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Abstract: This paper focuses on a block cipher adaptation of the Galois Extension Fields (GEF)
combination technique for PRNGs and targets application in the Internet of Things (IoT) space,
an area where the combination technique was concluded as a quality stream cipher. Electronic
Codebook (ECB) and Cipher Feedback (CFB) variations of the cryptographic algorithm are discussed.
Both modes offer computationally efficient, scalable cryptographic algorithms for use over a simple
combination technique like XOR. The cryptographic algorithm relies on the use of quality PRNGs, but
adds an additional layer of security while preserving maximal entropy and near-uniform distributions.
The use of matrices with entries drawn from a Galois field extends this technique to block size chunks
of plaintext, increasing diffusion, while only requiring linear operations that are quick to perform.
The process of calculating the inverse differs only in using the modular inverse of the determinant,
but this can be expedited by a look-up table. We validate this GEF block cipher with the NIST test
suite. Additional statistical tests indicate the condensed plaintext results in a near-uniform distributed
ciphertext across the entire field. The block cipher implemented on an MSP430 offers a faster, more
power-efficient alternative to the Advanced Encryption Standard (AES) system. This cryptosystem is
a secure, scalable option for IoT devices that must be mindful of time and power consumption.

Keywords: Galois Extension Field (GEF); residue number system (RNS); Internet-of-Things (IoT)

1. Introduction

The use of Internet-of-Things (IoT) devices became increasingly popular due to their
cheap mass-manufacturing costs and ease of use. Generally, this classification describes any
single-purpose computer that wirelessly communicates to a network of similar devices [1].
Some common examples in the consume space include home-automation devices such as
smart lights, plugs, and motion sensors. However, they are being applied in more fields
than home automation, such as the industrial [2] and medical spaces [3]. Due to the diverse
network of devices and broad application space, the standardization of IoT protocols and
hardware is limited [4,5]. Low size, weight, power, cost (SWaP-C), and time-to-market are
the fundamental drivers of no/low security in IoT. These challenges lead to little security
or use of custom protocols that are not widely accepted and validated. Since IoT devices
are single-purpose sensors or actuators in many cases, they are manufactured with cheap,
slow processors. Any security system implemented towards protecting IoT communication
must fit these constraints. This paper aims to provide a cryptosystem that is more suitable
for these constraints than AES.

Pseudorandom number generators (PRNGs) offer a cheap, efficient method at gener-
ating a seemingly random string of bits for use in cryptography. Some examples include
linear feedback shift registers (LFSR) [6,7], one-time pads [8-10], sequence precession [11],
residue number systems [12], and chaotic maps [13]. An analysis into Arnold Cat maps,
represented by matrices, determined that no matter the period of the Cat map the cycle
distribution could be derived [14]. The techniques described in by the author’s can be
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extended to other chaotic maps to determine their distribution. While not as strong as
cryptographic systems like AES, they can be used in concert with other techniques on
devices that need to prioritize speed and efficiency while maintaining reasonable levels
of security for any data communication. IoT devices fall into this category, as many are
single-purpose, and in some cases, run off battery power. Using stronger cryptographic
protections is always preferred, but additional cheap techniques can be used in addition to
ensure extracting the plaintext without the key is computationally infeasible. One assump-
tion made here is that the attacker will understand everything about the cryptosystem
except for the key, enforcing Kerckhoff’s Principle [15]: obscurity should not be used
for security.

Traditionally, PRNGs are used in a stream cipher, which is a classification of cryptosys-
tem that acts on a single word of plaintext at a time. On the other hand, a block cipher such
as AES takes in a large block of plaintext and outputs an equally sized block of ciphertext.
Traditional block cipher encryption algorithms employ methods of confusion and diffusion
so minimal changes to the plaintext propagate throughout the ciphertext. Both categories
of cryptographic systems offer generic, accepted techniques to strengthen the security,
such as AES Cipher Feedback Mode (CFB), which treats previous ciphertext as a variable
in the next iteration of the encryption algorithm [16,17]. For stream ciphers, additional
strategies were developed to strengthen them, such as using a GEF approach to sequence
combination rather than XOR [18]. Another method uses the properties of matrices as an
extension on stream ciphers or public key cryptosystems to strengthen the protocol while
maintaining invertibility and providing third-party auditability [19-22].

This paper describes a custom cryptosystem that takes in any input stream of variable
size and combines the data with any PRNG’s outputs in a block cipher format, which
returns ciphertext of the same size. Decryption utilizes the inverse property of matrices
when entries are taken from a Galois Field. The block cipher discussed expands on the work
done on Galois Extension Fields as a stream cipher combination technique and provides a
block cipher framework to strengthen the security, while maintaining speed and efficiency
for IoT applications.

The rest of the paper is organized as follows. Section 2 discusses the mathematical
theory behind the constructions used in the cryptosystem. Matrix inverses are reintroduced
and the requirements for invertibility are discussed. Following, the section explains how
some of the basic matrix arithmetic changes when the elements are from a finite field and
the requirements for invertibility differ. A brief background on and discussion on the
importance of Galois Extension Fields [18] are discussed. Section 3 discusses the structure
of the cryptosystem, including initial assumptions and variables, a high-level system view
of both ECB and CFB modes. The section also contains pseudocode for computing the
matrix inverse under a finite field. A basic numeric example is provided to make the system
more accessible for readers. Section 4 discusses results based on a series of measurements
used to judge the strength of the cryptosystem, and compares these results to the stream
cipher variation [23] and AES. The results of the NIST statistical test suite are compiled
and displayed for each mode of this crytographic algorithm. Further analysis into diffusion
and the Law of Iterated Logarithm [24] tests are provided. Section 4 also discusses a
hardware validation of the system. Section 5 contains conclusions and extensions planned
for future work.

2. Mathematical Background and Tools

This section introduces the mathematical constructions used in this cryptosystem and
gives a brief background.

2.1. Matrix and Finite Field Math

Given a square matrix A in R"*", where R" is the collection of real numbers and # is
a positive integer, the matrix is considered invertible if there exists an equally sized matrix
B in R™*" that satisfies the following, AB = BA = I [25]. The invertible matrix will further
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on be denoted as B. However, not all square matrices are invertible. The invertible matrix
theorem describes a list of properties that a square matrix must meet to have an inverse, but
this theorem can be condensed down to |A| # 0, where | A| is the determinant of matrix A.

In the context of this paper, the entries of the matrix A are from a finite field Z,,,
where m can be any positive integer. The invertible matrix theorem does not hold under
this circumstance as all matrix operations are performed modulo m. While the process of
calculating the inverse is the same, the matrix A in Z]*" must have a determinant that
satisfies gcd(|A|,m) = 1, where gcd is the greatest common divisor function.

In the case of m being a prime, a matrix is invertible as long as the determinant
is not equal to zero modulo m. The inverse in this case exists as long as the entries in
the diagonal are not equal to zero modulo m [19,20]. Matrices used for encryption and
decryption operations in the block cipher are in a field where p is not necessarily prime.
In this case, the set of invertible matrices in Zj,*" is much smaller. Examples shown later
in this paper represent fields GF(2¥) as the data encrypted are usually ASCII text, which
has a word size of 28. For the determinant to be relatively prime to an even m, it must
be odd. Constructing an invertible matrix with entries from an odd, nonprime field is
less common, as all computer operations are binary. However, an invertible matrix is
possible and would be useful in the p-adic space, given a computer system that operates in
non-binary operations. To be invertible, the determinant of the constructed matrix must be
odd. Once an invertible matrix is constructed, the algorithm varies slightly to account for
the finite field. The determinant is calculated modulo m and is then used in the Extended
Euclidean Algorithm [26] to find the inverse within the field. The adjoint matrix (transpose
of the cofactor matrix [25]) is multiplied by this value modulo m, producing B.

2.2. GEF

Galois Extension Fields [27] are used as a combination technique that guarantees an
invertible mapping to a higher finite field. Similar techniques, which map operations on
GF(pk) to a closed subset on GF(pkH), were demonstrated in [18] to have substantially
better diffusion and forward secrecy properties than other stream cipher and sequence
combination techniques. By extending the elements to a higher field, GF(2¥) — GF(2k+1),
they have provided an invertible mapping to only odd elements in the higher field where
the issue of nonuniformity was solved. However, in this higher field addition and subtrac-

tion are no longer closed operations as even numbers are not invertible in GF(2€ + 1). The
(2 % x441) * (2 % yu+1) mod 2k+1)—
2

combination function is represented by z, = L Specifically,
the function is used when working with binary data, where z, is the ciphertext, x; is the
plaintext, and vy, is a discrete-time PRNG output.

Galois Extension Fields were used as a stream cipher combination technique in the
previous paper as an alternative to traditional methods like XOR. Additionally, they were
proven to be an effective technique for fast, power-efficient stream cipher encryption
in IoT devices [23]. This paper extends this technique to be usable as a block cipher
by constructing an upper-right triangular matrix with outputs from a PRNG in GF(2F).
When working in a Galois field space of order 2%, the matrix determinant needs to be
odd for it to be invertible. The constructed matrix is upper-right triangular as this makes
the determinant only a product of the diagonal elements, meaning all elements in the
diagonal need to be odd themselves. Since the elements of the matrix are being filled by a
uniform PRNG, the probability of every element in the diagonal being odd and non-zero
is (%1)”. For a realistically sized matrix, n = 16 or 32, the probability is very small, and
GEF transformations are used to guarantee invertibility. Rather than discarding every
constructed matrix that does not meet these requirements, the elements within the matrix
can be mapped to odd elements in a higher field, which forms a closed subset on GF(p**1).
In the case of p =2, this extension field mapping ensures all elements are bijectively mapped
to the odd subset of GF(25*1). Not all elements within the matrix are extended since the
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triangular matrix needs to be preserved. For example, the mapping of a 2 X 2 matrix,

2 0 3 4 . (5 1
<0 7>, from GF(2°) to GF(2*) results in <0 15).

2.3. Single-Stage RNS PRNG

The PRNG used to generate the elements of the matrices in this cryptosystem is a
single-stage residue number system (RNS) based PRNG [12]. The choice of PRNG to
generate the matrix is arbitrary as long as the output generated is sufficiently strong. The
RNS system was chosen because of prior work in analyzing the strength of this PRNG and
its suitability in IoT use cases.

2.4. Validation Tools

The NIST statistical test suite (STS) is a standardized method for testing the strength
of randomness in a cryptosystem’s output [28]. For the purpose of this paper, the NIST
test suites is used to validate the randomness in the binary output of this system following
sequence combination between the plaintext and matrices generated from the RNS PRNG.
The strength of the single-stage RNS PRNG was validated using these test suites as well.
Additionally, an implementation on a Texas Instruments (TI) MSP430 microcontroller is
discussed in Section 5.

3. Materials and Methods

This section discusses the setup of the cryptosystem that uses the tools described in
the previous sections, including any assumptions made and variables the user defines.
A high-level view is provided to show the interconnection of components in both ECB
and CFB mode, along with a more thorough discussion of pieces that were developed for
this paper. A toy example follows to show the encryption and decryption operations with
real numbers.

3.1. Assumptions and Variables

There are a few assumptions that are made when using this system. The first is the
most important: the PRNG used for key generation must be of reasonably high quality as a
potential attacker will be assumed to have complete knowledge of generation parameters
except for initial conditions. Other defense strategies can be used to strengthen these
PRNGs, but that is not the focus of this paper. A single-stage RNS PRNG is chosen for
key generation in this system because the quality of this PRNG was validated in previous
work [12]. Since this cryptosystem is being used in loT-caliber devices where speed and
efficiency are necessary requirements, the PRNG chosen must meet these requirements.
Moreover, as a symmetric cryptosystem, both sender and receiver must maintain this
structure, so computational burden must be low.

The user is able to define the order of the Galois Field, but this is assumed to be of
order 2 as the majority of data encrypted will be represented in binary. Examples provided
in later subsections encrypt ASCII text in GF(28). The PRNG used should output values
that are in similar fields. The plaintext can be partitioned if necessary to fit smaller or larger
fields. As mentioned in Section 2, in the case of a p-adic system, the field size can be chosen
to fit this space.

The block size is dependent on the order of the square matrix, n. Larger n values
increase complexity by a quadratic factor, but have a trade-off with computation time when
encrypting and decrypting. The relationship between block size and computation time
will be discussed more in Section 4. Recommendations will be given on how to define
these variables to provide strong, efficient security. Padding is used in the case that there is
not enough data to fill a vector when encrypting, but is never used in the case of matrix
generation as the key needs to be random. Padding can be composed of any chosen value
as long as the choice remains consistent for the entire session.
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3.2. High-Level System View

At the start, both transmit and receive devices must setup a synchronized PRNG that
will be used for symmetric encryption and decryption processes. What type of PRNG
used is a choice that will vary based on available computing resources such as memory
usage and processing speed: a trade-off discussed more in Section 4. The outputs of
the PRNG are formed into an empty matrix in an upper-right triangular format, row
by row. The GEF technique is applied to the upper-right triangular matrix to map all
elements to an odd value in the higher-order field. The plaintext vector’s elements are also
mapped to the higher-order field. Once both key and plaintext are extended to a higher
field, they are combined using matrix multiplication modulo 25*! to produce a vector
of ciphertext in the higher-order field. In stream cipher combinations, the combination
always produces an odd number, which can be reduced to the field 2¥ through an inverse
of the extension operation. However, in this block cipher application, the multiplication
yields even numbers in the higher field, which is not in the closed subset in GF(2Ft1). The
operation used to combine the plaintext and key can be reduced to a series of element-wise
addition operations. However, addition and subtraction are not closed operations when
using a GEF combination technique. Following the field reduction of the ciphertext vector,
a ceiling operation is applied to bijectively map all elements to a closed subset in GF(2¥).
Figure 1 depicts the encryption process when operating in Electronic Codebook (ECB)
mode. ECB is the standard operation of block ciphers where each block of plaintext is
encrypted independently from the rest.

Random Number
Generator
GF (2%

Key Matrix Field e . "
) RedI:ction Bijective Mapping
Alg.1 GF (2¢*1) - GF(2)
Ciphertext
Plaintext (n X 1) GF(2k)
Key Matrix Inverse (n X 1) GF(2k)
(nXn)
Field Inverse Bijective Mapping
Reduction
> >< :

GF(2¥) > GF (2k+1)

Figure 1. GEF ECB mode encryption/decryption.

The decryption process is almost the reverse of the encryption process with the
addition of the matrix inverse calculation. The receiving device maintains a generates the
same key matrix, but must calculate the inverse to decrypt the ciphertext (see Section 2.3).
Once extended to the higher order field, a floor operation is applied to the ciphertext to
reverse the mapping peformed during encryption. Following, the inverse matrix and
ciphertext vector are combined with a matrix multiplication modulo 2¥1. The resulting
vector is reduced to GF(2F) to retrieve the original plaintext.

Modes of operation in stream/block ciphers allow for additional flexibility, increasing
diffusion and confusion of the resulting ciphertext. In systems that implement Cipher



IoT 2021, 2

674

Feedback Mode (CFB) or Cipher Block Chain (CBC), ciphertext from a previous iteration is
filtered back into the next encryption operation with the plaintext. Feeding ciphertext back
into the encryption operations results in additional computation and slower encryption,
but generates a more secure ciphertext. The cryptosystem discussed in this paper can
operate in CFB mode as well as CBC mode. Following each encryption operation, the next
plaintext vector is assigned the previous ciphertext vector shifted up one element, with
one additional plaintext word appended. An illustration of CFB mode encryption and
decryption is depicted in Figure 2. Each decryption operation only retrieves a single word
of plaintext. The standard mode can be parallelized in both encryption and decryption
processes to increase speed, whereas CFB mode can not.

~ D - D
Plaintext 1 Key Matrix 2 Plaintext 2 Key Matrix i+1
GF(2k) (nXn) GF(2k) (nXn)
1\

(nX 1) GF(2*) [Ciphertext 1[2:n], Plaintext 1] [Ciphertext i-1 [2:n], Plaintext i]

Ciphertext 2 Ciphertext i
(n X 1) GF(2") (n X 1) GF(2F)

Ciphertext 1

(n X 1) GF(2F)

Dy inverse

Dy inverse Dy inverse

> ~
Key Matrix 2 Plaintext 2 Key Matrix i+1
(nXn) GF(2%) (nXn)

Key Matrix 1
(nXn)

Plaintext 1
GF(2%)

Figure 2. Cipher Feedback Mode (CFB) mode of cryptographic algorithm.

3.3. Implementation of Galois Extension Fields in a Block Cipher

Matrices are used in this system as a block cipher combination technique on data
and the outputs of a PRNG. Decrypting this requires calculating the inverse of the matrix
constructed from the PRNG. Since these values are from a Galois field, the process of
calculating the inverse is different (Section 2.1). Galois Extension Fields are implemented to
satisfy the requirements for invertibility. The process of building an invertible matrix and
calculating the corresponding inverse is shown in Algorithm 1. Note that this algorithm is
specifically for data that are represented in a binary space.

The user inputs a size for the square matrix, the exponent for the order of the Galois
field of the plaintext and PRNG values, and a sequence generator object for a selected
PRNG. A is initialized to an # x n matrix of zeros. A nested loop then iterates through all
entries in the upper-right of the matrix, storing an output from the PRNG in a temporary
variable. The inverse is then computed by multiplying the inverse of the determinant in
GF(2Kt1) by the adjoint of A modulo 25*1. Rather than running the Extended Euclidean
Algorithm every time to compute the inverse of the determinant, these values can be stored
in a lookup table when working with reasonably sized k values (k < 16). The key matrix is
then mapped from GF(2**1) to GF(2X). The plaintext vector is also extended to GE(2k+1),
but this calculation is simple and is discussed in Section 2.2. As mentioned above, not
all resulting ciphertext values are part of the odd subset in GF(2*1) . While this can also
be solved by operating in a prime field, performing a mixed radix translation of binary
data into prime field characteristics is an unnecessary computational expense. Therefore, a
closed ceiling operation is applied following field reduction of the ciphertext. The bijective
mapping does not affect the randomness of the ciphertext in any way, as discussed more in
Section 4.
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Algorithm 1: InvertibleMatrixGF(n, k, seq)—algorithm for generating an invert-
ible matrix under a Galois Field
Input: n: matrix order (n x n),
k: width of input/output,
seq: PRNG object
Output: A: invertible matrix,
B: inverse of A
A < matrix of Os sized n x n;
fori <~ Oton —1do
forj < iton —1do
| Ali][j] = ((2 * seq.nextOutput()) + 1);
end
end
B = ExtendedEuclidean(|A| (mod 25+1),25+1) x Adjoint(A) (mod 25+1);
fori <~ Oton —1do
forj<iton —1do
| Ali[] = (Al -1)/72;
end
end

3.4. Toy Example

This section works out a toy example to show the encryption/decryption processes in
ECB mode with sample data represented in decimal for ease in following along.

3.4.1. Encryption
Consider a small example in GF(2*) with a key matrix sized 3 x 3, where PRNG used

to generate key
13 11 2
0 3 14
0 0 14

is a single-stage RNS, refer to [12] for setup. The plaintext vector

0

is sized 3 x 1 to satisfy dimension requirements when utilizing a dot product operation for
encryption. The data encrypted are ASCII that is partitioned into nibbles to fit in GF(2*).
Galois Extension Fields are then applied to the plaintext vector

-

to map the plaintext to GF(2%). Galois Extension Fields are applied to every entry in the
upper-right of the matrix to satisfy the requirements for invertibility.

13 11 2 27 23 5
0 3 H4|—=10 7 29
0 0 14 0 0 29

Following, the plaintext is encrypted using a dot product operation with the key matrix.
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13 11 2 17 23
0 3 14)-[1] (mod2°)= {20
0 0 14 17 13

When reducing the ciphertext to the original field, a ceiling operation is applied to
bijectively map all outputs to a closed subset in GF(2%).

23 11
20 — |10
13 6

This subsection details the decryption process used to retrieve the plaintext from
ciphertext generated in the previous subsection. Firstly, an inverse mapping operation is
applied to the ciphertext vector’s elements, and then it is extended to GF(2°).

11 23
101 — |20
6 13

Following an extension of the key matrix to GF(2%), the determinant of the key matrix
is computed modulo 2°. The inverse of the determinant in GF(2°) can then be found using
the Extended Euclidean algorithm, or for efficiency, retrieved from a look-up table. To
generate the inverse matrix, the determinant inverse is multiplied by the adjoint matrix
modulo 2°.

3.4.2. Decryption

11 5 24 19 29 24
25x [0 15 17| (mod2°)=[0 23 9
0 0 29 0 0 21

Finally, the inverse matrix and ciphertext vector are combined using a dot product
and reduced to the original field to retrieve the original plaintext.

19 29 24 23 17 8
0 23 9]-(20] (mod2>)=[1]—= 10
0 0 21 13 17 8

3.5. Use Cases

An upper-right triangular matrix is used as the key in this cryptographic algorithm and
requires % outputs from PRNG to encrypt a block of n plaintext words. The system
designer could draw these values from multiple PRNGs if they had enough computational
power to maintain all these algorithms. Given two PRNGs, the algorithm could be modified
to alternate drawing values from them to construct the key matrix. Every individual entry
within the matrix could be generated by a PRNG, and they need not be the same type
of PRNG as long as they produce values within GF(2¥). Maintaining a PRNG for each
entry of the key structure would serve as an additional layer of security since a potential
attacker would need to break, or discover the key for all those individual PRNGs. However,
gaining access to any of the PRNGs does detract from overall security as remaining key
values can be filled in with a brute force attack. Computing a single value in this manner

would require at most Zz—k guesses. Given only a single unknown, this would be trivial on
modern computers, but based on transmission rates, reliance on brute force attacks would
contribute significant latency if this was necessary to perform for every block of decryption
by the attacker. Based on the PRNG used to generate this entry, an attacker could choose an
intelligent attack to reverse engineer the key, such as Berlekamp-Massey for an LFSR [29].

One application of this combination technique is for use in a multiparty cryptographic
system, where entries in the key matrices are generated by different parties. To encrypt,
every party would need to provide their own portion of the key and could not uncover any
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information about the plaintext without a full key. As before, each value for the key could
be an independent cryptographic algorithm that outputs values in GF(2¥). Unlike [23], the
encryption/decryption processes are not independent and require coordinated party effort.

Aside from the matrix generation, this cryptographic algorithm can be modified to be
more efficient in decryption operations for edge nodes in an IoT network. In many cases,
these nodes are battery-powered sensors or actuators that communicate with a central
system with substantially more computational power. The decryption operation requires
an additional step: to calculate the inverse of the key matrix. While relatively inexpensive,
this requires additional energy, storage, and time. The base station could instead calculate
this inverse and encrypt the plaintext with this matrix instead. The edge node would
still need to maintain a synchronized PRNG, but could just build the key matrix and
use this as the decryption key since the matrix inverse is commutative. Encrypting with
the matrix inverse results in a small decrease in entropy of the resulting ciphertext. This
computationally asymmetric modification to the cryptosystem, as shown in Figure 3, is
more suitable for edge computing cases.

E k, Dk_inverse

c St:ndardh. Edge
ryptographic <
System Server E « , Dy inverse

E; D
Asymmetric k_inverse, Yk

Cryptographic
System

Edge
Server

E k, Dk_inverse

Figure 3. Comparison between asymmetric and standard cryptosystems.

4. Results

This section discusses the results of encrypting ASCII data with the proposed block
cipher in both ECB and CFB modes. Randomness of the resulting ciphertext is measured
through the use of statistical tools discussed in Section 2.4, as well as Shannon entropy
and Law of Iterated Logarithm calculations. A detailed discussion into diffusion follows,
including measurements of decay and security concerns with repeated plaintext. Lastly,
a comparison of memory and computational requirements between the cryptosystem
modes and AES is made to illustrate the point that the proposed block cipher in this
paper is a better option for IoT devices. All comparisons include metrics on the GEF
stream cipher variation [23] as an additional baseline. Confusion and other cryptographic
properties generally offered in block ciphers are not included in this analysis because the
proposed cryptographic algorithm does not include techniques to introduce them. The
tools used to validate the results in this section do not guarantee security to intelligent
attacks. They offer a baseline measurement of strength against generic statistical attacks
like frequency analysis.

4.1. Entropy Analysis

A sample of 1,000,000 characters were used as the plaintext in a MATLAB implementa-
tion of this cryptographic algorithm. All punctuation was removed except spaces and was
raised to upper case. The frequency of characters is displayed in a histogram in Figure 4.
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Letter Frequency
o114 T—"—T—TTT T T T T T T T T T

0.1 7 1

Frequency
[=
o=l
oo

<

=]

=]
T
.

0.04 b

Doz b

ABCDEFGHI JKLMNOPORSTUVWXYZ
Letter

Figure 4. Frequency of plaintext.

A single-stage RNS PRNG was used for matrix construction, generating values in
GF(2%). The matrix was sized 16 x 16. The distribution of the ciphertext from ECB mode is
shown in Figure 5. The mean of the histogram of ciphertext is 3906.25, with one standard
deviation of 62.56. The expected mean of the ciphertext in GF(2%) is 3906.25, indicating the
resulting ciphertext is uniformly distributed. The Shannon entropy is 7.9998 bits, where
the maximum entropy for this system is 8, meaning the ciphertext is almost uniformly
distributed. Table 1 displays the results of the NIST STS after analyzing the generated
ciphertext from this implementation. The test suite was provided 1,000,000 characters,
where 1000 bitstreams 1000 bits long were chosen randomly from the pool of provided
ciphertext. With « (significance) set to 0.001, 980 sequences needed to pass a specific test for
the ciphertext to be considered seemingly random. Each test relevant to the cryptosystem
is displayed in the table, and indicates an overall success. For more information regarding
what the individual tests examine, refer to the documentation on NIST’s website [28].

Distribution of Ciphertext over GF(Z“] in ECB Mode

4500 T

4000

3500

[}
=
=
=

2500

2000

1500

Quantity of Ciphertext in Bin

1000

500

] 50 100 150 200 250
Bins in GF(25)

Figure 5. Distribution of ciphertext across GF(28) (ECB Mode).

The same exact setup was run, but using CFB mode when encrypting. The distribution
of the resulting ciphertext is displayed in Figure 6. The Shannon entropy is 7.999 bits, which
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is essentially equivalent to the maximal entropy. The mean of the histogram in GF(2%)
for the ciphertext is 625,000 since CFB mode produces n times more ciphertext than ECB
mode, and the standard deviation is 128.65. Interpreting these values, the cryptographic
algorithm run in CFB mode is nearly uniformly distributed. The ciphertext was analyzed
using NIST’s test suite with the same parameters as the standard mode. The results are
also displayed in Table 1.

. 104 Distribution of Ciphertext over GF(ZBJ in CFB Mode
7 . . . T

Quantity of Ciphertext in Bin

0 50 100 150 200 250
Bins in GF(2%)

Figure 6. Distribution of ciphertext across GF(28) (CFB Mode).

The stream cipher variation of the GEF cryptosystem from [23] was also implemented
in MATLAB and used to encrypt the same plaintext as ECB mode and CBC mode, resulting
in a Shannon entropy of 7.9998 bits. The distribution, shown in Figure 7, indicates a mean
of 3906.25 and standard deviation of 63.56.
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Figure 7. Distribution of ciphertext across GF(28) (Stream Mode).
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As expected, the stream and ECB modes of the cryptographic algorithm were nearly
equivalent in their distribution. However, CFB mode’s results indicated a more secure
option due to the higher entropy and lower standard deviation for a substantially larger
mean. Based on the results of the NIST test suite, all three variations of the algorithm appear
seemingly random since each test passed the threshold of 98%. ECB mode outperformed
the other two modes in the context of these tests.

Table 1. NIST STS results of 1000 1000-bit samples.

ECB Mode CFB Mode Stream Mode
Frequency 99.6% 99.1% 99.1%
Block Frequency 99.5% 98.6% 98.9%
Cumulative Sums 99.4% 99.3% 99.2%
Runs 99.5% 98.8% 99.0%
Longest Run 99.3% 99.2% 99.0%
FFT 98.1% 98.6% 98.0%
Approx. Entropy 100% 100% 100%
Serial 98.6% 99.2% 98.2%

4.2. The Law of the Iterated Logarithm

While the NIST test suite validates the randomness of a cryptosystem’s output, the
Law of the Iterated Logarithm (LIL) provides another level of confidence in the randomness
of the ciphertext. Previous research indicates that some cryptographically weak systems
have passed the NIST test suite, but did not pass the LIL test [24,30]. The test analyzes
the variance of a pseudorandom string by looking at the reduced number of 1s after a
large output capture. Generally, the provided data is on the order of 22° to 23 captured
outputs. Summarizing what merits a success in the LIL test, the variance must converge to
the bounds [—1, 1], but still maintain a large distribution within those bounds. The tool
referenced in [30] requires a sample ciphertext size of at least 62.5 Megabytes to accurately
measure the variance. The output stream is randomly broken into smaller samples upon
which three statistical metrics of distance are calculated: total variation, Hellinger, and
root-mean-square deviation. If the distance values calculated from the sample ciphertext
are less than accepted thresholds dependent on the sample size, the test is considered a
success. Figure 8 shows the results of the LIL test on the ECB mode and Figure 9 displays
the results of the CFB mode. Both of the modes pass all three distance metrics while staying
within the bounds [—1, 1] with few deviations outside. As shown in the figures, a wide
distribution of variance is maintained within the bounds indicated by the dashed red line.

4.3. Diffusion Analysis

Two properties used in the operation of a symmetric cryptosystem are diffusion and
confusion. When employed correctly, these work together to prevent statistical tests and
other analysis methods from finding meaningful information in ciphertext. Diffusion
means that a change in plaintext should propagate throughout the resulting ciphertext. In
an ideal cryptosystem, a change in a single bit of plaintext should result in at least 50% of
the ciphertext changing. Confusion means each bit of ciphertext should depend on multiple
bits of plaintext. These properties are most commonly achieved through permutation and
substitution operations respectively. The block cipher described in this paper only employs
methods of diffusion.
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Figure 8. Variance plot resulting from Law of Iterated Logarithm Test on ECB Mode.
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Figure 9. Variance plot resulting from Law of Iterated Logarithm Test on CFB Mode.

In the stream cipher version of the GEF cryptosystem, when a bit change occurs in
a plaintext word or key generated by a PRNG, the resulting diffusion is isolated to the
corresponding ciphertext word, as shown in Figure 10. Given a repeated plaintext word,
the probability that a uniformly distributed PRNG, operating in GF(2F), will generate the
same key for encryption is % While the probability is relatively small, given a large sample
of plaintext, identical ciphertext words can occur. Intelligent attacks can then use repeated
ciphertext as a clue on how to retrieve the ciphertext. To solve this problem, the stream
cipher can operate in a different mode of operation that uses previous ciphertext as an
encryption parameter, such as Counter (CTR) or Output Feedback (OFB) mode. In this
case, diffusion would propagate throughout the remaining ciphertext. Bit errors also need
to be considered when making the decision of which mode to operate in. In the standard
stream cipher mode, a bit error would only result in a single ciphertext word changing,
whereas an error in CTR or OFB mode would propagate through the remaining ciphertext.

Diffusion in block ciphers is different as a change in the plaintext or key results in
a change in the entire block. Within the ECB mode, if a bit change in a plaintext word
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at index i occurs, diffusion only occurs within the corresponding ciphertext words from
index i up to 0 since the combination technique utilizes a dot product with a triangular
matrix. Figure 10 shows an example of the diffusion propagation. Any change in the first
n plaintext words will only result in propagation throughout the first block of ciphertext.
The change does not propagate between blocks. In traditional block ciphers such as AES or
3DES, no propagation between blocks introduces security issues as a repeated message
generates the same output [31]. However, in the proposed system, the use of a PRNG with
sufficiently large k (k >= 8) to generate the key matrix mitigates concern as two identical
blocks will not be encrypted with the same key. If, for some reason, a prime p is chosen
for the field order, the key matrix need not be triangular so long as the determinant is
relatively prime to p. In this case, a single bit change between two exact plaintext words
with identical key matrices will hopefully result in a substantially changed ciphertext block.
On the other hand, a low rate of diffusion between plaintext blocks means bit transmission
errors only propagate as far as the corresponding ciphertext block. Table 2 displays the
Shannon diffusion averaged from 1000 samples for different block sizes. The row indicates
the block size n and the column marks the index i of the plaintext word that was changed.
As mentioned earlier, using an upper-right triangular matrix results in a lower rate of
diffusion when a change occurs in a lower index. As the block size increases, the overall
diffusion decreases with a change in index 1 since this does not propagate throughout
blocks 2 through n. However, diffusion reaches the targeted 50% in every scenario when
the change occurs at index n. Given smaller block sizes, nn = 4, a system can still meet an
acceptable rate of diffusion.

Table 2. Shannon diffusion rates for different values of n in ECB mode.

1 n/2 n
n
4 13.94% 28.02% 55.68%
8 7.08% 28.12% 55.78%
16 3.54% 28.12% 56.09%

Since the CFB mode reuses the ciphertext as a variable in the next iteration of encryp-
tion with only a single new plaintext value, diffusion propagates from the current block to
further blocks before eventually decaying out. How far the change propagates depends
on which word in the plaintext vector is modified, as the lower down it is the farther
this change propagates. A small change propagating is great for diffusion when identical
blocks with a single bit change are encrypted. The plaintext word would be encrypted
through n blocks and contribute to increased diffusion in following blocks. However, an
increase in diffusion indicates a larger impact when errors occur. A single bit error would
result in incorrect plaintext, following decryption, in each block after the location of the
error. Since the ciphertext vector shifts out a word with each iteration of encryption, the
diffusion eventually decays. An example of this can be seen in Figure 10. The change made
in plaintext word one does not propagate to the second ciphertext block, the change made
in plaintext word two only propagates to ciphertext blocks one and two, and so forth.
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Figure 10. Diffusion for each mode of cryptosystem.
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Further research on triangular matrices as a key proved that the inverse of a lower-left
triangular matrix with entries from a finite field can be computed using Algorithm 1. The
direction of diffusion in the ciphertext vector is completely dependent upon the type of
triangular matrix used as a key since the operator used for encryption is a dot product. In
an upper-right triangular matrix, ciphertext words at index i are a result of n — i plaintext
combinations; in a lower-left matrix, ciphertext words at index 7 are a result of i plaintext
combinations. Diffusion propagates to lower index words in an upper-right matrix and the
opposite with a lower-left matrix. To achieve a constant rate of diffusion while maximizing
entropy, a system designer could alternate key construction between an upper-right and
lower-left triangle. Alternatively, a synchronized PRNG between the sending and receiving
devices could make this decision, as shown in Figure 11. By alternating, diffusion need
not be restricted to one direction when propagating throughout the resulting ciphertext.
Implementing this process does require maintenance of another synchronized PRNG
between the transmit and receive devices.

Key Matrix lor0 Key Matrix Type
Key PRNG Constructor PRNG
1 = Upper Right
0 = Lower Left
Plaintext Ey Ciphertext

Figure 11. Illustration of alternating key matrix construction to achieve maximal diffusion.

Figure 12 shows a comparison of diffusion rate when encrypting with different types of
keys. The black line represents diffusion rate when encrypting with upper-right triangular
keys, the red line represents lower-left triangular keys, and the blue line is when the key
structure alternates. The dashed line indicates the targeted diffusion rate of 50%. The
displayed percentages are averaged over 1000 samples where the x-axis indicates the
index of the plaintext word modified by a single bit in each block. As expected, upper-
right triangular keys result in higher diffusion at greater indices, whereas using lower-left
triangular keys results in the inverse. Alternating between the two every other encryption
operation results in a constant rate of diffusion. Note that these are measurements based
off a single bit change per block. To achieve a targeted Shannon diffusion rate of 50%, more
changes can be induced in the plaintext.
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Figure 12. Average percentage of diffusion for different encryption key orientations taken from
1000 samples.

4.4. Memory and Computation Requirements

In this subsection, we attempt to analyze the memory and computation requirements
for the ECB, CFB, and stream modes. Scalability is considered, and parameters for real-
world applications are recommended. The use of the PRNG is relevant as maintaining this
structure contributes to the overall memory space used and computation time.

Memory and computation requirements for ECB mode of the cryptosystem are sub-

stantially less than CFB. For a matrix sized n x 1, the total memory necessary to construct all
plaintext_length * (n + 1) *
2

key matrices in GF(2¥) is given by £ bits where plaintext_length =

Fofbits In plaintext g, plaintext word is encrypted exactly once in ECB mode. Overall, the

k
. # of plaintext/ciphertext word:
mode requires only of plaintext/ crllp ertext words

the ciphertext or retrieve the plaintext.

In CFB mode, the option for an initialization vector (IV) is provided and can be
generated by the key PRNG. Without using one, every plaintext word in the first block
from index, i, 1 to n — 1 is encrypted an i number of times. Every subsequent plaintext word
is encrypted n times. The use of an initialization vector ensures every value of plaintext

is encrypted n times. With the inclusion of an IV, the number of PRNG outputs needed
plaintext_length % n * (n + 1)
2

encryption or decryption operations to build

to construct sufficient key matrices is given by . The amount of
ciphertext generated is given by plaintext_length * 5 bits. The total ciphertext generated
is n times more than in the standard mode, but a very small increase in entropy and a more
uniformly distributed output, as seen in Section 4.1.

While in ECB or stream mode, the amount of memory generated by the encryption
process is equivalent to the amount of plaintext. However, the stream cipher requires
only as many PRNG outputs as there are plaintext words. The trade-off here is between
diffusion rate and PRNG maintenance. CFB mode generates substantially larger amounts
of ciphertext than the given plaintext. A maximum practical size for an IoT caliber platform
is likely on the order of GF(2%) with n = 16 or 32. Keep in mind that during the encryption
and decryption operations, all values are extended to a higher field, requiring additional
space to temporarily store these values. The PRNG outputs used to construct the matrices
can be recycled as soon as they are used, but the computational requirements of this
cryptosystem need to be considered.

4.5. Hardware Validation

To measure the speed and energy efficiency of this cryptosystem, an implementation
was built on a TI MSP430FR5994. The microcontroller chosen to implement the proposed
system represents many modern IoT devices, as the device only has 256 KB of FRAM, 8 KB
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of RAM, and a 16 MHz processor. The microcontroller was chosen to remain consistent
with the device used in the stream cipher implementation [23]. The program required 3%
of the device’s RAM and 9% of the available FRAM when fully optimized by the compiler.
To measure scalability, the cryptosystem was set up to encrypt ASCII text, GF(2%), with
parameter n = 4. The key matrix was generated by the same single-stage RNS PRNG used
in CPU implementation with a period of M =14,429,764,351.

The TI microcontroller has internal software called EnergyTrace that can be used to
provide time and energy measurements of a section of code. Using EnergyTrace, time and
energy usage during encryption and decryption operations were recorded and averaged
from 1000 samples in both ECB and CFB modes, as well as AES. These results are compiled
in Table 3. The measured results for the stream cipher’s encryption is gathered from
previous work [23]. Details on the decryption operation were not provided and are not
displayed in the table, but the time and energy required would be about the same. The use
of the EnergyTrace program slightly increases the recorded speed and energy consumption
due to the capturing process running in the background.

ECB mode required substantially less time and energy for both encryption and decryp-
tion than AES, but encrypted a smaller block size. The CFB mode implementation started
with a randomly generated initialization vector and encrypted the same plaintext as the
ECB experiment. Encrypting all the plaintext required # more operations, contributing to
larger time and energy requirements. Decryption operations involve calculating the adjoint
of a matrix. The algorithm to do so is almost equivalent to calculating the inverse of a
matrix, which has a complexity of O(n3). As a result, decrypting the ciphertext in both ECB
and CFB modes takes much longer and requires more energy. The system does not scale
well on IoT devices when considering values of n and k that would encrypt equivalent
amounts of data per block compared to AES. However, the system can encrypt and decrypt
more efficiently when operation on smaller block sizes, n < 4.

Table 3. Computation time and energy consumption for encryption and decryption operations on TI
MSP430FR5994.

Stream ECB CFB AES

Ex Time (mS) 1.167 0.981 343 6.379

Ex Energy (1] /byte) 0.155 0.458 2.344 0.884
Dg Time (mS) N/A 7.84 77.9 8.12
Dx Energy (1J/byte) N/A 3.52 33.42 1.125

5. Conclusions

This paper modified the Galois Extension Field combination technique to work as
a block cipher in both ECB and CFB modes. Results displayed in Section 4 validated
randomness and uniformity of the resulting ciphertext using the NIST statistical test suite
as well as the Law of the Iterated Logarithm. The proposed system relied on the use
triangular matrices and PRNGs for both encryption and decryption operations, resulting in
easy construction of keys and operation when generating ciphertext or retrieving plaintext.
The orientation of the key structure was flexible and could be operated in both upper-right
or lower-left triangular format to maximize diffusion and entropy. An implementation
of the cryptosystem on a Texas Instruments MSP430FR5994 indicated the system offers
a fast, power-efficient alternative to AES on an IoT caliber device. Measurements of
energy usage and speed for both encryption and decryption operations show the system
was scalable for relatively small values of n. Encryption takes substantially less time
since decryption required computing the inverse of the key matrix. While the block
size in realistic applications was smaller than AES, the resulting ciphertext maintains
strong cryptographic properties, such as a high rate of Shannon diffusion. Optionally,



IoT 2021, 2 686

the cryptographic algorithm could be run asymmetrically to support edge computing
scenarios, placing the higher load of the cryptosystem on a more powerful device.

Future work on the system would look at implementing a time-varying S-box to
include a method of confusion. Research into matrix inverses in finite fields for this paper
suggests that nonsquare matrices could tie into a cheap hashing system, checksum, or
signature process for the plaintext. More work can be done on the optimization of the
hardware implementation to improve performance for larger block sizes.
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