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We implement an extended version of reflection positivity (Wick-rotated unitarity)
for invertible topological quantum field theories and compute the abelian group
of deformation classes using stable homotopy theory. We apply these field theory
considerations to lattice systems, assuming the existence and validity of low-energy
effective field theory approximations, and thereby produce a general formula for
the group of symmetry protected topological (SPT) phases in terms of Thom’s
bordism spectra; the only input is the dimension and symmetry type. We provide
computations for fermionic systems in physically relevant dimensions. Other topics
include symmetry in quantum field theories, a relativistic 10—fold way, the homotopy
theory of relativistic free fermions, and a topological spin-statistics theorem.
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1166 Daniel S Freed and Michael J Hopkins

1 Introduction

The moduli space, or stack, of a geometric object with fixed discrete invariants is a
central object of interest in geometry. A typical example is the moduli stack of Riemann
surfaces of fixed genus. Here the underlying topological space is connected, but moving
up to complex dimension two the moduli stack of complex surfaces of general type
with fixed Euler number and signature is not necessarily connected. It has finitely
many components — see Catanese [25] — so there are finitely many deformation types.
If singular objects are permitted, then sometimes connectivity can be restored. For
example, Reid [96] speculates that the moduli stack of three-dimensional Calabi—Yau
varieties is connected if one allows certain singularities. To illustrate further, consider
the moduli stack of one-dimensional Riemannian manifolds. If we allow simple
singularities, such as the figure eight, then we can connect a single circle to two circles
by a path (standard Morse function on a two-dimensional torus). We can also connect
one circle to two circles if we allow noncompact smooth manifolds: elongate a circle
to an ellipse to two lines and then each line to a circle. On the other hand, the set of
path components of the moduli stack of smooth closed Riemannian 1-manifolds is
isomorphic to ZZ=9; the isomorphism maps a 1-manifold to the cardinality of 7.

In theoretical physics one contemplates moduli stacks of quantum systems with fixed
discrete invariants, such as dimension and symmetry type. If we remove the singular
locus of phase transitions, then path components of the moduli stack are identified with
phases of the quantum system.! In condensed matter physics the quantum systems are
modeled discretely, using lattices, and the classification of phases is an active topic
of current interest. As far as we know there is not a robust mathematical theory of
lattice systems and their moduli which leads to rigorous computations of sets of phases.
Quantum field theories also exhibit phases and phase transitions, and those too are
topical. Physicists often pass back and forth between lattice models and field theories
using various mechanisms. In this paper we envision passing from a lattice system to
an effective low-energy field theory using two heuristic principles to argue that the set
of phases is conserved:

(i) The deformation class of a quantum system is determined by its low-energy
behavior.

IThere is a tight analogy with the example of Riemannian 1-manifolds above: a figure eight corre-

sponds to a first-order phase transition, while a noncompact manifold corresponds to a higher-order phase
transition.
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(ii) The low-energy physics of a gapped? system is well-approximated by a topo-
logical? field theory.

A stronger version of (i) asserts that the entire homotopy type of the moduli stack is
determined by the low-energy behavior. These two principles are applied by physicists to
quantum systems of all kinds: condensed matter systems, quantum field theories, string
theories. For discrete lattice systems we also assume an emergent low-energy relativistic
symmetry. We remark that fracton models — see Nandkishore and Hermele [91] — are
thought not to satisfy (ii), nor to have any sort of emergent relativistic symmetry, but
those are not relevant here. The lattice models that motivate this paper belong to a
special class, often called short-range entangled, for which the long-range effective
topological field theory is invertible. In particular, there is a unique ground state for
the lattice model on any compact manifold. Early discussions of this property may be
found in Chen, Gu, and Wen [26] and Kitaev [75]. (Now ‘invertible’ is used in place
of ‘short-range entangled’ to describe the lattice model.)

One reason to pass to continuum models is that there is a mathematical axiom system
for Wick-rotated quantum field theory; it encodes the structural properties of correlation
functions and linear spaces of quantum states. It was first introduced in the mid 1980’s
for scale-independent theories: by Segal [102] for 2—dimensional conformal field
theories and later by Atiyah [7] for topological field theories. With modifications these
axioms are now believed to be relevant to scale-dependent theories as well. In this
framework a quantum field theory is a linear representation of a bordism category.
The latter categorifies Thom’s bordism groups [109], and a field theory categorifies
integer-valued bordism invariants, such as the signature of a compact oriented manifold.

The twin pillars of quantum field theory are locality and unitarity. These fundamental
properties persist after Wick rotation: locality manifests as factorization laws for correla-
tion functions and unitarity manifests as reflection positivity. Locality is encoded in the
axiom system using composition of morphisms: gluing bordisms along codimension-
one submanifolds. In the early 1990’s, especially motivated by 3—dimensional Chern—

2 A quantum mechanical system is gapped if its minimum energy is an eigenvalue of finite multiplicity
of the Hamiltonian, assumed bounded below, and is an isolated point of the spectrum. For quantum field
theory ‘spectrum’ means the spectrum of representations of the translation group of Minkowski spacetime.
For lattice systems the spectral gap must be bounded below independent of the lattice size.

3We allow a topological field theory tensored with a nontopological invertible field theory;
see Section 5.4. A field theory is fopological if it does not depend on any continuously varying (background)
fields, such as a metric or conformal structure. We give a precise definition of a topological field theory
in Section 2.2.
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Simons theory, an extended notion of locality was introduced by gluing bordisms with
corners along higher-codimension submanifolds, and this led naturally to formulations
involving higher categories; see Baez and Dolan [12], Freed [38], Lawrence [81], and
Lurie [85], for example. Extended locality is a characteristic feature of both physical and
mathematical applications of field theory, whereas unitarity is often not present in purely
mathematical contexts. Unitarity in field theory or rather its Wick-rotated manifesta-
tion — reflection positivity — is the first main subject of this paper. It is straightforward
to implement reflection positivity in the nonextended axiom system. A natural question
arises: What is the extended notion of reflection positivity that goes with extended
locality? We offer a solution in a very special case: invertible topological field theories.
These theories can be studied using stable homotopy theory — see Freed, Hopkins, and
Teleman [44] — and indeed we define* a theory of this type as a map of spectra. Spectra
are the main characters in stable homotopy theory, a mathematical field that partly grew
out of Thom’s work. The domain of an invertible topological field theory is a Madsen—
Tillmann bordism spectrum, and our main result tells that extended reflection positivity
brings us full circle to the bordism spectra introduced by Thom in his thesis [109].

Theorem 1.1 Thereis a 1:1 correspondence

deformation classes of reflection positive
(1.2) {invertible n—dimensional extended topological ; = [MTH, X"t I17Z(1)],,-
field theories with symmetry group Hj,

The right-hand side is the torsion subgroup of homotopy classes of maps from a
Thom spectrum to a shift of the Anderson dual to the sphere spectrum. There are
standard computational techniques which we employ in the latter part of this paper to
illustrate the efficacy of the theorem. Often field theories are classified by enumerating
lagrangians with specified background and fluctuating fields that are consistent with
a given symmetry group. By contrast, Theorem 1.1 is a direct quantum classification
of correlation functions and state spaces, as encoded by the axiom system. The only
inputs are the discrete invariants: the spacetime dimension n and the Wick-rotated
vector symmetry group®> H,. We prove Theorem 1.1 in Section 8 as a corollary of

4 A better starting point is the topological version of the axiom system, and then Theorem 5.12 brings
us to stable homotopy theory. But as the literature is still in flux we opt for Ansatz 5.14 instead; see the
remarks following Theorem 5.12.

5The basic case is Hy, = SO, . In general there is a homomorphism p, : H, — O, whose image
includes SO, ; the kernel consists of internal global symmetries. There is a unique associated stable
symmetry group H independent of dimension, as we prove in Theorem 2.19.
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a more general result (Theorem 8.20). There is a related assertion which remains
conjectural in this paper: the abelian group of deformation classes of all reflection
positive invertible field theories, including those that are not topological, is obtained
by simply omitting ‘tor’ on the right-hand side of (1.2). We make some comments
about this generalization in Section 5.4 and Remark 8.41; we use it in the computations
of Section 9. More to the point, we introduce “continuous invertible topological field
theories™ as a substitute for invertible nontopological theories, and prove theorems for
those.® We remark that for general reasons nontorsion only arises if the spacetime
dimension 7 is odd.

We apply Theorem 1.1 to compute the abelian group of phases of invertible lattice
systems with fixed dimension and symmetry type. This implicitly assumes that every
possible deformation class of invertible topological theory can be realized by a lattice
model, something not implied by the heuristic principles (i) and (ii) above. We empha-
size the algorithmic nature of our classification: given a spacetime dimension »n and
a symmetry group Hj the right-hand side of (1.2) is the group of topological phases
and is computable. We provide concrete evidence for this application of Theorem 1.1:
in Section 9.3 we undertake detailed computations for some fermionic systems and com-
pare to results in the physics literature, the latter derived by means of physical arguments.
Some readers may wish to examine our tables of computations before tackling the
more theoretical parts of the paper. In unpublished work Kitaev [75; 76; 77] develops
a classification of invertible phases based on microscopic considerations, and he too
is led to stable homotopy theory and results consonant with our effective field theory
classification. Kapustin [67] initiated computations of topological phases via character
groups of bordism groups, and he used them and subsequent computations, for example,
those in Kapustin, Thorngren, Turzillo, and Wang [68], as phenomenological evidence
for a general classification along these lines. Gaiotto and Kapustin [50], following
on Gu and Wen [56], show that some invertible fermionic phases defined by lattice
models are characterized by spin bordism groups; see also Brumfiel and Morgan [20].
Campbell [24] and Guo, Putrov, and Wang [57] carry out computations for other
bosonic and fermionic cases of interest, providing further affirmative checks against
the condensed matter literature.

A second subject of this paper, after extended reflection positivity, is the study of
symmetry groups in relativistic quantum field theory, and that is where we begin
in Section 2. Our starting point is a theory on n—dimensional Minkowski spacetime

®We thank Peter Teichner for his encouragement to adopt this point of view.
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1170 Daniel S Freed and Michael J Hopkins

with global symmetry group H, ,_,, after dividing out by translations. The analytic
continuations of correlation functions, which exist as a consequence of positivity of
energy, are invariant under the complex Lie group H,(C), and the entire Wick-rotated
theory is symmetric under the compact real form H, C H,(C) that appears on the
left-hand side of (1.2). In Section A.3 we discuss Wick rotation and the CRT theorem’
for general symmetry types. We use the rigidity of compact Lie groups to constrain
possible symmetry groups (Theorem 2.7) a la Coleman and Mandula [27]. One key
result in this section (Theorem 2.19) is the existence and uniqueness of a stabilization H,
which is the group in the Thom spectrum on the right-hand side of (1.2). When we
move to curved Riemannian manifolds — ie couple the theory to background gravity —
the symmetry becomes infinitesimal in the sense of Cartan: an Hj,—structure on the
tangent bundle. In Section 3 we formulate reflection symmetry in terms of a group
extension

(1.3) 1= H, > H, > {£1} > 1;

elements in H, \ H, are a Wick-rotated analog of antiunitary symmetries in quan-
tum mechanics. We use this extension in Section 4.1 to define an involution on the
bordism category of H,—manifolds. In the basic case H, = SO,, the involution is
orientation-reversal; our uniform treatment gives analogs for any symmetry group. For
example, fermionic theories with time-reversal symmetry (and no other symmetry)
have H, = Pin,jf: the involution takes a pin structure to its “w;—flipped” pin struc-
ture. Topological field theories are independent of the Riemannian metric, so we can
replace H, by a noncompact analog, which we construct in Appendix C.

Three basic lessons we learned about reflection positivity:
(a) ‘Reflection’ and ‘positivity’ are distinct.
(b) ‘Reflection’ is a structure whereas ‘positivity’ is a condition.

(c) ‘Extended positivity’ is a structure, not a condition.

In the axiom system a field theory is defined to be a homomorphism — a symmetric
monoidal functor —

(14) F: Bord(,_1 ) (Hn) — Vectc

"There is a subtlety concerning double covers of the Lorentz signature isometry group, uncovered
by Greaves and Thomas [54], which we explicate in the context of Wightman quantum field theory for
general symmetry types; see Section A.2.
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Reflection positivity and invertible topological phases 1171

from the bordism category to the category of complex vector spaces and linear maps.
A reflection structure (Section 4.3) is equivariance data for F with respect to the
generalized orientation-reversal involution on Bord,_1 ,)(Hy) and the involution of
complex conjugation on Vectc. (We briefly review involutions on categories and
equivariant functors in Appendix B.) A reflection structure induces a Hermitian metric
on the vector space of states attached to an (n—1)-manifold, and positivity is the
condition that these Hermitian structures be positive definite. Analogous to reflection
positivity in Euclidean space (Section 3.2) we see that the partition function of the
double of a manifold with boundary must be positive in order that a reflection structure
be positive. Our treatment of this material using general symmetry groups means it
applies to all theories, including those with time-reversal symmetry and fermions which,
after Wick rotation, involve nonorientable manifolds with pin structure.

To proceed to extended field theories we specialize in Section 5 to the invertible case.
(Invertible field theories were first singled out by Freed and Moore [47] in an application
to string theory.) In Section 5.2 we review how invertibility catalyzes a transition to
stable homotopy theory: the analog of (1.4) for an invertible topological field theory is
a map of spectra

(1.5) F:X"MTH, — T.

The domain is the invertible quotient of a higher bordism category, a Madsen—Tillmann
spectrum. There is freedom to choose the codomain spectrum, and in Section 5.3 we
introduce two universal choices. The first is (a shift of) 7IC*, a “character dual” to
the sphere spectrum, which is used to track topological theories on the nose: theories
with unequal partition functions are distinct. The second universal target spectrum is
(a shift of) the Anderson dual 17.(1) to the sphere spectrum. It tracks deformation
classes of invertible theories rather than individual theories. Significantly, in the spirit
of “derived geometry”, maps into /7Z(1) classify deformation classes of invertible
theories that are not necessarily topological; the topological theories have finite order
in the abelian group of homotopy classes of maps. For the application to topological
phases one should include the nontopological theories, as they incorporate nonzero
thermal Hall response. An example is Kitaev’s Eg phase [73]. See Section 5.4 for
a general discussion, including an interpretation of maps into /7Z(1) as a continuous
invertible topological field theory. In this paper we only use nontopological field
theories heuristically and posit that their deformation classes are encoded in continuous
topological field theories, which we treat rigorously.
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The main arguments about extended positivity occur in Sections 6—-8. Madsen—Tillmann
spectra filter Thom spectra, which leads to a notion of a stable invertible topological
field theory: a map out of a Thom spectrum. For invertible theories a reflection
structure is a lift of (1.5) to an equivariant map of Z /2-equivariant spectra. Section 6
begins with a brief exposition of spectra and Borel equivariant stable homotopy theory,
sufficient for the considerations in this paper. The involution on the domain that models
generalized orientation-reversal is straightforward to construct from the group exten-
sion (1.5). On the other hand, it is not clear a priori how to model complex conjugation
on the codomain, so in Section 6.3 we give an extended discussion motivating our
choice, Definition 6.30. We conclude Section 6 by introducing spectra and spaces of
“higher super lines”, including Hermitian structures and a higher notion of positivity
(Definitions 6.41 and 6.45). There is a basic link between nonextended positivity and
stability, which we establish in Theorems 7.22 and 7.30 using obstruction theory
arguments. This results in an intermediate classification (Corollary 7.33) of invertible
topological theories with reflection structure satisfying nonextended positivity. We
undertake a more systematic study in Section 9. There we define extended positivity
for invertible field theories in terms of higher super lines and their embellishments. We
give an intuitive construction of the space of invertible reflection positive theories, and
then we identify its homotopy type in Theorem 8.20, whose proof occupies the second
half of Section 6. Theorem 1.1 is a corollary.

The third main subject of this paper is what might be called the homotopy theory of
relativistic free fermions.® There are two distinct scenarios in which a free fermion field
theory gives rise to a deformation class of n—dimensional reflection positive invertible
theories. First scenario: an (n—1)—dimensional free fermion theory has an associated n—
dimensional invertible anomaly theory, which is not necessarily topological; our concern
here is its deformation class.” Second scenario: an n—dimensional massive free fermion
theory has a long-range effective invertible topological field theory approximation,
according to the general principle (ii) invoked above, applied to a quantum field theory
rather than a lattice system. We sketch the first scenario in some detail in Section 9.2,
culminating in a formula (Conjecture 9.70) for the deformation class of the anomaly
theory. Since massive free fermions have trivial anomaly, the starting point is the
group of free fermionic data under direct sum modulo massive free fermionic data. The

8 A free fermion field theory is neither topological nor invertible, but it has an associated invertible field
theory.

9The anomaly theory lies in differential KO—theory, whereas its deformation class lies in topological
KO-theory.
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existence of a mass term has a meaning in terms of Clifford modules (Lemma 9.55), and
this produces an identification of the quotient as a homotopy group of the KO-theory
spectrum (Theorem 9.63). The formula for the deformation class of the associated
anomaly theory is, conjecturally, a product of the Atiyah—Bott—Shapiro map [8] with
the KO—theory class of the spinor data, followed by a Pfaffian map (Conjecture 9.70).
In this paper we provide a detailed sketch of these ideas; we hope to give a thorough
mathematical treatment in the future. There is a huge literature on relativistic free
fermion field theories and associated anomalies; the recent paper of Witten [116], which
describes several particular cases in detail, provided motivation and guidance for the
general story here. By contrast, we only comment briefly (Section 9.2.6) on the second
scenario, beginning from a massive n—dimensional free fermion theory, enough to
show that the starting and ending data match those in the first scenario. In fact, it is this
second scenario that is relevant to this paper, and in particular the conjecture (9.75)
about its low-energy effective field theory is used in the computations which follow.

To enable detailed comparisons with the physics literature we carry out the discussion
of relativistic free fermions for 10 cases simultaneously. To enumerate them we
resume group-theoretical arguments in Section 9.1 to classify relativistic symme-
try groups whose internal subgroup is the unit reals {1}, unit complexes T, or
unit quaternions SU,. Restricting to fermionic theories in which (—1)¥ embeds in
this internal subgroup — which implements the “spin/charge relation” (see Seiberg
and Witten [104]) — we obtain the 10 groups in question. They include Spin, Pin®,
and semidirect products with the various unit scalars. This “relativistic 10—fold way”
is a variation on the nonrelativistic case, which is described in many works: a sample
includes Altland and Zirnbauer [3], Dyson [33], Freed and Moore [48], Heinzner,
Huckleberry, and Zirnbauer [58], Kennedy and Zirnbauer [70], Kitaev [74], Ryu,
Schnyder, Furusaki, and Ludwig [98], and Wang and Senthil [112]. Remark 9.32
provides a link to this condensed matter literature: we compute a group / of sym-
metries that preserve points of space in a nonrelativistic setting. It is this group [/
which acts at each lattice site in a discrete model, and it can be used to compare to
the ubiquitous symmetry tables for fermion lattice systems. Our uniform treatment
is based on Lemma 9.27, which embeds each symmetry group in a Clifford algebra.
Usual constructions with Clifford modules — the Atiyah—Bott—Shapiro—Thom class,
Dirac operators and their indices — then generalize easily. There is a purely geometric
application that we do not pursue here: index theory on pin and pin® manifolds is
straightforward using this embedding.
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The results of the homotopy theory computations are reported in Section 9.3. We
provide a table for each of the 10 fermionic symmetry groups. In each spacetime
dimension n < 5 we compute the group of free fermion theories (Theorem 9.63), the
group of deformation classes of interacting theories (Theorem 1.1), and the map between
them (Conjecture 9.70). We make comparisons with the condensed matter literature
where available and find almost total agreement; in the few cases with a discrepancy
we motivate a reexamination of the physics assertions. In Section 10 we outline how
the calculations are done and supply Ext charts that encode the E,—term of the relevant
Adams spectral sequences. The Ext charts also encode the map to KO—theory; in
fact, one of the main tasks in this section is to rewrite the “twisted” Atiyah—Bott—
Shapiro maps in a more accessible form. We provide more explanation of the charts
in Appendix D. In that appendix we also illustrate the use of Margolis homology
to derive information from the Adams spectral sequence. Papers by Campbell [24]
and Beaudry and Campbell [15] give pedagogical introductions to the Adams spectral
sequence and flesh out the details of our computations. Notice that whereas Theorem 1.1
computes the group of interacting phases for any symmetry type, the 10 fermionic
symmetry types are special in that there is a notion of a free fermionic phase which
does not exist in general. This leads to a richer application of homotopy theory and a
more stringent test against the condensed matter literature.

The sections of the paper not yet mentioned contain complements or background
material. An analog of the spin-statistics theorem in relativistic quantum field theory
holds for reflection positive invertible topological theories, as we explain in Section 11.
Section A.1 contains a review of pin groups and Clifford algebras, background for
the discussion of the CRT theorem later in Appendix A and for some of the material
in Section 9.

Beyond the immediate relevance to the study of topological phases, the successful
application of bordism computations to quantum systems is evidence — perhaps the
first substantial test against physics — that the sparse axiom system initiated by Segal
and Atiyah captures essential features of quantum field theory.

The lecture series [41] provides additional background and discussion on many of the

topics treated here.
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2 Symmetry groups in relativistic quantum field theory

The analytic extension of correlation functions, a consequence of positivity of energy,
provides a powerful constraint on symmetry groups. We explore the general structure
in Section 2.1 from the Wick-rotated point of view. The rigidity of compact Lie groups
is the key idea that underlies our proofs of structure theorems, such as Theorem 2.7.
One important result is Theorem 2.19, which constructs a stable group H from an n—
dimensional symmetry group H,, assuming the spacetime dimension satisfies n» > 3. In
the expository Section 2.2 we recall the axiomatization of a field theory as a categorified
bordism invariant. We accommodate general symmetry groups on curved manifolds
using reductions of frame bundles, an analog of the passage from Klein’s Erlangen
program [17] to Cartan’s H—structures [105].

2.1 Stabilization of Wick-rotated symmetry groups

The Poincaré group is the connected double cover of the identity component of the
isometry group Zj ,—1 of n—dimensional Minkowski spacetime M". Minkowski
spacetime M" is assumed equipped with a time orientation, a choice of component of
timelike vectors in the inner product space R1:7~1 of translations. Let IlT n-1C Il,n_l
denote the subgroup of isometries that preserve the time orientation. Assume n > 2.
Many treatments of quantum field theory, for example those based on S—matrix theory,
begin with the assumption that the Poincaré group is a subgroup of the (unbroken) global
symmetry group 3, ,_, of the theory. Then the Coleman—Mandula theorem [27]

asserts that on the level of Lie algebras there is a splitting as a direct sum of the Lie
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algebra of Poincaré with the Lie algebra of a compact Lie group K. We find it more
natural to posit from the beginning a homomorphism p,: H; ,_; — IlT,n_l . After
all, g € H, ,_ acts on the operators in the theory, and so on the supports of those
operators. For a single point operator, or local operator, that action is p,(g). The
relativistic invariance of the theory is the hypothesis that the image of p, contains the
identity component of IlT .n—1- Therefore, the image is either the identity component or
the entire two-component group IlT n—1- The kernel of p, is the group K of internal
symmetries — symmetries that fix the points of spacetime. Note that K contains the
central element of the Lorentz group Spin, ,,_; if that element acts effectively, which
by the spin-statistics theorem happens if and only if the theory contains fermionic states.
(That element is often denoted by ‘(—1)f’. Below we deduce in general a central
element kg € K with (kg)? = 1, and it is identified with either the central element
of Spin or the identity element.) The internal symmetry group K is assumed to be a
compact Lie group.!?

Assume the translation subgroup R~ IlT,n_l lifts to a normal subgroup of I, ,_,;

see [48, Remark 2.13] for a justification of this hypothesis. Let H; ,_; denote the

quotient of H, ,_, by this normal subgroup of translations. There is a short exact

sequencell

LNIY)

2.1) 1> K—H T

1,n—1
where the image of p, contains the identity component of 01T n—1C 01,1, by the
relativistic invariance of the theory. The CRT theorem, reviewed in Section A.3, gives
a larger symmetry group. A fundamental consequence of the positivity of energy!?
in quantum field theory, also reviewed in Section A.3, is a holomorphic extension'3
of correlation functions on which the complexification H,(C) of Hy,—1 acts as
symmetries. There is an exact sequence

(2.2) 1 — K(C) = H,(C) 2% 0,(C)

10The global symmetry group of a “noncompact field theory™, such as for a free massless R—valued
scalar field theory, may be noncompact. Our discussion does not include supersymmetries or higher
symmetries.

1Wwe overload the symbol ‘ p,, °. Here it denotes the homomorphism induced from the previous py,
after modding out translations. Below we use it for the complexification, restriction to the Euclidean real
form, and various lifts.

12The dual to the cone of forward timelike vectors determines the notion of positive energy.

13gee [80] for a geometric version on curved manifolds.
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of complex Lie groups. The Wick-rotated theory has a compact real form Hy, of H,(C)
as symmetry group such that H, fits into the exact sequence

2.3) 1->K— H,*s 0,

of compact Lie groups with the same compact kernel K as in (2.1). The image of
this p, is either O, or SO, , depending on whether the relativistic theory has spatial
reflections or not; equivalently, by the CRT theorem, whether it has time-reversal
symmetry or not.

Definition 2.4 The symmetry type of a quantum field theory is a pair (H,, pn) of
a compact Lie group H, and a homomorphism p,: H, — O, whose image con-
tains SO, C O,. The kernel K of p, is called the group of internal symmetries.
We require that the anti-Wick rotation to Minkowski spacetime has a Lorentzian real
form (2.1) with compact internal symmetry group K = ker py, .

The caveats in footnote 10 apply. See Remark 2.13 for an example of a pair (Hy, pp,)
that does not satisfy the anti-Wick rotation condition. The symmetry type is a basic
structure in a quantum field theory, useful to articulate explicitly in any example.

Define SH,, = p,; 1(SO,,) and let ST{,, be the double cover of SH,, constructed from
the spin double cover of SO, . These compact Lie groups are usefully encoded in the

pullback diagram
1 K SH, —2 Spin, —— 1
H lz:l lz:l
(25) 1 K SH, —2" SO, 1
H [1:2 [1:2
Pn
1 K H, O,

If pn: H, — Oy is surjective, define fln as the pullback14

1 K i, -2 pint 1
Pn
1 K Hy, On 1

14See Section A.1 for a review of pin groups.
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The restriction of H~n over Spin, C Pin,'l' is §T{n Let ¢, b,, and o0, denote the
Lie algebras of K, Hj, and Oy, respectively. The following theorem makes precise
the sense in which the entire symmetry group is nearly the product of (Wick-rotated)
spacetime symmetries and internal symmetries. In our approach to symmetry it plays
the role of the Coleman—Mandula theorem.

Theorem 2.7 (1) There is a splitting b, = o), @ ¢, and p,, induces an isomorphism
of Lie algebras 0}, => oy,.

(2) If n >3 there is an isomorphism §I:In = Spin, x K. Hence there exists a central
element ko € K with (ko)?> = 1 and an isomorphism

(2.8) SH,, = Spin,, x K/{(—1,ko)).

where ((—1, ko)) is the cyclic group generated by (—1, ko).

(3) Ifn >3 and p,: H, — O, is surjective, then there exists a group extension
2.9 l>K—>J—>{£l}—>1

and a pullback diagram of group extensions

1 K i, —2 pint 1
CO
1 K J {1} 1
There is an isomorphism
(2.11) Hy = Hy,/((—1,ko)).

The pullback (2.10) shows that the failure of ﬁn to be a product is encoded in the
group extension (2.9), which is independent of 7.

Corollary 2.12 There is a canonical homomorphism Spin,, — H, under which the
image of the central element —1 € Spin,, is kg € K.

This homomorphism anti-Wick rotates back to a homomorphism of the Poincaré group
into the total symmetry group H, ,_; of the relativistic theory, the traditional starting
point for discussions of symmetry in quantum field theory.
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Remark 2.13 For n =2 we can only conclude that SH, is isomorphic to a semidirect
product of Spin, and K. An example is SH, = SO3 x O,, where a rotation R € SO,
acts on O, by the automorphism that is the identity on SO, C O, and composes
a reflection with R. Alternatively, SH, =~ Z/27Z x (T x T), where the involution
on T xT is (A;,4,) > (A, ATIATD).

Proof of Theorem 2.7 Split the Lie algebra b, = [h,, bn] D 3, where 3 C b, is the
center, and let o}, be the orthogonal complement of the ideal € N [h,, b,] C [hx, bal
with respect to the nondegenerate Killing form on the semisimple Lie algebra [h, hx].
Then p, induces an isomorphism o), — 0, , which proves (1). The exponential of o}, is
a closed Lie subgroup § C SH,, which locally projects diffeomorphically onto Spin,,
under o5, so is isomorphic to Spin,, . It follows that ﬁln ~SxK.

We claim this semidirect product is a direct product if n > 3. To see this observe that
conjugation by s € S induces an automorphism «(s) of K which is the identity on
the identity component K C K, since the Lie algebra of S commutes with the Lie
algebra of K. Since S is connected, the induced automorphism of 7¢ K is also trivial.
Hence on each component of K the automorphism «(s) is left multiplication by an
element z(s) € Z in the center of K°. (Proof: Write oo = c(s) and suppose a (k) = zk
for some k in that component and z € K°. Any other element of that component has the
form kkq for ko € K°, and a(kkg) = z(kko). But we can also write any element in the
component as kyk for some k(, € K9, and a(k{k) = kjzk = (k(’)zk(’)_l)(k(/)k), from
which k62k6_1 = z. This holds for every kj € K°, from which we deduce z € Z°.)
Next, Spin,, acts trivially on Z?; this follows since the outer automorphism group of a
compact Lie group is discrete, every inner automorphism of the abelian group Z° is
trivial, and Spin,, is connected. Hence the map s > z(s) is a homomorphism § — Z°.
But if n > 3 the Lie group S 2= Spin,, has no nontrivial homomorphisms to an abelian
Lie group.

Assume p,: H, — Oy is surjective. We claim Spin, C SH,, C H, is a normal
subgroup. Fix he H, such that On (E) =ey € Pin,',". Conjugation by e induces
an involution «: Spin,, — Spin,,. It lifts to an automorphism of SH, ~ Spin,, x K
defined as conjugation by I, so there is an induced automorphism 8: K — K and a
homomorphism y: Spin, — K.

Lemma 2.14 If n > 3, then the homomorphism Y is trivial.

Proof Define H,(C) by pulling back as in (2.6) using the complexified groups (2.2);
pullback over the Lorentzian real forms to obtain the first of the pair of real forms
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H, n—1C H, (©)> H, . Note that I lies in each of these groups, and conjugation by h
preserves both real forms. Thus we obtain a homomorphism Spin, (C) — K(C) that
restricts to y: Spin,, — K and to a homomorphism Spin, ,_; — K. If y is nontrivial,
then so is the induced map on Lie algebras, and since o, is simple, y: 0, — £ is injective.
It follows that the Lie algebra map 01 ,—1 — £ is also injective. Hence £ contains
a subalgebra isomorphic to 01,2 = sl R. The Killing form on ¢ induces a nonzero
semidefinite invariant symmetric bilinear form on the simple Lie algebra sl R, which
is impossible since every invariant symmetric form on sl R is a multiple of the Killing
form, which is indefinite and nondegenerate. O

It follows that Spin,, C H, is a normal subgroup. Set J = H, / Spin,,. Then (2.10)
follows from (2.6), and (2.11) follows from the fact that the kernel of H, — H, equals
the kernel of SH; — SH,,. This completes the proof of Theorem 2.7. a

Remark 2.15 Lemma 2.14 is not true without using the anti-Wick rotation back to
Lorentzian signature. Namely, let n = 3 and H3 = Z /27 x (SO3 x SO3), where the
nontrivial element of Z /27 acts by shearing, (g1, g2) — (g1, g1£2); the homomor-
phism p3 that kills the last factor K = SOz maps H3z — O3 and sends the generator
of Z /27 to the central element —1 € O3. The reader can check that y: Spiny — SO3
is surjective. But H3 is not a possible symmetry group because of the anti-Wick
rotation, as in the proof of Lemma 2.14.

If we restrict the internal symmetry group to only include the image of the central
element —1 € Spin,, under Spin, — H,, then there are five possibilities. In these
cases K is trivial or K 2 {£1}. Let g4 = {£1, £+/—1} be the multiplicative group
of fourth roots of unity, and define E, C O, X u4 as the subgroup of (4,A) such
that det A = A2.

Proposition 2.16 Assume n > 3. If the internal symmetry group K is trivial, then
H, =~ SO, or H, = O,. If K = {£1} is cyclic of order two, then there are six
possibilities for Hy, up to isomorphism: SO, x {*1}, Spin,,, O, x{£1}, E,, Pin;:',
and Pin,; .

Proof The first statement is clear from the fact that the image of p, in (2.3) is
either SOy, or O,,. The group extensions by {1} are central and are classified up to iso-
morphism by the cohomology group H?(BSOy; {+1})=7/27 or H*>(BOy;{£1}) =
7.]27. x 7./27., depending on the image of p,, and it is not difficult to work out what
the groups Hj are. |
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The nonidentity element of K in SO, x {*1}, O, x{£1}, and E, is not the image
of the central element —1 € Spin,,. This leaves the five basic symmetry types listed in
the following table:

states/symmetry H, K ko

bosons only SO, {1} 1

2.17) fermions allowed Spin,, {£1} -1
bosons, time-reversal (7) O, {1} 1

fermions, T2 = (—1)F Pin;" {£1} -1

fermions, 72 = id Pin,; {£1} -1

Appendix A reviews the pin groups and justifies the Wick rotation of time-reversal that
leads to the last three lines in the first column of the table.

The main result in this section is a stabilization of H, for increasing dimensions, as
needed in Theorem 1.1. Throughout this paper for k < £ we use the embedding

Ok — Og,
(2.18) Iy s
()

of orthogonal groups, where I denotes the identity matrix.

Theorem 2.19 Assume n > 3. There exist compact Lie groups Hp41, Hy42, ...
and homomorphisms i,,iy+1,... and py+41, Pn+2,... Which fit into the commutative
diagram

Hn(LHn+l(ﬂ>Hn+2(_>"'

(2.20) lpn Jpn+1 lpm

O0p —— Opt1 —— Opyp —— -+

in which squares are pullbacks.
The stabilization is usually apparent, even when n =2 and Theorem 2.19 does not apply.
For example, if H, = Pin} x T /((—1,—1)), where Pin}" acts on T = U; through its

components by conjugation, then H,, = Pin}; x T /{(~1,—1)). (We encounter this
and related groups in Section 9.)
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Remark 2.21 For m < n, define H,, and the homomorphism p,,: H, — O, by a

pullback square:
H,, - -+ Hy
[
(2.22) pm | lpn
K
Oy —— Oy

Remark 2.23 The pullback diagram (2.20) and the fact that p,,+1(Hm+1) acts tran-
sitively on the m—sphere imply diffeomorphisms

(2.24) Hpi1/Hm = Ops1/Op = S™.

Proof of Theorem 2.19 In view of (2.8), define SH,, := Spin,, x K/((—1, ko))
for m > n and so obtain for each m > n a stabilization over SO, . If p,(Hy) = SO,
this completes the proof. If not, define H,, as the pullback

1 K Hy, Pin |, 1
T

1 K J {£1} 1
and
(2.26) Hp = Hp /((—1,ko)). O

Theorem 2.19 allows us to speak about symmetry types in quantum field theory inde-
pendent of dimension. Set

2.27) H = colim H,,.

n—>oo
For H, =SO,, we obtain H =S0O, =SO. Thus we can speak of ‘oriented theories’ =
‘SO theories’, ‘Spin theories’, ‘Pin™ theories’, etc. The colimit of (2.20) is a homo-
morphism

(2.28) p:H— 0.

The symmetry type of a theory (Definition 2.4) can be taken to be the pair (H, p) in
place of (Hpy, pn).

2.2 Curved manifolds and bordism categories with H,—structure

Fix an n—dimensional relativistic quantum field theory with symmetry type (Hy, pn). A
“coupling to background gravity”” means that we define the theory on each n—dimensional
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smooth Riemannian manifold X. The H,—symmetry is no longer global; it is tangential
and encoded in a reduction of the orthonormal frame bundle to H,. Let Bo(X) > X
denote the principal O,-bundle of frames: a point of B (X) is an orthonormal basis
of the tangent space at a point of X. If P — X is a principal H,—bundle, define the
principal Op—bundle p,(P) = P xy On — X via mixing: [ph, gl = [p, pn(h)g] for
all pe P, g€ Oy, and h € Hy.

Definition 2.29 An H,—structure is a pair (P, 8) consisting of a principal H,—bundle
P — X equipped with an isomorphism of principal O,—bundles B (X) N on(P).
An Hp—manifold is a Riemannian n—manifold endowed with an Hp—structure. A
differential H,—structure is a connection ® on P — X with the property that 6 maps
the Levi-Civita connection to p, (®).

It also makes sense to have an H,—structure on a Riemannian manifold of dimension
£ > n, via the composition Hj, Ly Op > Oy, and on a manifold of dimension k <n by
stabilizing the Oy —frame bundle to a principal O,—bundle via the inclusion Oy < O,,.
The stability result Theorem 2.19 implies that an H,—manifold has an induced H,,—
structure for all m > n. The same applies to the differential refinements.

Example 2.30 In bosonic theories of electromagnetism, K = T is the group U; of
unit norm complex numbers, at least in the absence of further global symmetries. If
there is no time-reversal symmetry, then H, = SO, x T. Thus P — X is the fiber
product of the frame bundle with a principal T—bundle, which is usually equipped
with a connection, or gauge field. In theories of electromagnetism with fermions we
still have K = T, but now the center —1 € Spin,, of the spin group is identified!’
with —1 € T and so

(2.31) H, = Spin{, = Spin,, x T /{£1}

is the group introduced in [8]. In other words, the Riemannian manifold X has a
Spin¢—structure. If, in addition, there is time-reversal symmetry, then there are several
different extensions, including the Atiyah-Bott-Singer group Pin{ ; see Proposition 9.4
for the complete classification.

Example 2.32 For H, = O, x K an Hy,—structure on a Riemannian manifold is an
auxiliary principal K—bundle, and a differential H,—structure is a connection on that
bundle. For H, = Spinj, the differential structure is usually called a spin® connection.

15This assumes the spin/charge relation that particles of even electromagnetic charge are bosons while
those of odd electromagnetic charge are fermions; see [104] for more discussion.
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The basic properties of Wick-rotated correlation functions on all compact manifolds
simultaneously are encoded in the powerful framework of bordism categories, following
the fundamental work of Segal [102] and Atiyah [7]. Topological field theories do
not depend on the metric, nor do they require differential structures, and for the most
part we focus on topological theories and so on topological bordism categories. The
geometric case is used as motivation; we make some comments in Remark 2.39.

For the topological bordism category Bord,_1 ,)(Hy) defined in the next paragraph,
we drop the connection. We can also drop the Riemannian metric, as just mentioned, and
to do so we would replace the compact Lie group H, and homomorphism p,: H, — O,
with a canonically associated noncompact real Lie group H, and homomorphism
H, — GL,R. We give the construction in Appendix C. Our field theories are discrete
in the sense that the partition function is C—valued and C has the discrete topology.
Hence the theories factor through the topological bordism category built with H ,—
manifolds in place of H,-manifolds. So we follow standard usage (““spin theories”, etc)
and use the compact Lie group Hj, but no connections.

Define a topological bordism category Bord,_; ,)(Hy) as follows. An object is a
compact (n—1)-manifold Y without boundary, equipped with an Hy—structure Q — Y
and an “arrow of time”. To make sense of an Hj,—structure on an (n—1)—manifold
we stabilize the tangent bundle of Y to arank n bundle R 7Y — Y by summing
with a trivial line bundle, thought of as a normal direction into n dimensions. In
this topological setting the Riemannian metric is not present; in the geometric setting
of Remark 2.39, an object in a geometric bordism category is an (7—1)—manifold
with a germ of an embedding in an n-manifold. The arrow of time is a normal
orientation. In the topological setting only the tangential information is relevant — we
can drop the germ — and the arrow of time is an orientation of the trivial subbundle
R—Y of R®&TY — Y. Nonetheless, even in this topological case it is illuminating
to use the product germ (—e,€) x Y for some € > 0 and replace R@ 7Y — Y
by the tangent bundle to the germ. A morphism X:Yy — Y7 is an equivalence
class of compact n—manifolds X with H,-structure P — X and an isomorphism
X => Yo L1 Y7 of the boundary dX with the disjoint union of the incoming Yy and
the outgoing Y7 ; the equivalence relation is diffeomorphism commuting with all of
the data. The isomorphisms include the Hp—structures and under those isomorphisms
the orientation of the trivial bundle R — ¥; must line up with the incoming normal to
the boundary for i = 0 and with the outgoing normal to the boundary for i = 1. In
other words, the arrow of time is used to distinguish incoming and outgoing boundary
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components of morphisms. Composition of morphisms is gluing of bordisms. There is
an additional commutative composition law on the category — disjoint union — and
with this structure Bord(,_1 ,)(Hpy) is a symmetric monoidal category. See [85; 23]
for detailed accounts.

A Wick-rotated field theory is a linear representation of a bordism category.

Definition 2.33 A topological field theory with Wick-rotated vector symmetry group Hy,
is a symmetric monoidal functor

(2.34) F: Bord(,_1 »)(Hy) — Vectc

to the symmetric monoidal category of complex vector spaces under tensor product.

Much has been written about this definition, and we defer to previous accounts — such
as the original [7] and the recent survey [39, Sections 2—4] — for more exposition and
further references. Here we simply make the connection to point operators'® and their
correlation functions.

Remark 2.35 (vector spaces of point operators) The sphere S™~! is the link of a
point in n dimensions, ie it is the boundary of a small ball about the point. Therefore,
the vector space V := F(S"~!) is the space of point operators in a topological field
theory; in a geometric theory we take a limit as the radius of the sphere shrinks to zero.
If the theory has total symmetry group Hj, then the sphere has an H,—structure and
the vector space of point operators depends on it. If H, =SO, x K or H, = O, x K,
the extra data is a principal K-bundle Q — S”! (with connection). So there is a
vector space Vg of point operators for each Q. The group Aut Q of global gauge
transformations acts on Vg . For the trivial K—bundle this is the familiar representation
of the global symmetry group K on local operators. If K is finite, then the “twist
operators” for QO — S! nontrivial are familiar in n = 2. They are also familiar when
H;, = Spin,, in which case the operators associated to the nonbounding spin circle
create a defect at the excised point which changes the spin structure on the punctured
surface. In n = 3 dimensions, if H3 is a Cartesian product of SO3 and K =T,
then the twist operators in some sense create a magnetically charged instanton for the
global symmetry group K ; the Z—grading from the action of K on the point operators
measures the electric charge.

16These are usually called ‘local operators’ in the physical literature, but we use ‘point’ rather than
‘local’ to distinguish point operators from line operators and higher-dimensional analogs, since those too
are local.
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Figure 1: Correlation functions.

Remark 2.36 (correlation functions of point operators) Let M be a closed n—
manifold. Fix points x1,...,x; of M at which we place local operators. Let X be
the compact manifold with boundary obtained from M by removing small open balls
about each x;; regard X as a bordism

(2.37) X[ ]85 i) - 2!

i

from the disjoint union of the k boundary spheres to the empty manifold. Equip the
manifold X with an H,—structure P, and let Q; denote its restriction to the i sphere.
Applying the theory (2.34) we obtain a homomorphism

(2.38) F(X;P):Vp, ®---® Vg, - C
k times
which, evaluated on operators O1, ..., Oy, is usually written (O1(x1) -+ Og(xk)) s -

Remark 2.39 (nontopological theories) Wick-rotated field theories which are not
topological can also be formulated as functors on bordism categories, but now the objects
and morphisms have a geometric structure. The references [103; 80; 106] develop this
idea in various directions. We confine ourselves here to a few heuristic formal remarks.
Analogous to the topological bordism category Bord,_; ,)(H,) we envision a geo-
metric bordism category Bord(vn_l,n) (H,) whose objects and morphisms are smooth
manifolds with differential H,—structures (Definition 2.29). An object is a closed
(n—1)-manifold equipped with an infinite jet of an embedding into an n—dimensional
manifold with differential H,—structure and an arrow of time. A morphism is a compact
n—manifold with differential H,—structure together with a partition of the boundary and
boundary isomorphisms as in the topological case. As in the topological case (2.34), a
field theory is a functor with domain Bord(vn_l’n) (Hy) and codomain a suitable symmet-
ric monoidal category of topological vector spaces. We want the correlation functions
and vector spaces to vary smoothly in smooth families, so the whole structure must be
“sheafified” over the category of smooth manifolds and smooth maps [106, Section 2].
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3 Unitarity and Wick rotation

We recall in Section 3.1 how positivity of energy leads to Wick rotation in quantum
mechanics, and describe reflection positivity in that context. The usual quantum mechan-
ical context for reflection positivity is recollected in Section 3.2, with attention paid to
nontrivial internal symmetry groups. These preliminaries are motivation for Section 3.3,
where we encode the reflection structure in a novel way via a coextension of the
Wick-rotated vector symmetry group to a Z/27Z—graded group, constructed from a
hyperplane reflection. The new components act antilinearly on the Hilbert space of
states. It is this formulation that we use in the rest of the paper.

3.1 Wick rotation in quantum mechanics

A quantum mechanical system, according to basic axioms, consists of a complex
separable Hilbert space JH equipped with a self-adjoint operator H, the Hamiltonian.
The group R of time translations is represented unitarily on H:

R — U(30),
2 o
where i is a choice of complex number such that i2 = —1. If we assume positivity of

energy —that H is a nonnegative self-adjoint operator — then real time evolution (3.1)
is the boundary value of a holomorphic semigroup of bounded operators defined on the
lower half-plane T =R — /=1 R>? c C. The semigroup of imaginary time evolution
is the restriction to —+/—1 R>?, which is the semigroup

3.2) e THIE 150,
The transition from (3.1) to (3.2) is called Wick rotation.

The unitarity of time evolution manifests in the reality of the semigroup (3.2).

Example 3.3 (particle on the circle) Let A! denote the affine!” time line. The
trajectory of a particle on the circle is a function A(s) = e/*®), s € A!; the lagrangian
density is L = %)'cz |ds|. The ensuing quantum mechanical system has Hilbert space
H = L?(S!;C), Hamiltonian the Laplace operator H = A (up to a constant), and

imaginary time evolution the heat operator 7 > e ™72 .

17We (pedantically) distinguish the affine time line A! from the group R of translations of time,
which appears in (3.1): after all, a 1-hour seminar and a seminar ending at 1:00 can be quite different.

Geometry € Topology, Volume 25 (2021)



1188 Daniel S Freed and Michael J Hopkins

It is illuminating to add a “f-angle” to this system; see [51, Appendix D], for example.
Orient S! and fix w € Q1(S!) with [1 @ =1. Then for a fixed constant § € R define
the lagrangian

(34) L =1x%|ds| - 01* (w).

In this classical theory we must orient time in order to integrate L; time-reversal
exchanges the theories labeled by 6 and —6. Upon quantization we obtain the Hilbert
space H = L2(S';L,is) of sections of the complex line bundle £,is with holo-
nomy e'? . The Hamiltonian is the Laplace operator on this space, and imaginary time
evolution is by the associated heat operator. Now time-reversal (6 — —6) acts as
complex conjugation:

(3.5) Hi> K,

(3.6) e > e TA,

We encode the formal structure in terms of oriented compact Riemannian 1-manifolds,
as described in Section 2.2, though we emphasize that this is not a topological theory.
The interval of length 7 > 0 maps to the imaginary time evolution e~*# M H — K.
The semigroup law is manifest by gluing intervals. The circle of length T maps to
Trace(e~“#/") e C . We interpret these oriented Riemannian 1-manifolds as morphisms
in a geometric bordism category whose objects are, roughly, compact oriented 0—
manifolds. More precisely, they are 0—manifolds embedded in the germ of an oriented
Riemannian 1-manifold, and there is an arrow of time, or orientation of the normal
bundle. The simplest object is a single point, which we can view as 0 € R embedded
in a small interval (—e, €) with its standard orientation; in the quantum mechanics it
maps to the Hilbert space J{. According to (3.5) we have

3.7) orientation-reversal — complex conjugation.

More precisely, the orientation-reversal on objects in the geometric bordism category
reverses the orientation and reverses the arrow of time. This is the ‘reflection’ part of
‘reflection positivity’; the positivity is the positive definiteness of the Hilbert space .

3.2 Reflection positivity in Euclidean quantum field theory

Positivity of energy in a relativistic quantum field theory also results in an analytic
continuation and restriction to Euclidean space, as we review in Section A.3. Here we
focus on the Wick rotation of correlation functions and the Wick rotation of unitarity as
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a(0)

Figure 2: Reflection positivity in Euclidean space.

manifested in reflection positivity. (See [53, Section 6; 69, Section 2.2] for an account.)
Let n be the spacetime dimension and E” Euclidean n—space. In this subsection
we restrict to the basic symmetry type H, = SO, ; we take up general symmetry
types in the next subsection (see Remark 3.22). Fix an affine hyperplane IT C E”
and let o denote (affine) reflection about II. Let O denote an operator, or product
of operators, in the quantum theory which is supported in the open half-space E’}
on one side of IT; the reflected operator o (Q) has support in the complementary
half-space E” . Let ((’))]E,j,r € JH denote the half-space correlation function, which is a
vector in the Hilbert space of the theory. In a lagrangian field theory it is the functional
integral over the half-space E” . Then the reflection part of ‘reflection positivity” is

(3-8 (G(O»]Eg = (O>]Eijra

in accordance with (3.7); see (3.6) for the analog in quantum mechanics. The Hilbert
space JH is associated to (I, 0), where o is an orientation of the normal line to IT,
the arrow of time in Section 2.2. The reflection o reverses o, and the Hilbert space
associated to (IT, —o) is the complex conjugate

(3.9) H(r,-0) => H11,0)-

according to the dictum (3.7); compare (3.5). Therefore, (0(O))g. € H and (3.8) is an
equation in the complex conjugate Hilbert space H. The positiv;ty part of ‘reflection
positivity’ is the positive definiteness of 3, which implies that the norm square of the
vector (O>E'Jlr is nonnegative:

(3.10) (0(0)O)gn > 0.
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A theorem of Osterwalder and Schrader [94] reconstructs the relativistic theory in
Minkowski spacetime from the Euclidean theory; reflection positivity is an important
ingredient.

Remark 3.11 In theories with fermionic states the Hilbert space H is Z/2Z—graded.
The norm square of an odd vector is then purely imaginary [31, Section 4.4] and positive
definiteness requires a sign choice; see Example 6.49 for details in the invertible case.

Remark 3.12 (internal symmetry and reflection positivity) Suppose the full Wick-
rotated vector symmetry group H, has a nontrivial internal symmetry group K, and for
simplicity take H, = SO, x K. Let X be Euclidean space with an open neighborhood
of the support of the operators O and o (O) removed. Let Y = 0X N H4 and assume
o(Y) =0X NH_. In general there are twist operators that are defined by a principal
K-bundle P — X, as in Remark 2.35. The reflection o must account for the K-bundle,
and it might seem at first that o should “reverse” it by an involution on K. But that
does not happen; rather o lifts to P — X. We give three arguments:

(1) If O is a point operator, then Y is a sphere. Identifying o(Y) with Y via a
translation, o acts on Y as reflection in the equatorial plane parallel to IT. If we
one-point compactify X to S” minus the two balls and assume P extends over the
compactification, then the restrictions of P to Y and o(Y) are isomorphic, since the
compactification is diffeomorphic to [0, 1] x S”~1.

(2) Continuing, suppose P — X is the trivial bundle and V is the vector space of
local operators attached to Y. (In a geometric theory we take a limit as the radius of the
removed ball shrinks to zero.) The automorphism group K of the trivial bundle over Y
acts on V, producing K—multiplets of point operators. The hyperplane reflection o
induces an isomorphism V — V' that commutes with the K—action, since geometrically
the lift of reflection to the trivial bundle commutes with the global gauge transformations.
Soa K—multiplet in V' is mapped to a K—multipletin ¥ that transforms in the complex
conjugate representation.

(3) Letn =1 and Hy = SOy x Z/3Z. Let a: Bord(g,1y(H1) — Vectc be the
invertible theory which attaches a nontrivial character y: Z /37 — T to the positively
oriented point with its trivial principal Z/3Z-bundle. (That object ¥ of the bordism
category has automorphism group 7Z /37, which then acts on the vector space a(Y).)
This theory is unitary. Now a(P — S1) is y applied to the holonomy of the principal
7./3Z-bundle P — S'. Reflection reverses the orientation of S!, and if the bundle
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stays the same under reflection, then the holonomy complex conjugates, which is
precisely what it should do in a reflection positive theory.

3.3 The extended symmetry group H,

Let (Hy, pn) be a symmetry type (Definition 2.4). We use reflection symmetry (3.8)
to construct a larger symmetry group H, from H, by adjoining an involution. In the
special case H, = Spin,,, we define H, = Pin,'lIr ; the general case is a bootstrap from
this, following the proof of Theorem 2.19. The arguments in Remark 3.12 motivate
the triviality of the hyperplane reflection automorphism of K in our construction. We
view H, asa symmetry group of the Euclidean quantum field theory; the action of an
element in Hj, \ Hp, on the Hilbert space J{ is by an antiunitary transformation.

Proposition 3.13 There exists a canonical group extension
(3.14) 1= Hp 2% A, — {£1) — 1,

split (noncanonically) by a choice of hyperplane reflection o € Oy, such that the split-
ting induces the automorphism of éT—In =~ Spin,, x K that is the product of conjugation
by o on Spin,, and the identity automorphism of K. There is a homomorphism pj,
that fits into the pullback diagram

i,
(3.15) pnl lﬁ
Op —— {1} x O

Finally, there are inclusions 1, ﬁn — ﬁn-{-l which, together with the inclusions
in: Hy — Hp41, induce a commutative diagram linking (3.15) for varying n.

A hyperplane reflection o € O, induces an automorphism of SO, by conjugationin O,,,
and it lifts uniquely to an automorphism of Spin,,, which is realized as conjugation
by ¢ € Pin,J,r , where G is alift of 0. However, it is the twisted conjugation [8, Section 3]
by & in Pin:,r that lifts conjugation by ¢ in Oy, where the twist is multiplication by
the nontrivial character

(3.16) Pin — mo Pin} =5 {£1}.

Note & is only determined up to sign; the splitting of (3.14) associated to ¢ is determined
up to multiplication by ky.
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Proof Define

(3.17) SH, = Pin} x K/{(—1, ko))

and project onto g Pin;’[ to define the quotient map in the extension
(3.18) 1 — SH,, — SH,, — {£1} — 1.

If pn(Hy) = SO,, then set ﬁn = §ﬁn If p, is surjective, then define the double
cover of H, as the mixing construction

(3.19) (Pin}” x K) X g0 i) -

where Hyis as defined in (2.6). Let H, be the quotient by the cyclic subgroup
([-1, ko; 1]) of order two.

Reflection through the hyperplane perpendicular to £ € S*~! C Pin;r lifts to

(3.20) [+£,1;1] € (Pin] x K) x (spin, x ) T
so passes to an element of order two in H,,, which gives the splittings of (3.14).
For any sePin,T, k € K, and he I-NI,, set

(3:21) Puls. k: h] = (det(3). 5pn(h)) € {1} x On,

where § € O, is the image of s € Pin;lIr and /& the image of I in H,, . This passes
to a homomorphism with domain the mixing construction (3.19), and then to its
quotient H,,. |

Remark 3.22 Now we formulate reflection positivity on Euclidean space for a theory
with symmetry type (H,, pn). Adjoining translations via the pullback

]l— K —— H,, - - +»Euc, —— 1
[
(3.23) H [ l
v Pn
1 K H, O, 1

we obtain a larger group J(,, and a homomorphism J{,, — Euc,, to the Euclidean group.
The complex point observables form a vector bundle @ — E”, and the action of Euc,
on E” lifts to an action of HH, on O. Proposition 3.13 gives a coextension T n of H,
and a homomorphism H n —> {E1} xEuc, . As before fix a hyperplane reflection o and
now fix a lift 6 € K n of (—1,0) € {1} x Euc,. Then part of the data of a reflection
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structure is a lift of & to an antilinear map of the complex vector bundle © — E”.
Therefore (3.8)—(3.10) apply, with & replacing o .

Proposition 3.24 For each n > 1 there is an inclusion of group extensions

1 H, (41} x H, (+1) |
(3.25) inn fsn+l*jn+lin H
| —— Hyp1 — Ay {1} 1

in which i, is the inclusion in (2.20) and j, the inclusion in (3.14). Furthermore, the
inclusions i, and 1, induce a commutative diagram linking (3.25) for varying n.

Proof Define s,:{+1} — H, as the splitting of (3.14) induced by the hyperplane
reflection that reverses the first coordinate of R” and fixes the others; use [eq, 1; 1]
in (3.20). Then the s, fit (3.14) into a commutative diagram of split short exact
sequences as n varies, using the inclusions i, and 7,,. With all maps defined the rest is
a systematic verification. m|

For the basic symmetry groups in (2.17) the extended symmetry groups are listed here:

states/symmetry H, ﬁn
bosons only SO, O,
(3.26) fermions allowed Spin,, Pin,"
bosons, time-reversal (7') O, {£1} x Oy
fermions, T2 = (—1)F Pin;l" 151?1,‘1"
fermions, T2 = id Pin,; l;i\n;

The splitting of O, isa consequence of the fact that hyperplane reflections are inner
in Oy, . A similar argument proves that the 4—component group EH;—L can be constructed
from Pin,j,E by adjoining the automorphism that is the identity on Spin,, C PiniE and
multiplication by the central element —1 € Spin,, on the off-component of Pinf. (This
argument is echoed in Remark A.9.)

4 Reflection symmetry on manifolds

The enhanced symmetry group H, produces an involution (Section 4.1) on H,—
manifolds that generalizes orientation-reversal for H = SO. In the field theory context
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it induces an involution on bordism categories that we call ‘bar’. (See Appendix B
for a general discussion of involutions on categories and other relevant background.)
In Section 4.2 we prove that the dual of an object in a bordism category is isomorphic
to its bar. The definitions of reflection structure and positive reflection structure for
nonextended field theories are in Section 4.3. In a reflection positive theory the partition
function of any double is nonnegative, as we prove in Section 4.4. We work as always
with arbitrary symmetry groups.!'®

Kevin Walker has introduced theories with more general reflection structures in which,
possibly, the group extension (3.14) that controls antiunitarity is not split. In particular,
he allows H, = Pin,” when H, = Spin,,. This leads to exotic Hermitian structures.
Our more restrictive framework is based on Wick rotation of relativistic theories.

4.1 An involution on H,—-manifolds

Recall from Section 2.2 that an H,—manifold is a Riemannian n—manifold equipped
with a reduction (P, 6) of its orthonormal frame bundle Bp(X) — X to H,. Extend
the principal H,—bundle P — X to a principal H,-bundle Jjn(P)— X, where j, is the
inclusion of groups in (3.14). Using (3.15) extend the isomorphism 6 : B o (X) — pn(P)
to an isomorphism g: {£1} X Bo(X) = pn(ju(P)).

Definition 4.1 The opposite Hy,—structure (P’,0") is the principal H,—bundle P’ :=
Jn(P)\ P — X and the restriction 6’ of 6 to {—1} x Bp(X).

Taking opposites is involutive: there is a canonical isomorphism (P, 8) => (P”,0").

Remark 4.2 Let 0 € O, be a hyperplane reflection and ¢, the automorphism of H,,
resulting from the splitting of (3.14). Then we can identify the principal H,-bundle
P’ — X as the projection P — X of manifolds with the original H,—action on P
precomposed with the automorphism ¢, . For if ¢ € H, is the splitting element, then
wemap P — j,(P)\ P by pr—>p-G.

Example 4.3 An SO,-structure is an orientation, and the opposite SO,—structure is
the reverse orientation. In this case P — X is the bundle of oriented orthonormal frames,
Jjn(P) — X the bundle Bp(X) — X of all orthonormal frames, and j,(P)\ P — X
the bundle of oppositely oriented orthonormal frames.

18The definition of the double of a (s)pin manifold is somewhat tricky, for example; the general setting
is clarifying.
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Example 4.4 For simplicity, we sometimes abbreviate ‘Pin,f—structure’ to ‘pin struc-
ture’, just as ‘Spin,—structure’ is abbreviated to ‘spin structure’. The opposite of a pin
structure is obtained by tensoring with the orientation double cover; see Definition A.8,
Remark A.9, and the text following (3.26). One motivation for our general study of
symmetry groups (Section 2.1) and involutions (Section 3.2) is to explain the appearance
of this opposite pin structure in the formulation of reflection positivity for Wick-rotated
quantum field theories with fermions and time-reversal symmetry.

We use the involution in Definition 4.1 to construct an involution of categories
4.5) Bz = B: Bord(,—1,n)(Hpn) — Bord(,—1,») (Hn).

In Appendix B we explain that an involution on a category B is a functor §: B — B
and a natural transformation of functors 7: idg — B2. The objects and morphisms
in Bord,_1 »)(Hy) are Riemannian manifolds with Hy,—structure: the functor B fixes
the underlying Riemannian manifold and flips the H,—structure to its opposite. The
equivalence 7 implements the canonical isomorphism indicated after Definition 4.1.
We emphasize that the “bar involution” 8 is covariant: a morphism X : Yy — Y7 maps
to a morphism BX: Yy — BY;. Put differently, the arrows of time on objects are
unchanged under 8.

Remark 4.6 One can envisage other involutions on the bordism category, and so other
notions of reflection structure (Definition 4.14 below), especially for mathematical
applications. The heuristics in Remark 3.12 are meant to illustrate why we feel the
involution defined here correctly models Wick-rotated unitarity in relativistic field
theories.

4.2 Duals and opposites

An object Y in a symmetric monoidal category, such as Bord,_; ,)(Hy), may have a
dual YV, which is equipped with duality data; see Definition B.8 for a quick review. In a
topological bordism category every object has a dual. The underlying smooth manifold
of the dual YV equals that of Y, but the arrow of time is reversed. This reversal is evident
in the coevaluation and evaluation duality data. For example, evaluation is the bordism

4.7) ey =[0.1]xY:YVIY - g""!

with the entire boundary incoming. The Hjp—structure is the same at the two ends, but
the arrows of time are opposite. If the boundary at 0 € [0, 1] is the object Y, with its
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ey Cy idY
Figure 3: Evaluation, coevaluation, and the gluing to the identity.
arrow of time, then the boundary at 1 € [0, 1] is the object YV . See Figure 3, where
the coevaluation ¢y and the “S—diagram” (B.9) are also depicted.

An object Y in a topological bordism category has a canonical product germ — see
Section 2.2 —namely the germ of {0} x Y in X = (—¢,¢€) x Y, where we fix € > 0.
Let o be the diffeomorphism of X that reflects ¢ — —¢ and fixes Y. The splitting in
Proposition 3.13 leads to an alternative construction of the opposite H,—structure and
the following important identification.

Proposition 4.8 For any object Y in Bord,_1 ,)(Hy) there is an isomorphism
4.9) h: BY =YV,
Also, BhY =h.

Reversing the H,—structure (BY ) is equivalent to reversing the arrow of time (Y ).
Or, in the language of Definition B.14, every object in Bord,_; ,)(Hy) carries a
Hermitian structure.

Proof Set X = (—¢,¢) x Y. The reflection

o:(—€,6e) XY — (—€,¢) x Y,

(4.10)
. y) = (=2, ),
lifts to the frame bundle B (X). We now construct a diagram of principal K-bundles:
Q'¢ P'C Jn(P) > P >0V
(4.11) l n’l l lﬂ l

By ——— Bo(X) S {41} x B (X) 0 B (X) +— BY
Let By C Bo(X) be the O,_;—subbundle of frames with first vector +9/9¢, the sign
chosen to align with the arrow of time of the object Y. Let By be the compatible
frames with the opposite arrow of time. Then o induces an isomorphism By — B;;
which is realized inside B o (X) as multiplication by the hyperplane reflection o1 € O,
in the orthogonal complement to the vector e; € R". (Observe that o centralizes
0,-1 C Oy.) Let P LN Bo(X) — X be the Hy—structure: the composition is a
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principal Hy,—bundle and the first map is a principal K-bundle over its image. Set
QY =n"1(By); then QY — X is a principal H,—1-bundle. Let j,(P) and P’ be
as in Definition 4.1, so that P’ LN Bo(X) — X is the opposite H,—structure. Set
0’ =" Y (By), so that Q' — X is an H,_;-bundle that encodes the opposite Hy—
structure. Let 61 =[eq, 1; 1] € H » be the lift of 07 € Oy, as defined in (3.19) and the text
that follows; then 67 centralizes H,—; and has order two. The action of multiplication
by 61 on j,(P) restricts to an isomorphism of H,_j-bundles Q' — QV. (It covers
multiplication by (—1,01) € {£1} x O, on {£1} x Bp(X), which restricts to an
isomorphism B, — By .)

The map BhY is the inverse of the involution &1 on j,(P), restricted to the bar dual

bundles. Since 7 is its own inverse, we conclude ShY = h. O

Remark 4.12 In a geometric bordism category not every germ admits a reflection
which is an isometry. It is only for germs which do admit such a reflection that we
expect the associated topological vector space of a field theory to have a Hilbert space
structure; see [80]. This is the case for the (noncompact) affine hyperplane in Figure 2,
consistent with (3.9).

4.3 Reflection structures and positivity

Let
4.13) Be = B: Vectec — Vectc
be the involution of complex conjugation (Example B.2). Recall (2.34) that a topological

field theory is a symmetric monoidal functor F: Bord,_1 ,)(H,) — Vectc.

Definition 4.14 A reflection structure on F is equivariance data for the involutions
Bz and fe.

Equivariance data is spelled out in Definition B.6. For every closed (n—1)—manifold Y
with Hj,—structure we have an isomorphism of vector spaces

(4.15) F(BY) = F(Y),

the curved space analog of (3.9). Combining with the isomorphism (4.9), we see
that F(ey) is a Hermitian form

(4.16) hy : FOV)QF(Y)~F(BY)® FY)~F(Y)® F(Y) - C,
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which by the usual “S—diagram” argument (Figure 3) is nondegenerate. Sesquilinearity
is a consequence of the isomorphism

ey — ﬂ(ey)»
(t,y)—=>(1—=ty),

where recall, as a manifold, ey, = [0,1] x Y.

@.17)

Definition 4.18 A reflection structure is positive if the induced Hermitian form Ay is
positive definite for all ¥ € Bord,_1,,)(Hy).

Remark 4.19 In a nonextended field theory reflection is data and positivity is a
condition. In the extended case considered later, both reflection and positivity are data.

Remark 4.20 There is also a notion of positivity if the domain is the category of
super vector spaces; see Example 6.49.

Example 4.21 To avoid trivialities, suppose the spacetime dimension 7 is even. Fix a
nonzero complex number A € C. There is a simple invertible field theory of unoriented
manifolds ( H, = O, ) whose partition function on a closed n—manifold X is ) Buler(X)
where Euler(X) is the Euler number of X. The vector space F,(Y) attached to any
closed (n—1)—manifold Y is the trivial line C: the Euler characteristic of a compact
manifold with boundary is a well-defined number. In the bordism category we can
write the closed manifold S” as the composition @" ! DY gn=1 D% on—1 4 two
closed balls. Denote the first arrow as X and apply the theory F) :

4.22) A% = F)(8") = hgn1 (FA(X), Fo(X)).

Therefore, a necessary condition for positivity is that A be real.

A reflection structure imposes a curved space analog of (3.8), which, for an n—
dimensional H,-bordism X, asserts that

4.23) F(BX) = F(X).

For example, if H = SO, then the partition function complex conjugates when the
orientation of spacetime is reversed. For a theory of unoriented manifolds ( H,=0,,),
condition (4.23) implies that every partition function is real. For theories of pin mani-
folds (H,= PingE ) the partition function of the w;—twisted pin structure (Definition A.8)
is the complex conjugate of the original partition function.
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Figure 4: The double of X.

4.4 Doubles

The reflection-conjugation equation (4.23) also applies to manifolds with boundary.
We use it to derive a necessary condition for reflection positivity.

Definition 4.24 Let X be acompact H,—manifold with boundary, viewed as a bordism
o™=l 5 9X. The double of X is the closed H,—manifold

(4.25) AX =eyy (BX, X).
The double is illustrated in Figure 4. In that picture, ¥ = 0X .

Proposition 4.26 If a theory F: Bord,_1 ,)(H,) — Vectc admits a positive reflec-
tion structure, then F(AX) > 0 for all compact H,—manifolds X with boundary.

Note that the value of a theory on a closed n—manifold does not depend on the reflection
structure. The necessary condition for positivity in Proposition 4.26 is the compact
manifold analog of the usual reflection positivity statement (3.10) in Euclidean space.

Proof From (4.25) and (4.23) we deduce
4.27) F(AX)
= Flegy)(F(BX), F(X)) = hyy (F(X), F(X)) = | F(X)|F3x) = 0. O

The double construction is standard for unoriented and oriented manifolds. It is a bit
trickier for spin and pin manifolds, so we give a recognition principle and illustrate with

Geometry € Topology, Volume 25 (2021)



1200 Daniel S Freed and Michael J Hopkins

some examples. Observe that the double has an obvious (anti-)involution A X AN BAX
with fixed-point set ¥ = {%} x dX , and ¢ induces multiplication by —1 on the normal

bundle. Set X’ = X Uy [0, %] x X and cut along Y = 90X’ to write
(4.28) AX = BX' Upy X/,

which is the typical description of a double. But we must account for the H,—structure
as well.

Proposition 4.29 Let X be a closed H,—manifold, 0: X — X an anti-involution
with fixed-point set Y such that

(i) there exists a submanifold N C X with boundary Y such that X is the union
of N and oN along Y and o induces a diffeomorphism SN =~ oN of H,—
manifolds; and

(i) o]y induces the hyperplane reflection isomorphism of the H,—structure on Y
to its opposite.

Then X = AN as H,—manifolds
The isomorphism in (ii) is left multiplication by [e1, 1;1] € H, ; see (3.20).

Proof Use the tubular neighborhood theorem to replace Y with [0, 1] x ¥ and so
construct the desired H,—isomorphism. |

Corollary 4.30 The sphere S™ with H,—structure Hy,+1 — Hp+1/H, is a double.

We note from Remark 2.23 that the homogeneous space Hy1/H, is diffeomorphic
to S”.

Proof Reflection ¢ in the hyperplane perpendicular to e; is an involution of S”
with fixed-point set the equatorial S”~! perpendicular to e;. The reflection lifts to an
isomorphism of the principal H,-bundle H, 1 — H,+1/H, with the pullback of its
opposite. (The isomorphism is globally left multiplication by [eq, 1; 1] C ﬁn—l—l ) O

Example 4.31 For H, = Spin,, the circle Spin, / Spin; has the bounding spin
structure: the Spin;—bundle Spin, — Spin, / Spin; is the nontrivial double cover
of the circle. The nonbounding spin circle is not a double. Indeed, there is a re-
flection positive invertible 1-dimensional spin topological field theory o into super
vector spaces that attaches the odd line to a positively oriented spin point; it follows
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that (S

nOnbounding) = —1. This does not violate Proposition 4.26 since S

! is
nonbounding

not a double. Turning this argument around, since the oriented circle is a double, the
I-dimensional oriented topological field theory into super vector spaces that attaches

the odd line to a positively oriented point does not admit a positive reflection structure.

Remark 4.32 The group H,+1 acts as symmetries of the H,—sphere in Corollary 4.30.
Topologically, then, there is a universal family of H,—spheres parametrized by the
classifying space BHj,+1. Field theories may be evaluated on families of manifolds
and bordisms; this family of spheres enters our analysis in Section 7.2.

S Invertible topological field theories and stable homotopy
theory

We first recall that to fully implement locality in field theory we need to use a bordism
multicategory that encodes gluing laws in arbitrary codimension. Next we recount
how invertible topological field theories lie in the framework of homotopy theory:
invertibility moves the discussion from abstract multicategories to topological spaces.
Finally, we specify the universal target that tracks deformation classes of invertible
topological theories. The main result is Theorem 5.23, which is our point of departure
for implementing reflection positivity in invertible topological theories. We conclude
in Section 5.4 with a discussion of invertible nontopological theories and their role in
low-energy approximations of gapped quantum systems.

The material in this section is covered in much more expository detail in many references,
so we only recount essentials.

5.1 Extended field theories

There are several physics motivations for extending an n—dimensional Wick-rotated
field theory to lower-dimensional manifolds, and these are hardly restricted to the
topological case of interest here. First, the vector space of physical states attached to
an (n—1)-manifold Y depends locally on Y. This is familiar in » = 2 dimensions,
where a theory not only has a vector space attached to a circle, but also to an interval
with boundary conditions; the gluing laws for intervals lie in codimension two, since
intervals are glued along O-manifolds in this 2—dimensional theory. The result is
sometimes called an open—closed theory [89].1° The labels on the boundary are objects

19There is a difference between an open—closed theory and a fully extended 2—dimensional theory
[85, Section 4.2].
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in a category, so it is natural to associate that category to the O—manifold consisting of a
single point. As we are doing quantum mechanics, the category is linear and indeed the
vector space associated to the interval with boundary labels 8¢ and 8; is Hom(Bo, 81)
in the category. The objects are boundary conditions, or D—branes. Another common
example is 3—dimensional Chern—Simons theory, in which a unitary modular tensor
category is associated to the 1-manifold S, which is a manifold of codimension two
in this theory.

Let X" be a Riemannian n—manifold on which a theory F is defined, and fix x € X.
We explained in Remark 2.35 that the vector space F(S”~!) attached to a small sphere
around x, in the limit of small radius, is the space of point operators at x. A field
theory also has extended operators, whose support may be a submanifold W C X
of dimension £ > 0. An extended operator with k = 1 is called a line operator,
with k = 2 a surface operator, etc. The link of W at any x € W is a sphere S )'}_k_l.
In an extended field theory F there is an invariant F(S )’C‘_k ~1) which is a k—category
whose objects are the operators on W. Thus the line operators in a theory form a
1—category, the surface operators a 2—category, etc; see [66] for a thorough account.

We believe that every field theory of physical relevance should be fully extended. The
mathematical implementation is most developed in the topological case: a sampling
of references is [38; 81; 12; 85; 39; 11]. Invariants of manifolds of increasing codi-
mension are encoded in a higher categorical structure of increasing complexity. The
modern framework also includes invariants for families of manifolds; see [106] for
a nontopological version. The domain of an n—dimensional topological field theory
with symmetry group H, is the bordism multicategory Bord, (H,) whose objects are
O-manifolds; 1-morphisms are bordisms of O—manifolds, which are 1-manifolds with
boundary; 2—morphisms are bordisms of bordisms, which are 2—manifolds with corners;
and so on until we reach n—manifolds with arbitrary corners. At that point we con-
tinue to (n+#£)-morphisms which are roughly {—dimensional families of n—manifolds,
where £ is an arbitrary positive integer. The entire structure is an (0o, n)—category
[18; 85; 14; 92; 23; 99].

Definition 5.1 Let C be a symmetric monoidal (oo, n)—category. A fully extended
n—dimensional topological field theory with Wick-rotated vector symmetry group Hp
and target C is a symmetric monoidal functor

(5.2) F: Bord, (Hy,) — C.
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We typically shorten this to ‘topological field theory’. In general there is no preferred
choice of target C, and it is an open issue to construct suitable general targets. In the
very special invertible case we study here there are two preferred targets; see Section 5.3.

5.2 Invertible topological field theories

There is a natural superposition of quantum systems which does not introduce inter-
actions between them. In the framework of Wick-rotated field theories on compact
manifolds this is implemented by tensoring theories together, and that tensor product
makes sense for fully extended theories too. There is a unit for the tensor product:
the trivial theory 1 in which the vector space attached to any (n—1)-manifold is C,
all correlation functions equal 1, and a similar triviality in higher codimension. A
theory F is invertible if there exists F’' such that F ® F' >~ 1.

Example 5.3 An n = 1 theory F with H; = SO; is determined by the vector
space F(pt, ) attached to a point with positive orientation; it is invertible if and only if
this vector space is one-dimensional. (A one-dimensional vector space is called a line.
A vector space V is invertible if and only if there exists V/ such that V ® V/ == C, and
this happens if and only if V' is a line.) In an n—dimensional invertible field theory, the
vector space attached to any (n—1)—dimensional manifold is a line and all correlation
functions between nonzero operators are nonzero.

We first explain the transition to stable homotopy theory in the nonextended case, as
in Example 5.3. The codomain, or target, of a nonextended topological field theory
(Definition 2.33) is the ordinary category Vectc whose objects are complex vector
spaces and whose morphisms are linear maps. To accommodate theories with fermionic
states, we use instead the codomain category sVectc of super vector spaces. An
invertible theory F factors through the subcategory sLinec whose objects are complex
super lines?? and whose morphisms are invertible linear maps:

Bord,—1,n) (Hp) £ s Vectc

(5.4) So /
It

sLinec

20 A 7./27—graded line is either even or odd, which means the single quantum state is either bosonic
or fermionic.
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The category sLinec is a groupoid: every morphism is invertible. Even more, it is a
Picard groupoid: every object is invertible under tensor product. The main point is that
groupoids and Picard groupoids come from topology, as we quickly review.

One of the first constructions in algebraic topology goes in the opposite direction:
5.5 Spaces LELN Groupoids.

To any topological space S is attached a groupoid 7w<; S whose objects are the points
of §; the set (w_;S)(s0,51) of morphisms from sg € S to 51 € § is the set of homotopy
classes of paths_ from s¢ to s7. If the space has no higher homotopy information —
S is a homotopy 1-type —then m<1 S captures the homotopy type of S completely.
There is an inverse construction that takes a groupoid G (or a category) and attaches a
homotopy 1-type ||S||, the classifying space [101].

Example 5.6 Let S = |sLinec|. Then w9 S = Z/2Z, since there are two isomor-
phism classes of super line; and 71 § =~ C*, since the automorphism group of any
super line is the group C* of nonzero complex numbers under multiplication.

Remark 5.7 In Example 5.6 the groupoid sLinec is discrete: there is no topology
on objects or morphisms. If we use the standard topology on the morphism spaces
of linear maps, then the geometric realization ||sLinec| is a homotopy 2—type with
wox=7Z/27, w1 =0, and 7wy = Z. In other words, whereas in Example 5.6 the discrete
group C* of morphisms gives rise to 77 = C*, with the usual topology the group C*
deformation retracts to the circle (7o = 0 and 71 = Z), and so its homotopy groups
show up one degree higher in the geometric realization.

A symmetric monoidal structure on a groupoid goes over to an infinite loop structure
on the classifying space S. That is, there exists a sequence X = {Sp, S1, S2,...} of
pointed spaces equipped with homotopy equivalences S; ~ 25441, where So = §
and Q2S,41 is the based loop space. These satisfy the condition that S, is (g—1)—
connected. We call X a spectrum and we call S its O—space. See Section 6 for a review
of spectra.

Example 5.8 The classifying space ||Linec || has only one nontrivial homotopy group
m1 = C*, so it is an Eilenberg—-Mac Lane space K(C*,1). The corresponding
Eilenberg-Mac Lane spectrum is denoted X HC*: the O-space of the spectrum HC*
isa K(C*,0), for which a simple model is the discrete group C*, and the ‘X’ indicates
a shift.
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The functor (5.5) is the first in a sequence of functors {mg, 7<1, 7<2, ...} in which
the zeroth maps a space to its set of path components and the higher ones map to
higher groupoids. The classifying space construction also works in this context, and it
produces a space with potentially nonzero homotopy groups in any degree.

A symmetric monoidal (oo, n)—category ‘B has a higher Picard groupoid quotient B,
obtained by formally adjoining inverses for every object and morphism. Also, a
symmetric monoidal (oo, n)—category € has a maximal Picard subgroupoid C* — €
constructed by removing the noninvertible objects and morphisms from C.

Definition 5.9 A fully extended field theory F: Bord,(H,) — C is invertible if it
admits a factorization

Bord, (Hy) SN

(5.10) l
Bord, (H,) - o ex

Passing to classifying spaces, Fis equivalent to an infinite loop map
(5.11) IF 1| Borda (Hn) [l — [I€7]l,

or equivalently a map of spectra. The homotopy type of the domain is given by the
following variation of the celebrated Galatius—Madsen—Tillmann—Weiss theorem [52].

Theorem 5.12 ||Bord,(H,)| is the O—space of the Madsen-Tillmann spectrum
>"MTH, .

One version of this theorem is proved in [18], though it is only for unoriented manifolds
and is carried out for “n—tuple categories” rather than (oo, n)—categories. Proofs of
Theorem 5.12 in the context of (0o, n)—categories have appeared in preprint form. The
theorem is stated in [85, Section 2.5] as a corollary of the cobordism hypothesis. A
preprint of Ayala and Francis [11] proves the cobordism hypothesis and Theorem 5.12
for framed manifolds. A preprint by Schommer-Pries [99] contains a complete proof
of Theorem 5.12 independent of the cobordism hypothesis. Nonetheless, because there
is currently no published proof, in this paper we only use Theorem 5.12 as motivation
and formally define an invertible field theory as a map of spectra (Ansatz 5.14 below).

See Section 7.1 for a review of Madsen—Tillmann spectra.
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5.3 Universal targets

There are two universal targets for invertible topological field theories, corresponding
to the discrete and continuous topologies on C*. These targets are spectra; there is no
need to define an (oo, n)—category C with noninvertible morphisms and objects as we
only consider invertible theories.

The first target is constructed so that invertible n—dimensional field theories with that
target are determined by the partition function. The spectrum /C* is characterized in
the homotopy category of spectra by a functorial isomorphism

(5.13) mo: [B, IC*] — Hom(mg B, C*)

from the abelian group of homotopy classes of spectrum maps B — IC* to the
character group of mg B, for any spectrum B. The shift X" /C* satisfies a similar
universal property with o replaced by ;. The spectrum IC™ is closely related to
the Brown—Comenetz dual to the sphere spectrum [19]. Combining with the discussion
in Section 5.2 we arrive at the following.

Ansatz 5.14 A discrete invertible n—dimensional extended topological field theory
with symmetry group H, is a spectrum map

(5.15) F:X"MTH, — Z"IC*.

The space of theories of this type is Map(Z"MTH,,, X" IC*).

Here ‘Map’ indicates the space of maps between the indicated spectra; see (6.8) below.
The word ‘discrete’ is meant to evoke the choice X" /C* for the codomain: C* has
the discrete topology.

Remark 5.16 The choice of codomain spectrum X" /C*, which implements the
dictum ‘the partition function determines the theory’, holds magic derived from the first
few stable homotopy groups of spheres. For example, the truncation to (1 ,) is a
nonextended theory, and it takes values in a groupoid equivalent to the groupoid sLinec
of super lines: the homotopy groups of spheres “knows about” the bosonic/fermionic
grading of quantum states. The next Z /27 in the stable stem also has an interpretation
in terms of statistics of particles; see [50], where objects with nontrivial Z /27Z—grading
are termed ‘Majorana’.
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The spectrum X"/ C* is appropriate for classifying isomorphism classes of topological
theories, but we are interested instead in deformation classes: we want to identify
two theories if there is a continuous path of theories connecting them. For example,
as maps into X" /C* the Euler theories F, and F), in Example 4.21 are noniso-

morphic if Ag # A1, whereas they are always deformation equivalent. The Anderson

dual X" T1I7(1) is the appropriate codomain to compute deformation classes.?!

Roughly speaking, it results from X" /C* by taking the continuous topology on C*.
Its universal property is expressed in the short exact sequence

(5.17) 0 — Ext! (7, B, Z(1)) — [B, =" 1Z(1)] - Hom(7ty41 B, Z(1)) — 0,
which is noncanonically split. The kernel is the torsion subgroup:

(5.18) [B, =" 1Z(1)],, = Ext! (7w, B, Z(1)).

There is a map

(5.19) ¢:[B, S"1C*] = Hom(w, B, C*) — Ext! (1, B, Z(1))

onto the kernel of (5.17). It sends a homomorphism 7, B — C* to the pullback of the
exponential group extension

(5.20) 1> Z(1) > C =2, C* - 1.

If we give C* its usual topology, then ¢ may be regarded as mapping the topological
space Hom(rr,, B, C*) to its group of path components.

Intuitively, to define the notion of deformation equivalence of theories (5.15) we want to
consider a second topology on Map(X"MTH,,, " IC*) induced from the continuous
topology on C*, and then compute 7. Instead we make use of the fibration

(5.21) HC 2225 [C* — SI7Z(1)

induced from (5.20) as follows.

Definition 5.22 Theories «g, «; € Map(XZ"MTH,,, X" IC*) are deformation equiv-
alent if there exists £ € H"(X"MTH,,; C) whose image under exp is the difference
[@1] — [a0] of the isomorphism classes [«g], [@1] € [E"MTH,, X" I1C*].

We immediately conclude the following.

217,(1) = 27+/—1Z C C avoids the choice of a particular /—1 € C.

Geometry € Topology, Volume 25 (2021)



1208 Daniel S Freed and Michael J Hopkins

Theorem 5.23 There is a 1:1 correspondence

deformation classes of discrete invertible
(5.24) n—dimensional extended topological ~ [S"MTH,, 2" Z ()],
field theories with symmetry group H,

This appears, at least implicitly, in a joint paper [44] of the authors and Constantin
Teleman; Theorem 5.23 has been the basis of many investigations since.

It is natural to ask for a field-theoretic interpretation of a map of spectra ¥"MTH,, —
»"+117(1) whose homotopy class is not torsion, so does not factor through " JC*.
We give one in the next subsection (Ansatz 5.26).

5.4 Remarks on nontopological invertible theories and low-energy
approximations

The main immediate application of Theorem 1.1 in this paper is to low-energy approxi-
mations of gapped unitary quantum systems when that approximation is invertible. For
the heuristic discussion in this section we momentarily drop the invertibility hypothesis.

A typical example of the phenomenon we wish to highlight is 3—dimensional Yang—
Mills theory with a Chern—Simons term. The coupling constant of the Chern—Simons
term obeys an integrality constraint. Then the low-energy effective theory is quantum
“topological” Chern—Simons theory [115]. In fact, this low-energy theory is not topolog-
ical; there is a mild metric dependence [114]. One precise expression of the mildness

is that the energy—momentum tensor?2

is a multiple of the identity operator, which is
the only point operator in the theory anyhow. (See the discussion in [50, Section 1.1].)
Witten observes that if one is willing to introduce some sort of framing, then the long-
distance topological Chern—Simons theory is the tensor product of a purely topological
theory and an invertible theory. The invertible theory is analogous to a gravitational
Chern—Simons theory, but more precisely its partition function is the exponential of
the Atiyah—Patodi—Singer n—invariant. The coupling constant does not obey the usual
integrality constraint, which is why the framing is required for this global decomposition.
The full quantum Yang—Mills theory with Chern—Simons term is a theory of oriented
Riemannian manifolds (the Wick rotated symmetry group is H3 = SOs3), and so one
expects the same for the low-energy approximation. That indeed holds; it is only to

make a global decomposition into topological x invertible that a framing is introduced.

22The energy—momentum tensor is a multiple of the Cotton tensor of the Riemannian 3—manifold.
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This example violates the physical principle (ii) stated in Section 1. A more precise
expectation is that the low-energy physics of a gapped system is well-approximated
by a theory whose energy—momentum tensor may depend on the background fields,
but as an operator it is a multiple of the identity at each point. Or, at least locally we
suppose the low-energy theory is topological x invertible. If the low-energy theory
happens to be invertible, then we conclude that any nontopological invertible theory
can occur and that there is no shift of symmetry group, eg no extra tangential structure
is required. We expect that choices must be made in constructing the low-energy
effective theory, so a potential ‘low-energy approximation’ map from gapped theories
to theories that are locally topological times invertible may only be defined up to
homotopy. (See [41, Section 11.4] for another perspective on the appearance of a
possibly nontopological invertible theory.)

To illustrate the nature of the low-energy approximation, we contemplate the following
three geometric objects associated to a smooth manifold M :

(a) aprincipal C*~bundle P — M with connection,
(b) a principal C*~bundle P — M with flat connection, and

(¢) aprincipal C*~bundle P — M (with no connection).
In particular, we track what information is induced on the free loop space
LM =Map(S!, M)

by integrating over the loop. In (a) we obtain a smooth function LM — C*, the
holonomy, and if there is nonzero curvature then it has nonzero derivative. In (b) the
holonomy is a locally constant function LM — C*, and therefore we can use the
discrete topology on C*: the holonomy represents a class in H°(LM;C>). In (c)
there is no connection, so no holonomy, but nonetheless we can extract a principal
Z(1)-bundle Ep — LM, a fiber bundle of Z(1)-torsors. Namely, an element A € C*
determines a Z(1)-torsor E; C C of all x € C such that exp(x) = A, and so the
holonomy function LM — C* of a connection ® € Ap on P — M determines
Epe — LM, so a Z(1)-torsor over Ap x LM. Since the affine space Ap of connec-
tions is contractible, the principal Z(1)-bundle over Ap x LM descends to a principal
Z(1)-bundle Ep — LM. It may be regarded as the homotopical information in a
connection. It determines a class in the sheaf cohomology group H°(LM;C*) in
which C* has the continuous topology. Since C* is an Eilenberg—Mac Lane space
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with 7 == Z(1), there is an isomorphism

(5.25) HO(LM;C*) => HY(LM;Z(1)).

2

Returning to invertible field theories>? we have the following situations:

(a) a nontopological theory, as contemplated in Remark 2.39;
(b) adiscrete invertible topological theory, as in Ansatz 5.14; and

(c) atopological field theory whose partition “function” is a Z(1)—torsor rather than
a complex number.

While (a) and (b) have clear analogs for noninvertible field theories, it is unclear what
a noninvertible analog of (c) would be. In the invertible case we posit the following
definition of a type (c) theory.

Ansatz 5.26 A continuous invertible n—dimensional extended topological field theory
with symmetry group H, is a spectrum map

(5.27) ¢: S"MTH, — ="T11Z(1).
The space of theories of this type is Map(X"MTH,,, X" T117(1)).

Remark 5.28 In differential geometry a principal C*~bundle P — M has a primary
topological invariant in H2(M ; Z(1)), its Chern class. A connection gives a secondary
geometric invariant, its holonomy. If the connection is flat, the secondary invariant
is also topological (discrete), and in that case the Chern class lies in the torsion
subgroup of H?(M ;Z(1)). The stable continuous invertible field theories we encounter
in Section 7.2 attach a primary Z(1)-valued invariant to closed (74 1)-manifolds.

A discrete invertible topological field theory F (Ansatz 5.14) gives rise to a continuous
invertible topological field theory ¢, which retains the homotopical information in F, in
particular its deformation class. In this paper we do not develop the theory of nontopo-
logical field theories, but in the invertible case we use instead continuous topological
theories, which represent the homotopical information carried by a geometric theory.

Remark 5.29 In the application to low-energy approximations of gapped theories, we
expect that only this homotopical shadow of a geometric theory is well defined, due to
the choices in constructing a low-energy theory.

23Note that each of (a), (b), and (c) above determines the corresponding type of invertible 1—
dimensional field theory of oriented manifolds equipped with a map to M.
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6 Equivariant stable homotopy theory

Reflection symmetry in invertible topological theories is expressed by a Z/2-action
on the constituent spectra. This requires working in Z /2—equivariant stable homotopy
theory. What we will use here is Borel equivariant homotopy theory. This is somewhat
easier than the more general theory and, at the moment, is all that seems needed for
our main results. There are many places to read about equivariant stable homotopy
theory. The reader may wish to consult [1; 55; 59, Chapter 2; 100; 32, Chapter 8].

6.1 Spectra

Let 7 be the category of pointed topological spaces, and for A, B € T, write 7 (A, B)
for the set of basepoint-preserving continuous functions from 4 to B and 7 (A, B)
for the same set, regarded as a topological space with the compact—open topology.

A spectrum X is a sequence {Xp, X1, ...} of pointed spaces, equipped with structure
maps Sy : SIAX, —> Xn+1. Amap X — Y of spectra is a sequence of maps X, — Yy
making the diagrams

X
N
SUAX, —— Xni1

L]

S'A Yy —— Yot

Si‘l

commute. The set of spectrum maps from X to Y is a subset of

[ [Z(Xn. Y2)
n
and so may be regarded as a topological space with the subspace topology. The space
of maps between spectra X and Y will be denoted S(X, 7).

The homotopy groups m, X of a spectrum X are defined for n € Z by

(6.1) 7n(X) = lim 7y 4 Xyt
k

in which the bonding maps are given by the suspension mapping

) Sn+k
Tntk Xntk — Tntk+1 2Xntk = Tntk+1 Xntk+1-

The group 7,4 X4k is defined for any n € Z as soonas k > —n. Amap X — Y
is a weak equivalence if it induces an isomorphism of homotopy groups.
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Equipped with the weak equivalences, the category S of spectra becomes a bona fide
place for doing homotopy theory. A functor § — C to a category C is a homotopy
functor if it takes weak equivalences to isomorphisms. There is a universal homotopy
functor § — ho § characterized by the property that the restriction mapping gives an
equivalence between the category of functors ho & — C with the category of homotopy
functors 8§ — C. The category ho 8 is the homotopy category of spectra, and the set
(in fact abelian group) ho 8(X, Y) is called the abelian group of homotopy classes of
maps from X to Y. We will use the common abbreviation

[X,Y]=hoS(X,Y).

Example 6.2 The suspension spectrum X°°Z of a space Z is the spectrum
(Z®Z2),=8S"rZ

with the structure maps derived from the equivalence S! A §” = S"*1. When the
context is clear it is customary to drop the X°° and not distinguish in notation between
a space and its suspension spectrum.

Example 6.3 For a nonnegative integer k > 0 let S k be the suspension spectrum of
the k—sphere and S —k be the spectrum defined by

* forn < k,

sy, =
( n Sk forn > k.

From the formula (6.1) one easily checks that for all k € Z one has an isomorphism
[S*, X] ~ 7 X,

natural in X.

6.1.1 Smash product Suppose that X = {X,} is a spectrum and Z is a space.
Define X A Z to be the spectrum with

(XAZ)p=XnNZ

and the structure maps derived from those of X. This is the smash product of the
spectrum X with the space Z.

Example 6.4 The spectrum S® A Z is the suspension spectrum of Z.
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Example 6.5 The spectrum § —k A Sk consists of the spaces

x form <k,

STE A 8K, =
( Im S™ form > k.

There is an inclusion
Sk A Sk $0,

which is easily checked to be a weak equivalence.

For a spectrum X = {X},} there is a functorial weak equivalence
(6.6) holim ™ A X, => X.

(See for example [59, Section 2.2.1] where it is called the canonical homotopy presen-
tation.)

There is an enrichment ho$ of ho8 over the homotopy category of spaces. It is
characterized by the existence of an isomorphism

6.7) hoT(Z,ho8(X,Y))~hoS(X AZ,Y),

functorial in CW—complexes Z, and spectra X and Y. We will employ the abbreviation

(6.8) Map(X,Y) =ho8(X,Y).

Taking Z to be the space S in (6.7) gives the isomorphism
[X,Y]=moMap(X,Y).

When the spectrum X = {X,} has the property that each X, is a CW—complex
and Y has the property that each map

Yy - QYnq
is a weak equivalence, the homotopy type of Map(X, Y) is given by
(6.9) hoS8(X,Y) =holim M(Xp, Yy),

with M (X, Y,) the homotopy limit of the diagram

I(Xn,Yn) I(Xn—l, Yn—l) / \ I(XO’YO)
I(Xn—LQYn) I(Xn—Z,QYn—l) I(XO7QY1)
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in which the southeast arrows are given by the compositions
T(Xm, Ym) = T(S' A X1, Ym) ~ T(Xm—12Ym).

Note that the projection map M(Xy, Yn) = T (X, Yyn) is a weak equivalence, so
that (6.9) can heuristically be interpreted as giving a presentation of hoS(X,Y) as a
homotopy inverse limit of the spaces 7 (Xj, Y).

A spectrum Y with the property that for all n the map Y, — QY,4+1 is a weak
equivalence is called an Q-spectrum (or a loop spectrum). Every spectrum Y is
naturally weakly equivalent to an 2—spectrum. Indeed, given Y define LY by

LY, =holim Q¥ Y, .
Using the homeomorphism Q(Qk Yitr) = QkQYn+k one sees that LY has the

structure of an Q2—spectrum and that the canonical map ¥ — LY is a weak equivalence.

6.1.2 Duality The operation X A Z extends to a symmetric monoidal smash product
on spectra. In fact there is a unique extension having the property that it commutes
with colimits in both variables, and for spaces Z; and Z, and integers k,{ >0,

SF*AZOASTEANZY) =S CED A Z1 A Z,.

The existence and uniqueness can be deduced from the canonical homotopy presenta-
tion (6.6).

Equipped with the smash product the categories ho S and ho$ become symmetric
monoidal categories. By Example 6.5 the suspension spectra of spheres are dualizable
(in fact invertible). It follows that the suspension spectrum of any finite CW—complex
is also dualizable.

6.1.3 Stability An easy check (or an appeal to the invertibility of spheres) shows
that for all k and all X the map

g X = Mgt XAS!
is an isomorphism. This implies a map A — X gives rise to a long exact sequence
o Ao X > XUCA > 1 A— -+
in which X U CA is the spectrum

(X UCA), = Xn UCAy,
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with CA = A x[0,1]/A x {1} U % x [0, 1]. This, in turn, implies that the map from A
to the homotopy fiber of X — X U CA is a weak equivalence.

6.1.4 Thom spectra Let X be a space. Givenamap V: X — BO, define a sequence
of maps V;,: X, - BOy, by the homotopy pullback squares

Xn —X

(6.10) Van l lv

BO, —— BO

The map V,: X,, - BO,, classifies a vector bundle of rank n over X, (which will
also be denoted V},). By construction, the pullback of V,,11 — X,4+1 to X, comes
equipped with an isomorphism to V;, & R — Xj,. This give a map of Thom spaces

3 Thom(Xy; Vi) = Thom(X,; V, @ 1) — Thom(X, 41, Va+1)

making the sequence of spaces {Thom(Xp;V},)} into a spectrum. This is the Thom
spectrum of V, denoted Thom(X; V). The canonical homotopy presentation of
Thom(X; V') takes the form

Thom(X; V) = holim ™" A Thom(Xp; Vx).

We will additionally encounter the Thom spectrum Thom(X;—V') associated to a
map V: X — BO by composing with the “additive inverse” map (—1): BO — BO
(see Section 7.1). With X}, and V}, defined as in (6.10), the isomorphism

Vatilx, # Vo ®R
becomes
_Vn+1|Xn ~ —Vn —K.

This leads to maps
Thom(X:; —V,) = S AThom(X,41; —Vyps1).
and an alternative presentation
(6.11) Thom(X;-V) = holi_n)lS" A Thom(Xp; —V5).
If V has virtual dimension d then V —Rd has virtual dimension O and one defines

Thom(X; V) = S AThom(X;V —R%).
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The Thom spectrum construction is a functor on the category of spaces over the
classifying space Z x BO of KO-theory. It is symmetric monoidal in the sense that
for V: X - Z x BO and W:Y — Z x BO there is a natural weak equivalence

Thom(X x Y7y V @ ny W) ~ Thom(X; V) A Thom(Y; W),

in which my and sy are the projections.

6.2 Borel equivariant stable homotopy theory

Now suppose that G is a compact Lie group (which in our case will be Z/2) and
let $"C be the category of spectra equipped with a G—action and equivariant maps. An
object of $"C

maps S LA X, > Xn+1 in which S 1 has the trivial G—action. Sometimes what we

consists of a sequence { X}, s,} of left G—spaces X, and equivariant
are calling a G—spectrum is called a naive G—spectrum.

Definition 6.12 A map X — Y in 8"G is a Borel weak equivalence if it is a weak
equivalence when regarded as a map in S.

Equipped with the Borel weak equivalences, the category $"G becomes a category in
which one can do homotopy theory. The homotopy category ho 8"G is defined as the
ghG

target of the universal homotopy functor out of . We will use the abbreviation

[X,Y]"? =ho 8" (X,Y).

The construction of the smash product goes through in a straightforward way for the
Borel equivariant spectra, and there is a derived equivariant mapping space between
two equivariant spectra. In fact, it follows from the expression (6.9) that when X and Y
are G-spectra, the space ho8(X, Y) acquires the homotopy type of a G—space. The
derived equivariant mapping space works out to be the homotopy fixed-point space

MapG (X,Y) =Map(X, Y)hG,
and the maps in the homotopy category of G—spectra are given by
[X, Y] = mo Map(X, Y)"S.

In Borel equivariant homotopy theory the suspension spectra of finite G—sets (with
a disjoint basepoint added) are self-dual. This implies that the suspension spectra of
finite G-CW-complexes are dualizable and the suspension spectrum of the one-point
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compactification SV of a finite-dimensional representation V of G is invertible. These
facts are not quite immediate. If X is a finite G—set, then the evaluation map

X_|_ A X_|_ —> SO
is the map of suspension spectra induced by the map
XxX—S°

sending the diagonal to the non-basepoint and the complement of the diagonal to the
basepoint. It is not so straightforward to write down the coevaluation map. Nevertheless,
for G—spectra W and Z, the composite

Map(Z, W AX4) >Map(Z AX4, WAXL AXy)—>Map(ZAXy, W)

is a G—equivariant map that is a weak equivalence of underlying spaces, and so gives
an equivalence

Map(Z, W A X4)"C ~Map(Z A X4, W)HC
and an isomorphism

[Z,WAX)C ~[Z A Xy, WO,

Once one knows that the finite G—sets are dualizable it follows that the suspension
spectrum of any finite G-CW-—complex is dualizable. We denote the dual of X
as D(X). This implies the invertibility of S since the map

DSY)YASY - 8°
is a weak equivalence of underlying spectra. It is customary to use the notation
s~V =DsV.

For more on virtual representation spheres see Example 6.17 of Section 6.2.2.

6.2.1 Homotopy fixed points and homotopy orbits Regarding a nonequivariant
spectrum as a G—spectrum with the trivial action gives a functor

8 — 8ha

This functor preserves weak equivalences and so induces a functor on homotopy
categories. The homotopy orbit and fixed-point functors provide both a left and right
adjoint to this induced functor.
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Recall that the homotopy orbit space of a pointed G—space Z is the space
Zng = EGy NG Z,

and that the homotopy fixed-point space is the space
Z"% = T(EG4,Z2)C

of equivariant basepoint-preserving maps from EG4 to Z. These notions extend
componentwise to equivariant spectra. The homotopy orbit spectrum of a G—spectrum
X ={X,} is the spectrum X = {(Xn)ng} and the prehomotopy fixed-point spectrum

is the spectrum X"G = {(X,)hCy.
The functor Xy preserves weak equivalences and so directly induces a functor on
Xh/G

homotopy categories. The functor preserves weak equivalences between 2—

spectra and so induces a homotopy fixed-point functor
(=) h08"% > ho$
sending X to (LX)"C.
These functors on the homotopy category are adjoints to the inclusion
ho 8 — ho §"6
in the sense that there are natural isomorphisms
(6.13) [X, A" ~ [Xp6, Al
(6.14) [4,Y]"C ~ [4, Y79,

in which X and Y are G—spectra and A is a spectrum with trivial G—action. Also,

AhZ/Z

the fixed-point spectrum is computed as

(6.15) MapZ/2(S°, A) ~ Map(BZ /24, A) <= AV Map(BZ/2, A)
=> AxMap(BZ/2, A),
in which the left-pointing map involves a choice of a basepoint x € BZ /2 and is the

sum of the map
BZ/24 — S°

sending BZ /2 to the non-basepoint and the map
BZ/2+ — BZ/2

which is the identity map on BZ/2 and sends the disjoint basepoint on the left to the
new basepoint on the right.
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6.2.2 Equivariant Thom spectra Suppose that B is a space and p: X — B is a
principal G-bundle. A map W: B — BO leads, as above, to a sequence of maps

By——Byy1----+B

e e |

BO, — BOp41 — — + BO

and a Thom spectrum Thom(B; W) = {Thom(Bj,; W,)}. Define principal G-bundles
Xn — By by the pullback square

A

B, —— B

The bundle p; W, is a G—equivariant vector bundle on X, . In fact, by descent, the
data of a G—equivariant vector bundle on X}, is equivalent to the data of a vector bundle
over B, . The G-action on (X,, p*W,) induces a G—action on the Thom spectrum
Thom(X, p*W) = {Thom(X,; p, W,)} making it into an equivariant spectrum. By
construction the homotopy orbit spectrum is given by

(6.16) Thom(X; p* W), = Thom(B; W).

As in Section 6.1.4, equivariant Thom spectra for maps B — Z x BO are defined by
subtracting a suitable trivial bundle and suspending the result.

Example 6.17 (representation spheres) An element V € KO°(BG) is classified by
a map

V:BG —7Z x BO

and so gives rise to an equivariant Thom spectrum. When V' corresponds to a repre-
sentation of G the equivariant Thom spectrum is the spectrum S . This construction
sends sums of elements of KO°(BG) to smash products of G—spectra. Composing
with the map

RO(G) — KO°(BG)

gives a construction of a sphere SV associated to every virtual representation V of G.
This gives another approach to the construction and invertibility of representation
spheres in Borel equivariant stable homotopy theory.
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6.2.3 The o—sphere We now specialize to the case G = Z/2, and write o for the
real sign representation. The sphere S¢ has an equivariant cell decomposition with
one non-basepoint fixed O—cell, and one free 1—cell as shown here:

€1

T€1
This gives a pushout square

7)2x3D' —— 7Z./2x D!
s — 5 59
leading to a cofibration sequence
(6.18) 7)24 — S°—> S°

of equivariant spectra. Passing to duals and using the self-duality of finite G—sets gives
a cofibration sequence

(6.19) §7° 5585 7/2,.

The map S® — Z /2 is the transfer map and, nonequivariantly, has degree 1 on each
summand of Z /24 = S%v SO,

Write
y=1-=0,
§=0—1.
For a Z /2-spectrum X we define
X0 =5°AX,
(6.20)
XV =SYAX.

Smashing with (6.18) and (6.19) gives, for any X, (co)fibration sequences

(6.21) X 572, AX > X,
(6.22) X—>Z/2: AX = X7,
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6.3 Real structures

Our next aim is to equip /C* and /Z(1) with Z /2-actions corresponding to complex
conjugation, in such a way that the cofibration sequence (see (5.21))

(6.23) 1Z(1) —» HC -2, ¢~

is a cofibration sequence of Z /2-equivariant spectra. Though there is no mystery about
the action on the abelian-group-valued functor [ —, IC*], there are infinitely many
refinements of this to an action on the spectrum /C*. Here we will motivate a specific
choice, and check it against three situations in which there is a naturally occurring action.

6.3.1 Z/2-actions The space of Z/2-actions on a spectrum X is the space of maps
B7Z/2 — BhAut(X)

from the classifying space of Z/2 to the classifying space of the monoid of self-
homotopy equivalences of X. Smashing a map S — S° with the identity map of X
gives a map

BhAut(S®) — BhAut(X).

The maps BZ/2 — BhAut(S°) then correspond both to (i) Z/2-actions on S° and
to (ii) Z/2-actions on all spectra which are natural in the sense that they commute
with all maps and are homotopy-colimit-preserving. Put more succinctly, the “natural”
7,/ 2—actions are homotopy-colimit-preserving sections of the forgetful functor

(6.24) Sh2l2 g
Associating to a vector space its one-point compactification defines a map
BO — BhAut(S°),

so that a virtual representation V' of Z/2, of virtual dimension 0, determines a natural
7,/ 2—action via the composition

BZ/2 Y5 BO - BhAut(S°).
The corresponding section of (6.24) is the one sending a spectrum X to SV A X.

Remark 6.25 Because S is the tensor unit in 8, the space BhAut(S°) is actually
an infinite loop space. The map BO — BhAut(S°) also turns out to be an infinite
loop map. This means that “natural” Z/2-actions may be composed and that the
composition of actions corresponding to virtual representations V' and W is the natural
action corresponding to V & W.
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Remark 6.26 From the defining property of /Z(1) one can check that the map
Map(S°, §%) — Map(I1Z(1), IZ(1)),
= fAid,
is a weak equivalence. Now the loop space of any component of the space of maps
B7/2 — BhAut(S?) is the space of maps BZ/2 — hAut(S°). The homotopy type

of this latter space falls within the purview of the Segal conjecture and consists of the
path components of QBZ /24 x QS whose first component is a generator of

7o OBZ /24 ~ T.

For this reason, one knows a lot about the space of actions of Z/2 on IZ(1) and,
in particular, that there are infinitely many inequivalent actions inducing the sign
representation on g I Z(1).

For the spectrum HC one has BhAut(HC) ~ K(Aut(C), 1), in which Aut(C) is
the group of abelian group automorphisms of C. In this case there is no difference
between Z/2-actions on HC and Z/2-actions on C, and complex conjugation is
uniquely specified.

6.3.2 Duality Spectra with no negative homotopy groups are modeled by (higher)
Picard groupoids. Picard groupoids come equipped with a Z /2—action sending each
object to its inverse. This corresponds to a natural Z/2-action on spectra which we
now determine.

Let C be a Picard category and consider the category of pairs (x, y) equipped with an
isomorphism x ® y — 1. The functor (x, y) — x is an equivalence of categories, so
the Z /2-action sending x to its inverse corresponds to the action on the category of
pairs sending

xRy —1
to

YRXx—=>xQy — 1.

If € corresponds to a spectrum X then the category of pairs corresponds to X vV X =
X x X, and the category of pairs (x, y) equipped with an isomorphism x ® y — 1 is
the homotopy fiber of the map

XvX—>X.
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Writing this in terms of equivariant spectra we are looking at the homotopy fiber of
Z/24 NX = X,

which by (6.21) is X?.

Summarizing, we have the following.

Proposition 6.27 The natural Z /2—action corresponding to “duality” is given by the
map
BZ/2 %5 BO — BhAut(S?)

and associates to a spectrum X the 7 /2-equivariant spectrum
XS =83 Ax =5"1rxX.

6.3.3 Complex conjugation A complex conjugation on /Z(1) corresponds to a map
v: BZ/2 — BhAut({/7Z(1))

having at least the property that its effect on m; is the sign representation of Z /2
on Z(1). Write
T(BZ/2, BhAut(IZ(1))),

for the space of maps inducing this homomorphism on 1. This space is a union of
infinitely many path components of T(BZ /2, BhAut(/ Z(l))) (see Remark 6.26).
Similarly, complex conjugation on /C* corresponds to a map

v': BZ/2 — BhAut(IC>),

whose effect on 77 corresponds to the action of Z /2 by complex conjugation on C*.
Write T(BZ/2, BhAut(IC*)), for this space of maps.

Since the maps
Map(/Z(1), HC) — Hom(Z(1), C),

Map(HC, IC*) — Hom(C, C*)
are weak equivalences, so are the maps
Map(IZ (1), HC)*2/2 _, Hom(Z(1), C)%/2,
Map(HC, IC*)"%/2 _ Hom(C, C*)%/2,

for any Z /2-actions on /Z(1) and IC*. It follows that any action v as above extends
uniquely to a Z /2—equivariant map

1Z(1)” — HC
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and so induces a Z/2-action v’ on the cofiber /C*. Similarly an action v’ as above
induces a Z/2-action v on /Z(1). In this way we have an equivalence

(6.28) T(BZ/2, BhAut(IZ(1))), ~ T(BZ/2. BhAut(IC)),.

The space of real structures on 1Z(1) and 1C* will be defined to be a single path
component of the above spaces. Before specifying which one, we turn to a motivating
example.

Example 6.29 (Hermitian structures and positivity) Let f Vectc be the topological
groupoid of finite-dimensional complex vector spaces and (complex) linear isomor-
phisms, endowed with the symmetric monoidal structure of ®. For V € fVectc,
let V* be the dual vector space. We define a covariant “duality” functor V +— V'V by

VV — V*

fY=umh
The canonical isomorphism VVY & V extends the functor VY to a Z/2-action
on fVectc. (See Appendix B.) There is another Z/2-action

ViV
gotten by redefining scalar multiplication by x € C to be scalar multiplication by X .

Let fVectcP be the topological groupoid of finite-dimensional complex vector spaces
equipped with a positive definite Hermitian inner product, and unitary transformations.
Since the inclusion U(n) C GL,(C) is a homotopy equivalence, the functor

f VectcP® — f'Vectc

is a weak equivalence of topological categories. On f VectcP®® the Hermitian inner
product gives a natural isomorphism V* & V, trivializing the composition “bar star”” of
the two Z/2-actions defined above. This suggests that whatever complex conjugation
is, on the categories in which C is regarded as having a topology, the combined action
(in the sense of Remark 6.25) of complex conjugation and duality should be trivializable.
The trivialization is noncanonical, however. One might have chosen negative definite
vector spaces or, for each prime p, made a choice of positive or negative definite
Hermitian inner products on vector spaces of dimension p and then extended to all
finite-dimensional vector spaces by tensoring.

With Example 6.29 as motivation, and in view of Proposition 6.27, we propose the
following.
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Definition 6.30 The space of real structures on 17.(1) is the path component of the
space

(6.31) T(BZ/2, BhAut(IZ(1))),

containing the map 1 — o . The space of real structures on 1C* is the path component
of the space T(BZ/2, BhAut(/C*)), corresponding to the space of real structures
on /7Z(1) under the equivalence (6.28).

As above, we write I17Z(1)Y for the Z /2-spectrum corresponding to a real structure
v: BZ/2 — BhAut(I/Z(1)). Any real structure fits canonically into a cofibration
sequence

(6.32) 1Z(1)" — HCY =2, (jc*)”

in which v and v’ correspond under the equivalence (6.28); the superscript on HC is
the unique complex conjugation, explained at the end of Section 6.3.1.

Remark 6.33 Since the space of real structures v on /Z(1) is connected, but not
contractible, any [7Z(1)" is noncanonically equivariantly equivalent to /Z(1)Y =
S1=9ATZ(1).

Ansatz 6.34 We use the basepoint in (6.31) to fix once and forallv =y =1—-o0.
Under the equivalence (6.28) this determines a real structure v(/) on /C*. Our choices
render the cofibration sequence (6.32) as

(6.35) 1Z(1)Y — HCY X2, (JC*)%,
Remark 6.36 The real structure y on [Z(1) is the restriction of a natural action

of 7/2; the corresponding real structure vy is not. However, in terms of the polar
decomposition C* = T x R>? we have

(6.37) (IC*)% ~ IT AS'™7 v HR>".

The spectrum IT is characterized in the homotopy category of spectra by a functorial
isomorphism

(6.38) [B, IT] => Hom(mg B, T)

for all spectra B, analogous to (5.13). The equivariant spectrum ITY = IT A S'™°
fits into a cofibration sequence analogous to (6.35):

(6.39) 1Z(1)Y — HR(1)% =225 [TV,
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Remark 6.40 This definition of real structure fits with the three cases in which one
has an algebraic interpretation of /Z(1) (see Remark 5.16). The O—space of X17Z(1)
is modeled by the unit complex numbers with the usual topology; that of £21Z(1)
corresponds to the symmetric monoidal groupoid of Z /2—graded complex lines; and
231Z(1) to the Brauer—Wall symmetric monoidal 2—groupoid of Z/2-graded simple
algebras over C, Z/2-graded bimodules and intertwiners. These three models come
equipped with natural real structures, coming from change of scalars. By direct
computation one can show that the homotopy fixed points of X 7Z(1) is modeled by
the corresponding real versions of the three categories described above. To check this
it suffices to do so when i = 3 as the other cases are gotten from it by passing to loop
spaces. The real Brauer—Wall category corresponds to a spectrum B with homotopy
groups

i B=0 for i ¢ 0, 3],

mo B =7/8 (the eight real Clifford algebras),

w1 B=7/2 (the even and odd real line),

V%) B = {:l:l}
and has the property that the multiplication-by-7 maps
) B—x 1 B—x 2 B

are nonzero. A straightforward computation shows that any spectrum X with these
properties is homotopy equivalent to B. To verify the claim it therefore suffices to
show that the (—1)—connected cover of (X371 Z(l)y)hZ/ 2 has these properties. We
therefore need to know the groups

i (2 1Z(1)")Y2/2 for i =0
and the effect of multiplication by 7. Now for the real structure y = 1 — o one has
Map(S°, =31Z(1)")"2/2 ~ Map(S°, SO~ A £317(1))"%/?
~ Map(S©~D, £317(1))"%/?
~ Map(Sy5, ). SPIZ(1))
~ Map(Thom(BZ/2;0 — 1), > A Z(1)),
by (6.13) and (6.16). We therefore need information about

[Thom(BZ/2;6 —1),S' ATZ(1)] for 1<i <3
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or, from the defining property of /Z(1), the character groups of
;i Thom(BZ/2;0 —1) for 0 <i <2.

As described in Section 10, these groups coincide with the same homotopy groups
of MTPin™ and are shown in Figure 5 (the case s = 1) to be the groups Z/2, 7Z/2,
and Z /8 with both p—multiplications nonzero.

6.3.4 Terminology It will be convenient in the sequel to have names for the objects
assigned to closed manifolds of arbitrary codimension in an invertible field theory. In
codimension 0 we have a complex number and in codimension 1 an object in the
category of complex Z/27Z-graded lines with the monoidal structure of graded tensor
product and the Koszul sign in the symmetry. We refer to such an object as a ‘complex

super line’ or a ‘Z/27Z—graded line’. Hence in codimension k we introduce the term

‘complex super k—line’.2

Definition 6.41 (i) [Z(1) is the spectrum of higher complex super lines.
(i) (IZ(1)Y)"Z/2 is the spectrum of higher real super lines.
(i) IZ()g := (IZQ1)Y A SC~1HIL/2 is the spectrum of higher Hermitian super
lines.
(iv) IC* is the spectrum of higher flat complex super lines.

(v) The k™ space in the spectrum /Z(1) is the space of complex super k—lines.

Example 6.29 is the motivation for (iii). There are analogs of (iv) and (v) for real and
Hermitian super lines. For example, the fixed-point spectrum

(6.42) ICY == (IC*)0 A SOHhZ/2

is the spectrum of higher flat Hermitian super lines, and the k™ space of that spectrum
is the space of flat Hermitian super k—-lines. As for the fixed-point spectrum in (iii),
since S179 A S9! is the sphere spectrum with the trivial Z /2-action— the “bar star”
involution — we deduce from (6.15) a canonical identification

(6.43) 17Z.(1)gp =Map(BZ/2+, I7(1)).
Pulling back along BZ/2 — pt we obtain a map

(6.44) 17Z(1) > I1Z(1)g;

the image is a summand, split by a choice of point in BZ /2.

24Kapranov [65, Section 3.4] suggests a higher use of super based on the sphere spectrum.
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Definition 6.45 The image IZ(1)y0s of (6.44) is the spectrum of higher positive
definite Hermitian super lines.

The k™ space in 1 Z.(1)pos 1s the space of positive definite Hermitian super k—lines. De-
fine the spectrum of higher flat positive definite Hermitian super lines as the homotopy
pullback

ICY, —— SIZ(1)pos

pos

(6.46) l l

ICY, —— =IZ(1)g

We examine this homotopy-theoretic definition of positivity by focusing on the top
piece, first in the ungraded case and then in the Z/27Z—graded case.

Example 6.47 (Hermitian lines) Consider the spectrum %2 HZ. Its O—space repre-
sents the ordinary groupoid of complex lines; morphisms have the continuous topology.
There is a contractible space of trivializable involutions, and we imagine a point in it
to represent bar star. The analog of (6.43) implies that the set of components of the
fixed-point spectrum of any such involution is

(6.48) moMap(BZ /24, X*HZ) =g S2HZ ® o Map(BZ /2, %> HZ)
={0} P Z/2.
The O-space of Map(BZ /2., £2 HZ) represents the groupoid of Hermitian lines, and

the Z /27 tracks the sign of the Hermitian form. The positive subspace, obtained by
pulling back along BZ /2 — pt, picks out the positive definite forms.

Example 6.49 (super Hermitian lines) The O-space of the spectrum X277 (1) rep-
resents the groupoid of super lines L with continuous topology on morphisms. We
compute the set of components of the fixed-point spectrum of a trivializable involution:

(6.50) 7oMap(BZ/24,2217(1)) = o £21Z(1) ® mo Map(BZ/2, S217(1))
=7/2®7)2.

This is the group of isomorphism classes of super Hermitian lines. The first Z /27
is the grading of the line, the second the “sign” of the form. But the sesquilinearity
condition

(6.51) (01, 45) = (=DIele2lig, 01y for 44,85 € L
implies that if L is odd then (£,£) € /—1R for all £ € L. (The form is a bilinear
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map L x L — C.) The notion of positivity in this case chooses a ray in ~/—1 R; there
is no canonical choice. In the literature, eg [31, (4.4.2)], an arbitrary choice is made. In
our homotopy-theoretic presentation, this choice lies in the identification of the space
of super Hermitian lines with the O—space of £2/Z(1). As we descend deeper into
extended field theories, there are further choices to be made; see Remark 6.26.

7 Reflection structures and stability

We begin in Section 7.1 by reviewing Madsen-Tillmann spectra; see [52, Section 3].
They give a filtration (7.6) of Thom spectra, which leads to an analysis of the obstructions
to extending invertible field theories to stable theories. In Section 7.2 we develop
the relation between naive positivity and stability in two situations: nonequivariant
discrete theories and equivariant continuous theories. In each case the only obstruction
in n spacetime dimensions arises from the partition function of the n—sphere. But
its positivity does not guarantee positive definite metrics on the state spaces attached
to arbitrary (n—1)-manifolds (Proposition 7.37), consideration of which is deferred
until Section 8. We conclude in Section 7.3 by analyzing the obstruction to extending
“H-type” theories to “L-type” theories.

7.1 Madsen-Tillmann and Thom spectra

The homomorphism py,: H, — O, in (2.3), which defines the symmetry type of a
theory, produces a rank n vector bundle V,, — BH, over the classifying space. We
refer to Section 6.1.4 for the general theory of Thom spectra.

Definition 7.1 The Madsen—Tillmann spectrum MTH,, is the Thom spectrum of
—V, — BH,.

More natural for us is a suspension, the connective spectrum
(7.2) Y"*MTH,, = Thom(BH,:R" — V},).

The general construction of Thom spectra is described in Section 6.1.4. Here is a
geometric description. Let Gr, (R”*9) denote the Grassmannian of n—dimensional
subspaces of R”*4 . It approximates BO,, and the pullback

Xn,n+q -—— = BHn
|
(7.3) . l

\j/
Gr,(R*t9) —— BO,
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is a finite-dimensional approximation to BH,,. The ¢ space of the spectrum (7.2) can
be taken to be the Thom space Thom (X, ,+4: Qg4) of the vector bundle Qg — Xy n14.,
which is the pullback of the rank g “quotient bundle” over the Grassmannian: the fiber
at a subspace W C R4 is Wi,

Remark 7.4 The Pontrjagin—Thom construction provides the basic relationship to
H,—manifolds. If a map S¥*9 — Thom(X nn+q; Qg) is transverse to the O—section
of Q4 — X n+q, then the inverse image of the O—section is a k—manifold M C § k+q
whose stable tangent bundle is equipped with an isomorphism to the pullback of
the “tautological bundle”?® V,, — X, n,n+q > Which is equipped with an H,—structure.
Theorem 5.12 implies that the abelian group 7 X"MTH,, is generated by closed k-
dimensional H,-manifolds under disjoint union. The class of a closed manifold M k
is zero if and only if M = dW, where W is a compact (k+1)-manifold whose stable
tangent bundle is isomorphic to a rank 7 bundle with an H,—structure extending that
of M. This bordism group was introduced by Reinhart [97]; see also [34, Appendix].

Remark 7.5 Not every element of the homotopy group is represented by a manifold;
group completion of the semigroup of manifold classes is needed to obtain the homotopy
group. For example, w9 MTOg = Z but since a O—dimensional manifold has a unique
Op—structure such manifolds only realize the submonoid of nonnegative integers. We
also remark that the sphere S 2m represents a nonzero element in 7o, X2"MTSOs,,,
but is zero in the next group mam+1 22" TIMTSOs,,41: the closed ball D271
has nonzero Euler characteristic so no SO5,,—structure. As another illustration, the
2-sphere and the genus 2 surface represent opposite elements of 7, X>MTSO,: a
genus 2 handlebody with a 3-ball excised admits an SO,—structure.

The stabilization result Theorem 2.19 provides a sequence of spectra®®

(7.6) Y*MTH, — X" '"MTH,;1 — Z"P2MTH,4p — ---

whose colimit, denoted MTH , is the Thom spectrum of the stable vector bundle
7.7) -V — BH

classified by the negative of the classifying map of (2.28); see the construction in
Section 6.1.4, especially the presentation (6.11), which is equivalent to (7.6). From

25The fiber of the tautological bundle at a point W C R”*4 in Gr, (R*19) is W.

26That theorem supplies a stable tangential structure BH from which BHy, is constructed by pullback;
recall (2.27).
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the geometric description in Remark 7.4 the homotopy groups 7 X"MTH,, stabilize
once n > k; then mp MTH is the bordism group of k—dimensional manifolds with
a stable tangential H-structure. We identify MTH with the Thom spectrum MH +
of the perpendicular stable normal structure. In many cases H+ = H ; however, for
example, (Pini)l =PinT.

Remark The classifying space BH* is the pullback
BH+ —— BH

(1.8) l l

BO —— BO

in which the bottom map classifies the negative of the universal bundle (of rank
zero). There is a sequence of inclusions - - HnJ- — H,f‘_H — H,f‘_,_z -+- of compact Lie
groups such that BH* is the colimit of BH,f-. Namely, define Fl,f- as the pullback

(see (2.10))

1 K Ht: Pin;, 1
o |l

1 K J {£1 1
and then set
(7.10) Hi = Hy/{(—1,ko)).

One checks that BH,; is the pullback
BH} —— BH

(7.11) l l

BO, —— BO <

Following Ansatz 5.14 an invertible topological field theory is a map with domain
>"MTH,,. To investigate extensions along the sequence (7.6) we will use the following
in Section 7.2.

Proposition 7.12 The map X"MTH, — X"t!MTH,, has fiber X" (BH;11)+ .
The map X" (BHp+1)+ — X"MTH, is represented by BH,, — BH}, 41, the universal
family of Hp—spheres.

See [52, Section 3.1; 44, Lemma 3.1] for a proof. The universal family of spheres was
mentioned in Remark 4.32. We recall that spectra are built out of based spaces; for a
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based space X the spectrum X" X4 is the one-point union of S” and the suspension
spectrum X" X, and the latter is (n—1)—connected if X is connected.

Our final task in this section is to refine Ansitze 5.14 and 5.26, which formulate
invertible field theories as maps of spectra, to include reflection structures. Recall
from Section 4 that the reflection structure on the bordism category maps a manifold
with Hj,—structure to the same manifold with the opposite Hy—structure, which is
defined using the group extension (3.14). Turning to bordism spectra we observe
that this group extension induces a Z/2-action on BH, and makes the vector bundle
Vs, — BH,, into an equivariant vector bundle Vnﬂ — BH,‘,3 . Applying the discussion
in Section 6.2.2 we refine the Thom spectrum (7.2) to a Z/2-equivariant spectrum
we denote by Z”MTH,;3 . There is an equivariant lift of (7.6). Recall the involutions
on /Z(1) and IC* chosen after Remark 6.33.

Ansatz 7.13 (i) A discrete invertible n—dimensional extended topological field
theory with symmetry group H, and reflection structure is an equivariant map
(7.14) F:S"MTHP — sn(1C*)%.

(i) A continuous invertible n—dimensional extended topological field theory with

symmetry group H, and reflection structure is an equivariant map
(7.15) @: S"MTHP — =" T117,(1)".
The space of theories of this type is

(7.16) T (Hp)refiection = MapZ/2(E"MTHE , =" 11 7,(1)7).

7.2 Naive positivity and stability

We first prove that the double of an H,—manifold is null-bordant through an Hy 41—
manifold. Recall the evaluation bordism (4.7), the identification of duals and bars in
Proposition 4.8, and Definition 4.24 of a double.

Proposition 7.17 Let Yy and Y; be closed (n—1)—dimensional H,—manifolds and
X:Yo— Y1 an H,-bordism. Then
(7.18) BX ey L X:BYoUYy— 2"

is H,+1—bordant to ey,
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Proof The bordism?” is [0, 1] x X. m|

Corollary 7.19 The double AX of a compact H,—manifold with boundary is null-
bordant through an H,41—manifold.

By Corollary 4.30 this applies to S” with its canonical H,—structure, and so every
double is H,1-bordant to S”.

Proof Apply Proposition 7.17 to the bordism X : @"~! — 9X (and smooth the corners
of [0, 1] x X). |

Remark 7.20 If X is the 2—-dimensional disk, viewed as a bordism from the empty
I-manifold to the circle, then AX is the 2—dimensional sphere S2 and the null-
bordism [0, 1] x X is the 3—dimensional ball D3. The Euler characteristic obstructs the
existence of an Hy—structure on D3 which restricts to the given Hp—structure on S 2
(for any stable tangential structure H ).

The sequence of bordism spectra (7.6) results in a special type of invertible field theory.
The following applies to both discrete (Ansatz 5.14) and continuous (Ansatz 5.26)
invertible field theories, possibly with reflection structure (Ansatz 7.13).

Definition 7.21 An n—dimensional invertible topological field theory with domain
S"MTH, is stable if it is the restriction of a theory defined on MTH .

Stability can be investigated one step at a time in the sequence (7.6) using obstruction
theory. We first carry this out for discrete invertible topological field theories without
reflection structure. Recall that the sphere has a canonical Hj,—structure given by the
principal bundle H,4+1 — Hy+1/Hy.

Theorem 7.22 A discrete invertible theory F: X"MTH, — X" IC* is stable if and
only if F(S™) = 1. The subspace of Map(X"MTH,,, X" IC>) consisting of theories
F with F(S™) =1 is homotopy equivalent to the mapping space Map(MTH, X" IC*).

By Corollary 7.19 the condition is equivalent to F(AX) =1 for all compact X" with
boundary.

271t is a bordism of manifolds with boundary or, better, a higher morphism in a multibordism category.
We only use Yo = @" 7!, as in Corollary 7.19, in which case [0, 1] x X is a null-bordism of a closed
manifold.
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Proof If F is the restriction of F: MTH — S"IC*, then F(S") = F(S") =1
since S” is null-bordant as an H,4-manifold. Conversely, by Proposition 7.12 the
map F extends over " TIMTH,, ;1 if and only if it evaluates trivially on the universal
family of H,-spheres. But that evaluation is the constant function BH,4+; — C*
with value F(S"). There is no further obstruction in the sequence (7.6), because the
subsequent fibers have vanishing homotopy groups in degrees <n and 7y X" /C* =0
for g >n.

To analyze the space of discrete stable theories we note that the cofibration sequence
(7.23) Y'"MTH, — X" " '"MTH,+1 — X" (BH, 1)+
of spectra induces a fibration sequence
(7.24)  Map(=" ' (BHy41)+, " 1C*) - Map(E" T 'MTH,, 41, " 1C)
— Map(Z"MTH,,, Z"IC*) — Map(Z" (BHy+1)+, 2" IC™)

of mapping spaces. The first space is contractible, since X" 1 (BH, 1)+ is n—
connected. The fiber of the last map is the subspace indicated in the theorem, by
the obstruction argument in the previous paragraph. To pass to stable maps make a
similar argument with the cofibration sequence

(7.25) " 'MTH,;, - MTH — C

and the induced fibration on mapping spaces. O

Remark 7.26 If X" is a closed H,—-manifold, then [0, 1] x X is a null-bordism
of BX 11 X. Thus if F is stable and has a reflection structure, then ||F(X)||> =1.

Next, we turn to continuous invertible field theories with reflection structure, which
according to Ansatz 7.13(ii) are Z/27Z—equivariant maps

(7.27) @: S"MTHP — =" T117,(1)".

We investigate stability for these equivariant theories.

Remark 7.28 As explained after (5.25) a continuous invertible field theory assigns a
Z(1)-torsor to a closed H,—manifold, hence an equivariant theory (7.27) assigns to
a f—equivariant family X — S of closed H,—manifolds an equivariant Z(1)—torsor

over S, where the action on Z(1)-torsors is that in Example B.5; see also Remark 6.40.
The universal model is the map exp: C — C*, equivariant for complex conjugation,
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with fibers Z(1)-torsors. Over the fixed-point set R* = R>? L1 R<? the fibers are
Z(1)-torsors of Type P and Type N; see Example B.5. As discussed in Section 5.4
a nontopological invertible field theory (type (a) in that discussion) has a homotopy
class that is a continuous theory. If we have a reflection structure, then the partition
function of a —fixed H,—manifold is real, and if it is positive then the corresponding
Z(1)—torsor has Type P.

Remark 7.29 A stable continuous theory ¢ assigns an integer (better, element
of Z(1)) to a closed (n+1)-manifold. The universal property (5.17) of maps into the
Anderson dual implies that the topological field theory associated to ¢ is determined
by its truncation to n— and (n+1)-manifolds.

Theorem 7.30 An equivariant continuous invertible field theory
@: S"MTHP — s"F117,(1)Y
is stable if and only if ¢(S™) has Type P. The subspace of
MapZ/2(s"MTHE, 5" 172.(1)7)

consisting of equivariant continuous invertible field theories with Type P partition
function on S™ is homotopy equivalent to the mapping space

Map?/2(MTH?, =" T112(1)").

Proof Because S” is diffeomorphic to SS”, the partition function ¢(S”") is a
Z(1)—torsor with involution. The partition function of the universal family of n—
spheres is then a Z(1)—torsor over BHy 4+, with involution covering the trivial invo-
lution on the base. It is classified by a map BH,+1; — R* whose homotopy class
in HO(BH,+1:;{%1}) = {£1} encodes the type (P or N) of ¢(S™).

Now use the stabilization sequence (7.6) as before. If ¢ is stable, then it is trivial on
the fiber X" (BH, 1)+ of the first map, which is represented by the universal family
of n—spheres. The argument in the preceding paragraph shows that ¢(S”) has Type P.
To prove the converse, if ¢(S”) has Type P then the first obstruction vanishes, so ¢ is
the restriction of a map Z”‘HMTH;g 1 > +177(1)7 . The obstruction at the next

stage is a map E”+1(BH£+2)+ — X" +117,(1)Y. But
En+1(BHf+2)+ ~ Sn+1 V. En+lBHnB+2
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with Z /2 acting trivially on the suspension S”T1 of the basepoint. Since X" +! BHf 2

is (n+1)—connected, the obstruction lies in
(7.31)  [S"HL =tz )R = (80 1712
~ [EZ/24 Agja ST TZ(1)]
~ Hom(rg EZ/24 Agz/2 ST, Z(1)) =0,
since
mo EZ/24 Ngj2 S ' =m RP® =17Z)/2.

There are no further obstructions to extending to MTH , because the fibers have
nonvanishing homotopy groups only in degrees greater than n+1 and >r+l1z() =
Oforg>n+1.

The equivariant version of (7.23) with the S—involution leads to the fibration sequence
(7.32) Map?/2(="TY(BHP, )4, =" 1Z(1))
— MapZ/2(S"*IMTHS |, =" 17.(1))
— Map?/2(S"MTH? , 2" T117.(1)7)

— Map?/2(S"(BHP )4, =" 12(1)7).

As in (7.24) the first space is contractible. The obstruction argument above identifies
the fiber of the last map as equivariant continuous theories with positive sphere partition
function. To pass to stable maps use an equivariant version of (7.25). |

Corollary 7.33 There is a 1:1 correspondence

isomorphism classes of continuous
invertible n—dimensional extended

(7.34) topological field theories with ~ [MTH B sty (1)y]Z /2

(i) symmetry group Hp,
(i1) reflection structure, and

(iii) partition function on S” of Type P

Example 7.35 The restriction map?®
(7.36) IMTSO?, £417,(1)"]%/% — [Z3MTS0?, 5417,(1)"]%/?

28The involution on 74 MTSO and 74 S3MTSO3 acts as —1: both groups are detected by the
signature, which negates under orientation-reversal.
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is an index-two inclusion of infinite cyclic groups. It follows that there exist con-
tinuous invertible 3—dimensional oriented theories ¢ with reflection structure such
that ¢(S3) has Type N. In turn, this suggests the existence of invertible nontopo-
logical theories with reflection structure whose real-valued partition function on S3
is negative; see Section 5.4. Here is an explicit example. The domain is the geo-
metric bordism category of oriented Riemannian manifolds. The partition function
is F(X3) = exp(2riéy ), where &y is the Atiyah—Patodi-Singer invariant (of the
operator ‘B’ in [9]). To apply the arguments in Theorem 7.30 we need to use a
Riemannian sphere that is a double — the round sphere does nicely — in which case
the spectrum of the APS operator is symmetric about zero and so the n—invariant
vanishes. The dimension of the kernel is one, &, = %, and so F(S3) = —1. We
remark that the corresponding integer invariant of a closed oriented 4—manifold W
is %(Sign(W) 4 Euler(W)); either sign works. Also, the square of this theory,
whose deformation class generates [MTSOﬂ ,X417Z(1)Y1%/2, represents “Kitaev’s
Eg—phase” [73].

Let F be a invertible topological n—dimensional theory, and suppose that F(S”) > 0.
Then the Hermitian form on F(S”~1) is positive definite; see (4.27). The positivity
holds for any null-bordant (n—1)-manifold, but on other manifolds there is no guarantee
of positivity (Definition 4.18), even for stable theories.

Proposition 7.37 Let F be an invertible n—dimensional topological field theory of
Hp—manifolds with F(S"™) > 0. Suppose F has a reflection structure. Then the sign
of the Hermitian form (4.16) on a closed (n—1)—manifold is a bordism invariant and
determines a homomorphism

(7.38) Tn_1 T 'MTH,_; — {£1}.

Proof If X:Yy — Y; is an Hy,-bordism, then by reversing the arrow of time on the
incoming boundary we obtain X’: @"~! — BY, LI Y;. Hence by Corollary 7.19 and
the remark which follows, we deduce that the Hermitian line ITYO) ® F (Y1) is positive
definite. Therefore, F(Yy) and F(Y7) are simultaneously positive or simultaneously
negative. |

We conclude this section with a lemma we will use in Section 8.
Lemma 7.39 The map ¥"MTH, — MTH induces a surjection on Hy4+1(—;R).

We remark that 7,41(B) ® R — Hp+1(B; R) is an isomorphism for any spectrum B.
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Proof Arrange the stabilization (7.6) and cofibration sequences (7.23) as follows:

Z"(BHp+1)+ St (BHp42) +
| |
(7.40) SPMTH, — s S MTH, ) —2—s SPP2MTH, 40
| | l
E"(BHn)+ " (BHp 1)+ 3" 2(BHp+2) +

The two compositions with shape
—.

|

are cofibration sequences. The map s« on m,4+; sends the generator of the infi-
nite cyclic group m,41 2"tV (BH,42)+ to the class of S”*1, and the map s«
on m,4+1 sends the class of a closed (n+1)-manifold to its Euler number. Also,
Tnt1 2" T2(BHy42)+ =0. It follows that j, on 7,41 is surjective. If n is even, then
X« =0 on m,41 and by exactness i is surjective. If n is odd, then ysos4 is multiplica-
tion by 2. Working now on 7,41 ® R we can lift any class in 7,41 E”+2MTHn+2 ®R
through j, to have zero image under y. and hence, by exactness, to be in the image
of ix ® R. In other words, (j oi)« ® R is surjective. Finally, the stabilization map
Y*+2MTH, 1> — MTH induces an isomorphism on 741 . O

7.3 H-type theories

Wen [113] and Morrison and Walker [90] introduced the notion of n—dimensional
topological field theories defined only on n—manifolds with an infinitesimal time
direction. These are of Hamiltonian type, or H-type, and are the minimal expectation
for the low-energy effective theory describing a Hamiltonian system. In this paper
we assume emergent relativistic invariance, so do not engage with H-type theories
in a serious way. Nonetheless, in this subsection we indicate briefly how to analyze
invertible theories of H-type.

The first issue is definitional: Do the n—manifolds in the bordism category have (i) an
oriented time direction or merely (ii) a time direction? In unoriented theories this means

Geometry € Topology, Volume 25 (2021)



Reflection positivity and invertible topological phases 1239

areduction of Oy, to either (i) O,—1 or (ii)) O1x O, —1. We opt for (i). After all, a Hamil-
tonian system does have a definite orientation of time, and even in relativistic quantum
field theory we assume a time orientation of Minkowski spacetime (Section 2.1). Then
a more general symmetry group H,, is reduced to H;_1, and an invertible theory of
H-type is a map out of the spectrum X"~ 'MTH,,_;.

Now to the extension question, as in our study of stability: Does an equivariant
map ¢: E"_lMTHf_1 — X" T1[7(1)7 extend to an equivariant map Z”MTH,ﬁ3 —
27 +117,(1)Y ? (In Wen’s language this is an extension from H-type to L-type.) The ob-
struction is the value of ¢ on the universal family of H,,_;—spheres S”~! parametrized
by BH, . Without the equivariance the value?® is a Z/2Z-graded complex line bundle
over BH, ; the equivariance implies the value is a Z/2Z—graded real line bundle. (See
Remark 6.40 for the connective cover of £2/Z(1) and its bar involution y.) The first
obstruction is the grading: the single quantum state on S”~! should be bosonic. If
so, the remaining obstruction is a class in H'(BH,;Z/27) =~ Hom(H,,Z/27) =
Hom(zg H,,7Z/27). For example, if H, = O, or H, = Pin,:f, then a hyperplane
reflection should act trivially on the line ¢(S*~1).

Example 7.41 Continuing Example 7.35, the restriction map
(7.42) [Z3MTSOE, £417,(1)"1%/% — [Z*MTSO% , £412,(1)71%/?

is an index-two inclusion of infinite cyclic groups. So there exists a continuous invertible
theory ¢ of H-type with reflection structure that does not extend to all oriented 3—
manifolds. Here is an example defined on the category of oriented Riemannian 2—
manifolds: assign the Z/27Z—graded determinant line ¢(Y) of the 5—operator toa
closed 2—manifold Y. Then index 552 =1 implies that ¢(Y") is odd.

8 Positivity in extended invertible topological theories

In this section we develop the theory of extended positivity in invertible field theories.
We already introduced a homotopy-theoretic manifestation of extended positivity for
higher super lines in Definition 6.41. Here, in Section 8.1, we begin by introducing
spaces of invertible field theories leading up to the space of invertible reflection positive

29Pparallel to the Z(1)—torsors attached to n—manifolds are graded gerbes attached to (1—1)—-manifolds.

The construction of a line may depend on a choice of metric, for example, so may be part of a nontopolog-
ical theory.
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theories. Our main result, Theorem 8.20, identifies the homotopy type of the space of
invertible continuous reflection positive theories as the O—space of the Anderson dual
to a Thom spectrum. The homotopy type of the corresponding space in the discrete
case, worked out in Theorem 8.29, is a corollary, as is Theorem 1.1 in the introduction.
The proof of Theorem 8.20 appears in Sections 8.2 and 8.3.

8.1 Spaces of invertible field theories, extended positivity, and stability

8.1.1 Preliminary: splitting off a reflection Fix n > 0. Recall that if (H,, p,) is
a symmetry type (Definition 2.4), then we have a canonical coextension (3.14) of Hj
by {%1} to a group H,. It is this extension that determines the B—involution on the
Madsen-Tillmann spectrum MT H,,, as in the discussion preceding Ansatz 7.13; the
homotopy quotient of MTHnﬂ is MTI-AIn.

The splitting of interest is contained in (3.25) (and is also implicit in Proposition 4.8).
It exists whenever there is an “auxiliary” direction. The middle vertical homomorphism
in (3.25) induces
BH,_1 x BZ/2 — BH,,
which factors the projection
BH,_1 x BZ/2 — BH, — BZ)2.
This, in turn, gives a sequence of equivariant maps

(8.1) " 'MTH,_1 AS'™% — S"MTHS — MTH A §'7°

factoring the smash product of the identity map of S'~% with the defining inclusion of
2" MTH,—; into MTH .

The stable form of the splitting implies the following.

Proposition 8.2 The Z /2—-equivariant spectra MTH B and MTHY are canonically
equivariantly weakly equivalent.

We recall that, despite the similarity of notation, the S—involution is defined by the group
coextension whereas the y—involution is natural, obtained by smashing with S177

Proof Take n — oo in (8.1). The colimit of the first term is MTH A S17° and the
composition is homotopic to the identity map. |
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8.1.2 Spaces of theories Let n > 0 be the spacetime dimension and fix a positive
integer k <n. Let G be a Lie group equipped with a homomorphism p: G — Oy.
The map p is used to form the Thom spectrum MTG = Thom(BG; —p). Define the
space of continuous invertible k—truncated n—dimensional topological field theories of
symmetry type (G, p) as3°

In(G) = Jn(G, p) = Map(SXMTG, =" 1 17Z(1)).

Usually p is understood in the notation. A point of J,(G) may be thought of as a k—
dimensional field theory that associates a super (n—£)-line to a closed £-manifold M,
{<k.

Different flavors of field theories are obtained by changing the target, as in Definitions
6.41 and 6.45. We give the definitions for continuous invertible theories; there are
analogous definitions for discrete invertible theories.

Definition 8.3 Fix integers n > 0 and k <n.

(i) The space of continuous invertible k—truncated n—dimensional Hermitian ex-
tended topological field theories with symmetry type (G, p) is

Jn(G, P)Hermitian = Map(EkMTG, En-HIZ(l)H)-

(i1) The space of continuous invertible k—truncated n—dimensional positive definite
extended topological field theories with symmetry type (G, p) is

90 (G, P)positive = Map(E¥FMTG, ST Z(1) o).

Note that composition with the map I Z(1)pos — I Z(1)y induces a map

(8'4) jn (Ga p)positive g jn (G, p)Hermitian~

Assume the symmetry type is a pair (Hj,, pn) as in Definition 2.4. We recall the
notation (7.16) for the space of theories with reflection structure:

(8'5) jn (Hn)reﬂection - MapZ/z(EnMTH,I? y En+1]Z(1)y)
Composition with the first map in (8.1) produces a map

(8'6) jn (Hn)reﬂection - jn (Hn—l)Hermitian-

30The “k’ usually appears in the notation for G, as in (8.9) below, so we do not adorn *J” with it.
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Therefore, the value of a theory with reflection structure on a closed manifold of
dimension £ <n—1 is a Hermitian super (n—{)-line. (The Hermitian line for £ =n—1
is described in Section 4.3 for not necessarily invertible theories.) Recall the stabiliza-
tion p: H — O in (2.28), and define

(8.7) In (H)staple = Map(MTH, 2" t117,(1)),

the space of stable n—dimensional invertible topological field theories of symmetry
type H.

We use the notation J‘,sl (G ) Hermitian » J‘f, (G)positive » and Jfl(Hn)reﬂecﬁon for the corre-
sponding spaces of discrete field theories, which are mapping spaces with codomain
TMICE, XMICK,, and " (IC X)"6 , respectively. (See (6.42) and (6.46).)

pos >

The main objects of interest are invertible reflection positive theories. As stated
after (8.6), an invertible theory with reflection structure has values on closed manifolds
of dimension < (n — 1) that are higher Hermitian super lines. The following definition
uses (8.4) to impose positivity, which in dimension n —1 is a condition (Definition 4.18)
and in dimensions < (n — 1) is a structure.

Definition 8.8 Fix n > 0 and a symmetry type (Hp, pn) in the sense of Definition 2.4.
Define the spaces

In (H n ) reflection and J i (H n )reﬂe_ctjon

posmve posmve
of n—dimensional continuous (resp. discrete) invertible reflection positive topological
field theories with symmetry type (H,, pn) and maps out of these spaces so that each
square in the diagram

Jz (H n)rggtsticttiiv%n —— Jn(H n)r[e)gglctt&%n — Jn(H, n—l)positive

(8.9) l l y

th (Hn)reﬂection — jn(I_In)reﬂection — jn (Hn—l)Hermitian
is a homotopy pullback.
For the spaces of theories in the right-hand column we use Definition 8.3 with

k=n—-1, G = Hy—1, and p = pp—;. Our task is to determine the homotopy
types of Jy, (Hp)reflection and J;gl (Hjy,)reflection .

positive positive
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8.1.3 Extended positivity structure Definition 8.8 is natural given our homotopy-
theoretic implementation (in Definition 6.45) of higher positive definite Hermitian super
lines. We now make a short digression to identify extended positivity in an invertible
n—dimensional field theory as a structure that trivializes an associated invertible (n—1)-
dimensional field theory. For this we need yet an additional space of invertible field
theories, based on the target spectrum of higher real super lines (Definition 6.41(ii)).

Definition 8.10 The space of continuous invertible (n—1)—dimensional real extended
topological field theories with symmetry type (Hp—1, pn—1) 1s

(8.11) IR [(H,_,) =Map(Z""MTH,_1, (Z"IZ(1)¥)"2/2).

The partition function on a closed (n—1)-manifold lies in {1}, the value on a closed
(n—2)-manifold is a real super line, etc. (See Remark 6.40 for the top few homotopy
groups of (IZ(1)Y)"2/2 )

To begin, for any pointed space X there is an equivalence of spectra X4 ~ X v S°,
which leads to a cofibration sequence

(8.12) X > X, — 8%
Set X = BZ /2, smash with £*~!MTH,,_; , and apply Map(—, £"+117Z(1)) to obtain
the fibration sequence
(8.13) T (Hn—1)positive = In (Hn—1)Hermitian — In_ (H,,_,).
For the middle term use (6.43) and for the last the identification
Map(Z" 'MTH,_1 A BZ/2, =" I 7(1))
~ Map?/2(S"MTH,—1 A S, "M 1 7Z(1))
~ MapZ/2(S"MTH,_1, 2" T 1Z(1)")
~ MapZ/2(Z" 'MTH,_. Z" I Z(1)Y)
~ Map(Z"'MTH,_1, Z" (I Z(1)")*2/?),

Therefore, the space J,, (Hp,)refiection may also be defined as the homotopy fiber of the
os1tive
composition b

(8'14) K: jn (Hn)reﬂection - Jn (Hn—l)Hermitian - 55_1 (Hn—l)‘

This leads to the following definition.
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Definition 8.15 An (extended) positivity structure on a continuous n—dimensional
field theory ¢ € I, (Hy)refiection 18 @ trivialization of «(¢).

That is, a positivity structure is a path from «(¢) to the basepoint in 35_1 (H,_,). This
discussion identifies the space of continuous reflection positive invertible field theories
as the space of continuous invertible field theories with both a reflection structure and
a positivity structure.

Remark 8.16 The partition function of the field theory

ik(¢): S"IMTH,—1 — S"(IZ(1)")"2/2
is the homomorphism
(8.17) Tpn—1 T 'MTH,_; — {+1}

induced on m,—1, and it agrees with the homomorphism (7.38) which tracks the sign
of the Hermitian lines in the theory ¢. The highest piece of the positivity structure is
therefore the standard positivity constraint in Definition 4.18. The theory x(¢) assigns
a real super line to a closed (n—2)-manifold and more complicated objects in lower
dimensions; their trivializations are data.

8.1.4 Main theorems We apply the splitting of Section 8.1.1 to construct a map

(8.18) Jn (H)stable — jn (Hn )reﬂeg:gion

positive
as follows. (These spaces of invertible field theories are defined in (8.7) and (8.9).)
Map

(8.19) " 'MTH,_1 ABZ/24 — X" 'MTH,_; - MTH

into X" *117Z(1) to obtain a map of J, (H )saple into the upper-right corner of (8.9).
Use equivariant maps of the sequence (8.1) into X*11Z(1)” to map J,, (H )staple into
the middle of the bottom row of (8.9) . The two compositions into the lower-right
corner are canonically homotopic, so the fact that the right square in (8.9) is a homotopy
pullback yields (8.18).

Theorem 8.20 The map J,,(H )stable — I (Hy )refiection in (8.18) is a homotopy equiv-
positive
alence.

We give the proof of Theorem 8.20 in Sections 8.2 and 8.3.
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Corollary 8.21 There is an isomorphism

(8.22) 700 Jn (Hyp )reflection = [MTH, 2" 11 7Z,(1)].

positive
Next, we turn to discrete invertible theories. First, observe that the Z /2—action on C
by complex conjugation is equivalent to the Z/2-action on Map(Z/2,R), so for any
7,/ 2—spectrum X one has

(8.23) Map%/2(X, HC"0) ~ Map(X, HR).

The spectrum Map(X, HR) carries a residual Z/2-action, induced from the Z/2—
action on X ; it splits as a wedge of the (41)— and (—1)—ecigenspaces. The exponential
sequence (6.35) of Z/2-equivariant spectra implies that the left map in the bottom row
of (8.9) extends to a fibration sequence

(8.24) Map?/>(S"MTHPE £ (1C*)"0) - Map?/2(S"MTHS , ="+ 117,(1)7)
— MapZ/2(S"MTHE 5"+ HCY).

Apply (8.23) to the last term and use the fact that the left-hand square in (8.9) is a
homotopy pullback to obtain a fibration sequence

ositive

(8.25) jﬁ (Hn)reﬂeg:tt_ion — jn (Hn)reﬁei;ion — Map(E"MTHn, En+1HR).
positive p

Proposition 8.26 The image of the homomorphism
(8.27) o Jfl (Hn)reﬂeption — 1o In (Hn)reﬂe_cgion

positive positive
is the torsion subgroup of 1o I, (Hp )reflection .

positive

Theorem 1.1 in the introduction follows from Proposition 8.26 and (8.22). In Theorem
8.29 below we determine the homotopy type of the space of discrete invertible reflection
positive field theories.

Proof Since (8.25) is a fibration sequence of spectra, applying g we obtain an exact
sequence of abelian groups in which, after applying (8.22), the second map is3!

(8.28) IMTH, 2"t I 7Z(1)] - [S"MTH,, =" HR(1)].
31The map (8.28) is Z/2-equivariant for the f—involution on MTH and ="MT H,, . By Proposition
8.2 the B—and y—involutions on MTH agree, from which Z/2 acts as —1 on the domain. It follows that

the image is contained in the (—1)—eigenspace of the codomain, which is why we write ‘ HR(1)’ in place
of ‘HR’.
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The construction following (8.19) implies that this map is pullback along the defining
inclusion of ¥"MTH,, into MTH . The proposition follows if we prove (8.28) is injec-
tive after tensoring the domain with R. This follows immediately from Lemma 7.39. O

We parlay (8.25) into a more useful expression for the homotopy type of the space of
discrete invertible reflection positive field theories. Recall the spectrum /T introduced
in Remark 6.36.

Theorem 8.29 For n odd there is a homotopy equivalence
(8.30) Map(MTH, £" I T) = 93 (H,, )refiection.
positive
For n even there is a fibration sequence
(8.31) Map(MTH, £"IT) — 98 (Hp )refiection —> R>°
pOSlthC

in which R>® has the discrete topology and s maps a discrete theory F to F(S™).

Compare with the more rigid Theorem 7.22 in the absence of reflection structures. Also,
note that for any n—manifold X the disjoint union SX LI X is null-bordant, and so in
a stable theory the partition functions have unit norm, consistent with the appearance
of I'T in (8.30) and (8.31). There is a canonical section of s given by Euler theories
(Example 4.21): given x € R>° define the Euler theory as the composition

8.32) X"MTH? — ="(BHF), — 3"S° X, SPHRO S 51 (ICX)%,

The restriction to Z‘”_IMTH,’?_1 is trivialized; using (8.9) we obtain a reflection
positive theory.

Proof For any pointed space C, use the nonequivariant version of the exponential
sequence (6.39) and the fibration sequence (8.25) to construct the diagram

Map(MTH, "I T) — Map(MTH, 2" T117(1)) — Map(MTH, X" T HR(1))

(8.33) 93 (Hy)refection ———— Ty (Hy)reflection ——— Map(S"MTH,, "1 HR)

positive positive

in which the rows are fibration sequences, as is the middle column, by Theorem 8.20.
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We claim

* for n odd,

8.34 C, =
(8-34) " K(R,1) forn even,

renders the last column a fibration sequence; it follows that the first column is as well.
(Here K(R, 1) is an Eilenberg—Mac Lane space.) There is an exponential to pass from
the third column to the first column in (8.33), and so naturally QCj, ~ R>? with the
discrete topology.

To prove the claim observe first that we can replace the upper-right entry of (8.33) with
the homotopy equivalent space Map(Z"T2MTH,, 15, X" 1 HR(1)), using arguments
similar to those in Section 7.2. To analyze the resulting right vertical map consider the
composition

(8.35) 1, S"MTH, ® R 5 7, "V 'MTH, 11 ® R L5 7, 2" T2MTH, 4, ® R.

The composition j i is an isomorphism for ¢ < 1, and since we map to X" +! HR
only ¢ <n 41 is relevant. Use (7.40) and the exact sequence

[s™]

(8.36) Tmi1 ZHIMTHypg 1 2205 7 225 1, S™MTHyp,

— 7T S"TIMTH,py oy — 0

to verify the following four assertions. If n is odd, then ji« ois is an isomorphism
forg=n and g =n+1. If n iseven, then jyoiy is an isomorphism for ¢ =n+1 and is
surjective for ¢ = n with kernel generated by [S"]. Observe that [S"] = [I-AIn_H / ﬁn] is
fixed by the B—involution. It follows that the upper-right arrow in (8.33) is injective with
image the (—1)—eigenspace of the S—involution and cokernel the (+1)—eigenspace gen-
erated by [S"]. (Compare with footnote 31.) The claim, and so the theorem, follows. O

We conclude this subsection with a comment about our application of these theorems
to computations. Namely, the considerations in Section 5.4 lead to the following
conjecture, which uses nontopological invertible theories (for which we do not develop
mathematical foundations in this paper).

Conjecture 8.37 Thereis a 1:1 correspondence

deformation classes of reflection positive
(8.38) invertible n—dimensional extended ~ [MTH, 2"t 17.(1)].
field theories with symmetry type (Hy, o)
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We remark that since the rational cohomology of BH vanishes in odd degrees, elements
of infinite order in (8.38) occur only for n odd.

Remark 8.39 A restatement of Corollary 8.21 is the 1:1 correspondence

isomorphism classes of reflection positive

continuous invertible n—dimensional

(8.40) ~ [MTH, 2"t 17(1)).

extended topological field theories
with symmetry type (Hy, pr)

If we accept that the effective low-energy theory of an invertible gapped system
is a continuous invertible topological field theory, as in Remark 5.29, then we can
apply (8.40) to the computations in Section 9 rather than (8.38). This has an advantage:
(8.40) is a theorem in the context of this paper.

Remark 8.41 A homotopy class of maps MTH — X"T117(1) leads to a canonical
isomorphism class of invertible field theories via the following sketch; the theories are
topological if and only if the homotopy class has finite order. By the twisted Thom
isomorphism the homotopy classes are elements of /Z(1)**"+1(BH), where 7 is the
canonical “density twisting”: the pullback to manifolds with tangential H—structure
can be integrated. According to the main theorem in [42] there is a unique lift to the dif-
ferential cohomology group Ii(\l yTHntl (By H). Choose a “cocycle” representative.
Then on any manifold with a differential H—structure we can integrate to construct an
invariant, and these invariants fit to an invertible field theory on Bord,Y(H ).

8.2 Proof of Theorem 8.20
We restate the theorem in the language of stable homotopy theory.

Proposition 8.42 The square

Map(MTH, £*T117,(1)) ————— Map(X" " 'MTH,_;, 2" T I Z(1))

(8.43) l l

MapZ/2(S"MTHy, . "+ 1 Z(1)7) —— Map?/2(£"~\MTH,)_,. ="+ 1 Z(1)7)

is a homotopy pullback square of spaces.

The analysis of this square becomes cleaner if we replace every term of the form
MapZ/2(X, £"+11Z,(1)?) with Map((X A SO 1) z/2, Z"H1IZ(1)). Once we do so,
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Proposition 8.42 becomes the assertion that the square

" \MTH,_1 A BZ/24 — S"MTH ™V

(8.44) l l

" IMTHp,—y ——— MTH
becomes a homotopy pullback square after applying Map(—, X*T11Z(1)), where
(8.45) MTH =Y = Thom(BH,:; —pp + 0 —1).
To clarify the argument we state this as:

Proposition 8.46 For any m > n, the square

S UMTHyp—1 A BZ/24 — SPMTHS ™

(8.47) l l

" IMTH—y ———— MTH
becomes a homotopy pullback square after applying Map(—, Z*T117(1)).

The proof of Proposition 8.46 will make repeated use of the following result, which
follows from the universal property (5.17) of 17Z(1).

Lemma 8.48 Suppose A is a spectrum having the property that m; A =0 fori <n
and m, 41 A is a torsion group. If A — X — Y is a cofibration sequence then

Map(Y, "1 17Z(1)) - Map(X, =" 17Z(1))
is a weak equivalence of spaces.

The proof of Proposition 8.46 is by decreasing induction on m. As m — oo the
square (8.47) becomes

MTH A BZ/2, — MTH ABZ/2,

l |

MTH ——  MTH
which is obviously a pushout. On the other hand for m > (n + 2) the maps
>"'MTH,,_; — MTH,
S"MTH ™Y — MTH A BZ/2+
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become equivalences after applying Map(—, 2" +117(1)), so the result is true for all
m > n + 2. (Compare with the proof of Theorem 7.30.)

Since the homotopy fiber of the left vertical map in (8.47) is X"~ 'MTH,,,_1 A BZ/2,
Proposition 8.46 is equivalent to the assertion that for all m > n, the sequence

S MTH,,—1 A BZ/2 — S™MTHC ™D — MTH

becomes a fibration sequence after applying Map(—, ="*t17Z(1)). The induction
step therefore follows from:

Proposition 8.49 For m > n, the square

SMIMTHyp_1 A BZ)2 —— SPMTHC ™Y

(8.50) l l

SMMTHp A BZ/2 —— S™HIMTAC

becomes a homotopy pullback square after applying Map(—, X" 117(1)).

What is at stake in Proposition 8.49 is to prove that the induced map
(8.51) 2" Y (BHup)+ A BZ/2 — £™ Thom(BHpm+1:0 — 1)

of homotopy fibers of the vertical maps in (8.50) becomes a homotopy equivalence after
applying Map(—, X" T117Z(1)). The following result will be proved in Section 8.3.

Lemma 8.52 The map (8.51) is the (m—1)"" suspension of the map of Thom spectra
(of the bundle (o — 1)) associated to the map

(8.53) BHyy x BZ,/2 — BH i1

given by the choice of reflection in the last coordinate.
Assuming Lemma 8.52 we can prove Proposition 8.49.

Proof of Proposition 8.49 It suffices to show that the induced map (8.51) becomes
a weak equivalence after applying Map(—, £"+117Z(1)). The map (8.53) fits into a
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Cartesian square
Sm - Sm

| |

BH,, — BH,y x BZ)2 — BZ)2
BHyy4+1 —— BHpy1 —— BZ/2

so Lemma 8.52 implies that the cofiber of (8.51) is 2m—connected. Since m >n > 1,
one has 2m > n and so the cofiber is n—connected. Both terms in (8.51) are rationally
acyclic. The result then follows from Lemma 8.48. a

8.3 Transfers

Suppose that M — X is a fiber bundle with fibers closed smooth manifolds M, of
dimension n. Let Tys/x be the vector bundle over M whose fiber at a € My is the
tangent space T, M, . There is functorial stable map

Y*°X 4 — Thom(M, —Ty/x),

called the transfer map. When there is an embedding M C X x R” for some # it can
be constructed from the Pontrjagin—Thom collapse

Thom(X,R") — Thom(M,R" — Ty x)

by passing to suspension spectra and desuspending n times. The transfer map is
constructed in the general case by passing to the colimit over the category of pairs

Xo — X,
ia:MagXaxRN“,

in which M, — X is the pullback of M — X along the map Xy — X.

When there is an embedding M C W over B, the Pontrjagin-Thom construction leads
to a twisted transfer map

Thom(B; W) — Thom(X; W — Ty, x).

The twisted transfer extends in the evident manner to the case of virtual bundles W.
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Proposition 8.54 Suppose that W is a vector bundle over X and that f: M — W
is a map over X transverse to the zero section, and let N be the inverse image of 0.
There is a commutative diagram

Thom(X; 0) ——— Thom(N; —Ty/x)
Thom(X; W) —— Thom(M; W — Ty x)

in which the left vertical map is derived from the zero section, and the right is the natural
map of Thom complexes coming from the inclusion N C M and the isomorphism

Tmyx =~ Tnyx @ W.

Proof It suffices to establish the case in which there is an embedding
i M —R".
Applying the Pontrjagin—-Thom constructions to the rows in the transverse pullback

square
N —— X xR”

|

M —— W xR"
fi0)

gives a diagram
Thom(X; R") ————— Thom(N;R" — Ty, x)
Thom(X; W & R") —— Thom(M; W +R" — Ty, x)
in which the left vertical map is the inclusion of the zero section. Desuspending, the
claim follows easily from this. |
Proof of Lemma 8.52 The idea is to apply Proposition 8.54 to the left triangle in the
diagram

S(om) x BZ/2 ——— S(pm ® 0) —— S(Pm+1)

(8.55) \ l l

BHpy x BZ/2 — BHpiq
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with
X =BH, xBZ/2,
W =o,
M = S(pm 690)7

N = S(pm) x BZ/2.

The diagram is written in order to clarify the relationship with manifolds. Note that
there are equivalences
S(pm) ~ BHm—-1.

Also, for a vector bundle V' — X the relative tangent bundle of p: S(V) — X is given
by Tsvy/x ® R = p* V. Proposition 8.54 then gives the left square in the diagram

" Y (BHu)4 ABZ/24 — ™ Y(BH,p)4 A BZ/2 — ™ Thom(BHp11:0 — 1)

oo | | l

S IMTHyp_1 A BZ/2+ Y SMMTALC ™Y

with
Y = X" Thom(S(pm ®0):1—pm—0—1+4+0);

the right square in (8.56) is the pullback of transfer maps induced from the pullback
square in (8.55). The map (8.51) is the composition of

(8.57) " Y BHp)4 ABZ/2— S"™ Y (BH,,)+ ABZ/24

with the top row of (8.56). Lemma 8.52 now follows from the fact that the composition
of (8.57) with the left map in the top row of (8.56) is the identity. a

9 Fermionic theories with scalar internal symmetry group

In this section we apply Theorem 1.1 to some basic symmetry groups, namely those
whose subgroup K of internal symmetries is the group O;, Uj, or Sp; of unit
norm elements in the normed division algebras R, C, or H, respectively. (We use the
names {£1}, T, and SU; for these three groups.) The internal symmetry group K =T
is the basic charge symmetry of electromagnetism; in quantum mechanical models
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the presence of a so-called particle-hole symmetry “breaks”3? it to either K = {£1}
or K = SU,. In Section 9.1 we classify the possible symmetry groups H, with these
internal symmetries, and restricting to fermionic symmetry groups we recover the
10—fold way; see tables (9.24) and (9.25). (Wang and Senthil [112] list many of these
groups —in a nonrelativistic form, (9.34) and (9.35) — and the corresponding “Cartan
label”. Metlitski [87] introduces the group Pinﬂ, which provided guidance for our
treatment here. This twisted form of Pin¢ also appears implicitly in [104, Section A.4].)
Lemma 9.27 relates the relativistic 10—fold way to the 10 real and complex Clifford
algebras, thus providing a link to other 10—fold ways.

In Section 9.2 we sketch two ways in which a theory of free fermions in Minkowski
spacetime gives rise to a deformation class of reflection positive invertible field the-
ories or to a reflection positive continuous invertible topological field theory. If one
begins with an (n—1)—dimensional free fermion theory, then there is an associated
n—dimensional invertible anomaly theory; if the original free fermion theory admits a
mass term, then the anomaly is trivializable. In this paper we do not attempt a complete
treatment, so state the main result as a conjecture, Conjecture 9.70. It expresses the defor-
mation class of the anomaly theory as a composition of a twisted Atiyah—Bott—Shapiro
map and a Pfaffian map on real K—theory. This K-theory interpretation depends on
Lemma 9.55, which expresses the existence of a mass in terms of Clifford algebras.

The second scenario is to begin with a massive free fermion theory in #» dimensions,
as we sketch in Section 9.2.6. The low-energy effective field theory is invertible,
and (9.71) is a formula for its deformation class. It is this scenario about gapped
theories that is relevant to this paper.

We carry out computations in low dimensions in Section 9.3. For each of the 10 electron
symmetry groups we list the groups of deformation classes of reflection positive
invertible topological theories and compute the map from free fermions to it. There is
no further physical reasoning; we compute directly from the results in Theorem 1.1
and (9.71). The techniques lie in stable homotopy theory, and in the next section we
give some details to illustrate how the computations are made. As discussed in Section 1
these classification results apply to invertible topological phases of condensed matter
systems, often called SPT phases. The fermionic symmetry groups with K =T pertain

32We do not have any fundamental understanding of this mechanism, especially the appearance of SU» .
In Section 9.1 we simply offer it as a storyline in relativistic theory that matches the condensed matter
literature.
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to topological insulators; those with K = {£1} and K = SU, pertain to topological
superconductors.

Remark 9.1 Most of the interacting groups we compute are torsion so are covered
by Theorem 1.1. In the general case we interpret the computations as theorems by
using (8.40), in which the interacting group is a group of isomorphism classes of
reflection positive continuous invertible topological field theories. See Section 5.4 for
a discussion of expectations for low-energy effective field theories.

In the theoretical discussions we assume n > 3; in the computations we apply the
results to all 7.

9.1 Symmetry groups of fermionic systems

We already classified symmetry groups H, with K = {%1} in Proposition 2.16. The
fermionic groups are the ones for which —1 € K is the distinguished element k¢ of
Theorem 2.7 and Corollary 2.12.33 (The other possibility is kg = 1, in which case the
symmetry group is bosonic.) Those fermionic groups are Spin,,, Pin;lF ,and Pin,, .

Next, we classify symmetry groups with K = T . These are group extensions

9.2) 1—-T —SH, - SO, —1

if there is no time-reversal symmetry and

9.3) 1-T—-H,— 0, —>1

if there is time-reversal symmetry. Recall the group E,, defined before Proposition 2.16.
Proposition 9.4 (K = T) Up to isomorphism there are two distinct group exten-
sions (9.2) with n > 3, and the groups SH,, that appear are SO, x T and Spin,.
Up to isomorphism there are six distinct group extensions (9.3) with n > 3, and the

groups Hj, that appear are mutually nonisomorphic. Three of the groups have identity
component SO, x T :

9.5) O, xT,
9.6) 0,xT,
9.7) E,x T /{£1}.

33This implies the “spin/charge relation” of condensed matter physics, which is emphasized in [104]:
bosons have even charge and fermions have odd charge.
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The identity component of the remaining three groups is Spin,, :

9.8) Pin, =Pin| x T /{£1},
(9.9) Pin’t = Pin x T /{%1},
(9.10) Pin~ = Pin,, x T /{£1}.

The group Pin, is also isomorphic to Pin, x T /{%1}. It sits in the complex Clifford
c+

algebra generated by R” with a nondegenerate symmetric bilinear form [8]. In Piny,

the action of Pin,;—L on T factors through g Pin:l*L and is via inversion A — A7, In
each case we divide out by the diagonal subgroup {£1}. The groups with identity
component Spinj, are fermionic.

Proof The extension (9.2) is central, so up to isomorphism classified by the cohomol-
ogy group

(9.11) H?*(BSO,;T) =~ H*(BSO,:;Z) = 7/27.

The underline indicates the sheaf cohomology of continuous functions into T with the
standard topology. It is well known that Spin{, corresponds to the nonzero element.

The only nontrivial automorphism of T is inversion, so in the extension (9.3) ei-
ther O, acts trivially or it acts through its components with elements of determinant —1
acting by inversion. In each case the group extensions are classified by a cohomology
group of the classifying space BOy,:

9.12) H?*(BO,:;T)~ H*(BO,;7) ~7/27,
(9.13) H%(BOn;T) =~ H*(BOy:Z) ~7)2Z x 7. 27.

The tilde indicates coefficients twisted by inversion. The product (9.5) and semidirect
product (9.6) account for the zero element of (9.12) and (9.13), and the remaining four
groups (9.7)—(9.10) account for the nonzero elements, as can be seen from cohomolog-
ical computations we omit. a

According to the arguments in Appendix A, the anti-Wick rotation of Pin* con-
tains a time-reversal symmetry 7 with 72 = (—=1)¥ and the anti-Wick rotation
of Pin®~ contains a time-reversal symmetry 7 with T2 = 1. More precisely, the
groups (9.8) and (9.5) are Wick rotations of relativistic symmetry groups that include
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CT symmetry; the remaining groups are Wick rotations of relativistic symmetry groups
that include T symmetry.3*

Finally, we classify symmetry groups with K = SU,. Now we have possible extensions

9.14) 1—SU, — SH,, - SO, > 1
and
(9.15) 1—-SU, - H, — 0, — 1.

Proposition 9.16 (K = SU,) Up to isomorphism there are two distinct group exten-
sions (9.14) with n > 3, and the groups SH,, that appear are SO,, x SU, and

9.17) Go = Spin,, X(g1) SU,.

Up to isomorphism there are four distinct group extensions (9.15) with n > 3, and the
groups H, that appear are mutually nonisomorphic. Two of the groups have identity
component SO, x SUj:

(9.18) On x SUs,,
(9.19) En %4 1, SU2.

The identity component of the remaining two groups is G

(9.20) G, =Pin} x

n

{i1}SU2’
(9.21) G,, = Pin, x ( il}SUZ.

The symmetry groups with identity component G° are fermionic.

Proof The classification of the identity component SH;,, follows from Theorem 2.7(2):
there are two central elements kg € SU, with kg = 1. To classify the two-component
group H, we apply a useful general result [45, Corollary 7.3]. Namely, for any compact
Lie group H, let H? denote the component of the identity element, Z° ¢ H? its
center, and m = g H the abelian group of components. Then there exists a group L

34This is our interpretation of [116, Section 3.7]. There are more general possibilities with larger
internal symmetry group K. This occurs in [104, Section 3], for example, in a theory with both T
and CT symmetry.
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that fits into the diagram

1 A L P 1
9.22) J l
1 HO H i

of group extensions. Furthermore, the group L acts on H° by conjugation — the
action descends to an action of 7 since Z° is central, but it depends on the choice
of L —and the group H is reconstructed from H° and L as a semidirect product

9.23) Hx~Lx,,H*=LxH’/Z°

By the stabilization result Theorem 2.19 we may assume that n is odd, because
for n even H, is obtained by pullback, so the center of SO, is trivial and the center
of Spin,, is {£1}. First, assume H° = SH, = SO,, x SU,, so that Z°% = {£1}. There
are two possibilities: L 2 {£1}*? or L = j4. We can take the image of L in O,
to be the central subgroup {£1}. The conjugation action on SO, is trivial, and as all
automorphisms of SU, are inner we can take the entire action on H to be trivial.
Then (9.23) (with a direct product in place of a semidirect product) yields the two
groups (9.18) and (9.19). The argument for H° = Spin,, x (+1) SU, is similar; again
70 =~ {41}, i

9.2 Free fermions and twisted Dirac operators

In this section we take up the homotopy theory of relativistic free fermions. We
treat the 10 fermionic symmetry groups simultaneously via embeddings into Clif-
ford algebras (Section 9.2.1). For each we define a twisted Atiyah—Bott—Shapiro
map (Section 9.2.2) that encodes the index of twisted Dirac operators (Section 9.2.3) on
compact Riemannian manifolds. The relativistic story begins on Minkowski spacetime
in Lorentz signature, where a free fermion theory is specified by a real Clifford module
for a Lorentz signature Clifford algebra (Section 9.2.4). We develop that algebraic theory
for the fermionic symmetry groups and in particular determine those theories that admit
a nondegenerate mass term (Lemma 9.55). A massless theory has an anomaly, which
is an invertible field theory, and we conjecture its deformation class in Section 9.2.5. A
formally similar setup (Section 9.2.6) attaches an invertible field theory to a massive
free fermion theory, and we conjecture that its deformation class is given by the same
formula. It is this formula that we use in the computations in Section 9.3.
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9.2.1 A relativistic 10—fold way Propositions 2.16, 9.4, and 9.16 combine to yield
3+ 443 =10 fermionic symmetry groups, which we arrange into two tables:

s H¢ K Cartan D
(9.24) 0 Spin© T A C
Pin® T Al CIiffS,

s H K Cartan D
0 Spin {£1} D R

-1 Pin™ {(£1} DIII Cliff_,

-2 Pin ., T T All Cliff_»

(9.25) -3 Pin"x,,SUs  SUp CI Cliff_3
4 Spin x (1} SU, SU, C H

3 Pin™ x (13 SU2 SU, CI Cliff 43

2 Pin” gy, T T Al Cliff 5

1 Pin~ {(+1} BDI Cliff 4

In addition to the fermionic symmetry group H or H and its internal group K, we
list the Cartan label, an integer s called the “type”, and a super division algebra D.
The type is defined mod 2 in (9.24) and mod 8 in (9.25); we choose a convenient
integer representative. We use the notation H(s), H(s), K(s), and D(s) when we
make the type explicit. The Cartan label is used in the condensed matter literature,
where this 10—fold way has many incarnations: see [33; 3; 58; 74; 98; 48; 70; 112]. In
those references the particle-hole symmetry determines the internal symmetry group K:
in its absence K = T ; if particle-hole symmetry is present and squares to +1, then
K = {£1}; and if particle-hole symmetry is present and squares to —1, then K = SU,.
The existence (and square) of time-reversal symmetry in the references above matches
that in our account except for the entry AIIl, which is usually listed as not having
time-reversal symmetry (but see [112, Section III]). The super division algebra D is
the unique super division algebra in the Morita class of the Clifford algebra3> Cliff,.
The groups Spin® and Pin¢ in the first table (9.24) are distinguished as having a central
subgroup isomorphic to T, so are called complex; the center of the groups in (9.25)
is {1}, and so they are called real.

35The Clifford algebra Cliffy |5 is generated by ey, ..., e|s| subject to egep +epeq = £28,p ; see [8].
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Remark 9.26 We would have found it more natural from a mathematical point of
view in several places to define H(4) = Spin x (+1) Spiny rather than Spin X (+1) Spins,
but we lack a physics motivation to do so.

The following embedding allows a uniform treatment of these symmetry groups, and
it opens a path to relating this relativistic 10—fold way to other 10—fold ways in the
literature. Fix n > 0.

Lemma 9.27 Fix areal type s as in (9.25), and let H, (s) denote the n—dimensional
version of the group H(s) of type s in table (9.25). Write Ay, (s) = Cliff, @ D(s).
Then there is an embedding

(9.28) t: Hy(s) — A, (s)

such that the natural map

(9.29) c:R" x A, (s) = An(s)

is Hy(s)—equivariant and graded commutes with right multiplication by A,(s).

Here c is the extension of scalars of Clifford multiplication R” x Cliff,, — Cliff,.
(Recall R" C Cliff,.) Note A, (s) is Morita equivalent to Cliff_ (,¢); we specify a
Morita equivalence in Section 9.2.2. We regard H,(s) as an ungraded group, and in
fact «(H,(s)) is contained in the even part of the superalgebra A, (s). In the complex
case (9.24) there is an embedding (€ : Pin¢ — CliﬁﬁlC ® Cliff‘E1 constructed using the
same formulas as the real case s = 1. Of course, there is also the usual embedding
1€ Spin¢ < CIiffC .

Proof The case s = 0 requires no comment. For s = 4 we use the fact that
SUj = Sp; C H. The scalar —1 passes between the factors in the real tensor product
Cliff}, ®H, which explains the division by {£1} in the group H. In the remaining
six cases D(s) is a Clifford algebra on |s| generators, and the group Spins C Cliff; is
isomorphic to {1}, T, and SU; for |s| =1, 2, and 3, respectively. For |s| =1 or 2
fix a unit vector e € RISI ¢ D(s); for |s| = 3 define the volume form w = ejezes as
the ordered product of the generators of Cliff|g. Define ¢ by

g—>g®l1 for g € Spin,,
g®e if|s|=1,2,
gRw if|s|=3

A= 1®A for A € T or SU>.

(9.30) g for g e Pin,:l’E \ Spin,,,
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A case-by-case check completes the proof. To illustrate, we check the equivariance
of ¢ for g € Pin, \ Spin,, and |s| = 1, 2; it suffices to take g = ¢; for some standard
basis element e¢; € R”. For £ € R” C Cliff},, we have ¢; - (§® 1) = —eiéei_l ®1.
For y € Cliff, homogeneous of parity || and x € D(s), we have ¢; - (Y @ x) =
(—1)"/’|e,~w ®ex, since e; acts as left multiplication in A, (s) by t(e;) and the Koszul
sign rule applies in the superalgebra A, (s). Their Clifford product is

(9.31) —(—D)VleEy @ ex = ;- (Y ® x),

which proves the equivariance. We leave the other checks to the reader. a

Remark 9.32 In the condensed matter literature free fermion systems are often treated
nonrelativistically and so are organized by nonrelativistic symmetry groups. More
specifically, they are organized by the subgroup I of internal vector symmetries that
fix the points of space. (The internal symmetry group K in our account, which starts
from a relativistic theory, is the subgroup that fixes the points of spacetime.) We
can easily compute the group I, in spacetime dimension n for a general group of
symmetries, as in Section 1. Namely, let p, : H, — Oy be a Wick-rotated symmetry
group. Fix a splitting R” = R x R”~! of translations of E” into Wick-rotated-time
translations cross spatial translations. The subgroup O x O,—1 C Oy, preserves that
splitting, and O; x {id} C O x O, is the vector subgroup of transformations that fix
space pointwise. So for the symmetry group H, we define the nonrelativistic internal
subgroup I as the pullback

9.33) | lpn

01 X {ld} s 01 X On—l s On

The inclusion Hy, <> H, 41 induces an isomorphism I,, => I,,+1; denote the colimit
of these groups as /. We tabulate / for each of the ten fermionic symmetry groups in
tables (9.24) and (9.25):

s H¢ 1 Cartan
(9.34) 0  Spin® T (Spin¢) A
Pin® Z/27xT (Pin) AIlI
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) H 1 Cartan
0 Spin {£1} (Spin,) D
-1 Pin* Z/2Z x{£1}  (Pin]) DIII
-2 PinT x ey T 727 x T (Pin}) All
935 | 3 Pin"x,SUp  Z/4Zx,,SU; (Pin{)  CII
4 Spinx,SU SU, (Spins) C
3 Pintx.,,SUs Z/2ZxSUy  (Pin3) CI
2 Pin” sy, T Z/4Z T (Piny) Al
1 Pin~ 7./AZ (Piny) BDI

In the physics literature a Z /27 subgroup of I containing a time-reversal symme-
try, if it exists, is labeled ‘Z/2Zr’. The {£1} subgroup is often labeled ‘Z/27Zy’,
where ‘ f° means ‘fermionic’ since the nontrivial element is the center of the spin
group. The groups in parentheses are abstractly isomorphic to the group /.

Remark 9.36 In the pullback (9.33) the group [, has two extra pieces of structure:
the canonical central element kg € K C [, of order dividing two (Theorem 2.7(2)) and
a Z/2Z-grading ¢: I,, - O1 = {£1} with K =ker¢. In condensed matter models
we are given (I, ko, ¢) and part of the determination of the low-energy effective
field theory is the (re)construction of the symmetry type (Hy, pn). We achieve this as
follows. If ¢ is trivial then I, = K, so set ﬁln: = Spin,, x I, ; then define H, = SH,
by (2.8). If ¢ is surjective, consider the commutative diagram

Spiny ———— Spin,,

N N

I, H,
9.37) I, l H, J
PiniF R Pin;"

- ~N

in which every parallelogram is a pullback, the kernel of every vertical map is K, and
the northeast diagonal composition is exact. Given (I, ko, ¢) define I, by pullback,
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set K =ker¢, set J = I, / Spiny, let H, be the pullback (2.10), and define Hj,
using (2.11).

9.2.2 Twisted Atiyah—-Bott—Shapiro map Atiyah, Bott, and Shapiro [8, Section 11]
give a canonical construction of K—theory elements on Thom complexes. The universal
incarnation [60, Section 6.1] is a map of spectra

(9.38) ¢: MSpin — KO.

Following their arguments we produce similar maps for the group H(s) of type s in
table (9.25). Fix a dimension n € Z=°.

As a first step we stipulate a Morita equivalence
9.39) An(8) AMorita Cliff (5 4) -

There is a sign at stake — for any Clifford algebra A the groupoid of invertible (A4, A)-
bimodules is equivalent to the groupoid of Z /27Z—graded lines: the sign is the parity
of the line. Define the isomorphism

(9.40) Cliff 1, ® Cliff.1s => Cliff ()

as in [8, (1.6)], and choose [8, (6.9)] a Cliffyg—-module M = M°® @ M! of di-
mension 8 |8 such that the volume form acts as +1 on M°. There result Morita
equivalences (9.39) for all cases except s = 4. For that we fix a quaternionic Cliff44—
module N = N®@® N of quaternionic dimension 1| 1 such that the volume form acts
as +1 on N©.

Now to the twisted Atiyah—Bott—Shapiro construction. Let 7 : V;, — BHy(s) be the
universal bundle associated to p, : Hy,(s) — O, . Define the spinor bundle3¢

(9.41) 8 := EHy(5) X 1 1y An(5)® — BH,(s).

Hp (s)
This is a vector bundle of right A,(s)°°’—modules or, equivalently, of left A,(s)—
modules. Left Clifford multiplication (9.29) defines a family of odd skew-adjoint
endomorphisms of 7*8 — V},. These operators are invertible off the zero section,
and they commute with the left A, (s)-module structure. Therefore, using the Morita
equivalence (9.39), they define an element in KO"1S(Thom(BH,(s);Vy,)), where
Thom(BH, (s); Vy,) is the Thom space of the universal bundle 7 : V;, — BHj(s). Take
m of A° in (9.41), rather than A, is essentially a sign choice. We use a geometric

model [10] in which a class in KO™ (X) is represented by a Z/2Z—graded vector bundle over X that is a
left module for Cliff;, equipped with a family of commuting odd skew-adjoint (Fredholm) operators.
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the limit n — oo after subtracting a trivial rank »n bundle from V), to obtain
9.42) ¢: MH(s) — Z°KO

out of the Thom spectrum associated to the stable normal structure H. For s = 0
this is the Atiyah—Bott—Shapiro (ABS) map [60, Section 6.1]. We rewrite in terms
of the stable tangential structure H ; see the comments following (7.6). That perp
maneuver exchanges Pin™ and Pin~, which in table (9.25) makes the exchange s <> —s.
Therefore, (9.42) is a generalized ABS map

9.43) ¢:MTH(s) > X KO.
In the complex case we obtain a generalized ABS map

(9.44) ¢:MTH (s) > X °K.

9.2.3 Twisted Dirac operators Next, following [82, Section II.7], we define twisted
Dirac operators for the structure groups in table (9.25). Suppose X is an n—dimensional
Riemannian manifold equipped with an Hj(s)-structure P — X. We assume given a
connection on P — X compatible with the Levi-Civita connection on the orthonormal
frame bundle. Use the embedding (9.28) to form the Z/2Z-graded spinor bundle

(9.45) §:=Px An(s) — X.

Hy(s)
Clifford multiplication (9.29) defines a vector bundle map 7*X ® 8’ — &', and as usual
the Dirac operator [Dx acts on smooth sections of 8’ as the covariant derivative followed
by Clifford multiplication. The Dirac operator is odd and skew-adjoint. (See footnote 36
for our conventions.) It commutes with the right A, (s)-module structure on 8’ or,
equivalently, with the left A, (s)°°—module structure.

There are topological and geometric indices of Dirac operators on compact manifolds.
The topological index is defined using Fredholm operators [10]. Namely, if X is closed,
then Py extends to a Fredholm operator on Sobolev completions of the space of smooth
sections of 8'. This construction works in families: from a fiber bundle X — S of closed
Riemannian n—manifolds with Hj, (s)-structure we obtain a family of odd skew-adjoint
Fredholm operators parametrized by S. Recalling that A4, (s)°P is Morita equivalent
to Cliff_(, ), via (9.39), we deduce that this family of operators has a fopological
index that lies in KO~®%9)(S). For s = 0 this reduces to the usual Clifford-linear
Dirac operator definition of the topological index. The Atiyah—Singer index theorem
equates this topological index with an analytic index. If S is a smooth manifold and
X — § a smooth family of Riemannian manifolds with H, (s)-structure, then there
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is a geometric index that lies in the differential cohomology group KO —(n+s)(§)y;
see [46] for the differential complex K—theory version as well as the Atiyah—Singer
theorem in this differential context.

Remark 9.46 For s = +1 this discussion specializes to an effective approach to Dirac
operators and index theory on unoriented manifolds with a PinT—structure.

Remark 9.47 There is an analogous discussion in the complex case: replace H — H¢
and KO — K.

9.2.4 Free fermion theories on Minkowski spacetime M"~1 As before we only
treat the eight real fermionic symmetry groups. Fix a type s in table (9.25). Let
Hi,—2(s) be the Lorentz signature anti-Wick rotation of H,_1(s), as in (2.1). If
s = 0, which is the basic case, then Hy ,—2(s) = Spin; ,_, is the Lorentz spin group.
The analog of (9.28) is an embedding (see (A.3) for Cliff, ; conventions)

(9.48) t: Hyp—2(s) = Cliff,—2 1 ® D(s) =: Bp—1(s),
and there is a Morita equivalence of superalgebras
9-49) By—1(5) AMorita Cliff 4 (—3+s) -

We use the conventions following (9.39) to define the Morita equivalence. The image
of ¢ lies in the even subalgebra B,,_1(s)? C B,_1(s). A free fermionic field is specified
by a real spinor representation of Hp ,—2(s), which by definition is an ungraded real
module S of B,—1(s)°. A spinor field is then a function ¥: M"*~! — S,

Remark 9.50 The CRT theorem, which is reviewed in Appendix A, implies that
the free fermion theory has a larger Lie group H lﬁn_z(s)ﬂ D Hip—2(s) of sym-
metries; the nonidentity component acts antilinearly on the Hilbert space of states.
Proposition A.15(3) implies that the embedding (9.48) extends to Hj 2 (s)/3 , and so
Hin o (s)/3 acts on the real vector space S, consistent with Proposition A.20(2).

We quickly summarize special facts about a real spinor representation S of the Lorentz
spin group Spin, ,_,; proofs may be found in [30, Section 6]. Fix a component C of
timelike vectors £ € R1""=2 with |£|? > 0. The first special property is the existence
of symmetric Spin, ,_,—invariant maps

(9.51) [:SxS—RLZ,

If S is irreducible, then I is unique up to a real factor, and nonzero I" are definite.
Choose T positive definite in the sense that I'(, ¥) € C forall € S. This fixes I" up

Geometry € Topology, Volume 25 (2021)



1266 Daniel S Freed and Michael J Hopkins

to a positive real factor. There are two isomorphism classes of real irreducible represen-
tations for n —1 =2, 6 (mod 8) and a unique irreducible in other cases. Let S; and S»
be representative irreducibles (in dimensions with a unique irreducible, set S, = 0);
let Z be the commutant of the spin action, so Z = R, C, or H; and fix positive
definite I" for S and S». A general real spinor representation S decomposes as

(9.52) S (W1 ®z S1)® (W2 ®z S»)

forright Z—modules W; and W,. Then positive definite pairings I" in (9.51) correspond
to positive definite Hermitian forms on W; and W5, . For each choice there is a unique
compatible Z/27Z-graded Cliff,_» j—module structure on S @ S*, where S is in even
degree and S* in odd degree; in particular, the duality pairing S*®S — R is Spin; ,,_,—
invariant. Conversely, if S°@®S! is a Cliff,—» ;-module, then there is a duality pairing
SO®S! — R that makes the resulting symmetric form (9.51) positive definite. (Deligne
proves this for simple modules in [30, (6.1)]; any module is a sum of simples and the
argument applies to each summand.) Observe that I" is a contractible choice.

The group Hjn—2(s) contains the spin group Spin, ,_, as a subgroup and the quo-
tient Q,—1(s) is compact and independent of n up to isomorphism. An irreducible
real representation of Hj,,—2(s) decomposes under the subgroup Spin, ,,_, as (9.52),
and a central extension m of O,—1(s) acts on each W;. A choice of m—
invariant positive definite Hermitian form on W; yields a H; ,—»(s)—invariant pair-
ing (9.51), and then a B, —1(s)-module S & S*. Conversely, every Bj,_1(s)-module
has this form.

Definition 9.53 The module S admits a mass term if there is a nondegenerate skew-
symmetric Hj ,—»(s)—invariant bilinear form

9.54) m:SxS —R.
We call m the mass form.

Lemma 9.55 The module S admits a mass term if and only if S @& S* extends to a
super module of the superalgebra B,,_1(s)[e], where e is odd, e*> = —1, and e (graded)
commutes with the Clitford generators of By—1(s).

If s = 4 the hypothesis is that e commutes with D = H. As always, the commutation
with Clifford generators obeys the Koszul sign rule.

Proof Given a B,—_1(s)[e]-module structure on S @ S*, define m by

(9.56) m(sy,s2) = (Esy,s2) for 51,8 €S,
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where E: S — S* is part of the action of e = (g _g_l) on S @ S*. Since e? = —1,
the form m is nondegenerate, and since e (graded) commutes with B,_1(s), the
form m is Hy ,—2(s)—invariant. We must prove that m is skew-symmetric. It suffices
to assume that S @ S* is a simple B,_(s)[e]-module, since any module is a direct
sum of simples. Then m is either symmetric or skew-symmetric. Let f € R1"~2 ¢
Cliff,—».1 C By—1(s) be the Clifford generator with f2 = —1. So f is a timelike
vector, and we choose it to lie in C. Write f = (g _f; _1) for its action on S @ S*.
The positive definiteness of I" implies that

(9.57) (s1,82)s := (Fsy1,82) for s1,52 €S

is a positive definite inner product on S. The mass form is m(sy, s2) = (F ' Esq, 52)s.
Set A = F~'E € End(S). Since m is either symmetric or skew-symmetric, either
A* = A or A* =—A, where * is with respect to the inner product (9.57). But e f =— fe
implies A2 = —idg, which rules out A* = A since A*A is a nonnegative operator.

Conversely, let m be a mass form. Using the inner product (9.57) write
(9.58) m(sy,s2) = (Bsy,s2)s for 51,52 €8S,

for an invertible skew-symmetric operator B:S — S. Define P = +/B*B and
A=P 'B=BP~! Thenset E=FA andlet e € B,_i(s)[e] act on S @ S* via
(p _5_1 ). where as above f € B,_1(s)[e] acts as ( p _f;_l ). We must check that this
determines a well-defined action of B,—_1(s)[e]. Itis easy to verify that e? = —idggs*,
and ef = — fe follows from F~'E = —E~!F, which in turn follows from 4 =
—A~!. For later use we observe the commutation relation PF~'E = F~1EP. Let3’
ce RV 2RIl B,_(s) be a vector perpendicular to £, and write its action on the
module S @ S* as (g igﬂ ), the sign determined according as ¢? = %1 in B,—1(s).

It remains to show that ec = —ce as operators on S @ S* or, equivalently, that
(9.59) (EC™H)? =+idg.

First, we use (9.56)—(9.58) to write

(9.60) m(s1,82) = (FBsy1,52) = (EPsy,s2) for sq1,52 €S.

Since ¢f = — fc in By—1(s) we have C™'F = £ F~1C. Next, ¢f € Hyn—2(s) C
B,,—1(s) preserves the duality pairing S* ® S — R, from which

(9.61) (CF™Ys*,C™'Fs) = F(s*,s) for s* €S*and s €8S.

37We leave the reader to give the appropriate modification for s = 4.
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Now, since m is Hy ,—2(s)—invariant,
(9.62) m(C_lFsl,C_lFsz)=m(sl,sz) for 51,52 € S.

Use the first expression in (9.60) together with the previous identities to conclude that
C~'FB = —BC~!F. It follows that C~!'F commutes with P. Then rewrite (9.62)
using the second expression in (9.60) to deduce FC~'EPC~'F = FEP. Apply the
foregoing to arrive at (9.59). m|

There is an abelian group law on free fermion theories: direct sum of Clifford modules S.
The relationship [8, (11.4); 6, page 383] between Clifford modules and K—theory yields
the following.

Theorem 9.63 The abelian group of relativistic free fermion field theories in dimen-
sion n — 1 with type s, modulo those that admit a mass term, is isomorphic to

(9.64) KO" 3t (pt) = 7, (KO).

Massive free fermions are anomaly-free; see [116, Section 1.2] for a recent exposition.
So the map from a free fermion theory to the isomorphism class of its anomaly factors
through the quotient (9.64).

Remark 9.65 The nature of an irreducible real twisted spin representation So depends
on the value of  =n — 1+ (mod 8). We ask if it is self-conjugate —if S§ = So —
and if so whether the induced nondegenerate bilinear form Sg ® So — R is symmetric
(S¢ orthogonal) or skew-symmetric (Sg symplectic). Also, the commutant is a real
division algebra, so is isomorphic to R, C, or H. We list the types. If t = 3,4,7,
then S is symplectic, and the commutant is R, C, or H, respectively. If t =0, 1,5,
then S is orthogonal and the commutant is C, R, or H, respectively. If t = 2,6,
then there are two nonisomorphic irreducible spin representations that are each other’s
dual; the commutant is R or H, respectively. For t = 3,4,7 the K—group (9.64)
vanishes, as it must since there is always a mass term. For r = 0, 1 the K—group is
isomorphic to 7Z /27 — the direct sum of two copies of the irreducible module admits
a mass term—and for 7 = 5 it vanishes. For t =2, 6 the K—group is isomorphic to Z.
These are the cases for which the anomaly theory is not topological.

9.2.5 The anomaly theory and its deformation class Our starting point is the
By—1(s)°—module S that defines a free fermion theory on Minkowski spacetime M"~!
in (n — 1) dimensions, as in Section 9.2.4. In this subsection we sketch the associ-
ated n—dimensional anomaly theory, an invertible field theory in n dimensions. (See
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[40; 41, Section 11] for expositions of anomalies from this viewpoint.) The anomaly
theory is not necessarily topological, but it has a deformation class that is topological —
or which can be regarded as a continuous invertible topological theory —and we
propose a general formula for it. See [116] for a discussion of many special cases from
a more physical viewpoint.

First, the real representation S of Hy ,—2(s) extends to a complex representation Sc of
the complexification H1 ,—2(s)(C), which then restricts to a complex representation
of H,_1(s). On a curved Riemannian manifold X”~! with differential H,_(s)—
structure P — X there is an associated complex vector bundle P x Hy1(s) Sc > X
whose sections are complex spinor fields. There is a Wick-rotated Dirac lagrangian,
possibly with mass term, which is a skew-symmetric form on the space of spinor fields.
If X is closed, then the fermionic functional integral over the space of spinor fields is
the pfaffian of the Dirac operator on X. In a smooth family X’ — S the pfaffian is not
a function, but rather is a section of the pfaffian line bundle

(9.66) Pfaffy /g — S.

The bundle Pfaffy,g — S carries a canonical Hermitian metric and compatible covariant
derivative; it is Z/2Z—graded by the mod 2 index. It is part of the anomaly theory
associated to the module S.

We now give a conjectural description of the entire anomaly theory. Fix k € Z=°,
which is the codimension in the n—dimensional theory. Let X n=k pe a closed (n—k)-
dimensional Riemannian manifold with differential H,,_j (s)—structure. The universal
Dirac operator (Section 9.2.3) acts on sections of a real vector bundle 8’ — X of
left A, _x (s)°P—modules, where A,_ (s) = Cliff ,_x) ® D(s) is Morita equivalent
to Cliff (,_k45); see (9.39). Let S® S* — X be the constant vector bundle with
fiber S@® S*. Then 8’ ®g (S P S*) — X is a real vector bundle of Z/2Z—graded
Ap_1 (8)°P® By—1(s)-modules. Our conventions in Section 9.2.2 give a definite Morita
equivalence A;,_¢(s)® ® By—1(5) ~morita Cliff_(3_g). For a family X — § the
geometric index of the Dirac operator® with coefficients in &’ R (SSS*) lies
in the differential cohomology group KO —(3-k)(S). Note that it is independent of n
and s. The anomaly picks off the lowest piece of the index via the canonical Pfaffian

homomorphism
(9.67) Pfaff: KO~ G0 (8) — 1Z(1)' ¥ (S).

38Some details of this construction appear in [43, Appendix].

Geometry € Topology, Volume 25 (2021)



1270 Daniel S Freed and Michael J Hopkins

The invariants in differential /7 (1) fit together into an invertible field theory; see [61].

Example 9.68 For k =0, so X — S of relative dimension 7, there is an isomorphism
I/Z(\l) 1(S) = ﬁl(S) =~ Map(S, T). The corresponding lowest piece of the index is
the partition function e2% i¢/2) of the anomaly theory on an n—manifold, where £ is
the Atiyah—Patodi-Singer invariant [9]. The division by 2 is due to the skew-symmetry
of the Dirac form, the same division by 2 that passes from determinant to pfaffian.
The equality between the exponentiated £é—invariant and the integral in differential
K—theory has only been proved in a basic case [79; 93; 22; 46] as far as we know.

Example 9.69 For k =1, so X — S of relative dimension n—1, the group Ii(\l )2(S)
is isomorphic to the group of isomorphism classes of Z/2Z—graded Hermitian line
bundles L — S with compatible covariant derivative. For the anomaly theory that
element is the pfaffian line bundle Pfaffy,g — S. The main theorem in [29] is the
gluing law in the nonextended invertible field theory in dimensions » — 1 and n with
partition function the exponentiated £é—invariant.

The story continues to lower-dimensional manifolds, on which the invariants are graded
gerbes [83; 21] and higher analogs.

The deformation class of an invertible field theory gotten from integration in differential
cohomology is the underlying topological cohomology theory. In the background are
techniques from [61], which lead to the following.

Conjecture 9.70 Fix a type s in table (9.25) and a dimension n. Fix an isomorphism
class of free fermion theories modulo those that admit a mass term, ie an element
[S] € m5_;_,(KO). Then the deformation class of the n—dimensional anomaly theory
is the homotopy class of the composition

9.71) MTH(s) 228l 55 ko A 53+t g0 14y sn—3go PR, sntir71),

where ¢ is the Atiyah—Bott—Shapiro map (9.43), u is multiplication in the ring spec-
trum KO, and Pfaff is the topological version of (9.67).

There is a similar conjecture in the complex case (9.24) with the usual replacements
H — H¢ and KO — K. We hope to address this conjecture in the future. We use it
in our computations below.

Remark 9.72 If the group 73—s—,(KO) is finite, hence is isomorphic to Z /27, then
there is a reflection positive invertible fopological field theory in the deformation
class whose partition function is the mod 2 index. If the group is free cyclic, hence
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isomorphic to Z, then the deformation class is represented by a reflection positive
invertible field theory whose partition function is the exponentiated £é—invariant of
Atiyah, Patodi, and Singer, the secondary invariant for a Z—valued topological index
in (n + 1) dimensions. This is the case in which there are local anomalies as well as
global anomalies, and because of the shift s it happens in both even and odd dimensions.

9.2.6 Massive free fermion theories In Section 9.2.5 we explained how a free
fermion theory in (n — 1) dimensions has an associated n—dimensional invertible
anomaly theory, and Conjecture 9.70 states its deformation class. Here we show that
a second scenario leading to invertible n—dimensional theories has the same starting
data. This is the scenario we apply in Section 9.3. Namely, begin with a massive free
fermion theory in n dimensions. Because the theory has a mass gap its long-range
physics is described by a field theory, which naturally is also n—dimensional. As argued
in Section 5.4 we expect that theory to be, at least locally, the product of a topological
theory and an invertible theory. But a massive free fermion theory has a unique vacuum
on each spatial manifold — the vacuum in the fermionic Fock space — so in fact the
long-range effective theory is invertible.

Remark 9.73 One must make choices to define the massive free fermion theory, and
they can be summarized as a trivialization of an anomaly; see [41, Section 11] for a gen-
eral discussion. There is a canonical choice for each fixed mass, and it is implicitly used
in the discussion below as well as in Section 9.3. However, when the mass is a not nec-
essarily constant function then there is an anomaly; see [28] for discussion and details.

As in previous sections fix a type s in table (9.25) and let H; ,—1(s) be the Lorentz
signature anti-Wick rotation of the corresponding group H,,(s). In the notation of (9.48)
there is an embedding Hj ,—1(s) < Bp—1(s)[e’], where ¢’ is an extra Clifford gener-
ator with (e’)?> = +1. By Lemma 9.55 spinor representations of H 1,n—1(s) that admit
a mass term are in bijection with super modules over the superalgebra By,—1(s)[e’, ¢],
where e is an extra Clifford generator with e? = —1. Observe that B,_1(s)[¢’, e] is
Morita equivalent to Cliff  ,_345). We speculate that

the resulting low-energy theory is trivial if the B,_1(s)[e’, eJ-module is
extended to a module over the algebra B,_1(s)[e’, e, f] with f2 = —1.

(9.74)

The group of equivalence classes of B,—1(s)[e, f]-modules modulo those that extend
is the K—group (9.64). The Morita equivalence to massless theories in dimension n — 1
and the vanishing of the anomaly for theories that admit a mass term are evidence in
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favor of (9.74). Furthermore, we speculate that
(9.75) the low-energy theory is invertible and its deformation class is (9.71).

As some evidence supporting (9.75) we point out that the partition function in special
cases is computed in [116, Sections 2.1.6, 2.2.3, 3.4, 4.3 and 5]. The universal part
of the partition function of the low-energy theory is an exponentiated £—invariant, as
in Example 9.68.

9.3 Phases of topological insulators and topological superconductors

We apply Conjecture 8.37 to compute possible topological phases for each of the
10 fermionic symmetry types (9.24) and (9.25). We recall that the fermionic symmetry
groups with K = T pertain to topological insulators; those with K = {1} and
K = SU, pertain to topological superconductors. The abelian group of topological
phases —that is, the group of deformation classes of reflection positive invertible
topological field theories with symmetry group H in n spacetime dimensions —is

(9.76) TP,(H) := [MTH, =" 17,(1)].

It may be computed from the homotopy groups>’ mg MTH ; see the universal prop-
erty (5.17). Since we are only interested in n < 5, we need only compute for g <6,
and for ¢ = 6 we only need to know m¢ MTH /torsion, because that determines
Hom(wg MTH, Z). The abelian group TP, (H) classifies deformation classes of
interacting theories. The abelian group of deformation classes of massive (gapped)
free fermion theories in 7 dimensions modulo those with trivial long-range effective
theory is given by Lemma 9.55 and (9.74), at least conjecturally:

©977)  FE,(H(s)) = {n3_s_n (K)  for H(s) a complex symmetry type,
T3_s_n(KO) for H(s) a real symmetry type,

(=K EIZ(),
~|[=5K0, =" 7(1),
where s is the parameter in (9.24) or (9.25). (See Remark 9.65 for an enumeration of

the K—theory groups in the real case via the types of spin representation.) According
to (9.75) and (9.71) the natural homomorphism

(9.78) ®: FF,(H) — TP, (H)
39These are Thom’s bordism groups, but for the perpendicular tangential structure on the stable normal

bundle (see the remark on page 1231). Note that Pin*/ Pin™ and Pin¢t / Pin— exchange when passing
from tangential to normal.
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from the group of deformation classes of free fermion theories to the group of all theories
is the product with the ABS map (9.43). We compute @ for each symmetry class.

The results are organized by internal symmetry group. Some of the bordism groups
appear in the mathematics literature, whereas for the more exotic symmetry groups
the computations are new. With the bordism groups in hand, the classification of
interacting theories is an immediate consequence of Conjecture 8.37 and the universal
property expressed in the short exact sequence (5.17). The free fermion computation
is (9.64). The map (9.78) from massive free fermion phases to interacting phases does
not follow from the rest—it must also be computed. We give a uniform treatment
based on Lemma 9.27 and Section 9.2.2. Manifold generators and formulas for partition
functions in 4 dimensions are worked out in [57].

We check our computations against the condensed matter literature, where groups of
SPT phases are deduced using very different arguments. There is almost total agreement,
and in the few places we differ we use the homotopy computations to predict what
should happen in the physics. The computations that we did not find in the physics
literature should be considered predictions.

9.3.1 Internal symmetry group K = {£1} The symmetry groups are classified
in Proposition 2.16. The low-degree spin and pin bordism groups are described in a
geometric way in [72]. The general structure of spin bordism is elucidated in [4]. The
computation of pin bordism groups in all degrees may be found in [5] and [71].

Theorem 9.79 The low-degree bordism groups for K = {£1} are:

q 7y MTSpin 7y MTPin™ 7y MTPin™~

6 0 0 7,/16Z

5 0 0 0
(9.80) 4 7Z 7./16Z 0

3 0 7./27 0

2 7./27, 7.)27. 7./87

1 7/27 0 7/27

0 4 7./27 7.)27

Corollary 9.81 (symmetry class D) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group Spin
are isomorphic to:
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n ker ® — FF,(Spin) 2, TP, (Spin) — coker ®

5 0 0 0 0

4 0 0 0 0
(©-82) 3 0 Z Z 0

2 0 727 7]27 0

1 0 7/27 7.]27 0

0 0 0 0 0

Literature note The groups TP;(Spin) and TP, (Spin) were computed by the “group
super cohomology theory” in [56]; see Table II. That theory is a 2—stage Postnikov
truncation of I/Z(1), so in general only computes a subgroup of topological phases; it
is the entire group in very low dimensions. The interacting classification TP, (Spin)
appears in [95]: see Section IIA for n = 3, Section IID for n = 2, and Section IIE
for n = 1. The group TP3(Spin) is discussed in [84, Section V A], but their restriction
to “nonchiral” phases means that the Eg phases that generate TP3(Spin) were not
accounted for. All of the groups in the table, but not the map from free fermions to
interacting theories, appear in [68]. Those authors conjecture a cobordism classification
of interacting fermionic SPT phases.

Proof That ® is an isomorphism in low dimensions follows since the ABS map
M Spin — KO induces an isomorphism on 7<7. d

In the next example we meet a nontrivial kernel of ®, which is to say, free fermion
phases that become trivial when interactions are allowed.

Corollary 9.83 (symmetry class DIII) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group Pin™

are isomorphic to:

n ker® — FF,(Pin™) 2, TP, (Pin™) — coker ®

5 0 0 0 0

4 167 Z Z./16Z 0
(9-84) 3 0 727 727 0

2 0 7.]27. 7.]27. 0

1 0 0 0 0

0 27 Z 727 0
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Literature note There are many arguments in the physics literature that 16 copies
of the basic free fermion theory in 4 dimensions has a trivial phase once interac-
tions are allowed, and that this does not occur with fewer copies. (As noted in
Remark 8.41, the group TP4(Pin™) is torsion, hence a priori some multiple of the free
theory necessarily becomes trivial once interactions are allowed.) A sample includes
[75; 35; 112; 88; 78] and [116, Section 4]. The interacting case in 3 dimensions is
investigated in [116, Section 3], and various aspects of the invertible field theory are
described explicitly. It is also discussed in [84, Section V B], but the nonzero element
is missed within the “ K—formalism”, as the authors explain. The groups TP, (Pin™)
as computed here also appear in [68, Table 2].

Corollary 9.85 (symmetry class BDI) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group Pin™
are isomorphic to:

n ker® — FF,(Pin") 2, TP, (Pin™) — coker ®

5 0 0 0 0

4 0 0 0 0
(9.86) 3 0 0 0 0

2 8z zZ 7./87 0

1 0 7.)27 7.)27 0

0 0 7)27 7.)27. 0

Literature note The breaking of the Z classification of free fermions in 2 space-
time dimensions to the Z/87 classification of interacting fermions is treated in
[37; 36; 110; 117] and [116, Section 5]. The groups TP, (Pin") for n = 1,2 are
computed by the group super cohomology in [56, Table II]. The vanishing of TP3(Pin™)
is argued in [84, Section V B]. The groups TP, (Pin™) as computed here also appear
in [68, Table 2].

9.3.2 Internal symmetry group K = T The symmetry groups are classified in
Proposition 9.4. Spin® bordism groups are computed in [4]; compare [107, Chapter XI].
Pin¢ bordism groups are computed in [13]. The twisted Pin® bordism computations
are new.

Theorem 9.87 The low-degree bordism groups for K =T are:
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q mwgMTSpin® 7, MTPin® 7, MTPin°"T 7, MTPin°~

6 7?2 Z/N6Z xZJAZ  7?>xZ)27  Z>xZ]2Z

5 0 0 0 0
(9.88) 4 72 Z./87 x 7.]21 (Z.)27)3 7./27

3 0 0 7./27, 0

2 Z 7.]AT. 7 7, x 7.]27.

1 0 0 0 0

0 Z 7./27 7./27. 7.]27

Corollary 9.89 (symmetry class A) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
Spin® are isomorphic to:

n  ker® — FF,(Spin¢) &> TP,(Spin°) — coker ®

5 Z z? Z

4 0 0 0 0
(9-90) 3 0 Z z? Z

2 0 0 0 0

1 0 7 Z 0

0 0 0 0 0

Literature note The vanishing of the group TP4(Spin®) is mentioned in [111] at the
end of Appendix F.

Corollary 991 (symmetry class AIll) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group Pin®
are isomorphic to:

n  ker® — FF,(Pin°) 2, TP, (Pin) — coker ®

5 0 0 0 0

4 8z z Z/8Zx7)27  TJ2Z
(0.92) 3 0 0 0 0

2 4z Z 7)AZ 0

1 0 0 0 0

0 2z Z 7.)27 0
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Literature note The group TP4(Pin®) and the map from free fermions is discussed
in [112, Section III]; see also [104, Section A.4] for the map from free fermions. The
vanishing of the group TP3(Pin€) is discussed in [84, Section V D] as well as in the
last paragraph of [116, Section 3.7].

Corollary 9.93 (symmetry class AIl) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
Pin‘* are isomorphic to:

n ker® — FF, (Ping+) 2, TP, (Ping+) — coker ®

5 0 Z 7> 7

4 0 7./27 (Z)27)3 (Z)27.)?
(994 3 0 727 Z)27 0

2 0 0 0 0

1 0 Z Z 0

0 0 0 727 727

Literature note The Z/2Z invariant of free fermion systems in 3 and 4 spacetime
dimensions was introduced by Kane and Mele [64] and Fu, Kane, and Mele [49] and
has been further studied in many papers. The interacting case in 4 dimensions is
investigated in [111] and in 3 dimensions in [116, Section 3.7]; their results agree
with ours. The initial computation in [84, Section V C 2] of TP3 (Pin5+) =~ (Z/27)?
was corrected in a subsequent erratum. The original argument in that paper asserts
a Z/2Z subgroup of bosonic phases, which would have symmetry group O x T,
as in (9.6). We computed that 73(M(O x T)) = Z /27 and the natural projection
Pin°* — O x T induces the zero map on 3 of the Thom spectra. This implies that
the group of bosonic phases is Z /27, as claimed, but that the lift of that bosonic phase
to a fermionic phase is trivial. This triviality of the pullback was not noticed initially;
our homotopy-theoretic methods give a systematic approach, and we encounter this
issue again in the literature note following (9.96). The physical results in 4 dimensions
were recounted in [87] at the end of Section VI, where the question of agreement with a
bordism computation was raised. This provided strong motivation for the computations
in this section. We remark that the description of the partition function of some phases
in terms of Stiefel-Whitney classes matches our bordism computations as well. Also,
Section 4.7 of [116] treats the invertible topological field theory in 4 dimensions defined
by the free fermion theory, so only detects the image of ® in TP4 (Pin‘~’+).
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Corollary 9.95 (symmetry class Al) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
Pin®~ are isomorphic to:

n  kerd — FFn(PinE_) 2, TP, (Ping_) — coker ®

5 0 Z z? Z

4 0 0 727 727
(9.96) 3 0 0 0 0

2 0 0 727 7.]27.

1 0 Z Z 0

0 0 727 727 0

Literature note The group TP4 (Ping_) is discussed in detail in the erratum to [112].
The group TP3 (Ping_) is asserted to be cyclic of order two in [84, Section V C 1],
generated by a bosonic phase. The bosonic phase is the same one identified for the
symmetry class AIl —see the literature note following (9.94) — and again we compute
that its lift to a fermionic phase with symmetry group Pin®~ vanishes, which explains
the discrepancy.

9.3.3 Internal symmetry group K =SU, The symmetry groups G, G*,and G~
are defined and classified in Proposition 9.16.

Theorem 9.97 The low-degree bordism groups for K = SU, are:

q g MTG® g MTGY g MTG™
6 Z/27x7)2Z (Z.)27)* 7.)27 x 7./47 x Z./]16Z
5 Z)27xZ]2Z 7./27 (Z.]27.)*
(9.98) 4 72 7./47 x 7./27. (Z.)27)3
3 0 0 0
2 0 7.]27. 727
1 0 0 0
0 7 7.]27. 727

Corollary 9.99 (symmetry class C) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
G° = Spin X411y SU, are isomorphic to:
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n ker® — FF,(G?) N TP, (G%) — coker ®

5 0 7./27 Z)27.x 2./27  7.]27

4 0 0 0 0
(9-100) 3 0 Z 7?2 7

2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

Literature note That TP4(G®) = 0 was suggested in [112] in the last paragraph
preceding Section V A.

Corollary 9.101 (symmetry class CI) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group
Gt =Pint X{il}SUz are isomorphic to:

n  ker® — FF,(G") 2 TP,(GT) — coker®

5 0 0 7.)27 7.)27

4 4z Z ZJATLXT)2T  T7.)2Z
(9-102) 3 0 0 0

2 0 727 727

1 0 0 0

0o 2z Z 7)27 0

Our computations prove ® maps the generator of FF4(G ™) to an element of order 4
in TP4(G™).

Literature note Wang and Senthil [112, Section V] discuss the n = 4 case and
conjecture the same group TP4(G 1) = Z /47 x 7. /27 that we compute; the map from
free fermions also agrees.

Corollary 9.103 (symmetry class CII) The groups of deformation classes of free
fermion theories and of reflection positive invertible theories with symmetry group

G~ =Pin” x { jEl}SUZ are isomorphic to:
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n ker® — FF,(G") 2, TP,(G™) — coker ®

5 0 7./27 (Z)27)? Z./27

4 0 7.]27. (Z)27)3 (Z]27)?
(9.104) 3 0 0 0 0

2 27, Z 7]27. 0

1 0 0 0 0

0 0 0 7./27 7/27

Literature note The 4-dimensional case is treated in [112, Section VI]; the answer
they obtain for TP4(G ™) is (Z/27)°, which disagrees with the corresponding entry
in (9.104), but it may be a different symmetry group they are considering. In any case,
in the note following Corollary 9.93, we compute the group of bosonic phases with
symmetry group O X (+1} SU, and find (Z/2Z)*, but the lift to fermionic phases kills
a (Z/27)? subgroup.

10 Computations

The computations in Section 9.3 involve finitely generated abelian groups having no
odd torsion, so it suffices then to make them after completing at 2. This can be done
using the Adams spectral sequence

(10.1) Exty’ (H*(MTH),Z/2) = m;—s MTH,

where A is the mod 2 Steenrod algebra and, though not indicated in the notation, the
homotopy groups have been completed at 2.

What makes this approach tractable is an identification*® of the spectrum Z*MT H (s)
with
MSpin AMTOj,  for =3 <5 <0,

(10.2) MSpin A MO, for 0=<s =<3,
XM Spin A MSO3  for s=4
and, in the complex case, of ZMTH ¢ (s) with
(10.3) M Spin® A MOy ~ 72 M Spin A MU} A MO,

40Corollary 2.12 implies that for any symmetry type (H, p), the spectrum MTH is an M Spin-module.
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Let A; C A be the subalgebra generated by Sq! and Sq?. Anderson, Brown, and
Peterson [4] give an isomorphism

(10.4) H*MSpin~ AQ®4, {Z/2& M}

in which M is a graded A;-module with M; =0 for i <8. This means that for 7 —s <8
one can identify the E,—term of the Adams spectral sequence for*! 7. MTH(d)
with
Extj’lt(H*_dMqu', 7/2) for —3<d <0,
Extjlt(H*+dM0|d|, 7/2) for —0<d <3,
EXtiflt(H*HMSO& 7./2) for d =4

and for w« MTH€(d) with
Ext (H*Y?2Y MU AMO,.2/2) for d =0, 1.
Al

These groups are computed by standard methods, and the computations, as well as
the spectral sequences (which collapse), are described in Figure 5 and give the results
described in tables (9.80), (9.88), and (9.9).

The relationship with the free fermion theories is given by maps of spectra

(10.5) MTH(s) — £~* KO,
(10.6) MTH(s) > 2K

or, under the above identifications, maps
M Spin AMTOj, — KO for =3 <5 <0,
MSpin A MO, — KO for 3>s>0,

XM Spin A MSO3 — KO for s =4,
M Spin® A MOy — K for s=0,1.

(10.7)

These are all maps of M Spin (or M Spin®) modules, in which KO and K are into
M Spin and M Spin® modules using the Atiyah—Bott—Shapiro orientation. They are

41Here only we use the notation ‘H(d)’ in place of ‘H(s)’ to avoid the conflict with Adams’
homological grading index ‘s’.
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therefore determined by their restrictions

MTO|; — KO for =3 <s <0,

MO — KO for 3>s5>0,

YXMSO3 — KO for s =4,
MOs, — K for s=0,1.

(10.8)

These are described in Propositions 10.24, 10.27, and 10.35 below, and using them, the
assertions about the maps in tables (9.82), (9.84), (9.86), (9.90), (9.92), (9.94), (9.96),
(9.100), (9.102), and (9.104) can be verified. The details are summarized in the charts
in Figure 5. The complex case is easier and left to the reader. See [24; 15] for a detailed
account of the computations.

For the identifications (10.2) and the maps (10.8) we begin with a uniform description
of the groups BH(=%s) (for s # 4). Write

(10.9) P=K(Z/2,1)x K(Z/2,2)

with the group structure

(10.10) (x1,x2) * (y1,y2) = (X1 + y1, X2 + y2 + x1)1)
in which x;, y; € H'(—,Z/2). With this choice the map

(10.11) Bo 1w p

is a group homomorphism.

For s > 0 define a map BH (s) = BO by the homotopy pullback square

BH(s) ——— BOq

(10.12) l l(wl w2)

BO————P
(w1, w2 tw?)

and set BH (—s) — BO to be the composite

(10.13) BHA (s) — BO =< Bo.
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Figure 5: The Adams spectral sequences.

The space BH (—s) — BO fits into a homotopy pullback square

BH (—s) —— BO;

(10.14) l J(wl w2)

BO——— P
(wy,w2)

Geometry € Topology, Volume 25 (2021)

MT Pin~ s=1 MTPint s=—1
~N \r\ N N
4 < N
{ i
)
0 :
N
S*I/\MOI Sl/\MTol
MT Pin®— % s=2 MT Pin®+ @ s=-2
: E :
N
S_z/\MOZ SZI\MTOZ
MTG*/JS 1 s=3 MTG= ) GQ s=-3
’ \} . . .
> | 4 NN
0 N N
( N N
( s N N
0 ¢ N A
i ) %
S_3/\M03 S3/\MT03
MTG? s=4
% 7
! e
S™3 AMSO3



1284 Daniel S Freed and Michael J Hopkins
For later reference we note:

Remark 10.15 The homotopy fiber of
BH (+s) — BO,
being the same as the homotopy fiber of BOg; — P, is

BSping for s > 1,

(10.16)
Z/2x BZ/2 for s =0.

For —3 < s < 3 one may identify Bﬁ(s) — BO with BH(s) — BO. The map
BH(4) — BO fits into a homotopy pullback diagram

BH(4) —— BSO;

(10.17) l lwz

We leave the verification of these assertions to the reader.

With s > 0, the maps BI-I(:|:s) — BO and Bﬁ(:i:s) — BOj; can also be expressed in
terms of the diagrams of homotopy pullback squares,

BH (s) —— BSpin

(10.18) l l

BO x BOy BO P
—id—(Vs—s) (w1,w2)

and

BH (—s) —— BSpin

(10.19) l l

BO x BOy

BO
id—(Vs—s) (w1,w2)

A map X — BH (s) therefore classifies a pair (V, V) consisting of a stable vector
bundle V' (of virtual dimension 0), a vector bundle Vs of dimension s, and a Spin
structure on —V — (Vs —s). Writing W = -V — (Vg —s),sothat V = —W — (V5 —5s),
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one sees that BH (s) classifies pairs (W, V5) in which W is a stable Spin—bundle of
virtual dimension zero. Thus BH (s) = BO may be identified with the map

BSpin x BO; — BO,
W, Ve) > —W — (Vs —s).
Similarly BH (—s) — BO may be identified with
BSpin x BOg — BO,
(W, V) > —W + (Vs —s),

and BH(4) — BO with
BSpin x BSO3 — BO

via either of the maps
(W, V3) > —W +(V3-3)
or
(W, V3) = —-W — (V3 — 3).
This leads to the identifications
MTAH (s) ~ £ ~° M Spin A MOy,
(10.20) MTH (—s) ~ £° M Spin A MT Oy,
MTH (4) ~ =73 M Spin A MSO(3) ~ =3 M Spin AMTSO(3).
We define BH (+s), — BO, by the pullback square

BH (+5), —— BH (+£5)

(10.21) l l

BO, — BO

The space BH,(s) classifies pairs (V,, Vi) consisting of vector bundles of dimensions
n and s and a Spin structure on —V, — V; (or, equivalently, on V, 4 Vy), while
BH (—s)y classifies pairs (1}, Vs) with a Spin structure on —V;, 4+ V5. For s > 0 there
is therefore a pullback square

BH,(s) —— BSpin,,

(10.22) l J

BO, x BOg ——— BOy 45
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Proposition 10.23 The space BH (£s)n is the classifying space of a compact Lie
group ﬁ(j:s)n. The group H, (s) is the stabilizer in Spin,, . of a s—plane in R"*5.

Proof The first assertion is a consequence of the pullback square (10.21) and Remark
10.15. The second is immediate from (10.22) O

The construction of Section 9.2.2 leads to maps
MTH (s) > S KO
and so, by (10.20), to maps
M Spin AMTOg; — KO,
M Spin A MOy — KO,
¥ M Spin A MSO3 — KO.

These are maps of M Spin modules, so to describe them it suffices to describe the

restricted maps
MO; — KO,

MTO; — KO,
YMSO3z — KO.

Proposition 10.24 Let V — BO; be the universal vector bundle. Then the map
MOg; — KO corresponds to the element of KO(V,V — 0) given by applying the
difference bundle construction to

VX A*(V) = A*(V),
(v, ) > VvAW.

Proof In the notation of Lemma 9.27, the algebra A(s) is Cliff 4 ® Cliff_g, so
that A°P is also Cliff ® Cliff_g, but with left Clifford multiplication by v € R*
sending x ® y to (—1)*Ix ® vy. The composed embedding Oy — Hs — AP is the
map

(10.25) Os — Cliff 45 ® Cliff_

sending reflection through the hyperplane perpendicular to v € R to v ® v.

Let P — BOj; be the universal principal Os—bundle. The K-theory class described
in Section 9.2.2 is the difference bundle on (V, V' —0) associated to the Oz—equivariant
“Clifford multiplication” map

(10.26) RS x (A% @ 4or M) — (AP ® goo M)
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in which M = Cliff; is the left A°°-bimodule specified in Section 9.2.2 and giving the
Morita equivalence of A°? with R. Passing to associated bundles, this works out to be

V x Cliff(V) — CLff(V),
(v, ») ~ (—=)®lyy.

The antiautomorphism of Cliff(}') extending the identity map of V' gives an isomor-
phism of this with
V x Cliff(V') — Cliff(V),

(v, w) — vo.

The claim now follows from the standard method of “wrapping up” the complex
VxAWV)— A(V) using v £ 1, (see [8, Proposition 11.6] and the surrounding
discussion for the complex case). a

Proposition 10.27 The map MTOg; — KO factors as

(10.28) MTO; — (BOys)+ — KO,

in which the first map is the map

(10.29) Thom(BOg, —V) — Thom(BO;, (V)@ V)

and the second corresponds to the trivial line bundle 1 € KO°(BOy).

Proof Write Gry(R”"S) for the Grassmannian of s—planes in (n-s)—space, and

let V,, and Vs be the universal n—plane and s—plane bundles. These bundles come
equipped with a trivialization

(10.30) Vs ® Vy &~ Grg(R"1T5) x RS,

From the identification Grg(R" %) = Spin,, +s /Hp of Proposition 10.23 it follows that
the bundle 1}, comes equipped with an H,—structure. The construction of Section 9.2.2
gives an element U € KOS (Thom(Grg(R" %), V;,)). The assertion is that this pulled
back from the canonical generator (the suspension of 1 € KO%(pt)) of Konts(snts)
along the map

Thom(Grs (R"); V;,) — Thom(Grg (R"15); Vs & Vy,)

~ Sn+s AGrs(Rn+s)+ s Sn—l—s.
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This is immediate from the construction. The algebra A(s)°P is Cliff_g ® Cliff_,.
The class U is the complex of left A—modules (which come as right A°°~modules)
obtained by applying

(10.31) Spingy,, xg, (—)

to the H,—equivariant Clifford multiplication map

(10.32) R" x Cliff_y ® Cliff_,, — Cliff_s ® Cliff_,, .

This map evidently extends to the Sping, ,—equivariant Clifford multiplication map
(10.33) R* @ R" x Cliff_ ® Cliff_,, — Cliff_; ® Cliff_,,

so the class U is pulled back from the bundle of left A-modules on (R*” RS+" —{0})
obtained by applying

(10'34) Spinn +s5 XSpinn+S ( - )

to (10.33). This class represents the suspension of 1. |
For the case s = 4 what we require is the following:

Proposition 10.35 The restriction of the map
S' AMSO; — KO

to S* — KO is the generator of I?OO(S“).

Proof From the diagram (10.17) a map to BH(4) can be thought of as consisting
of a stable vector bundle V, an oriented 3—plane bundle V3 and a Spin—structure
on V & V3. We map BSO(4) — BH(4) by taking V to correspond to the defining
representation and V3 to be one of the two irreducible representations of dimension 3.
The construction of Section 9.2.2 then leads to the bundle on M SO(4) corresponding
to the SO(4)—equivariant map

R4xN—>N,

where N is the irreducible quaternionic Cliff4—module specified in Section 9.2.2
with SO(4)—action from the embedding above. This restricts to the generator of
KO(R*,R*—{0}), by [8, Theorem 11.5]. m|
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The two complex cases are handled similarly, using either the pullback squares

BHE®(s) BOg

(10.36) l l(wl ,Bwz)
BO —— K(Z/2,1)x K(Z, 3)
(w,Bw>)
for the identification
(10.37) MTH(s) ~ ¥~° M Spin® A MOs
or
BH¢(s) ——— BOs x BU;
(10.38) l l(wl,wercl)
BO————— P
(wl aw2)

for the identification

(10.39) MTHE(s) ~ X572 M Spin A MU, A MOj.

11 A topological spin-statistics theorem

In a relativistic quantum field theory the spin-statistics theorem states that the central
element of the Lorentz spin group acts on the Hilbert space of the theory as (—1)F,
where F is the Z/27Z—valued grading operator;*? see [108; 53; 69] for proofs in the
framework of Wightman quantum field theory. In this section we prove the analog
for reflection positive nonextended invertible topological theories. We do not know a
version for fully extended theories. See [62] for another account of spin-statistics in
topological field theory, but without positivity. A topological version of spin-statistics
also enters into [50] in the context of fermionic lattice models.

To formulate the statement we Wick rotate the central element of the Lorentz spin
group to the central element of the Euclidean spin group. On a curved Riemannian spin
manifold M, it acts as the spin flip: the identity diffeomorphism of M covered by the
action of —1 on the spin frames. For a general symmetry group H,, itis the action of the
distinguished central element ko € K in the internal symmetry group; see Corollary 2.12.

42 F vanishes on bosonic states and is the identity on fermionic states. In a free theory there is a dense

Fock space of states with a finite number of particles on which F counts the number of fermionic particles
modulo two. In any theory (—I)F is the grading operator on the Z/2Z-graded Hilbert space of states.

Geometry € Topology, Volume 25 (2021)



1290 Daniel S Freed and Michael J Hopkins

Let sVectc be the symmetric monoidal category of super vector spaces; the symmetry
incorporates the Koszul sign rule. Recall the notation (Remark 2.39) for the domain of
a not necessarily topological field theory.

Definition 11.1 Let F: Bord(vn_1 n)(H,,) — sVectc be a field theory. We say F sat-
isfies spin-statistics if it maps the spin flip on every (n—1)-manifold Y to the expo-
nentiated grading operator (—1)% on the super vector space F(Y).

Example 11.2 The spin-statistics connection fails without reflection positivity. Con-
sider a 1-dimensional invertible topological theory F' of spin manifolds with values in
the category of Z /2Z-graded complex lines. There are 4 theories up to isomorphism:*3
F(pt, ) is either even or odd, the spin flip acts as either +1 or —1, and these choices
are independent. Half of these theories satisfy spin statistics, and they are precisely
the ones for which F (St}ounding) = +1, which by Theorem 7.22 is the condition for
stability, and so for reflection positivity.

Theorem 11.3 Let F: Bord(,_; ,)(H,) — sLinec be a reflection positive invertible
topological field theory. Then F satisfies spin-statistics.

Proof We first treat the case in which H, = Spin,,. Let Y be a closed Hy,—manifold
and set L = F(Y). Recall from Section 4.2 and Definition B.8 the coevaluation
cy:@" 1 5> YIIYY and the evaluation ey : YV LI Y — "1, Let

:YIYY YY1y

1 .
nonbounding xY (See Flgure 6)’

and under F it maps to the composition C - L ® L* — L* ® L — C. The Koszul
sign rule in the symmetry gives

be the symmetry map. The composition ey ot ocy is S

' F +1 for L even,
(11.4) F (Sponbounding X ¥) = trsidz, = tr(=D)" =3 * for L odd.

where try is the supertrace. The nonbounding circle is obtained by cutting the bounding
circle at two points and regluing using the spin-flip diffeomorphism of one of the points
and the identity of the other. In other words, it is a triple composition of coevaluation,
the indicated diffeomorphism, and evaluation. Take the Cartesian product with ¥ and

43We compute using Theorem 5.23: [S!MTSpin;, £11C*] = Hom(r; Z!MTSpin;, C*), the Thom
spectrum X 1MTSpin, is the suspension spectrum of RP°, and 1 RP 2 Z /27 x Z /27 By contrast,

71 MTSpin = Z /27, hence [MTSpin, £1/C*] = Z /27, and so by Theorem 1.1 there are only two
reflection positive theories.
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Cy T ey

Figure 6: The composition ey ot ocy.

apply F to conclude that the ratio of (11.4) with F (Sblounding x Y) is the supertrace

of the spin flip on Y, and since the spin flip has order two this ratio equals 1. But

Sbloundin o X Y is the spin double of cy (see Example 4.31), so by reflection positivity
we conclude from Proposition 4.26 that F (Sblounding x Y) =1, hence the spin flip acts

as (—1)F.

In the general case we use Corollary 2.12 to construct an Hj 4 ¢—structure on the
Cartesian product of a Sping—manifold and an Hy—manifold. Then the argument in
the preceding paragraph goes through for Y an H,_;—manifold and the same spin
circles. |

Appendix A The CRT theorem for general symmetry types

In Section A.3 we take as our starting point a relativistic quantum field theory in
Minkowski spacetime. Positivity of energy gives analytic correlation functions for
which the Minkowski correlation functions are boundary values; Euclidean correlation
functions are the restriction to a suitable subdomain. This leads to the CRT theorem
(Theorem A.23),** and we outline Jost’s proof [63], extended to general symmetry
types. Recall that the symmetry group H ,—; of arelativistic quantum field theory acts
by time-orientation-preserving transformations; see (2.1). The CRT theorem asserts
that a larger symmetry group, including time-orientation-reversing transformations,
also acts; the time-reversing elements act antilinearly. There is a subtlety in the

]45

Lorentz spin central extensions, flagged in [54],*> which we elucidate and generalize to

441t is usually called the CPT theorem, but we follow the nomenclature in [116], which is more
appropriate for arbitrary dimensions: the ‘P’ in ‘CPT’ is understood to be the parity transformation that
acts as —1 on space and so is orientation-preserving if the dimension of spacetime is odd; by contrast,
the ‘R’ in ‘CRT’ denotes reflection in a single spatial direction and is orientation-reversing in all dimensions.
The ‘C’ is best read as ‘complex conjugation’.

45The setting of [54] is “formal field theory” as opposed to that in the Wightman axioms.
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arbitrary symmetry types in Section A.2. This subtlety is present even in the spin case
without time-reversal symmetry. It implies, for example, that the ten Lorentz signature
symmetry groups for free fermion theories (Section 9) embed in Clifford algebras, a
fact which is implicit in Section 9.2.4. In this appendix we work in the framework of
Wightman quantum field theory. One consequence of our discussion (Remark A.42) is
a justification of the correspondence between the alternatives

(A1) pinT—structure vs pin —structure
in Wick-rotated field theory and the alternatives
(A.2) T2 =(-DF vs T2=1

for the action of time-reversal T on the Hilbert space J{ of states. We begin in
Section A.1 with a review of pin groups and pin manifolds, which also serves to fix
some conventions about Clifford algebras.

We assume the dimension of spacetime is n > 3.

A.1 Pin groups and pin manifolds

References for this section include [8; 16; 72]. While we assume the dimension 7 is at
least 3, with minor modifications the discussion goes through for n = 1,2 as well.

A.1.1 Pin groups and Clifford algebras We take Lorentz signature as our starting
point. Let RL7=1 pe the standard vector space with basis eg, ey, ...,e,—1 and the
standard inner product: (eg,eo) =1, (e;,e;)=—1fori=1,...,n—1,and (e,,e,) =0
for u #v. Its isometry group is the orthogonal group O1 ,—1. The group of components
of O1,,—1 isisomorphic to {£1} x{=£1}; an orthogonal transformation either preserves
or exchanges the two components of timelike vectors & (vectors with (£, &) > 0), and
it either preserves or reverses the orientation of any spacelike codimension 1 subspace.
In terms of the block matrix (‘:] Z) € O1,,—1 the first question is the sign of the real
number a and the second the determinant of the (n — 1) x (n — 1) matrix A. The
identity component of O1 ,—1 has a unique (up to isomorphism) connected double
covering group Spin; ,_. It is contained in the even subalgebra of a real Clifford

algebra, and there are two equally good choices for the signs:

Cliff; p—1: el =+1 and e?=-1 fori=1,....n—1,

(A3) ) 5
1

Cliff,—1,1: ey =—1 and es =41 fori=1,...,n—1.
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The Lorentz orthogonal group O; ,—1 has a complexification O, (C) consisting of
complex n x n orthogonal matrices. This complex group has two components dis-
tinguished by the determinant, which is +1. The identity component SO, (C) has a
subgroup that is the union of the two components of O1 ,_1 of matrices with deter-
minant 1. Also, SO, (C) has a unique connected double covering group Spin, (C),
which contains Spin; ,_ as a subgroup. The complex Lie group Op(C) deformation
retracts onto its maximal compact subgroup O, which is the group of orthogonal
symmetries of the real vector space spanned by

(A.4) fo :ieo, fl =e1, ..., fn—l =ep_1

with its inherited negative definite inner product. Here i is a choice of complex number
with i2 = —1. The identity component SO,, has a unique connected double covering
group Spin,,, which is the maximal compact subgroup of Spin,, (C). It is contained in
the even subalgebra of a real Clifford algebra, and again there are two equally good
choices for the signs:

Cliff_,: f2>=—-1 for u=0,...,n—1,
(A5) o
Cliff4,: f;=+1 for un=0,...,n—1.

The four-component orthogonal group O1,,—1 has many double cover groups with
identity component Spin, ,_; ; we discuss two of them in Section A.2. In the remainder
of this subsection we focus on the two-component compact orthogonal group O, , which
has two double covers PiniE with identity component Spin,, . Each is a subgroup of in-
vertible elements in a real Clifford algebra: Pin,“l*L C Cliff+, . They are group extensions

(A.6) 1 - {£1} > Pinf - 0, > 1.

Observe that Pin;r =7/27 xZ/27 and Pin] = Z/4Z.

A.1.2 Pin manifolds A Riemannian manifold X has a principal O,—bundle of
frames B (X) — X whose points represent orthonormal bases of the tangent spaces
to X. The following is a special case of Definition 2.29.

Definition A.7 A pinT—structure on X is a pair (P, 0) consisting of a principal Pin,jf—
bundle P — X and an isomorphism B (X) b p /{=£1} of principal O,—bundles.

Pin structures, as spin structures, do not necessarily exist. The obstructions are given by
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Stiefel-Whitney classes: a pin*—structure exists on X if and only if4® w,(X) =0 and
a pin~ —structure exists if and only if (w% +w3)(X) =0. Double covers of X act on pin
structures as follows. If Q — X is a double cover, viewed as a principal {41}-bundle,
and (P, 0) is a pinT—structure, then Q Xy P — X is a principal ({£1} x Pin,:f)—
bundle. The Pin;l*L—bundle (Q Xy P)/{£1} — X associated to the homomorphism
{£1} x Pinf — Pin (multiplication in Pin® with first argument restricted to the
central subgroup in (A.6)), along with a canonical isomorphism of underlying O,—
bundles obtained from 6, is a pinT—structure. The set of isomorphism classes of
pinT—structures, if nonempty, is a torsor over the abelian group H(X;Z/2Z); that
is, this group acts freely and transitively on the set of isomorphism classes. There is
a canonical double cover of X, the orientation double cover, whose points represent

orientations of the tangent spaces to X.

Definition A.8 The wi—involution is the action of the orientation double cover on pin
structures.

Recall that the equivalence class of the orientation double cover is classified by w;(X) €
HY(X:;Z/27).

Remark A.9 Let & be the automorphism of Pin,iE that is the identity on Spin, and
multiplication by the central element —1 on the complement; it covers the identity
automorphism of O,. An alternative description of the wi—transform (P, 6) of
a pin-structure (P, 0) is the same manifold P with the same map 6, but with the
Pin,jf—action altered by precomposition with &@. (To see this, write the orientation
double cover as P/ Spin,, and construct the isomorphism of Pin,:f—bundles

(A.10) P/Spin, x P — P~

which maps (0, p) > p if peo and (o,p)—~ p-(—1)if p¢o. Here 0o C P isa
Spin,—orbit.)

A.2 Lorentz signature symmetry groups

This section is an exposition and elaboration of ideas in [54]. We continue with the
hypothesis n > 3, largely for convenience of exposition; with minor modifications the
discussion goes through for n = 1,2 as well.

46These are Stiefel-Whitney classes of the fangent bundle: Wq (X) = wg(TX). There is a potential

confusion with Stiefel-Whitney classes of the stable normal bundle, which is what appears naturally in
bordism theory.
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A.2.1 Complex pin groups The complex orthogonal group O, (C) has two compo-
nents. The identity component SO, (C) C O,(C) has a unique isomorphism class of
nontrivial double cover groups, any representative of which is called Spin, (C).

Proposition A.11 There are unique complex Lie groups Pin;—L (C) with identity com-
ponent Spin,, (C), which double cover O,(C), and which contain Pin,j,E as maximal
compact subgroups. Furthermore, any complex Lie group that double covers O, (C)
and has identity component isomorphic to Spin,,(C) is isomorphic to either Pin; (C)
or Pin, (C).

Remark A.12 We remind the reader that Pin,ﬂ,E (C) are complex Lie groups, whereas
the group ‘Pin{’, which is defined in [8, Section 3] as a subgroup of the complex
Clifford algebra, is a compact real Lie group; it and twisted variants appear in Section 9.

Proof Up to isomorphism there is a unique double covering space X — O, (C)
whose inverse image over each component of O, (C) is connected. The restriction
over O, C O,(C) is isomorphic as a double covering space to Pinf — Oy, . Choose
an isomorphism of double covers and transport the group structure, then extend the
group structure on the identity component Spin,, to that of Spin,(C) on the entire
component X+ C X containing Spin,. Now use covering space theory to extend
the group structure to all of X. For example, setting X_ = X \ X4, lift the map
X4+ xX_-— 0,(C)= toamap X4+ x X— — X_ using basepoints in the compact pin
group. In fact, the extension of the group structure is determined by the square of a lift
of a single hyperplane reflection, for which there are two choices, and this implies the
last assertion. d

A.2.2 Double covers of Lorentz isometry groups The two-component group
SO1 ,n—1 C O1,n—1 consists of isometries that preserve the overall orientation of RIA—1
Let j,, C C* be the group of m™ roots of unity. Using the diagram

Spin,, (C) “——— Spin, (C) x4, ta

(A.13) K %

S0,(C)

set §\Cl)‘i"n_1 = 7 1(SO1 4—1), and let SF\O/Ln_1 C Spin, (C) x,, 14 be the union of

Spin; ,,_; and the complement of nz_l(SOf’n_l) in n4_1(SOin_1), where SOf’n_1

is the nonidentity component of SOy ,_1. For the pin groups let 5;‘[_1 . and OF, 4
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be the inverse image of 01 ,-1 C O, (C) under the double cover homomorphisms
Pin (C) — 0,(C) and Pin, (C) — 0,(C), respectively. Finally, using the diagram

Pinf (C) “————— Pin(C) x,,, 14

(A.14) k %

0n(C)

let 55_1’1 and 5{3,,1_1 be the union of nz_l(OlT’n_l) and the complement of
nz_l(Of’,n_l) in 714_1(0*”_1), where we use the + and — pin groups, respectively.
Here Oy ,,_; is the complement of 01T’n_1 C O1,n—1, the components of time-reversing
linear isometries.

Proposition A.15 (1) Every double cover group of SO1 ,_1 whose identity com-
ponent is isomorphic to Spin, ,_4 is isomorphic to either SO‘{"n_1 or SOﬁn_l.

(2) The double cover group 5?)’13,”_1 of SO, ,,_, is a subgroup of the even subal-
gebras of Cliff,_1,; and Cliffy ;1.

(3) The double cover groups 55_1’1 and 5ﬁn_1 of Oy ,_, are subgroups of
Cliff, _, ; and CIliff, ,_,, respectively.

Summary: the a—double covers are subgroups of complex (s)pin groups; the f—double
covers are subgroups of Lorentz signature Clifford algebras.

Proof For (1), let g € SOin_1 be the diagonal matrix diag(—1,—1,+1,...,4+1).
Then the square of a lift of g to a double cover of SO1 ,—1 has square the identity +1
or the central element —1 of Spin, ,_;. By covering space theory, as in the proof of
Proposition A.11, we can deduce that this dichotomy determines the group structure
on the double cover.

The element ege; in the Clifford algebra (of either signature (n —1,1) or (1,n—1))
acts on R17~1 a5 g and squares to +1. On the other hand, g liesin SO; -1 NSO, C
SO, (C), so a lift of g to Spin, (C) lies in the compact spin group Spin,,, where it
squares to —1, as we compute in the Clifford algebra Cliffy,. This is the essential
point in the proof of (2).

As for (3) there are double covers Pin,_1,1 C Cliff,_1,1 and Pin; ,—; C Cliff] 5
of O1 -1, as defined in [8; 82, Section 1.2]. By (2) the restriction over SOy ,—1 is
isomorphic to §6’13’n_1. The element diag(—1,+1,...,+1) € Oin_l lifts to eg in
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the Clifford algebra, and its square is given in (A.3). Arguing as above with the compact
pin groups we deduce that this is opposite the square of a lift in the corresponding
complex pin group. This is the new step in proving the isomorphisms
. _ ~B
Plnn—l,l = On—l,l’

(A.16) ~p
P1n1’n_1 ~ 01’n_1. O

A.2.3 General Lorentz signature symmetry groups There are analogs of the a—
and fB—extensions of the Lorentz signature vector symmetry group Hj ,—; for an
arbitrary symmetry type, which, as in Section 2.1, is the quotient of the full symmetry
group of a relativistic quantum field theory by translations. It comes equipped with
a homomorphism p,: Hy p—1 — 01T n—1- We use the structure theorem Theorem 2.7

and in particular (2.8), (2.10), and (2.11) to define the «— and S—extensions H ix QS_ 1
of H 1n—1 simultaneously. Set

(A.17) SHYP | = SOYP | x K/((~1.ko)).
If the~in/1;1ge of p, is SOI,n—l’ set Hﬁ{lﬂ_l = SH‘i/f_l. If p, is surjective, de-
fine H f‘ 1 by the pullback

rro/B ~a/B
]— K —— Hl,n—l R — On—l,l —1

L

(A.18) H
1 K J (1} —— 1

where the right vertical map is the determinant homomorphism. Then let
(A.19) HYP = 3P /(1. ko).

We observe that H {x .1 18 a real subgroup of the complex Lie group H,(C), the
inverse image of Oj ,—1 under the homomorphism py,: H,(C) — 0,(C) in (2.2).
Also, our notation is set up so that Spin‘f,/f_l ~ S/\O/‘i‘/n’3 -

A.2.4 Extensions of real representations As just remarked, the o¢—extension sits as
a subgroup of the complex symmetry group. One key feature of the S—extension is the
following.

Proposition A.20 Let R=R°®R! beaZ /2Z—graded real representation of Hy —1
such that ko € K C Hy -1 acts as the grading operator. Let Rc := R ®pr C denote
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the complexification, which carries an action of the complex Lie group H,(C), hence
of the subgroup Hfin_l .

() IfheH{, \Hy,_;,then h(R%) = R® and h(R') = v/-1R".

(2) There is a canonical extension of the action of Hy1,-1 on R to an action

of HY,_,.

All Lie groups that appear are ungraded, so act by even transformations of R. The
conclusion is that the B—extension acts on real representations of Hj .

Proof For (1) it suffices to check for a single element /1 € Hﬁn_l \H, ;- By
Corollary 2.12, anti-Wick rotated to Lorentz signature, we choose / to be the image
in Hi', | of alift of
-1 0

(A.21) 0 —1 € S01,1 NSO, C SOL(C) C SO,(C)

to Spin, (C). In the compact spin group Spin, C Spin,(C) the element £ is repre-
sented as fo f1 and is connected to the identity by the curve cos %t + (sin %t) fofi
for 0 <t < &, where we embed Spin, C Cliff_,; see (A.5). Complex conju-
gation, defined so that Spin; ; C Spin,(C) is real, takes this curve to the curve
cos ¢ — (sin 1) fo f1 for 0 <t <7 in Spin, C Spin,(C). In particular, the complex
conjugate of fo f1 is — fo f1. Since —1 maps to ko and acts as the grading operator,
fo f1 is a real operator on R(% and a purely imaginary operator on R(lC . This proves (1).

Consider the diagram

o o
.
Hy,_, Hy oy X, Ha

N

O1,n—1

in which us C Hﬁn_l is generated by k¢o. Then Hﬁn_l C Hﬁn_l X 15 M4 1s the union
of H,_; and the complement of 712_1(01{"_1) in n4_1(01{n_1). Let pg C C*
act on R(lC via scalar multiplication and on R(% trivially. Then by (1) the restriction to
Hﬁn_l C Hﬁn_l Xu, M4 is real, ie preserves R C Rc . This proves (2). d

A.3 Wick rotation and the CRT theorem

In this section we sketch a rigorous argument for the CRT theorem in relativistic
quantum field theory. We use the analytic continuation of correlation functions,
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working in the framework of Wightman quantum field theory [108; 53; 69]. Our
purpose is to treat general symmetry types. Even for theories with Lorentz symmetry
group Hjp—1 = Spin; ,,_; there is a subtlety: the group STé‘f,n_l acts on the holo-
morphic correlation functions, whereas the group §CJ)’;3 n—1 acts on the Minkowski
spacetime correlation functions. (See Section A.2.2 for the definitions of these Lie
groups.) This argument also demonstrates why only the “Cliffordian” [16] Lorentz
signature pin groups Pin, 1,1 and Pin; 1 can be symmetries of a relativistic quantum
field theory instead of more general possible double covers of O; ,—1; see Remark A .42.
We assume n > 3.

Recall from Section 2.1 that Minkowski spacetime M " is an n—dimensional affine space
whose vector space V' =R~ of translations is equipped with an inner product of sig-
nature (1,7 —1) and a choice of component V4 of the space {£: (£, &) > 0} of timelike
vectors.*” To Wick rotate to imaginary time, fix an orthogonal splitting V = U @ U+
with U a 1-dimensional timelike subspace. Then the Euclidean translation group
is Vg = v/—1U @ U+ and the corresponding Euclidean space is £ = M xy VE,
an affine space over Vg . Complexified Minkowski spacetime is Mc = M %, V¢,
where V¢ is the complexification of V. The symmetry group H1 ,—;1 of a relativistic
quantum field theory acts on M" by time-orientation-preserving transformations via a
homomorphism py, : H1,n—1 — 01T7n_1, as in (2.1).

Theorem A.23 (CRT theorem) Let Q denote a relativistic quantum field theory
with symmetry group Hi ,—1. Then the symmetry extends to H {3 n—15 €lements of
Hﬁn_l \Hl’n_1 act antilinearly.

Here Q is a quantum field theory in the Wightman axiomatic framework. It is determined
by its correlation functions, called Wightman functions; see [69, Section 1.3]. For
simplicity of notation we only discuss 2—point functions in this account. A precise
version of Theorem A.23 is (A.41) below.

The fields in Q are defined by a finite-dimensional Z /2Z-graded real representation
(A.24) o: Hi -1 — Aut(R).

We write R = R® @ R! according to the grading; elements of H; ,_1 preserve the
grading. The spin-statistics theorem, which we assume in this account, asserts that the
special element kg € K C H; ,—; defined in Theorem 2.7(2) acts as the grading operator
on R. Write Rc = R ®p C for the complexification. Classical fields are functions

#TThe latter choice is required in order to formulate the positivity of energy.
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M" — R. Quantum fields are R—valued operator-valued distributions ® = ®° + ®!
on M"™. The 2—point “function” is a complex distribution whose value on Schwartz
functions f;: M™ — R* is written

(A.25) (®(f1)P(f2)) = /MZ dp1dpz f1(p1) f2(p2) (@(p1)P(p2)),

where (®(p1)P(p2)) denotes the kernel of the Rgz—valued distribution on M *2.
The theory Q has a Z/27Z—graded Hilbert space H = H° @ F! of states, constructed
from the correlation functions, and a distinguished vacuum vector Q2 € H°. The field
operators ®(f) act as unbounded operators on H, and the 2—point function is the
vacuum expectation value of the product of the field operators:

(A.26) (P(1)P(f2) = (2. P(f1)P(f2)R)4-

There is a unitary representation of the affine extension of H1 ,—1 on } —all sym-
metries preserve the Z/27Z-grading. The vacuum vector and 2—point function are
invariant under that action, in particular under translations. Hence there is an R%’ 2_
valued distribution on V' with kernel

(A.27) WE) = (2(p)@(p+§). peM'and eV,
which is independent of p.

The important step in Jost’s proof is the construction of holomorphic correlation
functions from which the Wightman functions are recovered as boundary values
[69, Section 2.1]. This is a consequence of the positivity of energy and geometric
arguments. The holomorphic 2—point function

(A.28) We:D — RE?

has domain D C V¢ that is connected and H,(C)-invariant. Define the backward
tube T =V —iVy C V¢, where i is a choice of square root of —1. Then*8

(A.29) D = SO0, (C)(T) U—S0,(C)(T).

An important feature of D is that it contains Jost points,*®> which in this case of 2—point
functions are the real spacelike vectors £ € V' C V¢ that satisfy (£, &) > 0. From (A.29)
we see T C D, and, as stated, W is a boundary value of W :

(A.30) W) = lim+W(c(§ —¢in), &e€Vand nelVy,
e—>0

*8Note S0, (C)(T) = 0n(C)(7).
49Here we use n > 3.
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and the limit is independent of 7. We also have Vg \ {0} C D, and the Wick-rotated
Euclidean 2—point function is the restriction of W to Vg \ {0}.

We collect some properties of the holomorphic correlation functions. First, since the
inner product on J is even, it follows that

(A.31) We = WE+ W,

where W(g takes values in (R%)®2 for ¢ =0, 1. Note that both W(g and W(C1 are even.
Next, as already stated, W is Hj,(C)—invariant, hence invariant under the subgroup
HY, | C Hn(C):

(A.32) W (©) = a(h*)®* We(pn(h*)), h* € HY,_, and { €D,

Now if & is real and spacelike, then, since field operators at spacelike separated points
commute (in the graded sense) and since real spacelike (Jost) points are in the domain D,

WE(—§) = WE(E).
We (=§) = ~WE ().
Continuing with £ real and spacelike, we claim
WEE) = We ().
W) = -We ).

Since such £ lie in D, and D is connected, we deduce a Schwarz reflection formula
valid for all ¢ € D:

(A.33)

(A.34)

WE©) = WE(©).
W) =-We©).
The manipulation that justifies (A.34) is, forany p € M" and £ € V,
(A.36)  Wc(§) = (2(p)P(p+8§)Q.Q) = (Q, P(p +§)P(p)2) = W (=6):

then we apply (A.33). The middle step is straightforward in the even case: ®°(q) is

(A.35)

self-adjoint for g real. The corresponding manipulation in the odd case uses the adjoint
of the odd operator ®!(q), which involves a tricky sign>? as we explain in the following
remark.

Remark A.37 The usual physics conventions are: the norm square of an odd vector
in X is real and positive; for any two operators A and B we have (AB)* = B*A* —

50We thank Greg Moore for help straightening this out.
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there is no sign even if both A and B are odd; and the odd field operator ®!(q) is
self-adjoint in the usual sense. However, the Koszul sign rule demands that the first two
of these be modified to: the norm square of an odd vector in H is purely imaginary
and lies on one of the two rays of nonzero purely imaginary numbers, the choice of
which is a convention (Example 6.49); if A and B are operators that have definite
parities |A| and |B|, then [31, Section 4.4]

(A.38) (AB)* = (—1)|AlIBIp* g%,
Under these conventions, the odd field operator ®!(g) is not self-adjoint, but rather
(A.39) dl(g)* =i d'(g).

One justification for (A.39) is to consider the x—structure on the complex operator
algebra, and to note that (A.38) implies that the square of an odd self-adjoint operator is
even skew-adjoint, and so if ®!(q) were self-adjoint we would contradict expectations
for the quantization of real fields. We remark that the factor i in (A.39) already
occurs in quantum mechanics; see [48, (4.10)]. The middle step in (A.36) is valid with
either the standard physics conventions or the Koszul-compatible notion of adjointness
supplemented with (A.39).

Proof of Theorem A.23 Fix h* € H{, ;\ H,,_;. Then h* reverses the time
orientation, in other words, H*(V4+) = —V,. Hence for £ € V' we use (A.30), (A.32),
and (A.35) to deduce that for £ € VV and ¢ =0, 1 we have

(A.40) WaE) = lim W —ein)
e—>0t
= elirr;+ o (h*)®2 W (pn(h®)§ — €ipn (h®)n)
= EILH&+(—1)q0(h“)®2 We (o (h*)§ + €ipn (h®)n)

= (=D)7a(h*)®>W(pon (h*)$).

To pass to the third equation we use the fact that o (h%) is real on even vectors
(Proposition A.20(1)). The construction that proves Proposition A.20(2) combines
with (A.40) to yield

(Adl)  WiE) =o(hP)®2W(pu(hP)g), WP eHL, | \H,,_ , and E€V.

This is the precise statement that the Minkowski spacetime 2—point function is antilinear-
invariant under elements of H {3 n—1 \H Ln—1- |
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Remark A.42 If Q is a relativistic quantum field theory with fermionic states and
time-reversal symmetry, and no other internal symmetries, then Hj ,—1 is a double
cover of SOI,n_1 whose identity component is isomorphic to Spin; ,,_;. The complex
Lie group H,(C) is then a double cover of O, (C) whose identity component is iso-
morphic to Spin,, (C). Proposition A.11 implies that H,(C) is isomorphic to Pin:lr (©)
or Pin, (C). The construction with (A.14) and (A.16) tells that the group H {3 n—1
18 Pinn_l,1 and Pinl’n_1 , respectively. Recalling the sign convention (A.3) for Clifford
algebras, this proves the correspondence between (A.1) and (A.2) and also limits the
possible symmetry groups on relativistic quantum field theories to the Cliffordian pin

groups.

Appendix B Involutions on categories and duality

Definition B.1 Let € be a category.

(1) An involution of € is a pair (z,n) of a functor 7: € — € and a natural isomor-
phism 7: ide — t2 such that for any x € € we have 5, = 1, as morphisms

X — ‘L’3x.

(2) A fixed point of t is a pair (x,6) of an object x € € and an isomorphism
2

x &5 7x such that th 0§ = Nx as morphisms x — t°Xx.
If € is a symmetric monoidal category, then the involution t is required to be a
symmetric monoidal functor: for x, y € C there is given an isomorphism tx ® Ty =>
7(x ® y) and these isomorphisms are compatible with the symmetry and with 7.

Example B.2 Let C = Vectc be the category of complex vector spaces and linear
maps. Define 7: € — C to be the functor that takes complex vector spaces and linear
maps to their complex conjugates. (The complex conjugate vector space is the same
underlying real vector space with the sign of multiplication by ~/—1 € C reversed;
the complex conjugate of a linear map is the same map of sets.) Then there is a
canonical identification of 72 with ide. A fixed point is a complex vector space with a
real structure. As a variation, if € = sVectc is the category of super (Z/27Z—graded)
vector spaces and T complex conjugation as above, but now 7 is composed with
the exponentiated grading automorphism (denoted ‘(—1)¥ * in the physics literature),
then a fixed point is a super vector space with a real structure on its even part and a
quaternionic structure on its odd part. If we restrict to the subgroupoid C* of super

lines and isomorphisms, then all fixed points are even.
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Definition B.3 Let (z,7) be an involution on a category C. The fixed-point cate-
gory CT has as objects fixed points (x, #), and a morphism (x, #) — (x/,8’) in C*
is a morphism (x = x’) € € such that the diagram

x ——x'

(B.4) el ) le/

™x — X’

commutes. There is a forgetful functor C* — € that maps (x, 6) — x.

Example B.5 Let C be the groupoid of Z(1)-torsors:>! an object T is a set with
a simply transitive action of the additive group Z(1) and a morphism 7 — T’ is an
isomorphism that commutes with the Z(1)—actions. Let 7 be the involution that sends
atorsor T to its dual Hom,, (1)(T, Z(1)) and sends a morphism to its inverse transpose.
The dual of 7 may be identified with 7" as a set; the dual Z(1)—action by ¢ € Z(1)
is the original action by E The fixed-point category €7 is equivalent to the set Z /27
there are two isomorphism classes of objects and no nontrivial automorphisms. The
first, which we call “Type P’, is the torsor Z(1) with complex conjugation 6 as a map to
the dual torsor. The second, which we call “Type N”, is the torsor 7+/—1 + Z(1) with
complex conjugation 6. Observe that in the Type P case the involution 6 has a fixed
point whereas in the Type N case it does not. Also, Z(1)-torsors form a Picard groupoid,
as do torsors for any abelian group, and the fixed-point category is a Picard groupoid as
well. The Type P torsor is the tensor unit; the square of a Type N torsor has Type P. The
names derive from the family exp: C — C* of Z(1)-torsors with complex conjugation
acting. There are two components R>? and R<? of fixed points in the base. The fiber
of exp has Type P over positive real numbers and Type N over negative real numbers;
the representatives described above are exp~!(+1) and exp~!(—1), respectively.

Definition B.6 Let B and C be categories with involutions and F': B — C a functor.
Then equivariance data for F is an isomorphism ¢: Ftg => ¢ F of functors B — €
such that for every object x € B the following diagram commutes:

F7I3 2
F.X—>F'EBX

(B.7) \ J«»z

2
reFx

S1Recall that Z(1) =27+/—1Z C C.
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There are additional compatibilities for a symmetric monoidal functor between sym-
metric monoidal categories; we do not spell them out. We often loosely say that
“F 1is an equivariant functor”, but it is important to remember that equivariance is
data 4+ condition, not simply a condition.

Next, we review duality in a symmetric monoidal category. Let C be a symmetric
monoidal category and x € €. Denote the tensor unit by 1 € C. (The tensor unit
in Bord(,_1 ,)(Hy) is the empty set as an (n—1)—dimensional manifold; the tensor
unit in Vectc is the trivial 1-dimensional vector space C.)

Definition B.8 Let x be an object in a symmetric monoidal category C. Duality data
for x is a triple (xV, ¢, e) consisting of an object x¥ € € together with morphisms
c:1—>x®x"Y and e: x¥ ® x — 1 such that the compositions

c®id id®e
x =2 x®xv®x — X,

id®c e®id
xY —>xv®x®xv—>xv

(B.9)

are identity maps. If xg 7, X1 is a morphism, then the dual morphism is the composi-
tion

id®c d® f ®id ex,®id
(B.10) fvzxi/—m>x¥®xo®x(\)/m>x}/®xl®x(¥x‘—>x(\{.

The morphism c¢ is called coevaluation and e is called evaluation. We say that xV is
“the” dual to x since any two triples of duality data are uniquely isomorphic. Assuming
all objects have duals, we can make choices of duality data for all objects at once and
o obtain a duality involution § on €, but § does not satisfy Definition B.1 since the
direction of morphisms is reversed (B.10); in other words, § is a functor to the opposite
category.

Definition B.11 Let C be a category.

(1) A twisted involution of C is a pair (8, n) of a functor §: ¢ — C°P and a natural
isomorphism 7: ide — 6°? 0§ such that for any x € C we have 87x 015, = idgy .

(2) A fixed point of § is a pair (x,0) of an object x € C and an isomorphism
x &5 8x such that §6 o Nx = 6 as morphisms x — §x.

Definition B.3 applies with a single change: the direction of the bottom arrow in (B.4)
is reversed.
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Example B.12 For C = f'Vectc the category of finite-dimensional complex vector
spaces, the duality involution §: € — C°° maps a vector space V' to its dual V* and
alinearmap f:V — W to f*: W* — V*. A fixed point of § is a vector space V
equipped with a nondegenerate symmetric bilinear form; a linear map f:V — W
in ©° preserves the bilinear forms. A fixed point for the composite of duality and
complex conjugation (Example B.2) is a complex vector space V' with a nondegenerate
Hermitian form; a linear map f:V — W in the fixed-point category is a partial
isometry — an injective map that preserves the Hermitian forms.

Remark B.13 There is a higher categorical context for Definition B.11. Let Cat denote
the 2—category of categories. There is an involution «: Cat — Cat that sends a
category C to its opposite C°P. (There is an extra categorical layer over Definition B.1:
there is a triple (¢, n1,72) of data and a single condition.) A twisted involution in the
sense of Definition B.11 is fixed-point data for «.

Definition B.14 Let (7, 7n) be an involution on a symmetric monoidal category C. A
Hermitian structure on an object x € € is an isomorphism /: 7x — xV such that the
composition

(B.15) tx = 7((xY)Y) ), t((zx)Y) = 2 (xV) v

is equal to /.

Proposition 4.8 asserts that every object in a bordism category carries a Hermitian
structure. Observe that if F': B — C is an equivariant symmetric monoidal functor
between symmetric monoidal categories with involution, as in Definition B.6, then the
image of a Hermitian structure on an object b € B is a Hermitian structure on Fb.

Appendix C Noncompact Wick-rotated vector symmetry
groups

Let (Hy, py) be a symmetry type, as in Definition 2.4.

Proposition C.1 Assume n > 3.

(1) There exist a canonical noncompact Lie group H,, a homomorphism H, —
GL,, R with kernel K, and an inclusion H, < H , such that

(a) H, C H, is a maximal compact Lie subgroup,
(b) the inclusion induces an isomorphism on 1y, and
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(c) the diagram
H, —— H,

(C.2) p,,l l

0, ——GL,R
commutes.

(2) There exists a canonical Lie group EI n that fits into the diagram

1 H, " &, (£1}—— 1
(C.3) [ [ H
1 Hy H, {£1} —— 1

of group extensions, as well as a canonical homomorphism EI n—>{E£1}xGL,R
that fits into a pullback square

Hy ———— H,
(C.4) l l
GL,R —— {£1} xGL, R
and a commutative cube built from (3.15) and (C.4).
These noncompact groups are used to define topological bordism categories (Section 2.2).
Proof First define Spin, and Pin;}" as follows. Choose a lift
P 25 GL,R ™ GL,R/0,

of the homogeneous principal bundle 7 to a principal Pin,;Ir —bundle 7 o p; it is unique
up to isomorphism since GL,R/O,, is contractible. Define Pin}" as the group of
automorphisms of p that cover the action of left multiplication of GL, R = O, and
Spin, € Pin;" as the subgroup covering left multiplication by GL,}L R =S0,,. Then set

(C.5) SH, = Spﬂn x K/{(—1,ko)),

analogous to (2.8). If p,(H,) = SOy, set H,, = SH,,. If p, is surjective, define En
as the pullback (see (2.10))

1 K H, Pin;; 1
|l
1 K J {£1} 1
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and then
(€7 Hy = Hn/{(=1.ko)).
It is straightforward to check the properties in (1).

For (2) imitate the proof of Proposition 3.13 with Spin, and Pin} replacing Spin,
and Pin,'l' , respectively. a

Appendix D Computations with A ;—modules

The computations described in Section 10 depend on knowledge of the mod 2 coho-
mology of the spectra
MTO|d| for 0<d <3,
M0|d| for —3<d <0,
MSOs3

as modules over the subalgebra A; of the mod 2 Steenrod algebra generated by
Sq! and Sq?. The purpose of this appendix is to describe these computations and the
methods for arriving at them.

We thank Meng Guo for her careful reading and astute corrections.

D.1 Cell diagrams

It is common practice to depict an A ;—module M as a graph with nodes corresponding
to a chosen homogeneous basis for M, at a height corresponding to grading, and with
an edge drawn with a straight line between e and e’ if the coefficient of ¢’ in Sq!(e) is
nonzero, and an edge drawn with a curved line if they are analogously related by Sq?.
This works best when a basis can be chosen so that the operations Sq! and Sq? send
basis elements to basis elements. This is the case with all of the A ;—modules needed
in this paper. Here are three examples:

[eRE B \SERUS B SNV, BRe))

Ay J S
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For clarity the degrees of the basis elements have been indicated in this example, though
we will not usually do this. Topologists call these graphs “cell diagrams”. The one on
the left is the free A —module on one generator (of degree 0) and the one on the right
is just Z/2 = H*(S?), concentrated in degree 0. The one in the middle comes up
frequently and was deemed the Joker by Adams. It is the cohomology of a spectrum
also called J.

As explained in Section 10, the mod 2 cohomology H * M Spin was show by Anderson,
Brown, and Peterson [4] to have the form

A®A1 N

for some Aj-module N (which they determined). Figure 7 is a cell diagram of N
through dimension 28. The modules to the right (in gray) are free, and the modules to
the left (in black) are either S or J.

How does one use this in practice? Suppose X is a connective spectrum of finite type
and one wishes to determine the localization at 2 of m,« M Spin A X. One makes three
computations (in which the abutments, though not indicated, have been completed at 2),

Exty' (H*X,Z2/2) = m—sko A X,
Exty' (J @ H*X,Z/2) = mi—sko AJ A X =: Mj(X),
Exty (41 ® H*X,2/2) = HiX.

The two spectral sequences often collapse (they do in the cases studied in this paper).

Write
Mg(X)=ms+koA X,

Mjp(X)=nskonJ A X.

According to the result of Anderson, Brown, and Peterson [4], after localizing at 2,
7« M SpinA X is isomorphic to a sum of copies of Mg(X), Mj(X),and HX, shifted
according to the location of the corresponding summands in the cell diagram of X :

T« MSpinAX = Ms(X)®X3Ms(X) e =1 'M; (X))@ @ S °H X @ ---.
One further comment on the spectral sequences above: If M is a free A ;—-module, then
Exty (M,Z/2) =Bxt}' (J ® M,Z/2) =0 for 5 >0,
Exty' (M, Z/2) = Homg, (M. Z/2),
Ext)}' (J ® M.Z/2) = Homy, (J ® M. Z/2).
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Todddd

24

0 % %
16 . .
12 %

8 .

0 .

Figure 7: The cell diagram for M Spin.

In these cases the display of the spectral sequences are all on the line s = 0, and the
spectral sequences collapse.

More generally if M is of the form M’ @& F with F a free Aj—module, then
Exty' (M,Z/2) ~Bxty' (M',Z/2) @ Ext}{’ (F,Z/2)

and the spectral sequence is the sum of two spectral sequences, one of which collapses
for trivial reasons. The analogous statement holds for the second spectral sequence.
For this reason it is useful to omit free summands from the cell diagrams and keep
track of them in some other way.

D.2 The charts

We can now explain in more detail what is shown in Figure 5. In each case we
are interested in w4« M Spin A X for some appropriate spectrum X. A cell diagram
for X, modulo free A; summands is shown on the left, with X labeled below it. The
chart to the right depicts Extiitl (H*(X);Z/2) as a module over Extiitl (Z2./2,7.]2).
Following standard convention the horizontal axis is the (¢ —s)—axis and the vertical
axis is the s—axis. Each dot represents a basis element. The contributions from the
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free summands contribute only to Ext%"

and to keep the picture uncluttered they are
indicated below the table. For example, in the case s = 3, in dimension (z —s) = 8§,
there is a Z /2 not indicated in graphical notation, but only by the +1. The group in

that case is the sum of that Z /2 and Z/2 ® Z/8 B Z./32.

The color-coding allows one to read off the effect of the twisted Dirac operators of
Section 9.2 as described in homotopy-theoretic terms in Section 10. Consider, for
example, the case s = 3. One needs to know the effect of the map

7« MSpin A S73 A MO3 — S73 A KO.

The (—1)—connected cover of S™3 A KO is equivalent to ko A W, in which W is the
finite spectrum whose cell diagram is depicted below:

1

The effect in cohomology of the twisted Dirac operator corresponds to the inclusion of
the blue cells, and the cokernel of this map, in the relevant summand, is displayed in
green. The Ext charts are correspondingly color coded and the red line indicates the
connecting homomorphism in the long exact sequence. The Ext computation of interest
is built from the kernel and cokernel of this connecting homomorphism. For example
the connecting homomorphism is a monomorphism from the column (z —s) = 1 to the
column (¢ —s) = 0, and the only nonzero Ext group in this range is

Ext’(H*S™> M03.2/2) = Z/2.

In dimension 6, the group is the sum of (Z/2)? (coming from the free summands) and
another Z /2 @ 7 /2. The fact that the dot in filtration s = 2 is blue indicates that the
corresponding basis element maps nontrivially under the map to 7¢ X3 KO.

D.3 The case s = +1

The cell diagrams for Z~!MO(1) and Z!MTO(1) are easily derived from the Thom
isomorphism and Wu formula

Sq"(U) =w,-U
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for the action of the Steenrod operations on the Thom class of a (virtual) vector bundle.
The diagrams work out to be

'

S_l/\MOI S_l/\MTOI

and continue infinitely far upward, repeating the evident pattern of Steenrod operations.
There are no additional free summands in these cases.

D.4 The case s =4

The next easiest case to understand is the case s = 4. To derive it requires a useful
technique introduced by Adams and Margolis [2] and developed considerably further
by Margolis [86]. The subalgebra A contains two of the Milnor operators,

Qo =Sq",
01 =1[Sq% Sq'],

and together they generate an exterior algebra

E[Qo, O01] C A1.

Definition D.1 Suppose that M is an A;—module. For i = 0, 1, the i Margolis
homology of M is

Hy(M:; Qi) =ker Q;/image Q;.
The Margolis homology of a space or spectrum X is the Margolis homology of H* X,

Hi(X: Qi) = He(H*(X); Qi)

Remark D.2 The Milnor elements are primitive, and the Kiinneth isomorphism holds:

Hy(M @N: Qi) ~ Hi(M: Qi) ® H«(N: Qi).
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The following theorem of Adams and Margolis [2, Theorem 3.1] (attributed by Adams
and Margolis to Wall, in this particular case) is one reason the Margolis homology
groups are important.

Theorem D.3 (Adams and Margolis) A connected A1-module M is free if and only
if

Hy«(M: Qo) = H«e(M: Q1) =0.

The action of the Milnor operators on

H*(BSO3;Z/2) = Z/2[w2, w3]
is given by
Qo(wz) = ws,

Qo(w3) =0.
This implies that the Margolis homology with respect to Q¢ is
H.(BSO3; Qo) ~ Z/2[w3].

Write U for the Thom class in H*MO5. Since Qo(U) = w;U = 0 the Thom
isomorphism commutes with Qg, and the Margolis homology of M SO3 with respect
to Qg is

U-Z/2[w3].

For the 01 homology note that

O1(w2) = waws3
01(w3) = w3,

01(U) =Uws.

It follows that H* M SO(3), as a module over the exterior algebra E[Q1], is a sum of
UF; = {Uwé, Uw£w3, Uwéw%, Uwéwg, b

Using this one sees that the Margolis homology with respect to Q1 of M SO(3) has
basis {Uw%H'l}.
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Now let M and N be the A;—modules

Uwg’
Uw2w§
Uws Uw3ws
Uws Uw? Uw3 + Uw?
Uw2w3
U Uw3
M N
and consider the map
(D4) (M & N)®7Z/2[w5] — H*(MSO3).

The map (D.4) is an inclusion. Together with the Kiinneth formula, the computation just
described implies that it induces an isomorphism of Margolis homology with respect
to both Q¢ and Q1. By the theorem of Adams and Margolis its cokernel is free, and
there is an isomorphism

H*(MSO3) ~ (M & N) ® Z/2[w3] & free modules.
The cell diagram in box s = 4 in Figure 5 depicts (M & N) ® Z/2[w3].

One can work out the disposition of the free modules by computing Poincaré series.
The Poincaré series for the indecomposables of the free modules (with U placed in
degree 0) is the quotient of

1 (4P 22+ 1 4 10))
(1—12)(1—13) (1—18)

by the Poincaré series (1 +¢)(1 +¢2)(1413) of A1. This works out to be
[9
(1—19)(1—18)

Most of the time this is enough information. However for some purposes it is useful to

=17+t + 117 + o

have a basis for the generators of the free modules. In this case one can work out that
the summand of free modules is

Ar[w3, wil-Uw3iws

and that

(D.5) (M®N)®Z/2ws]® A1[w3, wi] ® Uwiws — H*(MSO3)
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is an isomorphism. We now digress to describe a technique for verifying this. The
technique applies to modules over any connected graded Hopf algebra and exploits the
fact that such an algebra is a Frobenius algebra. We will describe it explicitly for A .

Let b(x) = Sq° Sq? Sq?(x) (this is the operation that goes from the bottom dot to the
top dot in the cell diagram for A). If F is a free A;—module and x € F, there are
elements @ € A; and y € F with a-x = b(y) # 0. This is proved by reducing to
the case F' = A and either checking directly or appealing to the fact that 4; is a
Frobenius algebra.

Lemma D.6 Suppose that F and M are Ai-modules and that F is free. A map
F — M is a monomorphism if and only if the induced map b(F) — b(M) is a
monomorphism.

Proof The only if direction is clear. For the converse, suppose that b(F) — b(M)
is a monomorphism and x € F. By the above there are a € A} and y € F with
a-x =b(y)#0. Since b(F) — b(M) is a monomorphism, the image of b(y) is
nonzero, hence so is the image of a(x) and therefore the image of x. O

Remark D.7 Since A is a finite-dimensional Hopf algebra, it is also injective as a
module over itself. This means that if /' C M is a free submodule of finite type (finite
rank in each degree) then there is a decomposition M ~ M’ @ F. This leads to a fairly
quick way of locating the free summands in an A 1—-module M. They are generated by
any subset B C M with the property that b(B) C b(M) is a basis.

Lemma D.8 For an A-module N the following are equivalent:

(i) If F isafree module and F C N then F =0.

(i) b(x)=0 forall x € N.
Proof Suppose that F C N is a free submodule. If F is nonzero then there is an x € F'
with b(x)#0, so b(N)#0. Conversely if there is an x € N with b(x) # 0 then the map

sHla; = N,
ara-x,

is a monomorphism by Lemma D.6. |

Definition D.9 An A;-module N has no free submodules if it has the equivalent
properties above.
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By Remark D.7 having a free submodule is equivalent to having a free summand.

Lemma D.10 Suppose that H is an A{—-module and N C H a summand having
no free submodules. If F is a free module and F — H is a monomorphism, then
F — H/N is a monomorphism.

Proof By Lemma D.6 it suffices to show that b(F) — b(H/N) is a monomorphism.
Since h(N) =0 and N is a summand, b(H) — b(H/N) is an isomorphism. |

Returning to the cohomology of M SOs3, we now use these ideas to show that (D.5)
is an isomorphism of A;-modules. Both sides have the same Poincaré series so it
suffices to show that the map is a monomorphism or, equivalently, that the map

A1[w3, wi] ® Uwiws — H*(MSO3)/(M & N) ® Z/2[w5])

is a monomorphism. Since M and N visibly have no free submodules, neither does
(M & N)® Z/2[w5], so by Lemma D.10 it suffices to show that

Al[wg, wg] ® Uw§w3 — H*(MSO3)
is a monomorphism. This is done with the aid of Lemma D.6. Since
Sq' (w3) = Sq*(w3) =0
Sq' (w3) = Sq*(w3) =0,

and
Sq? Sq? qu(UwS’w3) = Uw?s,,

the assertion comes down to checking that
5.4k 20
{Uw3w;” w3}

is linearly independent, which is easy.

D.5 The case s = 2

We begin with the formulas
Qo(wy) = wi,
01(wy) = wi,
Qo(w2) = wywa,

01(w2) = wiws + wiw3.
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For both MO, and MTO>,
Qo(U) =w1U,
01(U) = (wi + wiw)U,
so the Thom isomorphism
H*(MO3y) ~ H*(MTO;)
induces an isomorphism of Margolis homology.
Restricting attention to M O3, let
F, CH*MO,
be the subspace with basis .
{Uwjwy | j <n}
and F, the subspace with basis
{Uwjws},
so that there is a vector space isomorphism
Fn~ @ F;.
j=<n

The Milnor operator Q¢ preserves the decomposition into the spaces FJ and from the
formulas above one concludes that

Hy(Fan; Qo) =0
and
= ) _ 2n+1
Hy(Fan41: Qo) = Z2/2{U wy" " }.

This shows that the Q¢ Margolis homology of H4«MO> has basis {U w%” +th

The Milnor operator Q1 maps F,_; to F,. We can determine the Margolis homology
from the associated spectral sequence. Identifying F,/F,_1 ~ F, and using the
formulas above, one easily checks that the first differential in this spectral sequence is
the Z /2[w]-linear map

-
Frp ———= Fopt1,
_ 0 =

Font1— Fanyoa.

It follows that the Q1 Margolis homology of H*(MO;) also has basis {U w%” +thy
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Let M and N be the A;—modules below:

Uw?w,
U(w? + wawy)
Uw, ) Uw%
Uw;
U
M N

The map
Z/2[w3]1® (M & N) — H*(MO>)

is then an inclusion and induces an isomorphism of Margolis homology. If follows that
H*MO, ~ 7,/2[w3] ® (M & N) @ free.

The location of the free modules can be determined from the Poincaré series. The
Poincaré series for the generators is the quotient of

1 (A+t+12+13+1*+19)
(1=1)(1—1¢3) (1—18)
by the Poincaré series (1 +¢)(1 +¢2)(1413) of A. This works out to be

12 B 12 414
(1-2)(1—18)  (1—tH(1—18)

In fact the subspace of free modules is a free module over A [wf, wg] and has
{Uwt, Uw3}
as a basis. As before, it suffices from the Poincaré series above to check that the map
Aj[wt, wil{Uw?, Uw3} — H*(MO>)
is a monomorphism and, for this, to check that the set
{897 8% Sq* (Uwiwi*w3®). 8q% Sa” Sq* (Uwiwiw3)}
is linearly independent. This is easily deduced from the fact that Sq? Sq® Sq? is linear
over Z/2[w}, w3], along with
Sq? Sq? SqZ(Uw%) = Uwfwz,
Sq? Sq? qu(Uwg) = Uwfwg.
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The situation with MTO; is similar, the variations being the use of the modules

Uw?w3
U(wiw3 + w3 w)

e Uw, Uwg
Uwyw?
Uw%

M N

and the Poincaré series
1+41©

(1=t (1—1%)
for the generators of the free modules, from which one can conclude that the subspace
of free modules is the 4 [wf, wg]—submodule with basis

{U, Uw%w%},

on which the operator Sq? Sq? Sq? takes the value

4 6,3
Uwjwsz, Uw;w;.

D.6 The case s = £3

We now turn to the case of MOs. This is the most complicated case and the specific
determination of the free summands was carried out with the aid of Mathematica.

It will be helpful to use the equivalence
BOl X BSO3 — BO3
classifying the tensor product of the defining vector bundles. Write
w; € H' (BO3).
vi € H' BSO3,
v1 € H' BO;
for the corresponding Stiefel-Whitney classes, so that under the equivalence above
w1 = V1, V1 = Wi,
w2=v2+v%, l)2=ll)%+ll)2,

w3 =340 + V], V3 =wiwz + wa.
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Now note that
QoU = U(vy),

01U = U(vs +v}),
so that as far as the Milnor operators are concerned there is an isomorphism
H*(MOQ3))~ H*(MSO3)® H*(MO»).
From this one concludes that
H*(MO3; Qo) =0
and that the Margolis homology H*(MO3; Q1) has basis {Uv, v§j+1}.

As in the case of M SO(3) let M and N be the A;—modules depicted below (in which
the blue dot indications the location of the Margolis homology group):

N

Uwws Uwiw3

Uw‘l‘w3 Uw‘l‘wg

Uwiws; Uwiws

Uw%w3 Uwfwg’

Uwiws U(wf + wiws3) lewg’
ULU3 U(U)?"FU)]U)Q):UUHUQ Uwg
Uw, U(w?w? + waw3)
Uw; Uw3ws ~ Uwqv3

U U(wiwaws + w3 + w3)
M N
Then the map

(M & N)® Z/2[v3] > H*(MO3)
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is a monomorphism and induces an isomorphism of Margolis homology groups. It
follows that

H*(MO3) ~ (M ® N) ® Z/2[vs] & free.
The Poincaré series for the indecomposables of the free modules (with U placed in
degree 0) is the quotient of

1 (I-0'+2+r*+50-0)7!
(I—0)(1—12)(1-13) (1—18)

by the Poincaré series (1 +¢)(1 +¢2)(1413) of Ay. It works out to be

12 +t4+t5+t6+t9+11°+z“+t12+t15
(1—14)(1—18) (1—t%)(1—13)(1—112)

The free modules correspond to the sum of

Ar[w], wil{Uw?}

and the free A[w], w3, wg]—module on

2 2 3 2,2 2.3 2,22 3,3
{Uws, Uwawsz, Uwz, Uwyws, Uwyws, Uwiw;ws, Uwijwsws, Uw;w3}.

To see that these are linearly independent, one applies Sq? Sq? Sq? to reduce the
problem to showing that the union of

{U§w, + wiws)wikwit}

and the set consisting of the products of wi‘k wgewg‘ " with the elements of

4.3 3,2 2 2 3 4,2 2,3
tU(wiw; +wijwsws + wiwawsz + wiwsz), U(wjwyws + wiws),

Uwiwaw? 4+ wiw3), Uwiwsw3 + w3), U(wiwawi + wiw3),
UwSwiws + wiw3), UwSwiw3 + wiwiw; + wiwaws + wiw3),
U(wf'wgwg + wg)}
is linearly independent. A couple of maneuvers will make this obvious. First of all,
let’s apply the Thom isomorphism to get rid of the appearance of U. Next regard
everything as a module over Z/ 2[wf, w;'] and look at the associated graded of the

increasing filtration by powers of w3. Doing so reduces the problem to showing that
the map from the free Z/2[w?}, w3]-module on

5 3+4k 2 3+4k 3 3+dk . 5+4k S+4k 2 5+dk
{wiws, wiw; , WiwW3 , Wiw3 , W3 , WIW3 , WiwW3 ,
3. 5+4k . T+dk
wiwz T, wy T

to H*(BO3) is a monomorphism, which is easy.
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The analysis is similar for MT O3 . The Margolis homology is the same as that for M O3
since the ratio of the two Thom classes is w%, which is annihilated by the Milnor
operators. The basic modules for MT O3 are as below:

Uwtws; Uwiw;
Uw3 U(w; + wiwiws)
U(wiw; + wiwiws + waw?) U(wiwaws + wiw?
Uw1w3 Uw§w3 +w1w§w3+w2w§)
Uws Uw3 U(w3 + wiwows)
Uw, Uwaws
M N

The Poincaré series for the free modules is the quotient of

1 A=)+ 50 -0+ 410+ 8410
(I=0)(1=12)(1-1¢3) (1—18)
by the Poincaré series (14 1)(1 +t2)(1 4+ 13) of A;. This can be written as
t7 +1+t4+t6+t9+t10+t“+t15+t17
(1—tH)(1—1?) (1=t (A —8)(1—112)

The inclusion of the free summands turns out to be the sum of the 4, [w‘l‘, wg, wg]—
module map

Ar[w], wi, Wiy, Uw3, Uwiw3, Uwiws, Uwsws, Uwaws, Uwiws, Uwiws w3}
— H*(MTO3)

and the A [w‘f, wg]—module map

Ar[w}, wil{Uwiwows} — H*(MTO3).
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As above, to check this it suffices to apply Sq? Sq? Sq? to the generators above and

show that the map from the sum of the free Z/ 2[wf, wg, wg ]-module on

{U(wiwr+wiws), Uwiwaws +wiw3), Uwbws +wiwiws +wiwawl +wiwi),
Uwiwsws +w3), Uwiwiw3 + wiwiw3 + wiw,ws + wiw3),
Uwiwyw3 +wiw3), Uwiwiw] +wi), Uwiwiw; +wiw))}

and the free Z/2[w?, w5]-module on

2 4
U(wfw2w3 + wj wg)

to H*(MTO3) is a monomorphism. Again, by filtering by powers of w3, using the
Thom isomorphism, and looking at the associated graded, it suffices to check that the

map from
1+4k 3+4k 3. 3+4k  5+4k 2 5+4k 7+4k
Z/2[w1, ]{w1w3,w1w3 , W1Ws , Wiw3 , W3 , WiW3 ,
744k
w1w3 j

to H*(BO3) is a monomorphism, which is obvious.
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