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Local discontinuous Galerkin methods for the
carpet cloak model
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The DG methods have been shown to have good performance in
numerical simulations of the carpet cloak model in [32]. However,
the stability analysis and the error estimate are left to be done.
In this paper, we introduce the leap-frog DG methods to solve
the carpet cloak model. We prove the stability of the semi-discrete
scheme, the sub-optimal error estimate for unstructured meshes,
and the optimal error estimate for tensor-product meshes. Then,
the fully discrete scheme is stated and the stability is proved. Fi-
nally, the numerical accuracy tests on rectangular and triangular
meshes are given respectively, and the results of numerical simula-
tions of the wave propagation in the carpet cloak model using the
DG scheme are presented.
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1. Introduction

Since Leonhardt [26] and Pendry et al. [40] firstly demonstrated the idea of

invisibility cloak design with metamaterials in 2006, much study has been

done in both theoretical and numerical analysis. There are a plenty of ex-

cellent works on the mathematical analysis of the cloaking phenomenon

[1, 23, 17, 18], and on the numerical simulations of the cloaking models

with the finite difference (FD) methods [19, 22, 36], the finite element (FE)

methods [4, 25, 30, 39], and the spectral methods [46, 47]. For more de-

tails, readers can consult the review papers [2, 6, 21], and the monographs

[15, 20, 29, 38] as references. In 2014, Li et al. proposed the mathematical

analysis for the time-domain carpet cloak model [30]. In [32], a revised finite
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difference method for the carpet cloak model was developed, and the cor-
responding stability analysis was performed with the time step constraint
τ = O(h2), where τ and h are the time step size and spatial mesh size re-
spectively. In order to relax the time step constraint to τ = O(h), the usual
requirement for the FD or the FE methods to solve the time-dependent
Maxwell equations, a new energy was introduced in [34]; moreover, the fi-
nite element method coupled with two time discretization methods to solve
the carpet cloak model was developed therein.

The discontinuous Galerkin (DG) method was initially proposed by Reed
and Hill [42] to solve the neutron transport problem. Later, Cockburn and
Shu introduced the Runge-Kutta DG (RKDG) methods for solving the lin-
ear and nonlinear hyperbolic partial differential equations (PDEs) [11, 12],
and the local DG (LDG) methods for solving the time-dependent convection-
diffusion systems [13], which stimulated the rapid development and applica-
tion of the DG methods [14, 45]. The DG method shares the advantages of
the continuous finite element methods, including flexible h-p adaptivity and
easy handling of the complicated geometry. Additionally, it has unique nice
features, such as it has the local mass matrix because of the discontinuous
basis, it allows easy handling of hanging nodes and adaptivity, and it has
high parallel efficiency. Attracted by the good properties of the DG methods,
mathematicians have developed the DG methods to solve the Maxwell equa-
tions in free space [5, 7, 10, 16, 44], and in dispersive media [24, 37, 44]. For
the Maxwell equations in the metamaterials, there are published works on
the DG methods to solve the Drude models [27, 28, 33, 35, 43], the Maxwell
equations in nonlinear optical media [3], and the wave propagation in media
with dielectrics and metamaterials [8].

In [32], the DG method was carried out to solve the carpet cloak model,
and it gave a good performance in numerical simulations. However, the sta-
bility analysis and the error estimate of the method were left to be done.
This paper is a follow up of [32], and the rest of the paper is organized
as follows. In Sect. 2, the governing equations for the carpet cloak model
are presented. In Sect. 3, we propose the semi-discrete DG method for the
model, and prove its stability. Next, we provide a sub-optimal error estimate
in the L2 norm on unstructured meshes, and an optimal error estimate on
tensor-product rectangular meshes. Then, a fully discrete DG method with
the leap-frog time discretization is presented in sect. 4, followed by the cor-
responding stability analysis. Sect. 5 shows several numerical experiments,
including the accuracy tests for the proposed DG method. Additionally, the
wave propagation simulations in the carpet cloak region are also demon-
strated in this section. Finally, we give the concluding remarks in Sect. 6.
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2. The governing equations

The governing equations for modeling the wave propagation in the carpet
cloak are derived in [31] and given as follows (cf. [31, (2.3)-(2.5)]):

∂tDx =
∂H

∂y
,(1)

∂tDy = −∂H

∂x
,(2)

ε0λ2

(
M−1

A ∂t2E + ω2
pM

−1
A E

)
= ∂t2D +MCD,(3)

μ0μ∂tH = −∇×E,(4)

where the 2D electric displacement is denoted as D := (Dx, Dy)
′, the 2D

electric field as E := (Ex, Ey)
′, and the magnetic field as H. Furthermore,

∂tku denotes the k-th derivative ∂ku/∂tk of a function u. For any k ≥ 1, we
adopt the 2D vector and scalar curl operators:

∇×H = (
∂H

∂y
,−∂H

∂x
)′, ∇×E =

∂Ey

∂x
− ∂Ex

∂y
, ∀ E = (Ex, Ey)

′.

We note that (3) is revised from [31, (2.4)] by left-multiplying both sides
with M−1

A and by denoting the matrix MC as M−1
A MB. Here M−1

A denotes
the inverse of the matrix MA, which is proved to be symmetric positive
definite [31, Lemma 2.1]. As shown in Fig. 1, the governing equations (1)-
(4) hold true in the cloaking region formed by the quadrilateral with vertices
(−d, 0), (0, H1), (d, 0) and (0, H2), where d,H1 and H2 are positive constants
and H2 > H1 > 0. The cloaked region, where the hiding objects can be
placed, is formed by the triangle with vertices (0, H1), (−d, 0) and (d, 0).

In order to make those objects inside the cloaked region invisible, the
permittivity and permeability in the cloaking region need to be specially
designed and are given by [31]:

ε =

[
a b
b c

]
:=

[
H2

H2−H1
− H1H2

(H2−H1)d
sgn(x)

− H1H2

(H2−H1)d
sgn(x) H2−H1

H2
+ H2

H2−H1
(H1

d )2

]
, μ = a,

where sgn(x) denotes the sign function. Furthermore, in (1)-(4), ε0 and μ0

denote the permittivity and permeability in free space, respectively; the
matrices MA and MB are given as [31, page 1138]:

MA =

(
p21λ2 + p22 p2p4 + p1p3λ2

p2p4 + p1p3λ2 p23λ2 + p24

)
, MB =

(
p22 p2p4
p2p4 p24

)
ω2
p,
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Figure 1: Left: The structure of the carpet cloak. Right: The setup of the
carpet cloak simulation.

where the positive constant ωp is the plasma frequency resulting from the
Drude dispersion model [31, page 1138], elements pi, i = 1, 2, 3, 4, are

p1 =

√
λ2 − a

λ2 − λ1
, p2 = −

√
a− λ1

λ2 − λ1
· sgn(x),

p3 =

√
λ2 − c

λ2 − λ1
· sgn(x), p4 =

√
c− λ1

λ2 − λ1
,

and λ1 and λ2 are the eigenvalues of the matrix ε given as:

λ1 =
a+ c−

√
(a− c)2 + 4b2

2
, λ2 =

a+ c+
√

(a− c)2 + 4b2

2
.

To complete the carpet cloak model (1)-(4), we assume that (1)-(4) sat-
isfy the initial conditions

D(x, 0) = D0(x), E(x, 0) = E0(x), H(x, 0) = H0(x),

∂tD(x, 0) = D1(x), ∂tE(x, 0) = E1(x), ∀ x ∈ Ω,(5)

and the perfect conducting boundary condition (PEC):

(6) n×E = 0 on ∂Ω,

where D0,D1,E0,E1 and H0 are some properly given functions, n is the
unit outward normal vector to ∂Ω, and Ω denotes a polygonal domain in
R2.
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Using the stability obtained in [34, Theorem 2.1] and replacing both
∇ × E and ∇ × ∂tE by (4), we can rewrite Theorem 2.1 of [34] as below,
which is totally different from those established in [31, 32].

Theorem 2.1. For the solution (D, H,E) of (1)-(4), let the energy be de-
fined as

ENG(t) :=
[
ε0λ2||M

− 1

2

A ∂t2E||2 + 2ε0λ2ω
2
p||M

− 1

2

A ∂tE||2 + ε0λ2ω
4
p||M

− 1

2

A E||2

+μ0μ
(
ω2
p||∂tH||2 + ||∂t2H||2

)
+ ||∂tD||2 + ||M

1

2

CD||2
]
(t).(7)

Here and below the square root of a matrix MC is denoted as M
1

2

C , and
|| · ||2 := || · ||2L2(Ω). Then we have the following energy identity:

ENG(t)− ENG(0) = 2
∫ t
0

[
ε0λ2(M

−1
A ∂t2E + ω2

pM
−1
A E, ∂tD)

+(MC∂tD, ∂t2E) + ω2
p(MCD, ∂tE)

]
(s)ds.(8)

Furthermore, this leads to the stability:

ENG(t) ≤ ENG(0) · exp(C∗t), ∀ t ∈ [0, T ],(9)

where the constant C∗ > 0 depends on the physical parameters ε0, μ0, d,H1, H2

and ωp.

3. The semi-discrete LDG method

In this section, we introduce the LDG method for the carpet cloak model.
We consider a rectangular physical domain Ω = [a, b] × [c, d] to solve (1)-
(4) for simplicity, and the domain is partitioned by a regular triangular
mesh, Ω = ∪e∈Th

e. Here Th is a triangulation on Ω, and h is the mesh size,
representing the largest diameter of all triangles. Tensor-product rectangular
meshes will also be considered later. The time domain [0, T ] is discretized
intoNt+1 uniform intervals by discrete times 0 = t0 < t1 < · · · < tNt+1 = T ,
where tn = n · τ , and the time step size τ = T

Nt+1 .

V k
h denotes the finite element space of piecewise polynomials, i.e.,

(10) V k
h = {v : v|e ∈ Pk(e), ∀ e ∈ Th} ,

where Pk is the space of polynomials of degree less or equal to k.
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We use uh to denote the corresponding numerical solution of the variable

u, which is in the finite element space V k
h . Note that functions contained in

V k
h can have discontinuities across the element interfaces. In the line integral

over the boundary of a cell, u
(in)
h denotes the value of uh taken from inside

of that cell, and u
(out)
h denotes the value of uh taken from the neighboring

cell sharing that boundary. Furthermore, we use (·) and || · || to denote the

inner product and the L2 norm over the domain Ω respectively.

Then, the semi-discrete LDG method for (1)-(4) is generated as follows:

Find Exh, Eyh, Hh, Dxh, Dyh ∈ C1([0, T ];V k
h ) such that

∫
e
∂tDxhφx +

∫
e
Hh∂yφx −

∫
∂e

Ĥhφ
(in)
x n(in)

y = 0,

(11)

∫
e
∂tDyhφy −

∫
e
Hh∂xφy +

∫
∂e

Ĥhφ
(in)
y n(in)

x = 0,

(12)

ε0λ2

∫
e

(
M−1

A ∂t2Eh + ω2
pM

−1
A Eh

)
· u =

∫
e
(∂t2Dh +MCDh) · u,

(13)

μ0μ

∫
e
∂tHhψ −

∫
e
Eyh∂xψ +

∫
e
Exh∂yψ +

∫
∂e
(Êyhn

(in)
x − Êxhn

(in)
y )ψ(in) = 0,

(14)

for all test functions φx, φy, ψ, u1, u2 ∈ V k
h and all cells e ∈ Th, where u =

(u1, u2)
′. Ĥh, Êyh, Êxh are the cell boundary terms obtained from integration

by parts, and they are the so-called numerical fluxes. On the cell boundary

∂e, n(in) = (n
(in)
x , n

(in)
y ) represents the unit normal vector pointing towards

the outside of the element e.

To define the numerical fluxes in a triangulation, we firstly pick a fixed

direction β not parallel to any triangle boundary edge. On each boundary

edge of an element, there is an outward normal direction, n, orthogonal to

that edge. We call a side as the “right” side if n ·β < 0, and the “left” side if

vice versa. We apply the commonly used alternating fluxes in LDG methods

into our scheme, which are defined as choosing Exh and Eyh on the “right”

side and Hh on the “left” side:

Êxh = ER
xh,(15)

Êyh = ER
yh,(16)
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Ĥh = HL
h .(17)

A more detailed explanation of alternating fluxes for triangulations can
be found in [45]. It is easy to check that in a rectangular mesh, when
β = (1, 1), the definitions of the “left” and “right” sides are consistent
with the exact left (bottom) and right (top) sides on a vertical (horizontal)
boundary. The above definition of alternating fluxes is enough when apply-
ing the periodic boundary condition. However, to satisfy the PEC boundary
condition in (6), we take

Êxh = 0, on y = c, d,(18)

Êyh = 0, on x = a, b,(19)

Ĥh = H
(in)
h , on ∂Ω.(20)

3.1. The stability analysis

In this subsection, we will show that the solutions of our proposed semi-
discrete DG method satisfy the same energy identity as in the continuous
level (8), which leads to the stability of the method.

Theorem 3.1. For the semi-discrete DG method (11)-(14) with alternating
fluxes (15)-(20), we define the energy:

ENGh(t) :=

[
||∂tDh||2 + ||M

1

2

CDh||2 + ε0λ2

(
||M− 1

2

A ∂t2Eh||2

+ 2ω2
p||M

− 1

2

A ∂tEh||2 + ω4
p||M

− 1

2

A Eh||2
)
+ μ0μ

(
ω2
p||∂tHh||2 + ||∂t2Hh||2

)]
(t),

(21)

then, the energy satisfies the following energy identity: For any t ≥ 0:

ENGh(t)−ENGh(0) = 2

∫ t

0

[
ε0λ2

(
M−1

A ∂t2Eh + ω2
pM

−1
A Eh, ∂tDh

)
+ (MC∂tDh, ∂t2Eh) + ω2

p (MCDh, ∂tEh)

]
(s)ds.

(22)

Furthermore, it leads to the stability:

ENGh(t) ≤ exp(C∗t) · ENGh(0), ∀t ∈ [0, T ],(23)
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with the constant C∗ depending only on the physical parameters ε0, μ0, d,H1,
H2 and ωp.

Proof. To make our proof easy to follow, we divide it into several major
parts.

(I) Choosing u = ∂tDh in (13), we obtain

1

2

d

dt

[
||∂tDh||2 + ||M

1

2

CDh||2
]
= ε0λ2

(
M−1

A ∂t2Eh + ω2
pM

−1
A Eh, ∂tDh

)
.

(24)

Differentiating (13) with respect to t and choosing u = ∂t2Eh, we have

ε0λ2

2

d

dt

[
||M− 1

2

A ∂t2Eh||2 + ω2
p||M

− 1

2

A ∂tEh||2
]
= (∂t3Dh +MC∂tDh, ∂t2Eh) .

(25)

Adding (24) and (25) together, we obtain

1

2

d

dt

[
||∂tDh||2 + ||M

1

2

CDh||2 + ε0λ2

(
||M− 1

2

A ∂t2Eh||2 + ω2
p||M

− 1

2

A ∂tEh||2
)]

= ε0λ2

(
M−1

A ∂t2Eh + ω2
pM

−1
A Eh, ∂tDh

)
+ (∂t3Dh +MC∂tDh, ∂t2Eh) .

(26)

(II) To control the term Eh on the right hand side (RHS) of (26), we
choose u = ∂tEh in (13) to obtain

ε0λ2

2

d

dt

[
||M− 1

2

A ∂tEh||2 + ω2
p||M

− 1

2

A Eh||2
]
= (∂t2Dh +MCDh, ∂tEh) .(27)

Multiplying (27) by ω2
p, then adding the result to (26), we have

1

2

d

dt

[
||∂tDh||2 + ||M

1

2

CDh||2 + ε0λ2

(
||M− 1

2

A ∂t2Eh||2 + 2ω2
p||M

− 1

2

A ∂tEh||2

+ ω4
p||M

− 1

2

A Eh||2
)]

= ε0λ2

(
M−1

A ∂t2Eh + ω2
pM

−1
A Eh, ∂tDh

)
+ (∂t3Dh +MC∂tDh, ∂t2Eh) + ω2

p (∂t2Dh +MCDh, ∂tEh) .

(28)

(III) Now we need to control the terms ∂t3Dh and ∂t2Dh on the RHS
of (28).
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Differentiating both (11) and (12) with respect to t, choosing φx = ∂tExh

and φy = ∂tEyh in (11) and (12), respectively, then adding the results to-

gether, we have

∫
e
∂t2Dh · ∂tEh +

∫
e
∂tHh(∂y∂tExh − ∂x∂tEyh)

−
∫
∂e

∂tĤh∂tE
(in)
xh n(in)

y +

∫
∂e

∂tĤh∂tE
(in)
yh n(in)

x = 0.

(29)

Differentiating (14) with respect to t, choosing ψ = ∂tHh, then using

integration by parts, we have

μ0μ

∫
e
∂t2Hh∂tHh +

∫
e
∂tHh(∂x∂tEyh − ∂y∂tExh)−

∫
∂e

∂tE
(in)
yh ∂tH

(in)
h n(in)

x

+

∫
∂e

∂tE
(in)
xh ∂tH

(in)
h n(in)

y +

∫
∂e
(∂tÊyhn

(in)
x − ∂tÊxhn

(in)
y )∂tH

(in)
h = 0.

(30)

Adding (29) and (30) together over all elements, we have

∑
e∈Th

∫
e
∂t2Dh · ∂tEh +

μ0μ

2

d

dt
||∂tHh||2 + Fx − Fy = 0,(31)

where we define

Fx=
∑
e∈Th

∫
∂e

(
−∂tĤh∂tE

(in)
xh n(in)

y + ∂tH
(in)
h ∂tE

(in)
xh n(in)

y − ∂tH
(in)
h ∂tÊxhn

(in)
y

)
,

(32)

Fy=
∑
e∈Th

∫
∂e

(
∂tĤh∂tE

(in)
yh n(in)

x − ∂tH
(in)
h ∂tE

(in)
yh n(in)

x + ∂tH
(in)
h ∂tÊyhn

(in)
x

)
.

(33)

By regrouping terms by sides of the elements and using the definitions
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of the numerical fluxes Ĥh and Êxh, we have:

Fx =
∑
s∈SI

nR
y

∫
s

(
−∂tH

L
h ∂tE

R
xh + ∂tH

L
h ∂tE

L
xh + ∂tH

R
h ∂tE

R
xh

− ∂tH
L
h ∂tE

L
xh − ∂tH

R
h ∂tE

R
xh + ∂tH

L
h ∂tE

R
xh

)
+

∑
s∈STop

nR
y

∫
s

(
−∂tĤh∂tE

(in)
xh + ∂tH

(in)
h ∂tE

(in)
xh − ∂tH

(in)
h ∂tÊxh

)
+

∑
s∈SBottom

nR

∫
s

(
−∂tĤh∂tE

(in)
xh + ∂tH

(in)
h ∂tE

(in)
xh − ∂tH

(in)
h ∂tÊxh

)
= 0,

(34)

where SI denotes the set of all non-boundary sides, STop represents the set

of sides on y = d, and SBottom on y = c.

Similarly, we can prove that Fy = 0.

Then using the results of Fx = Fy = 0 in (31), we obtain

∑
e∈Th

∫
e
∂t2Dh · ∂tEh = −μ0μ

2

d

dt
||∂tHh||2.(35)

Following the same argument, we can prove that

∑
e∈Th

∫
e
∂t3Dh · ∂t2Eh = −μ0μ

2

d

dt
||∂t2Hh||2.(36)

Substituting (35) and (36) into (28), we obtain

1

2

d

dt

[
||∂tDh||2 + ||M

1

2

CDh||2 + ε0λ2

(
||M− 1

2

A ∂t2Eh||2 + 2ω2
p||M

− 1

2

A ∂tEh||2+

ω4
p||M

− 1

2

A Eh||2
)
+ μ0μ

(
ω2
p||∂tHh||2 + ||∂t2Hh||2

)]
= ε0λ2

(
M−1

A ∂t2Eh + ω2
pM

−1
A Eh, ∂tDh

)
+

(MC∂tDh, ∂t2Eh) + ω2
p (MCDh, ∂tEh) .

(37)

Integrating (37) with respect to t from 0 to t, we obtain the energy

identity (22). Then we apply the Cauchy-Schwarz inequality to all terms in
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the RHS of (37), and use the Gronwall inequality to complete the proof.

3.2. The error analysis

In this section, we will show the sub-optimal error estimate of the semi-

discrete DG method on unstructured meshes, and the optimal error esti-

mate of the DG method with a modified alternating flux on tensor-product

rectangular meshes with tensor-product DG spaces.

3.2.1. The error analysis on unstructured meshes. The errors be-

tween the exact solutions (Ex, Ey, Dx, Dy, H) of (1)-(4) and the correspond-

ing numerical solutions (Exh, Eyh, Dxh, Dyh, Hh) of the semi-discrete scheme

(11)-(14) are denoted as

EEx
= Ex − Exh, EEy

= Ey − Eyh, EDx
= Dx −Dxh,

EDy
= Dy −Dyh, EH = H −Hh,

and we define ED = (EDx
, EDy

), and EE = (EEx
, EEy

).

Subtracting (11)-(14) from the weak formulation of the PDEs (1)-(4),

we obtain the following error equations:

∫
e
∂tEDx

φx +

∫
e
EH∂yφx −

∫
∂e

ÊHφ(in)
x n(in)

y = 0,

(38)

∫
e
∂tEDy

φy −
∫
e
EH∂xφy +

∫
∂e

ÊHφ(in)
y n(in)

x = 0,

(39)

ε0λ2

∫
e

(
M−1

A ∂t2EE + ω2
pM

−1
A EE

)
· u =

∫
e

(
∂t2ED +MCED

)
· u,

(40)

μ0μ

∫
e
∂tEHψ −

∫
e
EEy

∂xψ +

∫
e
EEx

∂yψ +

∫
∂e
(ÊEy

n(in)
x − ÊEx

n(in)
y )ψ(in) = 0.

(41)

Then, we have the following theorem:

Theorem 3.2. Suppose that the analytical solutions (Ex, Ey, Dx, Dy, H) of

(1)-(4) are smooth enough, and (Exh, Eyh, Dxh, Dyh, Hh) are the correspond-
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ing numerical solutions of (11)-(14). With the alternating flux (15)-(17) and

the PEC boundary condition (18)-(20), we have the following error esti-

mate:

[
||∂tD − ∂tDh||2 + ||M

1

2

C (D −Dh)||2 + ε0λ2

(
||M− 1

2

A (∂t2E − ∂t2Eh)||2

+ 2ω2
p||M

− 1

2

A (∂tE − ∂tEh)||2 + ω4
p||M

− 1

2

A (E −Eh)||2
)

+ μ0μ

(
ω2
p||∂tH − ∂tHh||2 + ||∂t2H − ∂t2Hh||2

)]
(t)

≤ Ch2k +

[
||∂tD − ∂tDh||2 + ||M

1

2

C (D −Dh)||2+

ε0λ2

(
||M− 1

2

A (∂t2E − ∂t2Eh)||2 + 2ω2
p||M

− 1

2

A (∂tE − ∂tEh)||2+

ω4
p||M

− 1

2

A (E −Eh)||2
)
+ μ0μ

(
ω2
p||∂tH − ∂tHh||2 + ||∂t2H − ∂t2Hh||2

)]
(0).

(42)

Here k ≥ 1 is the order of the basis function V k
h , and C is a positive constant

independent of the mesh size h.

Proof. We first decompose each of the error function (EEx
, EEy

, EDx
, EDy

, EH)

into two parts respectively:

EEx
= Ex − Exh = (ΠEx − Exh)− (ΠEx − Ex) := ξEx

− ηEx
,

EEy
= Ey − Eyh = (ΠEy − Eyh)− (ΠEy − Ey) := ξEy

− ηEy
,

EDx
= Dx −Dxh = (ΠDx −Dxh)− (ΠDx −Dx) := ξDx

− ηDx
,

EDy
= Dy −Dyh = (ΠDy −Dyh)− (ΠDy −Dy) := ξDy

− ηDy
,

EH = H −Hh = (ΠH −Hh)− (ΠH −H) := ξH − ηH ,

where Π presents the standard L2 projection onto V k
h .

Similar as the stability proof, we take u = ∂tξD and u = ∂tξE respec-

tively in (40), and we differentiate (40) with respect to t and let u = ∂t2ξD.
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Then we sum over all elements in the domain. By putting all terms con-

taining η to the RHS, and the rest terms to the left hand side (LHS), we

get:

1

2

d

dt

[
||∂tξD||2 + ||M

1

2

C ξD||2
]
− ε0λ2

(
M−1

A ∂t2ξE + ω2
pM

−1
A ξE , ∂tξD

)
=
(
∂t2ηD, ∂tξD

)
+
(
MCηD, ∂tξD

)
− ε0λ2

(
M−1

A ∂t2ηE +M−1
A ηE , ∂tξD

)
,

(43)

ε0λ2

2

d

dt

[
||M− 1

2

A ∂tξE ||2 + ω2
p||M

− 1

2

A ξE ||2
]
−
(
∂t2ξD +MCξD, ∂tξE

)
= ε0λ2

(
M−1

A ∂t2ηE , ∂tξE
)
+ ε0λ2ω

2
p

(
M−1

A ηE , ∂tξE
)

−
(
∂t2ηD +MCηD, ∂tξE

)
,

(44)

ε0λ2

2

d

dt

[
||M− 1

2

A ∂t2ξE ||2 + ω2
p||M

− 1

2

A ∂tξE ||2
]
−
(
∂t3ξD +MC∂tξD, ∂t2ξE

)
= ε0λ2

(
M−1

A ∂t3ηE , ∂t2ξE
)
+ ε0λ2ω

2
p

(
M−1

A ∂tηE , ∂t2ξE
)

−
(
∂t3ηD +MC∂tηD, ∂t2ξE

)
,

(45)

where ξD = (ξDx
, ξDy

), and ξE = (ξEx
, ξEy

). ηD and ηE are defined simi-

larly.

Next, we differentiate (38), (39), and (41) with respect to t, and choose

φx = ∂tξEx
, φy = ∂tξEy

and ψ = ∂tξH respectively. Then we sum up

these three equations, and sum over all elements in the domain to ob-

tain: (
∂t2ED, ∂tξE

)
+ μ0μ(∂t2EH , ∂tξH) +

(
∂tEH , ∂y∂tξEx

− ∂x∂tξEy

)
− (∂tEEy

, ∂x∂tξH) + (∂tEEx
, ∂y∂tξH) +

∑
e∈Th

(
−
∫
∂e

∂tÊH∂tξ
(in)
Ex

n(in)
y

+

∫
∂e

∂tÊH∂tξ
(in)
Ey

n(in)
x +

∫
∂e
(∂tÊEy

n(in)
x − ∂tÊEx

n(in)
y )∂tξ

(in)
H

)
= 0.

(46)

By applying the error decomposition, we have:
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(
∂t2ξD, ∂tξE

)
+ μ0μ(∂t2ξH , ∂tξH) +

(
∂tξH , ∂y∂tξEx

− ∂x∂tξEy

)(47)

− (∂tξEy
, ∂x∂tξH) + (∂tξEx

, ∂y∂tξH) +
∑
e∈Th

(
−
∫
∂e

∂tξ̂H∂tξ
(in)
Ex

n(in)
y

+

∫
∂e

∂tξ̂H∂tξ
(in)
Ey

n(in)
x +

∫
∂e
(∂tξ̂Ey

n(in)
x − ∂tξ̂Ex

n(in)
y )∂tξ

(in)
H

)
=
(
∂t2ηD, ∂tξE

)
+ μ0μ(∂t2ηH , ∂tξH) +

(
∂tηH , ∂y∂tξEx

− ∂x∂tξEy

)
− (∂tηEy

, ∂x∂tξH) + (∂tηEx
, ∂y∂tξH) +

∑
e∈Th

(
−
∫
∂e

∂tη̂H∂tξ
(in)
Ex

n(in)
y

+

∫
∂e

∂tη̂H∂tξ
(in)
Ey

n(in)
x +

∫
∂e
(∂tη̂Ey

n(in)
x − ∂tη̂Ex

n(in)
y )∂tξ

(in)
H

)
.

Using the same argument as the stability analysis on the LHS, we ob-
tain:

(
∂t2ξD, ∂tξE

)
+

μ0μ

2
∂t‖∂tξH‖2

=
(
∂t2ηD, ∂tξE

)
+ μ0μ(∂t2ηH , ∂tξH) +

(
∂tηH , ∂y∂tξEx

− ∂x∂tξEy

)
− (∂tηEy

, ∂x∂tξH) + (∂tηEx
, ∂y∂tξH) +

∑
e∈Th

(
−
∫
∂e

∂tη̂H∂tξ
(in)
Ex

n(in)
y

+

∫
∂e

∂tη̂H∂tξ
(in)
Ey

n(in)
x +

∫
∂e
(∂tη̂Ey

n(in)
x − ∂tη̂Ex

n(in)
y )∂tξ

(in)
H

)
.

(48)

Similarly, by differentiating (38), (39), and (41) with respect to t2, and
choosing φx = ∂t2ξEx

, φy = ∂t2ξEy
and ψ = ∂t2ξH respectively, we have:

(
∂t3ξD, ∂t2ξE

)
+

μ0μ

2
∂t‖∂t2ξH‖2

=
(
∂t3ηD, ∂t2ξE

)
+ μ0μ(∂t3ηH , ∂t2ξH) +

(
∂t2ηH , ∂y∂t2ξEx

− ∂x∂t2ξEy

)
− (∂t2ηEy

, ∂x∂t2ξH) + (∂t2ηEx
, ∂y∂t2ξH) +

∑
e∈Th

(
−
∫
∂e

∂t2 η̂H∂t2ξ
(in)
Ex

n(in)
y

+

∫
∂e

∂t2 η̂H∂t2ξ
(in)
Ey

n(in)
x +

∫
∂e
(∂t2 η̂Ey

n(in)
x − ∂t2 η̂Ex

n(in)
y )∂t2ξ

(in)
H

)
.

(49)
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We multiply (44) and (48) by ω2
p and sum them with (43), (45) and (49)

to attain the formula for the LHS:

LHS =
1

2

d

dt

[
||∂tξD||2 + ||M

1

2

C ξD||2+

ε0λ2

(
||M− 1

2

A ∂t2ξE ||2 + 2ω2
p||M

− 1

2

A ∂tξE ||2 + ω4
p||M

− 1

2

A ξE ||2
)

+μ0μ
(
ω2
p||∂tξH ||2 + ||∂t2ξH ||2

)]
− ε0λ2

(
M−1

A ∂t2ξE + ω2
pM

−1
A ξE , ∂tξD

)
−
(
MC∂tξD, ∂t2ξE

)
− ω2

p

(
MCξD, ∂tξE

)
.

(50)

Next, we consider the RHS. Using the fact that ξEx
, ξEy

, ξDx
, ξDy

and

ξH are in space Pk(e), the property of the projections (Πu)t = Πut, and the

definition of the L2 projection:

∫
e
(Πu− u)vdx = 0 ∀v ∈ Pk(e),

we conclude that all inner products of η and ξ terms equal to zero. Therefore,

we obtain:

RHS =
∑
e∈Th

(
ω2
p

(
−
∫
∂e

∂tη̂H∂tξ
(in)
Ex

n(in)
y +

∫
∂e

∂tη̂H∂tξ
(in)
Ey

n(in)
x

+

∫
∂e
(∂tη̂Ey

n(in)
x − ∂tη̂Ex

n(in)
y )∂tξ

(in)
H

)
−
∫
∂e

∂t2 η̂H∂t2ξ
(in)
Ex

n(in)
y

+

∫
∂e

∂t2 η̂H∂t2ξ
(in)
Ey

n(in)
x +

∫
∂e
(∂t2 η̂Ey

n(in)
x − ∂t2 η̂Ex

n(in)
y )∂t2ξ

(in)
H

)
.

(51)

Consider the first term on the RHS, by applying the Cauchy-Schwarz

inequality firstly, and using the approximating property of polynomial pre-

serving operators (Theorem 3.4.1 in [9]) on the ηH and the standard inverse

inequality [9] on the ξEx
, we have
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∑
e∈Th

∫
∂e

∂tη̂H∂tξ
(in)
Ex

n(in)
y ≤

∑
e∈T

1

δh

∫
∂e

∣∣∂tη̂H ∣∣2 + δh

∫
∂e

∣∣∂tξ(in)Ex

∣∣2

≤ C
∑
e∈Th

(
1

δ
||∂tηH ||2L∞(e) + δh2||∂tξEx

||2L∞(e)

)

≤ Ch2k||∂tH||2Hk+1(Ω) + C||∂tξEx
||2L2(Ω),

(52)

with any δ > 0. Note that the constant C may have different values in each

term, but is independent of the mesh size h.

Using the same arguments on the remaining terms, we obtain the fol-

lowing inequality:

1

2

d

dt

[
||∂tξD||2 + ||M

1

2

C ξD||2 + ε0λ2

(
||M− 1

2

A ∂t2ξE ||2 + 2ω2
p||M

− 1

2

A ∂tξE ||2

+ ω4
p||M

− 1

2

A ξE ||2
)
+ μ0μ

(
ω2
p||∂tξH ||2 + ||∂t2ξH ||2

)]

≤ Ch2k
(
||∂tE||2Hk+1 + ||∂t2E||2Hk+1 + ||∂tH||2Hk+1 + ||∂t2H||2Hk+1

)

+ C

(
||∂tξE ||2 + ||∂t2ξE ||2 + ||∂tξH ||2 + ||∂t2ξH ||2

)
+ ε0λ2

(
M−1

A ∂t2ξE + ω2
pM

−1
A ξE , ∂tξD

)
+
(
MC∂tξD, ∂t2ξE

)
+ ω2

p

(
MCξD, ∂tξE

)
.

(53)

Finally, applying the Cauchy-Schwarz inequality, and then using the

Gronwall inequality, the error estimates of the L2 projections, and the tri-

angle inequality, we can conclude the proof.

3.2.2. The error analysis on rectangular meshes. In general, using

the flux and boundary condition (15)-(20), the stability and error analysis

on tensor-product rectangular meshes are the same as those on triangu-

lar meshes. However, inspired by [33], if we modify the fluxes at the PEC

boundary by adding suitable jump terms, and by using tensor-product DG

spaces, the optimal error accuracy can be proved mathematically, and can

be observed in the numerical tests.
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We firstly define the rectangular mesh. For simplicity, we consider a

rectangular domain Ω = [ax, bx] × [ay, by], which is discretized by the cells

Iij = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] := Ii × Jj for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny.

The mesh sizes are defined as hxi = xi+ 1

2
−xi− 1

2
and hyj = yj+ 1

2
− yj− 1

2
, with

hx = max1≤i≤Nx
hxi , h

y = max1≤j≤Ny
hyj , and h = max(hx, hy). The finite

element space V k
h is chosen as

V k
h = {v : v|Iij ∈ Qk(Iij)},

where Qk(Iij) is the space of the tensor products of one dimensional polyno-

mials with degree at most k over the cell Iij . For simplicity, let uh(x
+
i+ 1

2

, y)

(or u+h (xi+ 1

2
, y) or (uh)

+
i+ 1

2
,y
) and uh(x

−
i+ 1

2

, y) (or u−h (xi+ 1

2
, y) or (uh)

−
i+ 1

2
,y
)

denote the limit value of uh at xi+ 1

2
from the right cell Ii+1,j , and from

the left cell Ii,j respectively. uh(x, y
+
j+ 1

2

) (or u+h (x, yj+ 1

2
) or (uh)

+
x,j+ 1

2

), and

uh(x, y
−
j+ 1

2

) (or u−h (x, yj+ 1

2
) or (uh)

−
x,j+ 1

2

) are defined similarly. By setting

the fixed direction β = (1, 1), the alternating fluxes become:

Êxh(x, yj+ 1

2
) = E+

xh(x, yj+ 1

2
),(54)

Êyh(xi+ 1

2
, y) = E+

yh(xi+ 1

2
, y),(55)

Ĥh(x, yj+ 1

2
) = H−

h (x, yj+ 1

2
),(56)

Ĥh(xi+ 1

2
, y) = H−

h (xi+ 1

2
, y).(57)

To achieve the optimal convergence, instead of letting the fluxes Ĥh(x, y 1

2
) =

H+(x, y 1

2
) and Ĥh(x 1

2
, y) = H+(x 1

2
, y) as in (20), we apply the PEC bound-

ary condition as stated below:

Êxh(x, y 1

2
) = 0,(58)

Êyh(x 1

2
, y) = 0,(59)

Ĥh(x, y 1

2
) = H+

h (x, y 1

2
) + c0

�
Exh(x, y 1

2
)

�
,(60)

Ĥh(x 1

2
, y) = H+

h (x 1

2
, y)− c0

�
Eyh(x 1

2
, y)

�
.(61)

The constant c0 is independent of the mesh size h, and in the follow-

ing numerical tests, c0 is chosen as 1
2 . The jump cross the cell boundaries
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is denoted as �u� = u+ − u−. Here �Exh(x, y 1

2
)� = E+

xh(x, y 1

2
) − 0, and�Eyh(x 1

2
, y)� = E+

yh(x 1

2
, y)− 0.

Using the fluxes and boundary conditions (54)-(61), and following the
same argument as in Section 3.1, we can verify the stability of the method.
For the error analysis, we have the following theorem.

Theorem 3.3. Suppose that the analytical solutions (Ex, Ey, Dx, Dy, H) of
(1)-(4) are smooth enough, and (Exh, Eyh, Dxh, Dyh, Hh) are the correspond-
ing numerical solutions of (11)-(14) on the rectangular mesh. With the al-
ternating flux (54)-(57) and the PEC boundary condition (58)-(61), we have
the following error estimate:

[
||∂tD − ∂tDh||2 + ||M

1

2

C (D −Dh)||2 + ε0λ2

(
||M− 1

2

A (∂t2E − ∂t2Eh)||2

+ 2ω2
p||M

− 1

2

A (∂tE − ∂tEh)||2 + ω4
p||M

− 1

2

A (E −Eh)||2
)

+ μ0μ
(
ω2
p||∂tH − ∂tHh||2 + ||∂t2H − ∂t2Hh||2

)]
(t)

≤ Ch2k+2 +

[
||∂tD − ∂tDh||2 + ||M

1

2

C (D −Dh)||2+

ε0λ2

(
||M− 1

2

A (∂t2E − ∂t2Eh)||2 + 2ω2
p||M

− 1

2

A (∂tE − ∂tEh)||2+

ω4
p||M

− 1

2

A (E −Eh)||2
)
+ μ0μ

(
ω2
p||∂tH − ∂tHh||2 + ||∂t2H − ∂t2Hh||2

)]
(0).

(62)

Here k ≥ 1 is the order of the basis function V k
h , and C is a positive constant

independent of the mesh size h.

Proof. To prove the theorem, we firstly need to define some new projections
[33]. The 1D projections in the x direction

P±
x : H1(Ii) → Pk(Ii)

are defined as the functions in the k-th degree polynomial space that satisfy
(63)∫

Ii

(P+
x u− u)vdx = 0 ∀v ∈ Pk−1(Ii), and P+

x u(x+
i− 1

2

) = u(x+
i− 1

2

),
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(64)∫
Ii

(P−
x u− u)vdx = 0 ∀v ∈ Pk−1(Ii), and P−

x u(x−
i+ 1

2

) = u(x−
i+ 1

2

).

The 1D projections in the y direction P±
y are defined in the same way.

Besides, the standard L2 projections in the x and y directions are denoted
as

Px : H1(Ii) → Pk(Ii), Py : H1(Jj) → Pk(Jj).

Next, we use the tensor products of the 1D projections to define the 2D
projections in cell Iij . In particular, we define the projection

Π1 = Px ⊗ P+
y : H2(Iij) → Qk(Iij),

which satisfies that: For any u ∈ H2(Iij) and any test function φ ∈ Qk(Iij):

(65)

∫
Iij

Π1u(x, y)
∂φ(x, y)

∂y
dxdy =

∫
Iij

u(x, y)
∂φ(x, y)

∂y
dxdy,

(66)

∫
Ii

Π1u
(
x, y+

j− 1

2

)
φ
(
x, y+

j− 1

2

)
dx =

∫
Ii

u
(
x, y+

j− 1

2

)
φ
(
x, y+

j− 1

2

)
dx.

The projection

Π2 = P+
x ⊗ Py : H2(Iij) → Qk(Iij),

which satisfies that: For any u ∈ H2(Iij) and any φ ∈ Qk(Iij):

(67)

∫
Iij

Π2u(x, y)
∂φ(x, y)

∂x
dxdy =

∫
Iij

u(x, y)
∂φ(x, y)

∂x
dxdy,

(68)

∫
Jj

Π2u
(
x+
i− 1

2

, y
)
φ
(
x+
i− 1

2

, y
)
dy =

∫
Jj

u
(
x+
i− 1

2

, y
)
φ
(
x+
i− 1

2

, y
)
dy.

The projection

Π3 = P−
x ⊗ P−

y : H2(Iij) → Qk(Iij),

which satisfies that: For any u ∈ H2(Iij) and any φ ∈ Qk−1(Iij):
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(69)

∫
Iij

Π3u(x, y)φ(x, y)dxdy =

∫
Iij

u(x, y)φ(x, y)dxdy,

(70)

∫
Ii

Π3u
(
x, y−

j+ 1

2

)
φ
(
x, y−

j+ 1

2

)
dx =

∫
Ii

u
(
x, y−

j+ 1

2

)
φ
(
x, y−

j+ 1

2

)
dx,

(71)

∫
Jj

Π3u
(
x−
i+ 1

2

, y
)
φ
(
x−
i+ 1

2

, y
)
dy =

∫
Jj

u
(
x−
i+ 1

2

, y
)
φ
(
x−
i+ 1

2

, y
)
dy,

(72) Π3u
(
x−
i+ 1

2

, y−
j+ 1

2

)
= u

(
x−
i+ 1

2

, y−
j+ 1

2

)
.

Finally, the usual 2D L2 projection is denoted as

Π4 = Px ⊗ Py : H2(Iij) → Qk(Iij).

The good properties of the projections including the uniqueness and the

optimal error estimate can be found in Lemmas 3.1-3.3 in [33].

The errors between the exact solutions and the numerical solutions can

be decomposed by using the above projections:

EEx
= Ex − Exh = (Π1Ex − Exh)− (Π1Ex − Ex) := ξEx

− ηEx
,

EEy
= Ey − Eyh = (Π2Ey − Eyh)− (Π2Ey − Ey) := ξEy

− ηEy
,

EDx
= Dx −Dxh = (Π4Dx −Dxh)− (Π4Dx −Dx) := ξDx

− ηDx
,

EDy
= Dy −Dyh = (Π4Dy −Dyh)− (Π4Dy −Dy) := ξDy

− ηDy
,

EH = H −Hh = (Π3H −Hh)− (Π3H −H) := ξH − ηH ,

Then, following the exact steps in Sect. 3.2.1, and using definitions of the

projections (63)-(72) and the property (Πu)t = Πut, we obtain the equation
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of the errors:

1

2

d

dt

[
||∂tξD||2 + ||M

1

2

C ξD||2 + ε0λ2

(
||M− 1

2

A ∂t2ξE ||2 + 2ω2
p||M

− 1

2

A ∂tξE ||2

+ ω4
p||M

− 1

2

A ξE ||2
)
+ μ0μ

(
ω2
p||∂tξH ||2 + ||∂t2ξH ||2

)]

≤ GD + ω2
p

⎛
⎝ Ny∑

j=1

TEXj(∂tηH , ∂tξEx
) +

Nx∑
i=1

TEYi(∂tηH , ∂tξEy
)

⎞
⎠

+

Ny∑
j=1

TEXj(∂t2ηH , ∂t2ξEx
) +

Nx∑
i=1

TEYi(∂t2ηH , ∂t2ξEy
)

− ω2
p

⎛
⎝ Nx∑

i=1

c0

∫
Ii

(∂tξ
+
Ex

(x, y 1

2
))2 +

Ny∑
j=1

c0

∫
Ii

(∂tξ
+
Ey

(x 1

2
, y))2

⎞
⎠

−

⎛
⎝ Nx∑

i=1

c0

∫
Ii

(∂t2ξ
+
Ex

(x, y 1

2
))2 +

Ny∑
j=1

c0

∫
Ii

(∂t2ξ
+
Ey

(x 1

2
, y))2

⎞
⎠ .

(73)

The GD, which contains all good terms, is defined as:

GD = −ε0λ2

(
M−1

A ∂t2ηE , ∂tξD
)
+ ε0λ2ω

2
p

(
M−1

A ηE , ∂tξD
)

+ ε0λ2ω
2
p

(
M−1

A ∂t2ηE , ∂tξE
)
+ ε0λ2ω

4
p

(
M−1

A ηE , ∂tξE
)

+ ε0λ2

(
M−1

A ∂t3ηE , ∂t2ξE
)
+ ε0λ2ω

2
p

(
M−1

A ∂tηE , ∂t2ξE
)

+ μ0μω
2
p(∂t2ηH , ∂tξH) + μ0μ(∂t3ηH , ∂t2ξH)

+ ε0λ2

(
M−1

A ∂t2ξE + ω2
pM

−1
A ξE , ∂tξD

)
+
(
MC∂tξD, ∂t2ξE

)
+ ω2

p

(
MCξD, ∂tξE

)
,

(74)

and the terms TEXj(ηH , ξEx
) and TEXi(ηH , ξEy

) are defined as

TEXj =

Nx∑
i=1

(
−
∫
Ii

(
η̂Hξ−Ex

(x, yj+ 1

2
)− η̂Hξ+Ex

(x, yj− 1

2
)
)
+

∫
Iij

ηH∂yξEx

)
,

(75)
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TEYi =

Ny∑
j=1

(∫
Ii

(
η̂Hξ−Ey

(xi+ 1

2
, y)− η̂Hξ+Ey

(xi− 1

2
, y)
)
−
∫
Iij

ηH∂xξEy

)
.

(76)

By using the following inequalities in [33, Lemmas 3.3-3.4]:

Ny∑
j=2

TEXj(ηH , ξEx
) ≤ Ch2k+2 + ‖ξEx

‖2,

Nx∑
i=2

TEYi(ηH , ξEy
) ≤ Ch2k+2 + ‖ξEy

‖2,

TEX1(ηH , ξEx
)−

Nx∑
i=1

c0

∫
Ii

(ξ+Ex
(x, y 1

2
))2 ≤ Ch2k+2 + ‖ξEx

‖2,

TEY1(ηH , ξEy
)−

Ny∑
j=1

c0

∫
Ij

(ξ+Ey
(x 1

2
, y))2 ≤ Ch2k+2 + ‖ξEy

‖2,

(77)

we have

RHS ≤ GD + ω2
p(Ch2k+2 + C||∂tξE ||2) + (Ch2k+2 + C||∂t2ξE ||2).(78)

Applying the Cauchy-Schwarz inequality on the good terms, and using the
optimal error estimate of the projections (see Lemma 3.3 in [43]), and finally
applying the Gronwall inequality and the triangle inequality, we conclude
the proof.

4. The fully-discrete DG method

In this section, we propose the leap-frog DG method to solve the carpet cloak
model on unstructured meshes. Before we define the fully-discrete scheme,
we introduce the following central difference operators in time: For any time
sequence function un,

δτu
n+ 1

2 :=
un+1 − un

τ
, δ2τu

n :=
δτu

n+ 1

2 − δτu
n− 1

2

τ
=

un+1 − 2un + un−1

τ2
.

The averaging operators are defined as:

un =
un+1 + un−1

2
, ŭn =

un+
1

2 + un−
1

2

2
.
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Moreover, we need the following discrete Gronwall inequality to prove
the discrete stability:

Lemma 4.1. [41, Lemma 4.1.2] Assume that the sequence un satisfies

u0 ≤ g0, and u0 ≤ g0 + rτ

n−1∑
s=0

us, ∀n ≥ 1,

where g0, r and τ are some positive constants. Then we have

un ≤ g0 · (1 + rτ)n ≤ g0 · exp(rnτ), ∀n ≥ 1.

Now we consider the following leap-frog LDG scheme: For any n ≥ 0,

find Dn+1
xh , Dn+1

yh , H
n+ 1

2

h , En+1
xh , En+1

yh ∈ V k
h such that

∫
e
δτD

n+ 1

2

xh φx +

∫
e
H

n+ 1

2

h ∂yφx −
∫
∂e

Ĥ
n+ 1

2

h φ(in)
x n(in)

y = 0,

(79)

∫
e
δτD

n+ 1

2

yh φx −
∫
e
H

n+ 1

2

h ∂xφy +

∫
∂e

Ĥ
n+ 1

2

h φ(in)
y n(in)

x = 0,

(80)

ε0λ2

∫
e

(
M−1

A δ2τE
n
h + ω2

pM
−1
A E

n
h

)
· u =

∫
e

(
δ2τD

n
h +MCD

n
h

)
· u,

(81)

μ0μ

∫
e
δτH

n
hψ −

∫
e
En

yh∂xψ +

∫
e
En

xh∂yψ +

∫
∂e

(
Ên

yhn
(in)
x − Ên

xhn
(in)
y

)
ψ = 0,

(82)

for all test functions φx, φy,u, ψ ∈ V k
h , with the following fluxes consistent

with (15)-(20):

Ên
xh = En,R

xh(83)

Ên
yh = En,R

yh(84)

Ĥ
n+ 1

2

h = H
n+ 1

2
,L

h(85)

Ên
xh = 0, on y = c, d(86)

Ên
yh = 0, on x = a, b(87)

Ĥ
n+ 1

2

h = H
n+ 1

2
,(in)

h , on ∂Ω.(88)
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With the above preparation, we can now prove the following energy
identity, which is really the discrete form of the energy identity (22).

Theorem 4.2. For the solution (Dn+1
h , H

n+ 1

2

h ,En+1
h ) of the leap-frog LDG

scheme (79)-(82), we define the discrete energy at time level m:

ENGlf (m) = ||δτD
m+ 1

2

h ||2 + 1

2

(
||M

1

2

CD
m+1
h ||2 + ||M

1

2

CD
m
h ||2
)

+ ε0λ2||M
− 1

2

A δ2τE
m+1
h ||2 +

ε0λ2ω
2
p

2

(
3||M− 1

2

A δτE
m+ 1

2

h ||2 + ||M− 1

2

A δτE
m− 1

2

h ||2
)

+
ε0λ2ω

4
p

2

(
||M− 1

2

A Em+1
h ||2 + ||M− 1

2

A Em
h ||2
)

+ μ0μ
[
ω2
p(δτH

m+1
h , δτH

m
h ) + (δ2τH

m+ 1

2

h , δ2τH
m− 1

2

h )
]
.

(89)

Suppose the time step satisfies the constraint:

τ ≤ min

⎧⎪⎨
⎪⎩

1

√
ε0λ2‖M

− 1

2

A ||+ ‖M− 1
2

A MB‖
2
√
ε0λ2

,

√
ε0λ2

ωp‖M
1

2

CM
1

2

A‖

⎫⎪⎬
⎪⎭ ,(90)

then we have

ENGlf (m) ≤ C · ENGlf (0) · exp(cmτ), ∀m ≥ 1,(91)

where C and c are positive constants independent of mesh size h and time
step τ .

Proof. To make the proof easy to follow, we divide it into several major
parts.

(I) Choosing u = τ
2 (δτD

n+ 1

2

h + δτD
n− 1

2

h ) = τδτD̆
n
h in (81), and using

the identity(
MCD

n
h,

τ

2
(δτD

n+ 1

2

h + δτD
n− 1

2

h )

)

=

(
MC

Dn+1
h +Dn−1

h

2
,
(Dn+1

h −Dn
h) + (Dn

h −Dn−1
h )

2

)

=
1

4
(||M

1

2

CD
n+1
h ||2 − ||M

1

2

CD
n−1
h ||2),

(92)
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we have

1

2
(||δτD

n+ 1

2

h ||2 − ||δτD
n− 1

2

h ||2) + 1

4
(||M

1

2

CD
n+1
h ||2 − ||M

1

2

CD
n−1
h ||2)

= τε0λ2

[
(M−1

A δ2τE
n
h, δτD̆

n
h) + ω2

p(M
−1
A E

n
h, δτD̆

n
h)
]
.

(93)

(II) Choosing u = τ
2 (δτE

n+ 1

2

h + δτE
n− 1

2

h ) = τδτ Ĕ
n
h in (81), and using

the identity

(
M−1

A E
n
h,

τ

2
(δτE

n+ 1

2

h + δτE
n− 1

2

h )
)

=

(
M−1

A

En+1
h +En−1

h

2
,
(En+1

h −En
h) + (En

h −En−1
h )

2

)

=
1

4
(||M− 1

2

A En+1
h ||2 − ||M− 1

2

A En−1
h ||2),

(94)

we obtain

ε0λ2

2
(||M− 1

2

A δτE
n+ 1

2

h ||2 − ||M− 1

2

A δτE
n− 1

2

h ||2)

+
ε0λ2ω

2
p

4
(||M− 1

2

A En+1
h ||2 − ||M− 1

2

A En−1
h ||2)

= τ
(
δ2τD

n
h +MCD

n
h, δτ Ĕ

n
h

)
.

(95)

Using (81) to subtract themselves with n replaced by n−1, then choosing

u = 1
2(δ

2
τE

n
h + δ2τE

n−1
h ) = δ2τ Ĕ

n− 1

2

h , and using the identity

(
M−1

A (E
n
h −E

n−1
h ),

1

2
(δ2τE

n
h + δ2τE

n−1
h )

)

=

(
M−1

A

(En+1
h +En−1

h )− (En
h +En−2

h )

2
,

δτE
n+ 1

2

h − δτE
n− 1

2

h

2τ
+

δτE
n+ 1

2

h − δτE
n− 3

2

h

2τ

)

=
1

4

(
M−1

A (δτE
n+ 1

2

h + δτE
n− 3

2

h ), δτE
n+ 1

2

h − δτE
n− 3

2

h

)
=

1

4
(||M− 1

2

A δτE
n+ 1

2

h ||2 − ||M− 1

2

A δτE
n− 3

2

h ||2),

(96)



122 Xinyue Yu et al.

we obtain

ε0λ2

2
(||M− 1

2

A δ2τE
n
h||2 − ||M− 1

2

A δ2τE
n−1
h ||2)

+
ε0λ2ω

2
p

4
(||M− 1

2

A δτE
n+ 1

2

h ||2 − ||M− 1

2

A δτE
n− 3

2

h ||2)

= τ
(
δ3τD

n− 1

2

h +MCδτD
n− 1

2

h , δ2τ Ĕ
n− 1

2

h

)
.

(97)

(III) Multiplying (95) by ω2
p, and adding the result together with (93)

and (97), we have

1

2
(||δτD

n+ 1

2

h ||2 − ||δτD
n− 1

2

h ||2) + 1

4
(||M

1

2

CD
n+1
h ||2 − ||M

1

2

CD
n−1
h ||2)

+
ε0λ2

2
(||M− 1

2

A δ2τE
n+1
h ||2 − ||M− 1

2

A δ2τE
n
h||2)

+
ε0λ2ω

2
p

4
(||M− 1

2

A δτE
n+ 3

2

h ||2 − ||M− 1

2

A δτE
n− 1

2

h ||2)

+
ε0λ2ω

2
p

2
(||M− 1

2

A δτE
n+ 1

2

h ||2 − ||M− 1

2

A δτE
n− 1

2

h ||2)

+
ε0λ2ω

4
p

4
(||M− 1

2

A En+1
h ||2 − ||M− 1

2

A En−1
h ||2)

= τε0λ2(M
−1
A δ2τE

n
h + ω2

pM
−1
A E

n
h, δτD̆

n
h)

+ τ
(
δ3τD

n+ 1

2

h +MCδτD
n+ 1

2

h , δ2τ Ĕ
n+ 1

2

h

)
+ τω2

p

(
δ2τD

n
h +MCD

n
h, δτ Ĕ

n
h

)
.

(98)

After dividing both sides of (98) by τ , we can see that (98) is really a

discrete form of (28)!

(IV) Similar to the semi-discrete case, now we need to bound the terms

δ3τD
n+ 1

2

h and δ2τD
n
h on the RHS of (98).

Using (79) and (80) to subtract themselves with n replaced by n − 1,

respectively, then letting φx = 1
τ δτ Ĕ

n
xh and φy = 1

τ δτ Ĕ
n
yh and adding the

results together, we have

∫
e
δ2τD

n
h · δτ Ĕ

n
h +

∫
e
δτH

n
h · ∂yδτ Ĕn

xh −
∫
e
δτH

n
h · ∂xδτ Ĕn

yh

−
∫
∂e

δτ Ĥ
n
h · δτ Ĕn(in)

xh n(in)
y +

∫
∂e

δτ Ĥ
n
h · δτ Ĕn(in)

yh n(in)
x = 0.

(99)
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Using (82) with n replaced by n + 1 to subtract itself with n replaced

by n− 1, then choosing ψ = 1
2τ δτH

n
h , and using the identity

En+1
yh − En−1

yh = τ(
En+1

yh − En
yh

τ
+

En
yh − En−1

yh

τ
)

= τ(δτE
n+ 1

2

yh + δτE
n− 1

2

yh )

= 2τδτ Ĕ
n
yh,

(100)

we have

μ0μ

2τ

∫
e
(δτH

n+1
h − δτH

n−1
h )δτH

n
h −

∫
e
δτ Ĕ

n
yh · ∂xδτHn

h +

∫
e
δτ Ĕ

n
xh · ∂yδτHn

h

+

∫
∂e
(δτ

˘̂
En

yhn
(in)
x − δτ

˘̂
En

xhn
(in)
y )δτH

n(in)
h = 0.

(101)

Adding (99) and (101) together, then using integration by parts, and

summing up the result over all elements, we obtain

(δ2τD
n
h, δτ Ĕ

n
h) +

μ0μ

2τ
(δτH

n+1
h − δτH

n−1
h , δτH

n
h )

+
∑
e∈Th

∫
∂e
(−δτ Ĥ

n
h · δτ Ĕn(in)

xh n(in)
y + δτ Ĥ

n
h · δτ Ĕn(in)

yh n(in)
x )

+
∑
e∈Th

∫
∂e
(−δτH

n(in)
h · δτ Ĕn(in)

yh n(in)
x + δτH

n(in)
h · δτ Ĕn(in)

xh n(in)
y )

+
∑
e∈Th

∫
∂e
(δτ

˘̂
En

yhn
(in)
x − δτ

˘̂
En

xhn
(in)
y )δτH

n(in)
h = 0.

(102)

We assign all boundary integral terms of (102) into Gx and Gy classes:

Gx =
∑
e∈Th

∫
∂e
(−δτ Ĥ

n
h · δτ Ĕn

xhn
(in)
y + δτH

n
h · δτ Ĕn

xhn
(in)
y − δτH

n
h · δτ ˘̂En

xhn
(in)
y ),

Gy =
∑
e∈Th

∫
∂e
(δτ Ĥ

n
h · δτ Ĕn

yhn
(in)
x − δτH

n
h · δτ Ĕn

yhn
(in)
x + δτH

n
h · δτ ˘̂En

yhn
(in)
x ).

(103)

By regrouping terms by sides of the elements and using the definitions
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of the numerical fluxes Ĥn
h and Ên

xh, we have:

Gx =
∑
s∈SI

nR
y

∫
s

(
−δτH

n,L
h · δτ Ĕn,R

xh + δτH
n,L
h · δτ Ĕn,L

xh + δτH
n,R
h · δτ Ĕn,R

xh

−δτH
n,L
h · δτ Ĕn,L

xh − δτH
n,R
h · δτ Ĕn,R

xh + δτH
n,L
h · δτ Ĕn,R

xh

)
+∑

s∈STop

nR
y

∫
s

(
−δτH

n,(in)
h δτ Ĕ

n,(in)
xh + δτH

n,(in)
h δτ Ĕ

n,(in)
xh − δτH

n,(in)
h δτ

˘̂
En

xh

)
+

∑
s∈SBottom

nR
y

∫
s

(
−δτH

n,(in)
h δτ Ĕ

n,(in)
xh + δτH

n,(in)
h δτ Ĕ

n,(in)
xh − δτH

n,(in)
h δτ

˘̂
En

xh

)
= 0,

(104)

where SI denotes the set of all non-boundary sides, STop represents the set
of sides on y = d, and SBottom on y = c.

Similarly, we can prove that Gy = 0. Substituting Gx = Gy = 0 into
(102), we have

(δ2τD
n
h, δτ Ĕ

n
h) = −μ0μ

2τ
(δτH

n+1
h − δτH

n−1
h , δτH

n
h ),(105)

which is the discrete form of (35).
(V) Following the same technique as (IV), we can obtain

(δ3τD
n− 1

2

h , δ2τ Ĕ
n− 1

2

h ) = −μ0μ

2τ
(δ2τH

n+ 1

2

h − δ2τH
n− 3

2

h , δ2τH
n− 1

2

h ),(106)

which is the discrete form of (36).
Substituting (105) and (106) into (98), we have

1

2
(||δτD

n+ 1

2

h ||2 − ||δτD
n− 1

2

h ||2) + 1

4
(||M

1

2

CD
n+1
h ||2 − ||M

1

2

CD
n−1
h ||2)

(107)

+
ε0λ2

2
(||M− 1

2

A δ2τE
n
h||2 − ||M− 1

2

A δ2τE
n−1
h ||2)

+
ε0λ2ω

2
p

4
(||M− 1

2

A δτE
n+ 1

2

h ||2 − ||M− 1

2

A δτE
n− 3

2

h ||2)

+
ε0λ2ω

2
p

2
(||M− 1

2

A δτE
n+ 1

2

h ||2 − ||M− 1

2

A δτE
n− 1

2

h ||2)

+
ε0λ2ω

4
p

4
(||M− 1

2

A En+1
h ||2 − ||M− 1

2

A En−1
h ||2)
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+
μ0μ

2

[
ω2
p(δτH

n+1
h − δτH

n−1
h , δτH

n
h ) + (δ2τH

n+ 1

2

h − δ2τH
n− 3

2

h , δ2τH
n− 1

2

h )
]

= τε0λ2(M
−1
A δ2τE

n
h + ω2

pM
−1
A E

n
h, δτD̆

n
h) + τ

(
MCδτD

n− 1

2

h , δ2τ Ĕ
n− 1

2

h

)
+ τω2

p

(
MCD

n
h, δτ Ĕ

n
h

)
,

which is the discrete form of (37).
Multiplying (107) by 2, then summing up the result from n = 1 to

n = m, and using the identity

m∑
n=1

(an+1 − an−1, an) = (am+1, am)− (a1, a0),(108)

we obtain

ENGLF (m)− ENGLF (0) =

m∑
n=1

2

[
τε0λ2(M

−1
A δ2τE

n
h + ω2

pM
−1
A E

n
h, δτD̆

n
h)

+ τ(MCδτD
n− 1

2

h , δ2τ Ĕ
n− 1

2

h ) + τω2
p(MCD

n
h, δτ Ĕ

n
h)

]
.

(109)

Then, we just need to bound the RHS terms of (109) and use Lemma 4.1
to finish the proof. By using the following two inequalities and estimating
the RHS terms one by one:

2ab ≤ a2 + b2,

(
a+ b

2

)2

≤ 1

2
(a+ b)2,

we obtain the following four estimates:

m∑
n=1

2τε0λ2(M
−1
A δ2τE

n
h, δτD̆

n
h)

≤
m∑

n=1

2τε0λ2‖M
− 1

2

A ‖‖M− 1

2

A δ2τE
n
h‖‖

1

2
δτ (D

n+ 1

2

h +D
n− 1

2

h )‖

≤ τ
√

ε0λ2‖M
− 1

2

A ‖
m∑

n=1

(
ε0λ2‖M

− 1

2

A δ2τE
n
h‖2

+
1

2
(‖δτD
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Substituting (110)-(113) into (109), and choosing the time step τ to make
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(114)

which is equivalent to (90). Finally by applying the discrete Gronwall in-
equality given in Lemma 4.1, we finish the proof.

5. Numerical results

In this section, we present two accuracy tests of the leap-frog DG methods
(79)-(82) on the rectangular mesh and unstructured mesh, to verify the
proved convergence results. Additionally, some numerical simulations of the
cloaking phenomenon will be shown.

5.1. The error table on triangular meshes

We use the model in [34, Sect. 5] to test the convergence rate of our model:

∂tDx =
∂H

∂y
,(115)

∂tDy = −∂H

∂x
,(116)



128 Xinyue Yu et al.

ε0λ2

(
M−1

A ∂t2E + ω2
pM

−1
A E

)
= ∂t2D +MCD + f(tn),(117)

μ0μ∂tH = −∇×E,(118)

where the source term f is

f(x, y, t) = ε0λ2

(
M−1

A ∂t2E + ω2
pM

−1
A E

)
− ∂t2D −MCD.(119)

The model has exact solutions

Ex(x, y, t) = cos(ωx) sin(ωy)e−ωf t,(120)

Ey(x, y, t) = − sin(ωx) cos(ωy)e−ωf t,(121)

Dx(x, y, t) =
−2ω

μ0μω2
f

cos(ωx) sin(ωy)e−ωf t,(122)

Dy(x, y, t) =
−2ω

μ0μω2
f

(− sin(ωx) cos(ωy))e−ωf t,(123)

H(x, y, t) =
−2ω

μ0μωf
cos(ωx) cos(ωy)e−ωf t.(124)

We use the unit square as our physical domain, which is partitioned by
the triangular mesh. Fig. 2 shows a sample coarse mesh.

Figure 2: Sample mesh for the unit region.

We couple the leap-frog time discretization with the second and third
order DG methods, and apply the alternating fluxes and the PEC boundary
conditions (83)-(88) to solve the model. The physical parameters in the test
are chosen as:

H1 = 0.05, H2 = 0.2, d = 0.2, ε0 = μ0 = π, μ = 4π, T = 0.1.
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Table 1: L2 errors and orders obtained the DG method for E,D, and H on
the unstructured mesh

k=1
Level of refinement E error order D error order H error order

1 1.15 E-01 5.31 E-01 9.91 E-02
2 4.17 E-02 1.29 2.09 E-01 1.34 3.06 E-02 1.69
3 1.38 E-02 1.77 5.98 E-02 1.80 1.33 E-02 1.19
4 4.67 E-03 1.56 1.88 E-02 1.66 2.49 E-03 2.42
5 2.24 E-03 1.05 8.69 E-03 1.11 6.63 E-04 1.91

k=2
Level of refinement E error order D error order H error order

1 2.66 E-02 1.21 E-01 1.99 E-02
2 4.60 E-03 2.53 2.07 E-02 2.54 3.49 E-03 2.51
3 7.31 E-04 2.65 3.11 E-03 2.73 4.71 E-04 2.88
4 1.27 E-04 2.51 4.90 E-04 2.66 6.68 E-05 2.82
5 2.82 E-05 2.17 1.50 E-04 2.21 9.10 E-06 2.87

The time step is chosen as τ = 0.01h for the second order DG method,
and τ = 0.01h

3

2 for the third order DG method, where h is the mesh size.
The L2 errors and the corresponding convergence rates of ||En+1

h −E(tn+1)||,
||Dn+1

h −D(tn+1)||, and ||Hn+ 1

2

h −H(tn+ 1

2
)|| are shown in Table 1. We ob-

serve the sub-optimal convergence rates of O(hk) in the L2 norm, which is
consistent with Theorem 3.2.

5.2. The error table on rectangular meshes

Next, we partition the unit square domain with the rectangular mesh, and
apply the alternating fluxes with additional jump terms on the PEC bound-
ary conditions (54)-(61) to simulate the model (115)-(118). To achieve the
optimal order of convergence, we set the initial conditions as:

Exh(0) = Π1Ex(0), Eyh(0) = Π2Ey(0), Dxh(0) = Π4Dx(0),

Dyh(0) = Π4Dy(0), Hh(0) = Π3H(0).

Table 2 shows the L2 errors and the convergence rates in this case. As
proved in Theorem 3.3, the optimal order of accuracy is obtained.

5.3. The wave propagation cross the cloaking region

To see the invisibility cloaking phenomenon, we test our leap-frog DG scheme
on Example 2 in [34], where the physical domain is [−0.6, 0.6]m× [0, 0.6]m,
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Table 2: L2 errors and orders obtained from the leap-frog DG method for
E,D, and H on the rectangular mesh

k=1
# cells E error order D error order H error order
10× 10 1.38 E-02 8.98 E-02 1.38 E-02
20× 20 3.40 E-03 1.95 2.26 E-02 1.96 3.40 E-03 1.95
40× 40 8.67 E-04 1.97 5.73 E-03 1.98 8.67 E-04 1.97
80× 80 2.18 E-04 1.99 1.43 E-03 1.99 2.18 E-04 1.99

160× 160 5.47 E-05 2.00 3.60 E-04 1.99 5.47 E-05 2.00

k=2
# cells E error order D error order H error order
10× 10 7.93 E-03 2.18 E-02 6.57 E-03
20× 20 9.85 E-04 3.00 2.75 E-03 2.98 8.41 E-04 2.96
40× 40 1.22 E-04 3.01 3.47 E-04 2.98 1.10 E-04 2.97
80× 80 1.52 E-05 3.00 4.33 E-05 2.99 1.37 E-05 3.01

160× 160 1.90 E-06 3.00 5.42 E-06 2.99 1.71 E-06 3.00

and the physical parameters for the simulation are

H1 = 0.1m, H2 = 0.4m, d = 0.4m, τ = 1e− 13s.

The domain is partitioned by the unstructured triangular mesh with
mesh size h = 0.01m, and it is surrounded by a perfectly matched layer
(PML) of thickness 15h to absorb outgoing waves. In this paper, we use the
classical 2D Berenger PML, whose governing equations are [30]:

ε0∂tE +

(
σy 0
0 σx

)
E = ∇×Hz,(125)

μ0∂tHzx + σmxHzx = −∂Ey

∂x
,(126)

μ0∂tHzy + σmyHzy =
∂Ex

∂y
,(127)

where Hz = Hzx+Hzy represents the magnetic field, and the parameters σi
and σm,i, i = x, y denote the electric and the magnetic conductivities in the
x- and y- directions respectively.

In the domain, an incident Gaussian wave

H(x, y, t) = sin(2πf) exp(−|x− xc|2
L2

)
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Figure 3: The computational domain for Examples 5.3 and 5.4.

Figure 4: Example 5.3 (with metamaterial). The magnetic field H obtained
at 12000, 24000, 40000, and 50000 time steps (oriented counterclockwise).

is imposed along a line segment with endpoints (−d, d/2) and (−d/2, d). We
set the frequency f = 2GHz, L = 0.25

√
2d, and xc = (−3d/4, 3d/4), where

x = (x, y) is an arbitrary point on the segment. The Fig. 3 shows that
the computational domain is wrapped by the green PML region. The red
quadrilateral region represents the cloaking region, where the carpet cloak
model (1-4) is solved. The rest blue region is vacuum, where the standard
Maxwell equation is solved. The numerical magnetic fieldH at different time
steps are shown in Fig. 4, and it can be observed that the wave looks like
the one reflecting from the flat ground, and the the hidden region is invisible
to the observers at the far end.

For the comparison, the simulation of the magnetic field H without
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Figure 5: Example 5.3 (without metamaterial). The magnetic field H ob-
tained at 12000, 24000, 40000, and 50000 time steps (oriented counterclock-
wise).

the cloaking material is presented in Fig. 5, and the cloak phenomenon
disappears in this case.

5.4. The wave propagation with a vertical incident wave source

We repeat Example 5.2, and substitute the incident Gaussian wave to a
vertical source wave H(x, y, t) = 0.1 sin(2πf) with the frequency f = 2GHz
on edge x = −0.6m. The numerical solutions of H at each time step are
shown in Fig. 6. This result shows that the plane wave pattern is perfectly
recovered after passing through the cloaking region, and we conclude that
the cloaking phenomenon is also achieved in this case.

6. Conclusion

In this paper, we develop the leap-frog DG scheme for solving the time-
domain carpet cloak model. We prove the stability and the sub-optimal
order of convergence for the semi-discrete scheme on triangular meshes, and
the optimal order of convergence on rectangular meshes with tensor-product
DG spaces. Then, the conditional stability for the fully-discrete scheme with
the time step constraint τ = O(h) is proved. Numerically, the sub-optimal
convergence rate on unstructured meshes and the optimal convergence rate
on rectangular meshes with tensor-product DG spaces are verified in the
error accuracy tests. Moreover, simulations of wave propagation in the carpet
cloak region are presented.
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Figure 6: Example 5.4. The magnetic field H obtained at 12000, 24000,
40000, and 50000 time steps (oriented counterclockwise).
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