let C be the groupoid of Z.1/–torsors:51 an object T is a set with
a simply transitive action of the additive group Z.1/ and a morphism T ! T 0 is an
isomorphism that commutes with the Z.1/–actions. Let � be the involution that sends
a torsor T to its dual HomZ.1/.T;Z.1// and sends a morphism to its inverse transpose.
The dual of T may be identified with T as a set; the dual Z.1/–action by � 2 Z.1/

is the original action by x� . The fixed-point category C� is equivalent to the set Z=2Z:
there are two isomorphism classes of objects and no nontrivial automorphisms. The
first, which we call ‘Type P’, is the torsor Z.1/ with complex conjugation � as a map to
the dual torsor. The second, which we call ‘Type N’, is the torsor �

p
�1CZ.1/ with

complex conjugation � . Observe that in the Type P case the involution � has a fixed
point whereas in the Type N case it does not. Also, Z.1/–torsors form a Picard groupoid,
as do torsors for any abelian group, and the fixed-point category is a Picard groupoid as
well. The Type P torsor is the tensor unit; the square of a Type N torsor has Type P. The
names derive from the family exp WC!C� of Z.1/–torsors with complex conjugation
acting. There are two components R>0 and R<0 of fixed points in the base. The fiber
of exp has Type P over positive real numbers and Type N over negative real numbers;
the representatives described above are exp�1.C1/ and exp�1.�1/, respectively.

Definition B.6 Let B and C be categories with involutions and F WB! C a functor.
Then equivariance data for F is an isomorphism � W F�B

Š�! �CF of functors B! C

such that for every object x 2B the following diagram commutes:

.B.7/

Fx
F �B

//

�C
$$

F�2Bx

�2

��

�2CFx

51Recall that Z.1/D 2�
p
�1Z�C .
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There are additional compatibilities for a symmetric monoidal functor between sym-
metric monoidal categories; we do not spell them out. We often loosely say that
“F is an equivariant functor”, but it is important to remember that equivariance is
dataC condition, not simply a condition.

Next, we review duality in a symmetric monoidal category. Let C be a symmetric
monoidal category and x 2 C. Denote the tensor unit by 1 2 C. (The tensor unit
in Bordhn�1;ni.Hn/ is the empty set as an .n�1/–dimensional manifold; the tensor
unit in VectC is the trivial 1–dimensional vector space C .)

Definition B.8 Let x be an object in a symmetric monoidal category C . Duality data
for x is a triple .x_; c; e/ consisting of an object x_ 2 C together with morphisms
c W 1! x˝ x_ and e W x_˝ x! 1 such that the compositions

.B.9/
x

c˝id
���! x˝ x_˝ x

id˝e
���! x;

x_
id˝c
���! x_˝ x˝ x_

e˝id
���! x_

are identity maps. If x0
f
�! x1 is a morphism, then the dual morphism is the composi-

tion

.B.10/ f _ W x_1
id˝cx0����! x_1 ˝ x0˝ x

_
0

id˝f˝id
�����! x_1 ˝ x1˝ x

_
0

ex1˝id
����! x_0 :

The morphism c is called coevaluation and e is called evaluation. We say that x_ is
“the” dual to x since any two triples of duality data are uniquely isomorphic. Assuming
all objects have duals, we can make choices of duality data for all objects at once and
so obtain a duality involution ı on C, but ı does not satisfy Definition B.1 since the
direction of morphisms is reversed (B.10); in other words, ı is a functor to the opposite
category.

Definition B.11 Let C be a category.

(1) A twisted involution of C is a pair .ı; �/ of a functor ı W C! Cop and a natural
isomorphism � W idC! ıop ıı such that for any x 2 C we have ı�x ı�ıx D idıx .

(2) A fixed point of ı is a pair .x; �/ of an object x 2 C and an isomorphism
x �
�! ıx such that ı� ı �x D � as morphisms x! ıx .

Definition B.3 applies with a single change: the direction of the bottom arrow in (B.4)
is reversed.
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Example B.12 For CD f VectC the category of finite-dimensional complex vector
spaces, the duality involution ı W C! Cop maps a vector space V to its dual V � and
a linear map f W V !W to f � WW �! V � . A fixed point of ı is a vector space V
equipped with a nondegenerate symmetric bilinear form; a linear map f W V ! W

in Cı preserves the bilinear forms. A fixed point for the composite of duality and
complex conjugation (Example B.2) is a complex vector space V with a nondegenerate
Hermitian form; a linear map f W V ! W in the fixed-point category is a partial
isometry — an injective map that preserves the Hermitian forms.

Remark B.13 There is a higher categorical context for Definition B.11. Let Cat denote
the 2–category of categories. There is an involution ˛ W Cat ! Cat that sends a
category C to its opposite Cop . (There is an extra categorical layer over Definition B.1:
there is a triple .˛; �1; �2/ of data and a single condition.) A twisted involution in the
sense of Definition B.11 is fixed-point data for ˛ .

Definition B.14 Let .�; �/ be an involution on a symmetric monoidal category C. A
Hermitian structure on an object x 2 C is an isomorphism h W �x! x_ such that the
composition

.B.15/ �x Š �..x_/_/
�.h_/
���! �..�x/_/Š �2.x_/

��1
��! x_

is equal to h.

Proposition 4.8 asserts that every object in a bordism category carries a Hermitian
structure. Observe that if F WB! C is an equivariant symmetric monoidal functor
between symmetric monoidal categories with involution, as in Definition B.6, then the
image of a Hermitian structure on an object b 2B is a Hermitian structure on Fb .

Appendix C Noncompact Wick-rotated vector symmetry
groups

Let .Hn; �n/ be a symmetry type, as in Definition 2.4.

Proposition C.1 Assume n� 3.

(1) There exist a canonical noncompact Lie group Hn , a homomorphism Hn!

GLnR with kernel K , and an inclusion Hn ,!Hn such that

(a) Hn �Hn is a maximal compact Lie subgroup ,
(b) the inclusion induces an isomorphism on �0 , and
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(c) the diagram

.C.2/

Hn
� � //

�n
��

Hn

��

On
� � // GLnR

commutes.

(2) There exists a canonical Lie group yHn that fits into the diagram

.C.3/

1 // Hn
jn

//
� _

��

yHn //
� _

��

f˙1g // 1

1 // Hn
// yHn

// f˙1g // 1

of group extensions , as well as a canonical homomorphism yHn!f˙1g�GLnR

that fits into a pullback square

.C.4/

Hn
//

��

yHn

��

GLnR // f˙1g �GLnR

and a commutative cube built from (3.15) and (C.4).

These noncompact groups are used to define topological bordism categories (Section 2.2).

Proof First define Spinn and PinCn as follows. Choose a lift

P
�
�! GLnR

�
�! GLnR=On

of the homogeneous principal bundle � to a principal PinCn –bundle � ı � ; it is unique
up to isomorphism since GLnR=On is contractible. Define PinCn as the group of
automorphisms of � that cover the action of left multiplication of GLnRDOn and
Spinn 2 PinCn as the subgroup covering left multiplication by GLCn RD SOn . Then set

.C.5/ SHn D Spinn �K=h.�1; k0/i;

analogous to (2.8). If �n.Hn/D SOn , set Hn D SHn . If �n is surjective, define zHn

as the pullback (see (2.10))

.C.6/

1 // K // zHn

����

// PinCn

����

// 1

1 // K // J // f˙1g // 1
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and then

.C.7/ Hn Š zHn=h.�1; k0/i:

It is straightforward to check the properties in (1).

For (2) imitate the proof of Proposition 3.13 with Spinn and PinCn replacing Spinn
and PinCn , respectively.

Appendix D Computations with A1–modules

The computations described in Section 10 depend on knowledge of the mod 2 coho-
mology of the spectra

MTOjd j for 0� d � 3;

MOjd j for �3� d � 0;

MSO3

as modules over the subalgebra A1 of the mod 2 Steenrod algebra generated by
Sq1 and Sq2 . The purpose of this appendix is to describe these computations and the
methods for arriving at them.

We thank Meng Guo for her careful reading and astute corrections.

D.1 Cell diagrams

It is common practice to depict an A1–module M as a graph with nodes corresponding
to a chosen homogeneous basis for M, at a height corresponding to grading, and with
an edge drawn with a straight line between e and e0 if the coefficient of e0 in Sq1.e/ is
nonzero, and an edge drawn with a curved line if they are analogously related by Sq2 .
This works best when a basis can be chosen so that the operations Sq1 and Sq2 send
basis elements to basis elements. This is the case with all of the A1–modules needed
in this paper. Here are three examples:

0

1

2

3

4

5

6

A1 J S
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For clarity the degrees of the basis elements have been indicated in this example, though
we will not usually do this. Topologists call these graphs “cell diagrams”. The one on
the left is the free A1–module on one generator (of degree 0) and the one on the right
is just Z=2 D H�.S0/, concentrated in degree 0. The one in the middle comes up
frequently and was deemed the Joker by Adams. It is the cohomology of a spectrum
also called J.

As explained in Section 10, the mod 2 cohomology H�MSpin was show by Anderson,
Brown, and Peterson [4] to have the form

A˝A1 N

for some A1–module N (which they determined). Figure 7 is a cell diagram of N
through dimension 28. The modules to the right (in gray) are free, and the modules to
the left (in black) are either S or J.

How does one use this in practice? Suppose X is a connective spectrum of finite type
and one wishes to determine the localization at 2 of ��MSpin^X. One makes three
computations (in which the abutments, though not indicated, have been completed at 2),

Exts;t
A1
.H�X;Z=2/) �t�s ko^X;

Exts;t
A1
.J ˝H�X;Z=2/) �t�s ko^J ^X DWMJ .X/;

Exts;t
A1
.A1˝H

�X;Z=2/DH�X:

The two spectral sequences often collapse (they do in the cases studied in this paper).
Write

MS .X/D �� ko^X;

MJ .X/D �� ko^J ^X:

According to the result of Anderson, Brown, and Peterson [4], after localizing at 2,
��MSpin^X is isomorphic to a sum of copies of MS .X/, MJ .X/, and H�X, shifted
according to the location of the corresponding summands in the cell diagram of X :

��MSpin^X DMS .X/˚†
8MS .X/˚†

10MJ .X/˚ � � �˚†
20H�X ˚ � � � :

One further comment on the spectral sequences above: If M is a free A1–module, then

Exts;t
A1
.M;Z=2/D Exts;t

A1
.J ˝M;Z=2/D 0 for s > 0;

Ext0;t
A1
.M;Z=2/D HomA1.M;Z=2/;

Ext0;t
A1
.J ˝M;Z=2/D HomA1.J ˝M;Z=2/:

Geometry & Topology, Volume 25 (2021)



1310 Daniel S Freed and Michael J Hopkins

28

24

20

16

12

8

0

Figure 7: The cell diagram for MSpin.

In these cases the display of the spectral sequences are all on the line s D 0, and the
spectral sequences collapse.

More generally if M is of the form M 0˚F with F a free A1–module, then

Exts;t
A1
.M;Z=2/� Exts;t

A1
.M 0;Z=2/˚Exts;t

A1
.F;Z=2/

and the spectral sequence is the sum of two spectral sequences, one of which collapses
for trivial reasons. The analogous statement holds for the second spectral sequence.
For this reason it is useful to omit free summands from the cell diagrams and keep
track of them in some other way.

D.2 The charts

We can now explain in more detail what is shown in Figure 5. In each case we
are interested in ��MSpin^X for some appropriate spectrum X. A cell diagram
for X, modulo free A1 summands is shown on the left, with X labeled below it. The
chart to the right depicts Exts;t

A1
.H�.X/IZ=2/ as a module over Exts;t

A1
.Z=2;Z=2/.

Following standard convention the horizontal axis is the .t�s/–axis and the vertical
axis is the s–axis. Each dot represents a basis element. The contributions from the
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free summands contribute only to Ext0;t and to keep the picture uncluttered they are
indicated below the table. For example, in the case s D 3, in dimension .t � s/D 8,
there is a Z=2 not indicated in graphical notation, but only by the C1. The group in
that case is the sum of that Z=2 and Z=2˚Z=8˚Z=32.

The color-coding allows one to read off the effect of the twisted Dirac operators of
Section 9.2 as described in homotopy-theoretic terms in Section 10. Consider, for
example, the case s D 3. One needs to know the effect of the map

��MSpin^S�3 ^MO3! S�3 ^KO:

The .�1/–connected cover of S�3 ^KO is equivalent to ko^W , in which W is the
finite spectrum whose cell diagram is depicted below:

1

The effect in cohomology of the twisted Dirac operator corresponds to the inclusion of
the blue cells, and the cokernel of this map, in the relevant summand, is displayed in
green. The Ext charts are correspondingly color coded and the red line indicates the
connecting homomorphism in the long exact sequence. The Ext computation of interest
is built from the kernel and cokernel of this connecting homomorphism. For example
the connecting homomorphism is a monomorphism from the column .t � s/D 1 to the
column .t � s/D 0, and the only nonzero Ext group in this range is

Ext0;0
A1
.H�S�3MO3;Z=2/D Z=2:

In dimension 6, the group is the sum of .Z=2/2 (coming from the free summands) and
another Z=2˚Z=2. The fact that the dot in filtration s D 2 is blue indicates that the
corresponding basis element maps nontrivially under the map to �6†�3KO.

D.3 The case sD˙1

The cell diagrams for †�1MO.1/ and †1MTO.1/ are easily derived from the Thom
isomorphism and Wu formula

Sqn.U /D wn �U
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for the action of the Steenrod operations on the Thom class of a (virtual) vector bundle.
The diagrams work out to be

S�1 ^MO1 S�1 ^MTO1

and continue infinitely far upward, repeating the evident pattern of Steenrod operations.
There are no additional free summands in these cases.

D.4 The case sD 4

The next easiest case to understand is the case s D 4. To derive it requires a useful
technique introduced by Adams and Margolis [2] and developed considerably further
by Margolis [86]. The subalgebra A1 contains two of the Milnor operators,

Q0 D Sq1;

Q1 D ŒSq2;Sq1�;

and together they generate an exterior algebra

EŒQ0;Q1��A1:

Definition D.1 Suppose that M is an A1–module. For i D 0; 1, the i th Margolis
homology of M is

H�.M IQi /D kerQi= imageQi :

The Margolis homology of a space or spectrum X is the Margolis homology of H�X ,

H�.X IQi /DH�.H
�.X/IQi /:

Remark D.2 The Milnor elements are primitive, and the Künneth isomorphism holds:

H�.M ˝N IQi /�H�.M IQi /˝H�.N IQi /:
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The following theorem of Adams and Margolis [2, Theorem 3.1] (attributed by Adams
and Margolis to Wall, in this particular case) is one reason the Margolis homology
groups are important.

Theorem D.3 (Adams and Margolis) A connected A1–module M is free if and only
if

H�.M IQ0/DH�.M IQ1/D 0:

The action of the Milnor operators on

H�.BSO3IZ=2/D Z=2Œw2; w3�

is given by

Q0.w2/D w3;

Q0.w3/D 0:

This implies that the Margolis homology with respect to Q0 is

H�.BSO3IQ0/� Z=2Œw22 �:

Write U for the Thom class in H�MO3 . Since Q0.U / D w1U D 0 the Thom
isomorphism commutes with Q0 , and the Margolis homology of MSO3 with respect
to Q0 is

U �Z=2Œw22 �:

For the Q1 homology note that

Q1.w2/D w2w3

Q1.w3/D w
2
3 ;

Q1.U /D Uw3:

It follows that H�MSO.3/, as a module over the exterior algebra EŒQ1�, is a sum of

UFj D fUw
j
2 ; Uw

j
2w3; Uw

j
2w

2
3 ; Uw

j
2w

3
3 ; : : : g:

Using this one sees that the Margolis homology with respect to Q1 of MSO.3/ has
basis fUw2jC12 g.
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Now let M and N be the A1–modules

M

U

Uw2

Uw3

N

Uw22

Uw2w3

Uw23 Uw32 CUw
2
3

Uw22w3

Uw33

Uw2w
2
3

and consider the map

.D.4/ .M ˚N/˝Z=2Œw42 �!H�.MSO3/:

The map (D.4) is an inclusion. Together with the Künneth formula, the computation just
described implies that it induces an isomorphism of Margolis homology with respect
to both Q0 and Q1 . By the theorem of Adams and Margolis its cokernel is free, and
there is an isomorphism

H�.MSO3/� .M ˚N/˝Z=2Œw42 �˚ free modules:

The cell diagram in box s D 4 in Figure 5 depicts .M ˚N/˝Z=2Œw42 �.

One can work out the disposition of the free modules by computing Poincaré series.
The Poincaré series for the indecomposables of the free modules (with U placed in
degree 0) is the quotient of

1

.1� t2/.1� t3/
�
.1C t2C t3C t4.1C t C 2t2C t3C t4C t5//

.1� t8/

by the Poincaré series .1C t /.1C t2/.1C t3/ of A1 . This works out to be

t9

.1� t6/.1� t8/
D t9C t15C t17COŒt�21:

Most of the time this is enough information. However for some purposes it is useful to
have a basis for the generators of the free modules. In this case one can work out that
the summand of free modules is

A1Œw
2
3 ; w

4
2 � �Uw

3
2w3

and that

.D.5/ .M ˚N/˝Z=2Œw42 �˚A1Œw
2
3 ; w

4
2 �˝Uw

3
2w3!H�.MSO3/
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is an isomorphism. We now digress to describe a technique for verifying this. The
technique applies to modules over any connected graded Hopf algebra and exploits the
fact that such an algebra is a Frobenius algebra. We will describe it explicitly for A1 .

Let b.x/D Sq2 Sq2 Sq2.x/ (this is the operation that goes from the bottom dot to the
top dot in the cell diagram for A1 ). If F is a free A1–module and x 2 F , there are
elements a 2 A1 and y 2 F with a � x D b.y/ ¤ 0. This is proved by reducing to
the case F D A1 and either checking directly or appealing to the fact that A1 is a
Frobenius algebra.

Lemma D.6 Suppose that F and M are A1–modules and that F is free. A map
F ! M is a monomorphism if and only if the induced map b.F / ! b.M/ is a
monomorphism.

Proof The only if direction is clear. For the converse, suppose that b.F /! b.M/

is a monomorphism and x 2 F. By the above there are a 2 A1 and y 2 F with
a � x D b.y/ ¤ 0. Since b.F /! b.M/ is a monomorphism, the image of b.y/ is
nonzero, hence so is the image of a.x/ and therefore the image of x .

Remark D.7 Since A1 is a finite-dimensional Hopf algebra, it is also injective as a
module over itself. This means that if F �M is a free submodule of finite type (finite
rank in each degree) then there is a decomposition M �M 0˚F . This leads to a fairly
quick way of locating the free summands in an A1–module M. They are generated by
any subset B �M with the property that b.B/� b.M/ is a basis.

Lemma D.8 For an A1–module N the following are equivalent :

(i) If F is a free module and F �N then F D 0.

(ii) b.x/D 0 for all x 2N.

Proof Suppose that F �N is a free submodule. If F is nonzero then there is an x 2F
with b.x/¤0, so b.N /¤0. Conversely if there is an x2N with b.x/¤0 then the map

†jxjA1!N;

a 7! a � x;

is a monomorphism by Lemma D.6.

Definition D.9 An A1–module N has no free submodules if it has the equivalent
properties above.
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By Remark D.7 having a free submodule is equivalent to having a free summand.

Lemma D.10 Suppose that H is an A1–module and N � H a summand having
no free submodules. If F is a free module and F ! H is a monomorphism, then
F !H=N is a monomorphism.

Proof By Lemma D.6 it suffices to show that b.F /! b.H=N/ is a monomorphism.
Since b.N /D 0 and N is a summand, b.H/! b.H=N/ is an isomorphism.

Returning to the cohomology of MSO3 , we now use these ideas to show that (D.5)
is an isomorphism of A1–modules. Both sides have the same Poincaré series so it
suffices to show that the map is a monomorphism or, equivalently, that the map

A1Œw
2
3 ; w

4
2 �˝Uw

3
2w3!H�.MSO3/=..M ˚N/˝Z=2Œw42 �/

is a monomorphism. Since M and N visibly have no free submodules, neither does
.M ˚N/˝Z=2Œw42 �, so by Lemma D.10 it suffices to show that

A1Œw
2
3 ; w

4
2 �˝Uw

3
2w3!H�.MSO3/

is a monomorphism. This is done with the aid of Lemma D.6. Since

Sq1.w42/D Sq2.w42/D 0;

Sq1.w23/D Sq2.w23/D 0;
and

Sq2 Sq2 Sq2.Uw32w3/D Uw
5
3 ;

the assertion comes down to checking that

fUw53w
4k
2 w2`3 g

is linearly independent, which is easy.

D.5 The case sD˙2

We begin with the formulas

Q0.w1/D w
2
1 ;

Q1.w1/D w
4
1 ;

Q0.w2/D w1w2;

Q1.w2/D w
3
1w2Cw1w

2
2 :
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For both MO2 and MTO2 ,

Q0.U /D w1U;

Q1.U /D .w
3
1 Cw1w2/U;

so the Thom isomorphism

H�.MO2/�H
�.MTO2/

induces an isomorphism of Margolis homology.

Restricting attention to MO2 , let

Fn �H
�MO2

be the subspace with basis
fUwi1w

j
2 j j � ng

and xFn the subspace with basis
fUwi1w

n
2g;

so that there is a vector space isomorphism

Fn �
M
j�n

xFj :

The Milnor operator Q0 preserves the decomposition into the spaces xFj and from the
formulas above one concludes that

H�. xF2nIQ0/D 0

and
H�. xF2nC1IQ0/D Z=2fU w2nC12 g:

This shows that the Q0 Margolis homology of H�MO2 has basis fUw2nC12 g.

The Milnor operator Q1 maps Fn�1 to Fn . We can determine the Margolis homology
from the associated spectral sequence. Identifying Fn=Fn�1 � xFn and using the
formulas above, one easily checks that the first differential in this spectral sequence is
the Z=2Œw1�–linear map

xF2n
�w1w2
����! xF2nC1;

xF2nC1
0
�! xF2nC2:

It follows that the Q1 Margolis homology of H�.MO2/ also has basis fUw2nC12 g.

Geometry & Topology, Volume 25 (2021)



1318 Daniel S Freed and Michael J Hopkins

Let M and N be the A1–modules below:

M N

U

Uw1

Uw2

U.w31 Cw2w1/

Uw21w2

Uw32

The map

Z=2Œw42 �˝ .M ˚N/!H�.MO2/

is then an inclusion and induces an isomorphism of Margolis homology. If follows that

H�MO2 � Z=2Œw42 �˝ .M ˚N/˚ free:

The location of the free modules can be determined from the Poincaré series. The
Poincaré series for the generators is the quotient of

1

.1� t /.1� t2/
�
.1C t C t2C t3C t4C t6/

.1� t8/

by the Poincaré series .1C t /.1C t2/.1C t3/ of A1 . This works out to be

t2

.1� t2/.1� t8/
D

t2C t4

.1� t4/.1� t8/
:

In fact the subspace of free modules is a free module over A1Œw41 ; w
4
2 � and has

fUw21 ; Uw
2
2g

as a basis. As before, it suffices from the Poincaré series above to check that the map

A1Œw
4
1 ; w

4
2 �fUw

2
1 ; Uw

2
2g !H�.MO3/

is a monomorphism and, for this, to check that the set

fSq2 Sq2 Sq2.Uw21w
4k
1 w

4`
2 /;Sq2 Sq2 Sq2.Uw22w

4k
1 w

4`
2 /g

is linearly independent. This is easily deduced from the fact that Sq2 Sq2 Sq2 is linear
over Z=2Œw41 ; w

4
2 �, along with

Sq2 Sq2 Sq2.Uw21/D Uw
6
1w2;

Sq2 Sq2 Sq2.Uw22/D Uw
4
1w

3
2 :
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The situation with MTO2 is similar, the variations being the use of the modules

Uw22

Uw1w
2
2

Uw32

U.w22w
3
1 Cw

3
2w1/

Uw21w
3
2

Uw2

M N

and the Poincaré series
1C t6

.1� t4/.1� t8/

for the generators of the free modules, from which one can conclude that the subspace
of free modules is the A1Œw41 ; w

4
2 �–submodule with basis

fU;Uw21w
2
2g;

on which the operator Sq2 Sq2 Sq2 takes the value

Uw41w2; Uw
6
1w

3
2 :

D.6 The case sD˙3

We now turn to the case of MO3 . This is the most complicated case and the specific
determination of the free summands was carried out with the aid of Mathematica.

It will be helpful to use the equivalence

BO1 �BSO3! BO3

classifying the tensor product of the defining vector bundles. Write

wi 2H
i .BO3/;

vi 2H
iBSO3;

v1 2H
1BO1

for the corresponding Stiefel–Whitney classes, so that under the equivalence above

w1 D v1; v1 D w1;

w2 D v2C v
2
1 ; v2 D w

2
1 Cw2;

w3 D v3C v2v1C v
3
1 ; v3 D w1w2Cw3:

Geometry & Topology, Volume 25 (2021)



1320 Daniel S Freed and Michael J Hopkins

Now note that
Q0U D U.v1/;

Q1U D U.v3C v
3
1/;

so that as far as the Milnor operators are concerned there is an isomorphism

H�.MO.3//�H�.MSO3/˝H�.MO1/:

From this one concludes that

H�.MO3IQ0/D 0

and that the Margolis homology H�.MO3IQ1/ has basis fUv1v
2jC1
2 g.

As in the case of MSO.3/ let M and N be the A1–modules depicted below (in which
the blue dot indications the location of the Margolis homology group):

M

U

Uw1

Uw2

Uw3 U.w31 Cw1w2/D Uw1v2

U.w21 Cw1w3/Uw1w3

Uw21w3

Uw31w3

Uw41w3

Uwn1w3

N

Uwn1w
3
3

Uw41w
3
3

Uw31w
3
3

Uw21w
3
3

Uw1w
3
3

Uw33

U.w21w
2
3 Cw2w

2
3/

Uw22w3 � Uw1v
3
2

U.w1w2w3Cw
3
2 Cw

2
3/

Then the map

.M ˚N/˝Z=2Œv42 �!H�.MO3/
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is a monomorphism and induces an isomorphism of Margolis homology groups. It
follows that

H�.MO3/� .M ˚N/˝Z=2Œv42 �˚ free:

The Poincaré series for the indecomposables of the free modules (with U placed in
degree 0) is the quotient of

1

.1� t /.1� t2/.1� t3/
�
.1� t /�1C t3C t4C t6.1� t /�1

.1� t8/

by the Poincaré series .1C t /.1C t2/.1C t3/ of A1 . It works out to be

t2

.1� t4/.1� t8/
C
t4C t5C t6C t9C t10C t11C t12C t15

.1� t4/.1� t8/.1� t12/
:

The free modules correspond to the sum of

A1Œw
4
1 ; w

4
2 �fUw

2
1g

and the free A1Œw41 ; w
4
2 ; w

4
3 �–module on

fUw22 ; Uw2w3; Uw
2
3 ; Uw

3
2w3; Uw

2
2w

2
3 ; Uw

2
1w

3
2w3; Uw

2
1w

2
2w

2
3 ; Uw

3
2w

3
3g:

To see that these are linearly independent, one applies Sq2 Sq2 Sq2 to reduce the
problem to showing that the union of

fU.w61w2Cw
5
1w3/w

4k
1 w

4`
2 g

and the set consisting of the products of w4k1 w
4`
2 w

4m
3 with the elements of

fU.w41w
3
2 Cw

3
1w

2
2w3Cw

2
1w2w

2
3 Cw1w

3
3/; U.w

4
1w

2
2w3Cw

2
1w

3
3/;

U.w41w2w
2
3 Cw

3
1w

3
3/; U.w

2
1w

2
2w

3
3 Cw

5
3/; U.w

2
1w2w

4
3 Cw1w

5
3/;

U.w61w
4
2w3Cw

2
1w

5
3/; U.w

6
1w

3
2w

2
3 Cw

5
1w

2
2w

3
3 Cw

4
1w2w

4
3 Cw

3
1w

5
3/;

U.w41w
4
2w

3
3 Cw

7
3/g

is linearly independent. A couple of maneuvers will make this obvious. First of all,
let’s apply the Thom isomorphism to get rid of the appearance of U. Next regard
everything as a module over Z=2Œw41 ; w

4
2 � and look at the associated graded of the

increasing filtration by powers of w3 . Doing so reduces the problem to showing that
the map from the free Z=2Œw41 ; w

4
2 �–module on

fw51w3; w1w
3C4k
3 ; w21w

3C4k
3 ; w31w

3C4k
3 ; w5C4k3 ; w1w

5C4k
3 ; w21w

5C4k
3 ;

w31w
5C4k
3 ; w7C4k3 g

to H�.BO3/ is a monomorphism, which is easy.
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The analysis is similar for MTO3 . The Margolis homology is the same as that for MO3
since the ratio of the two Thom classes is w23 , which is annihilated by the Milnor
operators. The basic modules for MTO3 are as below:

M

Uw2

Uw3

Uw1w3

Uwn1w3

N

Uw2w3

U.w23 Cw1w2w3/Uw32

Uw22w3

U.w31w2w3Cw
2
1w

2
3

Cw1w
2
2w3Cw2w

2
3/

U.w21w
3
2 Cw1w

2
2w3Cw2w

2
3/

U.w33 Cw
2
1w

2
2w3/Uw33

Uwn1w
3
3

The Poincaré series for the free modules is the quotient of

1

.1� t /.1� t2/.1� t3/
�
t2.1� t /�1C t6.1� t /�1C t5C t6C t8C t9

.1� t8/

by the Poincaré series .1C t /.1C t2/.1C t3/ of A1 . This can be written as

t7

.1� t4/.1� t8/
C
1C t4C t6C t9C t10C t11C t15C t17

.1� t4/.1� t8/.1� t12/
:

The inclusion of the free summands turns out to be the sum of the A1Œw41 ; w
4
2 ; w

4
3 �–

module map

A1Œw
4
1 ; w

4
2 ; w

4
3 �fU;Uw

2
2 ; Uw

2
1w

2
2 ; Uw

3
2w3; Uw

2
2w

2
3 ; Uw2w

3
3 ; Uw

3
2w

3
3 ; Uw

2
1w

3
2w

3
3g

!H�.MTO3/

and the A1Œw41 ; w
4
2 �–module map

A1Œw
4
1 ; w

4
2 �fUw

2
1w2w3g !H�.MTO3/:
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As above, to check this it suffices to apply Sq2 Sq2 Sq2 to the generators above and
show that the map from the sum of the free Z=2Œw41 ; w

4
2 ; w

4
3 �–module on

fU.w41w2Cw
3
1w3/; U.w

2
1w2w

2
3Cw1w

3
3/; U.w

6
1w

3
2Cw

5
1w

2
2w3Cw

4
1w2w

2
3Cw

3
1w

3
3/;

U.w41w
4
2w3Cw

5
3/; U.w

4
1w

3
2w

2
3 Cw

3
1w

2
2w

3
3 Cw

2
1w2w

4
3 Cw1w

5
3/;

U.w41w
2
2w

3
3 Cw

2
1w

5
3/; U.w

2
1w

2
2w

5
3 Cw

7
3/; U.w

6
1w

4
2w

3
3 Cw

2
1w

7
3/g

and the free Z=2Œw41 ; w
4
2 �–module on

U.w61w
2
2w3Cw

4
1w

3
3/

to H�.MTO3/ is a monomorphism. Again, by filtering by powers of w3 , using the
Thom isomorphism, and looking at the associated graded, it suffices to check that the
map from

Z=2Œw41 ; w
4
2 �fw

4
1w

3
3 ; w

3
1w

1C4k
3 ; w1w

3C4k
3 ; w31w

3C4k
3 ; w5C4k3 ; w21w

5C4k
3 ; w7C4k3 ;

w21w
7C4k
3 g

to H�.BO3/ is a monomorphism, which is obvious.
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