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Abstract. In this paper, we are concerned about the stability analysis for a
Perfectly Matched Layer (PML) recently developed by Bécache et al. [5] for
simulating wave propagation in the Drude metamaterial. This PML is proved to
be stable originally in [6] through a modal analysis. Here we establish its stability
by the energy method. A FDTD scheme is developed and analyzed. Numerical
simulations illustrate the stability of the PML model and its effectiveness in
absorbing outgoing waves in the Drude medium.
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1 Introduction

One of the challenges to simulate wave propagation in unbounded domains is how
to construct effective artificial boundary conditions to absorb the outgoing waves
without reflecting them back into the computational domains. A widely adopted
technique is the so-called Perfectly Matched Layer (PML) proposed by Bérenger [7]
in 1994 for solving the three-dimensional (3D) time-dependent Maxwell’s equations.
Since 1994, in addition to many PML models proposed and studied further for
Maxwell’s equations [1,8,10,11,28,35,36], the PML technique has also been extended
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to solve other wave propagation problems, such as acoustics and elastodynamics [2,
5,16].

In late 1990s, the so-called negative index metamaterials (NIMs) was manu-
factured successfully [30,32] and immediately became a very hot research topic as
evidenced by numerous papers (cf. [37] and references therein) and books published
on metamaterials (e.g., [13,17,24] and references therein). Due to the importance
of numerical simulation for NIMs, many studies of PMLs in NIMs have been carried
out (e.g., [12,15,31]). Cummer [14] first noticed that the classical PMLs fail in NIMs
and proposed stable PMLs for the Drude metamaterial with w, =w,, (see (2.2) be-
low). Stable PMLs were later extended to the general case w,#wy, in [15,31]. In [5],
Bécache et al. presented a rigorous development of a stable PMLs for the Drude
model for the general case w, #w,,. The stability is proved in [6] through a modal
analysis. Since the modal analysis is limited to the constant damping coefficients,
one of our main goals of this paper is to make an effort in establishing a stability for
the practical variable damping functions by using the energy method. To our best
knowledge, this is the first energy stability established for this PML model.

Since the PML models (cf. [33, Ch. 7], [34], [24, Ch. 8] and references therein)
are much more complicated than the corresponding Maxwell’s equations, the sta-
bility analysis is quite challenging. For example, the stability for the classical
Bérenger PML with variable damping functions is made possible through an equiv-
alent form [4]. Furthermore, developing and analyzing effective numerical methods
for solving the PML models is not trivial, and many researchers have made contri-
butions in this direction (e.g., [3,9,19-23,26,27]). Though Bécache et al. [5] have
presented Finite-Difference Time-Domain (FDTD) simulation for their developed
metamaterial PML model, but no detail has been given for the FDTD scheme and
its analysis. Hence, another major goal of our paper is to fill the gap by develop-
ing and analyzing a FDTD scheme for the metamaterial PML model proposed by
Bécache et al. [5].

The rest of the paper is organized as follows. In Section 2, we first introduce
the 2D metamaterial PML model proposed in [5], and then carry out its stability
analysis. In Section 3, we propose a FD'TD scheme for this PML model, and establish
a discrete stability. Numerical results are presented in Section 4 to demonstrate the
stability of this PML model and its effectiveness in absorbing outgoing waves. We
conclude the paper in Section 5.

2 The 2-D metamaterial PML model

A general 2-D Transverse Electric (TEz) metamaterial PML model wth 16 unknowns
was developed in Bécache et al. Here we focus on the popular w,=w,, case whose
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governing equations can be written as follows (cf. [5, Eq. (48)]): For any (z,y.,t) €
Qx (0,7,

O E, 4wl +ey oy By=e,"0,(H +HY), (2.1a)
Oy J,—E, =0, (2.1b)
OB, +w?J,+ey 0nEy=—ey 0, (H"+ HY), (2.1c)
O J,—E,=0, (2.1d)
O H" +w2 K™+ g oy H = g ' 0, B, (2.1e)
0, K* — H" =0, (2.1f)
O HY +w2 KV 4yt o, HY = — i 10, By, (2.1g)
8K — HY =0, (2.1h)

where € and jo are the permittivity and permeability in free space, E = (E,,E,)
and H=H*+ HY are the electric field and magnetic field (in split form) respectively,
J=(Jy,Jy) and K=(K?",KY) are the auxiliary variables, o,(z)>0 and o,(y) >0 are
the damping functions in the z and y directions, w, >0 and w,, >0 are the electric
and the magnetic plasma frequencies in the Drude model described by the following:

2 2

e(w):e()(l—%), u(w):u()(l—%). (2.2)

Here and in the rest of the paper, w denotes the general wave frequency.

Since no detailed derivation for the above PML model is given in [5], to make
our paper self-contained, we now present some details in deriving this model. As
mentioned in [5], this PML model can be derived by splitting the magnetic field and
using the change of variable technique (cf. [24, Ch. 8]) from the Maxwell’s equations
given in the frequency domain:

iwe(w)E,=0;(H®+ HY), (2.3a)
iwe(w) B, = —0;(H*+HY), (2.3b)
iwp(w)H = 0B, (2.3¢)
iwp(w)HY = —0: EY, (2.3d)

where the magnetic field H is splitted into the sum of H® and HY, and E,, Ey, H*
and HY are the electric and magnetic fields in the frequency domain.
Let us first show the derivation of (2.1a)-(2.1b) from (2.3a). Applying the map-

ping -
3(y) = / T
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with
oy w

at)=(1+2=) v =er(1-22), (2.4

and the Drude model permittivity e(w) given in (2.2) to (2.3a), we have

. wg ~ ST o} -1 EE
zwe()(l—E)Em:a(y)ay(H +Hy):<1+—yQ) o,(H"+HY),  (2.5)

iweg(1—5%)
which can be simplified further as
2

(iw+%+ealay>Em:ealﬁy(ﬁ]w—kﬁy). (2.6)

Now let us introduce an auxiliary variable

-1 -

J.=—F,. 2.7

o (2.7)

Using the assumption that the electromagnetic fields are time-harmonic (i.e., the

time-domain fields and the frequency-domain fields satisfy the relation wu(x,t) =

e“ti(x)), we immediately obtain (2.1b) from (2.7). Furthermore, using (2.7), we
can rewrite (2.6) as

iwEy+wiJ,4ey oy, By =5 0,(H"+HY). (2.8)

Applying the time-harmonic assumption to (2.8), we immediately obtain (2.1a).
Similarly, (2.1¢)-(2.1d) can be obtained from (2.3b) by using the mapping

F(z)= /0 x@dé

o)+ ve=a(i-5) 29)

and introducing the auxilary variable jy =1F,

W

By symmetry, (2.1e)-(2.1f) can be derived from (2.3c) by using the mapping
i) = [ e
yy)= —
o (&)

Oy

iwih(w)

with
we

alx)= (1—1—

with
2

) ) =m(1-22), (2.10)

aly)= <1+
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and introducing the auxilary variable K* = iﬁ[ . Finally, (2.1g)-(2.1h) can be de-
rived from (2.3d) by using the mapping z(z) :fowﬁdﬁ with

O

iwih(w)

and introducing the auxilary variable K¥= %I:I Y,

Since the PML is used in a rectangular domain outside the physical domain, we
consider solving (2.1a)-(2.1h) in a rectangular domain Q={a,b] x [c,d]. To complete
the model (2.1a)-(2.1h), we assume that the model problem is subject to the initial
conditions

w

)_1, ¢(w):uo<1—w—%>, (2.11)

alx)= <1+

Ey(7,y,0)=Eqyo(7,y), Ey(2,y,0)=Eyo(z,y), (2.12a)

Jx(x7ya0):‘]x0($ay)a Jy(x7y70):t]y0(xay)a (212b)
and

H®(z,y,0) = Ho(z,y), HY(z,y,0)=Hyo(z,y), (2.13a)

K (2,y,0) = Kyo(2,y), KY(2,y,0)=Ky(z,y), (2.13b)

and the perfect conduct (PEC) boundary condition
Ey(2,y,0)|y=ca=0, Ey(z,y,t)|s=ap=0, (2.14)

where E, Eyo, Jz0,Jy0, Hyo,Hyo, Kzo, and Ky are some properly given functions.
In the rest of the paper, we denote the L? norm over Q as [|-||:=||*||r2@)-

Theorem 2.1. For the solution of (2.1a)-(2.1h), define the energy

1
&it) =5 [EO(IIEzIIQvLIIEyI!2)+eow3(||Jw||2+||Jy||2)

o ™ 4+ HY||* 4 powp, [ K7+ KV (2.15)

Then for any nonnegative functions o,(x) and o,(y), we have

d 1 1 o
551(t)+||0§Ex||2+||05Ey||2+||05H I?

1
+||o2 HY||*+((04+0,)H" ,HY) =0. (2.16)
When o, =0,=0>0 (i.e., a positive constant), the energy is decreasing:

gl<t) Sgl(O), Vte [O,T] (217)
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Proof. To make our proof easy to follow, we divide the proof into three major parts.
(I) Multiplying (2.1a) and (2.1b) by yE, and eyw?J,, respectively, integrating
each over €2, then adding up the results, we have

1d

S llEalP el LIP] + 103 EalP= (@, (H+ HY).E). (218)

Multiplying (2.1c) and (2.1d) by e E, and eyw?J,, respectively, integrating each
over 2, then adding up the results, we have

1d
2dt

(IT) Multiplying (2.1e) and (2.1f) by po(H*+HY) and pow?2,(K*+KY), respec-
tively, integrating each over €2, then adding up the results, we have

(ol B I12+eo?| |1, P] 102 B | [P = (0 (HT+ HY), E,). (2.19)

1 d x x xX xX
5 a7 ol | P+ prow [ K] 10 (O HY ) 4 prowr, (9K V)
o (17 HY) — (K, )+ ||og HE |+ (o, H, HY)
— (0, Ey, H*+ HY). (2.20)

Similarly, multiplying (2.1g) and (2.1h) by po(H®+HY) and pow? (K*+KY),
respectively, integrating each over 2, then adding up the results, we have

1d

2dt (10| [ HY |1+ powi | | KY| ] + 110 (8. HY , HT) + powi (0, K Y, K™)
+ pow? [(KY, H") — (Kf,Hy)]+||0—2Hy|\2+(asz,Hy)
— (0. By, H*+ HY). (2.21)

Adding up (2.20) and (2.21), and using the identity
d (|2 2 T T d T 2
S WHE A2 ) +2(0,H°, HY) +2(0,HY, H?) = — ([[H* + HY||%),

we obtain

1d
2dt
tllog H|P +lo2 HY| P+ (0, +0,) H* HY)
=(0,E,, H*+ HY)— (0, E,, H*+ HY)
=—(E,,0,(H*+H"))+(E,,0,(H*+H")), (2.22)

[0l | H* + HY| P+ pow, || K"+ KV
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where in the last step we used integration by parts and the PEC boundary condition
(2.14).

(III) Now adding up (2.18), (2.19) and (2.22), we have

1d
e (LA R AR [FATERTPATY
1 1
gl [H 4+ H| P4 |7+ K]+ 03 Bl P+ 02 B
Hllo P+ lok Y|P+ (00, HE L HY) =0, (223)

which concludes the proof of (2.16).
When o, =0,=0 is a positive constant, using the identity

1 1 1
\log H*[|*+||o2 HY|[*+ (0, +0, ) H" . HY) = ||o= (H*+ HY)||?

in (2.23) and using the energy definition (2.15), we immediately have

&
—(t) <
(<0,

which completes the proof of (2.17). O

We like to remark that for general o, and oy, we can use the following identity
1 1
llog He|[*+|loz HY||*+ (04 +0y) H" HY)
1 1 1
:§||<0m+ay)%(Hx+Hy)||2+§((Jy_gx)Hvax)+5((Ux_gy)Hy7Hy)~ (2.24)

But the last two terms of (2.24) are not guaranteed to be nonnegative, i.e., how to
obtain a nice stability of the model is still open in the general case.

3 The FDTD scheme and its analysis

To develop our difference scheme, we assume that the physical domain Q=/[a,b] x[c,d]
is partitioned by a uniform rectangular grid

a:x0<x1<...<xNx:b7 C::y(:|<:y1<---<iy]\[y:(j7

and the time interval [0,77] is partitioned into NV; uniform intervals, i.e., we have
discrete times t, =k, T:%, k=0,1,---, Ny, grid points x;=1ih,, h;,;:b];—f, 1=0,1,---, N,
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0.8 )
D 0] D
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Figure 1: A sample grid showing how the unknown variables are placed.

in the z-direction, and grid points y;=jh,, h,= j 0,1,---,N, in the y-direction.
Note that h, and h, can be different.

Following the classic Yee scheme, we choose the unknowns H, (and K,) at the
mid-points of the horizontal edges, H, (and K,) at the mid-points of the vertical
edges, and E, (and J,) at the element centers (cf. Fig. 1).

To define the fully-discrete scheme, we introduce the following difference and
averaging operators: For any discrete ﬁlnctlon,ulj,

1
n+1 n nt3 n—g
1 .. — . ..
5 nty Ui U, j —n Wi +u; J
i T i.j 9 )
n n n n
Sl e i+l Ti—i Sl — ij+s ig—i
RN A ) Yy
h, Dy

1 1
n+§ n+§

0B+ gjxj; e oy B = e S, (HP A HY) (3.1a)
5 J;HQJ ngj 0, (3.1b)
GBS o B = e O (HEHY) (3.1¢)
Or Jz?,z,ﬁ; _E;z,a+2 =0, (3.1d)
5 ngjﬁw K buglo Oy Hiyt = o S, ELTLL (3.1e)
5 K" H’”’"+§ =0, (3.1f)

it+3.0+3 it30ty
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y,n+1 y,n+1 T7yn+1 | n+1
g Hily +1—|—w Ky +1—|—,u0 TririHitsjv1="to 6$Ey,i+%u‘+%’ (3.1¢)
+ Ytz
O Y : 1h
it3dty i3ty 0, (3.1h)

where we denote
O-yJ:Uy(yj) and E;HQJNE ( z+ L,Y5,t )7

i.e., the approximate solution of E, at point (z, +1 1,Y;,t,). Similar notations are used
for other variables.
The given initial conditions (2.12)-(2.13) can be discretized as follows:

Eg z+2,] Emo(xi—&-%’yj)? E;)/L’]Jr EyO(xzyy]+1) (32&)

Jx’iJr%’j :Jmo(xi_i_%,yj)’ Jy, ,J+* Jyo(acz,yﬁ_ ) (32b)

—z,0 —.,0

Hipsjon=Hoo(iy1,9501), Hiys jr=Hyo(ziy1,95,1), (3.2¢)
0 0

Kf+2j+ KacO(xi+%7yj+%)7 Kf}+27j+7 Kyo(a:H%,ijr%). (3.2d)

The scheme (3.1a)-(3.1h) can be implemented as follows.

When n =0, we need to couple the discretized initial conditions (3.2a)-(3.2d)
with the scheme (3.1a)-(3.1h). For example, using (3.2a), (3.2b), and (3.1b) with
n=0, we have

1 T
Jiiévj:J;r:O(Iz‘+%7yj)+§E:v0(xz‘+%vyj)-
Then at every time step,

Step 1: Solve (3.1b) for J"~ i (3.1d) for J L1 (3.16) for K7 "+ and (3.1h)

+2, Jj+5
Ky,n—i—l

A . Note that these can be done in parallel.
2’ 2

for

zn+2

Step 2: Solve (3.1a) for E"J’l1 i (3.1c) for E”+l+1, (3.1e) for H+ iy and (3.1g)
for H” 3 Note that these can be done in parallel.

z+2, +2

In the rest of this section, we will carry out the discrete energy analysis of the
scheme (3.1a)-(3.1h). To simplify the notation, we denote the discrete L? norm and
the corresponding discrete inner product as follows:

1B [2:=hahy D |E:,i+%7j|2’ (' ) =hahy ) Uit 2, Vnitd 5

0<i<Np—1 0<i<Np—1
0<j<N,—1 0<j<N,—1
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Similar notations will be used for other variables, which have different shifts for the
indexes. We also introduce the notation ¢, = ﬁ for the wave propagation speed

in the free space.

Theorem 3.1. For the solution of (3.1a)-(3.1h), define the discrete energy

m m m+2 m+2
Eais(M) = (IIE | B 2) 4 (||J 211752 12)
+7||<HZ+Hy>m+§\|3+"°Tm||<Kx+Ky>m“||§. (33)

Then for any mée[1,N,—1] and nonnegative damping functions o,(x) and o,(y), we
have the discrete energy identity:

L(Eanm)~Ean(-0)+ X (lod B H R HIoEE, )

0<n<m

zn 1 N —=T,n ——=Y,n
w0 T o B P (o )]

0<n<m

2
+ B (R Ry (HE 4+ HY) ™) = (K7 + KV, (H+ HY) ) |
eowf
2
1 .
:5[((H””+Hy)m+§,5yE;”“—5ZE;”“>—((H"’“"+Hy) 5,E0— 5ng>]. (3.4)

1 m _1
(I8 By — (2 B+ ) — (B9

When o, =0,=0 1s a positive constant, under the time step constraint

<min( 2 2 Do) (3.5)
T ) ) ) *
T W V2w, 8V2¢e, 8V2¢,
the following discrete stability for the scheme (3.1a)-(3.1h) holds true:

Eais(m) <3Euis(—1). (3.6)

Proof. To make our proof easy to follow, we divide the proof into several major
parts.

(I) Multiplying (3.1a) by hgchyean f; then summing up over i and 7, we have
2
n+11(2 n % +2 2 2, s s
(HE Z=1EXD +od B, 2|2 4-eow?(Je 2B, ?)

t\.’)\»—A

:<5y(H’”+Hy) IENOREN (3.7)
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Multiplying (3.1b) by eow?h,hyJ, then summing up over ¢ and j, we have

mH— NE

n—+ n—= n 3N
(HJz 21 — e (B2 T2

'Y x

0. (3.8)

Adding (3.7) and (3.8) together, then summing up the result from n=0 to any
m < N;—1, and using the following identity
1

ST = (TR EY)),

n—&-% —n+ n N
(B~ (BT =

we obtain
o m l—ntl m—+
E(HEx“IE—HEEIE)Jr > o B2 + (HJ 2H2 I2A QH)

0<n<m

60&)2

= 7 (8,(HE+ HY) B, (3.9)

Similarly, multiplying (3.1c) by h.h eOE 1, multiplying (3.1d) by
2

eow?hyhy, T and summing up the results from n=0 to any m < N;,—1,

yl]+ )
we obtaln
€0 m —n,+ 600.) m—+
2—(I|Ey“||i—||E2|| + Y lo2E, |2+ (I|Jy 22— || 2 )
T 0<n<m
2
Eowe m+l m 1
+ (R B (2 ED))
1 =1 1
== > (G (HT+HY) 2B, (3.10)
0<n<m

Adding (3.9) and (3.10) together, we have

60 m m —n+ 1 +l

Z[(IIE:E EHIE D = UEIEIED]+ Y (o oi T, 2||2+||0§ 119
0<n<m

60&)3

27

600(.12

+

m+2 m+2
[ 2 1) = (1 2 21y 1)

(3 Bty G B0+ (2 Bty =y 2 )|

)} (3.11)

M\H

—=n+

)= {0a(H+ H')" 2 E

l\:)\»—‘

2
[ (H*+ HY)+3 B
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——=z,n+1
H— Jt3s

—=y,n+1

(IT) Multiplying (3.1e) by hghypo(H; 1 41 +HZ+ g+l 1), then summing up over i

and j, we have

1

Ho z,n+3 z,n+ % rn+1l Tyt
5, UIH® CR| [ HE D) o6 HETLHTTT)

- 7T,Nn —-7Y,n l—xn —7T,Nn n
o, (K= T o T2 (o T
(5, Er T 7T, (3.12)

==X, 1 =Y, 1 . .
Multiplying (3.1f) by hyhypowr, (K ;]?Jrl%—KiJ’rjj?Jrl), then summing up over i and
27 2 27 2

7, we have

Mowfn z,n+1||2 2 2 zn+l _y’,H_%
B0, (|| ot [2 | K] 2) 4 g, {6, 53 TRV

2T
—rn+i n4i
— pow?, (H™ 2 KTy . (3.13)

Adding (3.12) and (3.13) together, then summing up the result from n=0 to any
m < N;—1, and using the following identity

—FX,MN 1 —z,nti ]. 1
<K:p n+1 H +1> <Hm’n+§,K ) +2>: _(<Kz,n+17Hx,n+%> . <K:r,n’H:v,n+§>)7

2
we have
Ho z,m+3 z,1 z,n n+1 FFentl
o (™ a2 HP2 2+ Y pols HOTLHTT )+ Y lo o P
T 0<n<m 0<n<m
2
W, —acn —Y,n
_‘_/%«Kx,m-i-l’Hr,m—&-%) <Kx0 Hx,Q Z 1o Uy +1,H +1>
0<n<m
sl
+:“’0W (HmeJrlH2 ||Kx0H Z Mowfn<6TKx,n+%’Ky7 +2>
0<n<m
—um el
T3 o (KL < (e R
0<n<m
= N (g, T 1, (3.14)
0<n<m

By symmetry, from (3.1g) and (3.1h), we have

|z)+ Z M0<5 Hyn—H Hwn-‘rl Z ||0_$§Hy,n+1||z

0<n<m 0<n<m

2
+%(<Ky,m+l,[{y,m+%>_ <Ky’0,Hy’2 Z ,UO Uz —y,n+1 Ha;,n+1>

)
0<n<m

Ho m+3 1
oo (s |2
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2
wm m n :L"n+
B0 (v 12 K902 3w (6, K0 KR

27 0<n<m
B3 (L) (B )
0<n<m
= N (B HT T, (3.15)
0<n<m

Adding (3.14) and (3.15), and using the following identities:
Z <<57_Ha:,n+1jﬁy»n+1> + <5THy,n+1 7F337n+1>)

0<n<m
1 3 3 1 1
—— Z (<H$’"+2,Hy’”+2>—<H$’”+2,Hy’”+2>)
TOgnSm
1 ema 3 ma 3 o1 1
=L vty (g gy, (3.16a)
-
S [ T e RO (e ) e R
0<n<m
=3 D7 [ ) e g ) (g ey (e e )|
2 ) ) ) )

0<n<m

1
5 [(<K$ ;m+1 Hy m+ > <K$’O,Hy’%>)—|—(<Ky’m+17H$’m+%>—<Ky’0,Hx’%>)} , (3.16b)
P e e )
0<n<m
— 1 Y (REL R ()
T 0<n<m
1
(<Km ,m—+1 Ky,m+1> <K‘r’0,Ky’0>), (3.16(3)
T
we obtain

S UE ™S Y 3|2 || =5 Y3 2)
-

Mﬂw?n z,m+1 m—+1]|2 z,0 02

+= (T K[ K KT
Mow?n z,m—+1 m—41 z,m+3 m+2 z,0 0 z,: 1

+ B [(K el peymtl preamtd g pumt3y (w0 guo g ’2+Hy’2>]

rn—i—l n+1 —zx,n+1 —yn+1

+ 50 [l o E B (oo H )

0<n<m
=y [<5yE;+1,H””’”“+Fy’”“>—(5mEg“,H’”’"“+Fy’”“>}. (3.17)

0<n<m
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(III) To add up the right hand side (RHS) terms of (3.11) and (3.17), we need
the following estimate:

Z |:5y(HI+Hy)"+1§Fn+2 —|—5 En+1 (Hm ,n+1 1—|—Hy n+1 )]

e e S uas-Tas Ay Fa
0<i<Ny—1
0<j <N, —1
0<n<m
1' E +3 +1 11
th0<'<N 1[( )+§’_7 25i43,0 ( )+27Ny_7 z,i+1,Ny
i<Ng—
0<n<m
1 : 0 +1
2 : H*+HY)? E. H*+ HY Em
2hy0< i<Nz—1 ( i ) %j+% %H—%’] ( + )Z+2’3+2 m,i+%,j
1 xT
0<j<Ny—1
1 a3 .
E HZ' Hy 2 Em+1 H:E Hy 2 A EO' '
+2 Y ( i )+2’]+’ zjit3.0+1 —(H >z+%,J+% @it .5+
0<i<N;—1
0<j<N, 1
! +1
‘ v " r Y 2 n
2hy0<<ZN: N (H +H )Z+2,Ny,,Ez,i+%,N (H +H )”27 7Ezz+ 0]
? xT
0<n<m
1 E: H* 4+ HY er% 5 Em+1 He 4 HY % 5 EO 218
_§0<'<N 1 e )H%’H @it 50+3 —(H )i+%,j+% Vomitg+3]) (3.18)
SIS INg—
0<j<Ny—1

where in the last step we used the PEC boundary conditions (2.14). Similarly, we
have

3 [5I(H’”+Hy)7.+51 E 44, Erly )}

'La]+§ Yt a.7+2 +27]+ Z+2’J+ Z+27J+
0<i<Ny—1
0<j<Ny—1
0<n<m
_ B4 HY) 2, pr HewHY™ 2 gt }
th0<; 1[( )Nz_%d‘i‘* Y, Ne,j+3 = )—%,J+2 v,0,5+3
SIS Ny —
0<n<m
1 m-+
PR T Y 0 _ T Yy 2 m—+1
+ " Z _(H +H >z+2,g+2Ey,z,]+; (H +H) 2,J+7Ey,i,j+%]
0<i<Np—1
0<j<Ny—1
S ey B (memn) RO 1
2h i +2»J+2 yyitlj+35 L Tyit1+d
7 -
0<j<Ny—1
1 ntl ntl
—Ej HE+HY) 2, E" . . —(H*4+HY) > |E°
+2h _< HHY) —3d+3 UNets (H*+ )—%,j+2 Y.0,5+5
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1 1

- H®+ [V S EmHL H*+HY)?, . 6,EY, ] 3.19
5 O (B BB, oy~ (B 6Bl (319
0<j<Ny—1

where in the last step we used the PEC boundary conditions (2.14).

Now adding up (3.11) and (3.17), and using (3.18), (3.19) and the discrete energy
definition (3.3), we complete the proof for the discrete energy identity (3.4).

(IV) When o, =0, =0 is a positive constant, using the identity

——z,n+1 L —yn+1 zn+1 —y,n+1
13+]loz H H7 )

o B2+ 2+ {(ou+ay ) H ™,
=|lo s (H™" "L,
and dropping the second and third terms on the left hand side of (3.4), we have
Eais(M) —Egis(—1)

2
<_ T oWy,

[((Kx+Ky)m+17(Hx+Hy)m+%>_<(Km_’_Ky)O7(H:v+Hy)%>]
_7'600)3
2
T 3 m m X
+§[<(H$+Hy)m+2,5yEm g, B —(H +HY)2,5,E0— 5$E2)]. (3.20)

m+3 e ~3 10 M3 rml -3 10
(2 By = (J 2 B () B ><@,Eﬂ

Now we just need to estimate those right hand side terms of (3.20). By the Cauchy-
Schwarz inequality, we have

2

T oW, <(K:v+Ky)m+1’(H:c+Hy>m+%>

/‘Lowgn T m+1((2 (7—("‘)771)2 w m+3112
i e (3213
TEW? | mtl . €W m Twe )? .
—; <Jx +27Ex +1>§ 0 HJ +2H2 %Q)HE; +1Hi7 (321b)
oW, m+3 am 50“3 m+3 12 (Twe)? m411]2

O gyt ety < O g Tl e (3210

Similarly, we have

T xX m 3 m m
§<(H +Hy) +2a5yEa: +1_5xEy +1>

€T mgTCU 60 m m
(Vi (4 Y TV g g s )
<N (H+H) 2 are, e 18, B2 |21, By )

,u() T m m 1 m
<EN(H - H) R |2 el | B Pl B (322)
Y T
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where in the last step we used the following estimates

| m‘—I—l1 A 1_Em+1 |2
||5yE:T+1||3:hxhy Z m,z+§7]+h2 T,i+5,]
0<i<N,—1 4
0<j<Ny—1
4
__h2 hahy D (EREL L PHIES P =S IIESLE,
S y

and

||5 Em+1H2_ h2||Em+1||2

Substituting (3.21a)-(3.22) and similar estimates for the rest terms into (3.20), we
obtain

gdis (m) - gdis(_ 1)
Twe)?  32(7¢y)®\ €04, 1 Twe)?  32(7¢y)®\ €04y 1

=\ )2 > TR
€Wy 1| ymt} mt} (Twm)? Ho |/ e m
O (R 2 )+ (T ) S (e Yy

we)?  32(te,
+“04m||<Kw+Ky>m+l||z+(“2) 20 S

Twe)? | 32(re)?y € e (11 :
(e B2y Sy poa €08 b

> B
wm)? 1 w
(Tl LY B0 b B gy (3.23)

If we choose 7 satisfying the following (which is equivalent to the time step constraint

(3.5)):

2 2 2 2
(Twm) < (Twe) <1 32(Tey) <1 32(Tcy) <

1
2 —4 2 T4 Rh T4 R

then the estimate (3.23) can be simplified to

1 1
§5dis(m)—5dis(—1)§égdis(—l), (3'24)

which concludes our proof of (3.6). O
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4 Numerical results

In this section, we present some numerical results to demonstrate the wave absorbing
efficiency of the PML model. We adopt the same examples of [5] and our simulation
was carried out by MATLAB installed under Windows 10 on a Dell XPS Notebook
(with Intel Core i5-1035G1 1.10GHz CPU and 8GB RAM).

4.1 Wave absorbing by the PML model

To test the effectiveness and stability of the PML model (2.1a)-(2.1h) on absorbing
the outgoing waves, we simulate a source wave propagating in a Drude metamaterial
of dimension [—17,17]x[—17,17]. The Drude metamaterial region (governed by
(2.1a)-(2.1h) with 0, =0, =0) is surrounded by the PML with thickness d=15h,
where h denotes the mesh size. The incident source wave is imposed in the H,
equation (2.1e) as a source function

f(z,y,t)=g(x,y)h(t),

where
g(z.y)=e =) and  h(t)=—20(t—1)e D",

In our simulation, we use ¢g=1, pp=1, h,=h,=h=0.2 and 7=0.1. The damping
function o, is a fourth-order polynomial given as follows:

Umax(x—l?)’ﬂ’ if x>17,

d
max d 9 - )
0, elsewhere,

where 0. =—(m+1)log(R)/(2d) with R=10"% and m=4. The damping function
o,(y) has exactly the same form as o,(x). The H, fields obtained by our scheme
(3.1a)-(3.1h) at various time steps are presented in Fig. 2, which shows that both
of forward and backward waves are well absorbed by the PML as observed in the
paper [5, Fig. 10].

4.2 A refocusing simulation

In this example, we simulate a transmission problem between the vacuum and a
Drude medium surrounded by Berenger’s PML and the metamaterial PML respec-
tively (see Fig. 3) with thickness d=15h on all sides. In this simulation, we put
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Hz at time step = 200 ; Hz at time step = 400

Hz at time step = 800

01
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08

H at time step = 5000

H at time step = 2000 103

H at time step = 8000

°

Figure 2: Snapshots of H=H®*+ HY obtained by scheme (3.1a)-(3.1h) with 7=0.1 at 200,400,800,2000,
5000, and 8000 time steps.

a periodic time source h(t) =sin(wpt) in the center of vacuum region, while the
computational domain is a rectangle Q =[—20,20]x[0,20]. To create a refocusing
phenomenon, we choose parameters ey=jo=1, and w,=w, = /2wy, which leads to
€(wo) = p(wo) =—1 by the Drude model, i.e., the effective index of metamaterial is
—1. We use the wave frequency wo=+/2, and the fourth-order damping functions
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r Berenger’s PML Metamaterial PML

Vacuum
( Standard Maxwell’s equation) Drude Model

Figure 3: The setup of the refocusing simulation.

o, and o,.

For this simulation, we need to solve a coupled problem with different governing
equations in different subdomains: on the left subdomain €2;, the equations are
governed by the 2D Berenger PML model (cf. [7, Eq. (3)] and [24, p. 219]); on
the right subdomain €2, the governing equations are the metamaterial PML model
(2.1a)-(2.1h). We can unify these models together and rewrite them as follows:

O E,+DyJ,+e oy B, =€y 0,(H +HY), (4.2a)
D(0,J,—E,)=0, (4.2b)
OE,+D;J,+e; 0. Ey=—e, 0, (H +HY), (4.2¢)
D(0,J,—E,)=0, (4.2d)
OH,+DyK,+Dy H* = D10, F,— D20, E,, (4.2¢)
D(0;K,—H,)=0, (4.2f)
O H,+DxKy+DyyHY = Dps0,E, — D10, E,, (4.2g)
D(0,K,—H,)=0, (4.2h)

where the coefficients are defined as:
0, ENIS VB 0, ) €Qy, 0, ) €€y,
D— (z,y) 1 D, = i (z,y) 1 Dy — i (z,y) 1
17 (.’L’,y)EQQ, wea (may)GQZa wmv (%y)EQ%
6610-507 (xvy)egla Ealaya (-’%y)GQl,
D= 1 Dpa= -1
Mo Oy, ({E,y)GQQ, Mo Oz, (-’ﬂ,y)GQQ,

07 (x7y)€Ql7 Mala (x7y)6917
Dp1= —1 Dpy=
to s (w,y) €€y, 0, (z,y) €Qs.

The source wave sin(wpt) is imposed on the HY field. We use the scheme (3.1a)-
(3.1h) with h, =h,=0.2 (i.e.,N,=N,=200) and 7=0.01 to obtain the snapshots
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Hz at time step 800 Hz at time step 1500

o001 001
0008 0.008
0006 0.006
0004 0.004
0002 0.002
o 0
0002 -0.002
0004 -0.004
0006 -0.006
~0.008 0008
001 001

Hz at time step 2000 001 001

0.008
0.008
0.006
0.006
0.004
0.004
0.002
0.002
o
0
0,002
-0.002
-0.004
-0.004
0006
-0.006
-0.008
-0.008
001
001
oot 001
0.008 o008
0.006 0006
0.004 0004
0.002 0002
o 0
-0.002 -0.002
-0.004 0.004
-0.006 0.006
-0.008 0.008
001 001

Figure 4: Snapshots of H = H*+HY obtained by the scheme (3.1a)-(3.1h) with 7=0.01 at
800,1500,2000,8000,10000,12000 time steps.

of the H fields in Fig. 4, which shows a refocusing property as originally obtained
in [5, Fig. 12].
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5 Conclusions

In this paper, by using the energy method we established a stability for the metama-
terial PML model developed by Bécache et al. [5]. This PML was originally proved
to be stable through a complicated modal analysis in [6]. But the stability obtained
by the energy method offers more practical use for proving numerical stability of the
FDTD scheme. Currently, both stability proved in [6] and this paper are limited
to the constant damping coefficient case. How to obtain a stability in the practical
variable damping functions are still open. We will continue the investigation in the
future. More advanced numerical methods such as discontinuous Galerkin meth-
ods [18,25] and edge element methods [24,29] for this Drude PML model will be
explored in the future too.

Acknowledgements

The authors are very grateful to one anonymous referee for the insightful comments
on improving our paper. This work was partially supported by NSF grant DMS-
2011943.

References

[1] S. Abarbanel, D. Gottlieb and J. S. Hesthaven, Non-linear PML equations for time
dependent electromagnetics in three dimensions, J. Sci. Comput., 28 (2006), pp. 125—
137.

[2] D. Appelo, T. Hagstrom and G. Kreiss, Perfectly matched layers for hyperbolic sys-
tems: general formulation, well-posedness, and stability, SIAM J. Appl. Math., 67(1)
(2006), pp. 1-23.

[3] G. Bao, P. Li and H. Wu, An adaptive edge element method with perfectly matched
absorbing layers for wave scattering by biperiodic structures, Math. Comput., 79
(2010), pp. 1-34.

[4] E. Bécache and P. Joly, On the analysis of Bérenger’s perfectly matched layers for
maxwell’s equations, ESAIM: Math. Model. Numer. Anal., 36 (2002), pp. 87-119.

[5] E. Bécache, P. Joly, M. Kachanovska and V. Vinoles, Perfectly matched layers in
negative index metamaterials and plasmas, ESAIM: Proc. Surveys, 50 (2015), pp.
113-132.

[6] E. Bécache, P. Joly, M. Kachanovska and V. Vinoles, On the analysis of perfectly
matched layers for a class of dispersive media and application to negative index
metamaterials, Math. Comput., 87 (2018), pp. 2775-2810.



22

[7]

8]

[9]

[24]

J. Li and L. Zhu / Ann. Appl. Math., 38 (2022), pp. 1-23

J. P. Bérenger, A perfectly matched layer for the absorbing EM waves, J. Comput.
Phys., 114 (1994), pp. 185-200.

J. H. Bramble and J. E. Pasciak, Analysis of a finite element PML approximation
for the three dimensional time-harmonic Maxwell problem, Math. Comput., 77(261)
(2008), pp. 1-10.

M. Chen, Y. Huang and J. Li, Development and analysis of a new finite element
method for the Cohen-Monk PML model, Numer. Math., 147 (2021), pp. 127-155.
Z. Chen and W. Zheng, PML method for electromagnetic scattering problem in a
two-layer medium, STAM. J. Numer. Anal., 55 (2017), pp. 2050-2084.

G. C. Cohen and P. Monk, Mur-Nédélec finite element schemes for Maxwell’s equa-
tions, Comput. Methods Appl. Mech. Eng., 169 (1999), pp. 197-217.

D. Correia and J.-M. Jin, 3D-FDTD-PML analysis of left-handed metamaterials,
Microwave Optical Tech. Lett., 40 (2004), pp. 201-205.

T. J. Cui, D. Smith and R. Liu, Metamaterials: Theory, Design, and Applications,
Springer, 2010.

S. A. Cummer, Perfectly matched layer behavior in negative refractive index materi-
als, IEEE Antennas Wirel. Propag. Lett., 3(1) (2004), pp. 172-175.

X. T. Dong, X. S. Rao, Y. B. Gan, B. Guo and W. Y. Yin, Perfectly matched layer-
absorbing boundary condition for left-handed materials, IEEE Microwave Wirel.
Components Lett., 14(6) (2004), pp. 301-303.

K. Duru, L. Rannabauer, A.-A. Gabriel, G. Kreiss and M. Bader, A stable discon-
tinuous Galerkin method for the perfectly matched layer for elastodynamics in first
order form, Numer. Math., 146 (2020), pp. 729-782.

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explo-
rations, Wiley & Sons, 2006.

J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algo-
rithms, Analysis, and Applications, Springer, New York, 2008.

J. L. Hong, L. H. Ji and L. H. Kong, Energy-dissipation splitting finite-difference
time-domain method for Maxwell equations with perfectly matched layers, J. Com-
put. Phys., 269 (2014), pp. 201-214.

Y. Huang, J. Li and Z. Fang, Mathematical analysis of Ziolkowski’s PML model with
application for wave propagation in metamaterials, J. Comput. Appl. Math., 366
(2020), 112434.

Y. Huang, J. Li and W. Yang, Mathematical analysis of a PML model obtained with
stretched coordinates and its application to backward wave propagation in metama-
terials, Numer. Methods Partial Differential Equations, 30 (2014), pp. 1558-1574.
L. H. Kong, Y. Q. Hong, N. N. Tian and P. Zhang, Stable and efficient numerical
schemes Maxwell equations in lossy medium, J. Comput. Phys., 397 (2019), 108703.
J. Li and J. S. Hesthaven, Analysis and application of the nodal discontinuous
Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258
(2014), pp. 915-930.

J. Li and Y. Huang, Time-Domain Finite Element Methods for Maxwell’s Equations



J. Li and L. Zhu / Ann. Appl. Math., 38 (2022), pp. 1-23 23

[25]

[26]

[27]

[28]

[29]
[30]

[31]

32]

[33]

[34]

in Metamaterials, Springer Series in Computational Mathematics, Vol. 43, Springer,
2013.

J. Li, C. Shi and C.-W. Shu, Optimal non-dissipative discontinuous Galerkin methods
for Maxwell’s equations in Drude metamaterials, Comput. Math. Appl., 73 (2017),
pp. 1768-1780.

Y. Lin, K. Zhang and J. Zou, Studies on some perfectly matched layers for one-
dimensional time-dependent systems, Adv. Comput. Math., 30 (2009), pp. 1-35.

C. Liu, S. Shu, Y. Huang, L. Zhong and J. Wang, An iterative two-grid method of a
finite element PML approximation for the two dimensional Maxwell problem, Adv.
Appl. Math. Mech., 4 (2012), pp. 175-189.

T. Lu, P. Zhang and W. Cai, Discontinuous Galerkin methods for dispersive and lossy
Maxwell’s equations and PML boundary conditions, J. Comput. Phys., 200 (2004),
pp- 549-580.

P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press,
2003.

R. A. Shelby, D. R. Smith and S. Schultz, Experimental verification of a negative
index of refraction, Science, 292 (2001), pp. 77-79.

Y. Shi, Y. Li and C.-H. Liang, Perfectly matched layer absorbing boundary condition
for truncating the boundary of the left-handed medium, Microwave Optical Tech.
Lett., 48(1) (2006), pp. 57-63.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, Compos-
ite medium with simultaneously negative permeability and permittivity, Phys. Rev.
Lett., 84(18) (2000), pp. 4184-4187.

A. Taflove and S. C. Haguess, Computational Electrodynamics: The Finite-Difference
Time-Domain Method, 3rd edition, Artech House, Norwood, 2005.

F. L. Teixeira and W. C. Chew, Advances in the theory of perfectly matched layers,
edited by W. C. Chew et al., in: Fast and Efficient Algorithms in Computational
Electromagnetics, Artech House, Boston, (2001), pp. 283-346.

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations,
Appl. Numer. Math., 27 (1998), pp. 533-557.

C. Wei, J. Yang and B. Zhang, Convergence analysis of the PML method for time-
domain electromagnetic scattering problems, SIAM J. Numer. Anal., 58 (2020), pp.
1918-1940.

Z. Xie, J. Wang, B. Wang and C. Chen, Solving Maxwell’s equation in meta-materials
by a CG-DG method, Commun. Comput. Phys., 19 (2016), pp. 1242-1264.



