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Local discontinuous Galerkin methods for the
carpet cloak model

XINYUE YU, JicHUN L1*, AND CHI-WANG Suu'

The DG methods have been shown to have good performance in
numerical simulations of the carpet cloak model in [32]. However,
the stability analysis and the error estimate are left to be done.
In this paper, we introduce the leap-frog DG methods to solve
the carpet cloak model. We prove the stability of the semi-discrete
scheme, the sub-optimal error estimate for unstructured meshes,
and the optimal error estimate for tensor-product meshes. Then,
the fully discrete scheme is stated and the stability is proved. Fi-
nally, the numerical accuracy tests on rectangular and triangular
meshes are given respectively, and the results of numerical simula-
tions of the wave propagation in the carpet cloak model using the
DG scheme are presented.
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1. Introduction

Since Leonhardt [26] and Pendry et al. [40] firstly demonstrated the idea of
invisibility cloak design with metamaterials in 2006, much study has been
done in both theoretical and numerical analysis. There are a plenty of ex-
cellent works on the mathematical analysis of the cloaking phenomenon
[1, 23, 17, 18], and on the numerical simulations of the cloaking models
with the finite difference (FD) methods [19, 22, 36], the finite element (FE)
methods [4, 25, 30, 39], and the spectral methods [46, 47]. For more de-
tails, readers can consult the review papers [2, 6, 21|, and the monographs
[15, 20, 29, 38] as references. In 2014, Li et al. proposed the mathematical
analysis for the time-domain carpet cloak model [30]. In [32], a revised finite
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difference method for the carpet cloak model was developed, and the cor-
responding stability analysis was performed with the time step constraint
7 = O(h?), where 7 and h are the time step size and spatial mesh size re-
spectively. In order to relax the time step constraint to 7 = O(h), the usual
requirement for the FD or the FE methods to solve the time-dependent
Maxwell equations, a new energy was introduced in [34]; moreover, the fi-
nite element method coupled with two time discretization methods to solve
the carpet cloak model was developed therein.

The discontinuous Galerkin (DG) method was initially proposed by Reed
and Hill [42] to solve the neutron transport problem. Later, Cockburn and
Shu introduced the Runge-Kutta DG (RKDG) methods for solving the lin-
ear and nonlinear hyperbolic partial differential equations (PDEs) [11, 12],
and the local DG (LDG) methods for solving the time-dependent convection-
diffusion systems [13], which stimulated the rapid development and applica-
tion of the DG methods [14, 45]. The DG method shares the advantages of
the continuous finite element methods, including flexible h-p adaptivity and
easy handling of the complicated geometry. Additionally, it has unique nice
features, such as it has the local mass matrix because of the discontinuous
basis, it allows easy handling of hanging nodes and adaptivity, and it has
high parallel efficiency. Attracted by the good properties of the DG methods,
mathematicians have developed the DG methods to solve the Maxwell equa-
tions in free space [5, 7, 10, 16, 44], and in dispersive media [24, 37, 44]. For
the Maxwell equations in the metamaterials, there are published works on
the DG methods to solve the Drude models [27, 28, 33, 35, 43], the Maxwell
equations in nonlinear optical media [3], and the wave propagation in media
with dielectrics and metamaterials [8].

In [32], the DG method was carried out to solve the carpet cloak model,
and it gave a good performance in numerical simulations. However, the sta-
bility analysis and the error estimate of the method were left to be done.
This paper is a follow up of [32], and the rest of the paper is organized
as follows. In Sect. 2, the governing equations for the carpet cloak model
are presented. In Sect. 3, we propose the semi-discrete DG method for the
model, and prove its stability. Next, we provide a sub-optimal error estimate
in the L? norm on unstructured meshes, and an optimal error estimate on
tensor-product rectangular meshes. Then, a fully discrete DG method with
the leap-frog time discretization is presented in sect. 4, followed by the cor-
responding stability analysis. Sect. 5 shows several numerical experiments,
including the accuracy tests for the proposed DG method. Additionally, the
wave propagation simulations in the carpet cloak region are also demon-
strated in this section. Finally, we give the concluding remarks in Sect. 6.
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2. The governing equations

The governing equations for modeling the wave propagation in the carpet
cloak are derived in [31] and given as follows (cf. [31, (2.3)-(2.5)]):

oH
1 Dy = =,
(1) Oy 9y
oH
2 Dy=——
(3) o2 (M3 0pE + WM 'E) = 02D + M¢D,
(4) popOrH = =V x E,

where the 2D electric displacement is denoted as D := (D, D,)’, the 2D
electric field as F := (E,, E,)’, and the magnetic field as H. Furthermore,
Opu denotes the k-th derivative %u/0tF of a function u. For any k > 1, we
adopt the 2D vector and scalar curl operators:

_ oH OH, 0B, 0F,
VXH—(8—y>—%)> VXE=——

. VE=(E,,E,).

We note that (3) is revised from [31, (2.4)] by left-multiplying both sides
with MZI and by denoting the matrix M¢ as MZIMB. Here Mgl denotes
the inverse of the matrix M, which is proved to be symmetric positive
definite [31, Lemma 2.1]. As shown in Fig. 1, the governing equations (1)-
(4) hold true in the cloaking region formed by the quadrilateral with vertices
(—d,0),(0,Hy),(d,0) and (0, Hz), where d, H; and Hs are positive constants
and Hy > H; > 0. The cloaked region, where the hiding objects can be
placed, is formed by the triangle with vertices (0, Hy), (—d,0) and (d,0).

In order to make those objects inside the cloaked region invisible, the
permittivity and permeability in the cloaking region need to be specially
designed and are given by [31]:

H> H,H,
€= [ ) ] = i H_ﬁlHrHl)dsgn(fz) p=a
b c _(Hzngl)ngn(x) 21}2 -+ H2*2H1 (71)2 7 ’

where sgn(x) denotes the sign function. Furthermore, in (1)-(4), 0 and po
denote the permittivity and permeability in free space, respectively; the
matrices M4 and Mp are given as [31, page 1138]:

2 2 2
My = ( PIA2 + 3 p2p421 +p1p?§>\2 ) M= < D3 10212?4 ) w}%’
popa +p1p3A2 p3A2 +pi p2pa P
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Figure 1: Left: The structure of the carpet cloak. Right: The setup of the
carpet cloak simulation.

where the positive constant w,, is the plasma frequency resulting from the
Drude dispersion model [31, page 1138], elements p;,i = 1,2, 3,4, are

)\Q*CL

SV U A Vi Ve

[ A—c san(z) =X\
b3 = )\2_)\1 g ) P4 = )\2_)\17

and A1 and Ay are the eigenvalues of the matrix € given as:

-sgn(x),

a+c—+/(a—c)?+ 4b? \ a+c++/(a—c)?+ 4b?

)\ — =
1 9 ) 2 2

To complete the carpet cloak model (1)-(4), we assume that (1)-(4) sat-
isfy the initial conditions

D(x,0) = Dy(x), E(x,0)= Ey(x), H(x,0)= Hy(x),
(5) 0D(x,0) = Dy(x), 0E(x,0)=FEi(x), YVxec Q

and the perfect conducting boundary condition (PEC):
(6) nxE=0 ondQ,

where Dg, D1, Eg, E1 and Hy are some properly given functions, n is the
unit outward normal vector to 0f2, and 2 denotes a polygonal domain in
R
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Using the stability obtained in [34, Theorem 2.1] and replacing both
V x E and V x O, E by (4), we can rewrite Theorem 2.1 of [34] as below,
which is totally different from those established in [31, 32].

Theorem 2.1. For the solution (D, H, E) of (1)-(4), let the energy be de-
fined as

ENG(t):= [sOAZHM;atzEH? + 260 00w || M, 2, E||* + cohowd||M, 2 E|2

(7) +uopt (willoH|[? + |0 HI?) + [0, DI + [|MED? | (t).

1
Here and below the square root of a matriz Mc is denoted as MA, and
-2 =" H%Q(Q). Then we have the following energy identity:

ENG(t) — ENG(0) = 2 [ [eoda(M ;' 0 E + w2 M, ' E, 8, D)
(8) +(Mc0,D,8pE) + w2(McD, 8, E)](s)ds.

Furthermore, this leads to the stability:
(9) ENG(t) < ENG(0) - exp(Cyt), Vte[0,T],

where the constant Cy > 0 depends on the physical parameters eq, o, d, Hy, Ha
and wy.

3. The semi-discrete LDG method

In this section, we introduce the LDG method for the carpet cloak model.
We consider a rectangular physical domain Q = [a,b] x [c,d] to solve (1)-
(4) for simplicity, and the domain is partitioned by a regular triangular
mesh, 2 = U7, e. Here T}, is a triangulation on €2, and h is the mesh size,
representing the largest diameter of all triangles. Tensor-product rectangular
meshes will also be considered later. The time domain [0,77] is discretized
into N¢+1 uniform intervals by discrete times 0 =ty <t < --- <tn,41 =T,
where t, = n - 7, and the time step size 7 = ﬁ

V,f denotes the finite element space of piecewise polynomials, i.e.,

(10) VF={v: v, € Ple), VeeT},

where Py is the space of polynomials of degree less or equal to k.
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We use uy, to denote the corresponding numerical solution of the variable
u, which is in the finite element space th . Note that functions contained in
th can have discontinuities across the element interfaces. In the line integral

over the boundary of a cell, ugfn) denotes the value of up taken from inside

of that cell, and uglo“t) denotes the value of uy taken from the neighboring
cell sharing that boundary. Furthermore, we use (-) and || - || to denote the

inner product and the L? norm over the domain €2 respectively.
Then, the semi-discrete LDG method for (1)-(4) is generated as follows:
Find Eyp, Eyn, Hyy Dan, Dy € CL([0, T; V) such that

(11)
/8tDmh¢z + /Hhﬁyqﬁz — ﬁh@(ﬁin)né@'n) =0,
€ e Oe

(12)

/8,5Dyh¢y — /Hhamd)y +/ }A[hqbz(,’in)n;(tin) =0,
e e Oe

(13)

£0Ma / (M3 0pEp+w;M;"Ey) -u = /(atQDh + McDy,) - u,
(14)
o / O,y / Epout + [ Edyb+ / (Eypnli — Byl = 0,

Oe

for all test functions ¢, ¢y, 1, u1,us € th and all cells e € Ty, where u =
(u1,uz)’. H h Eyh, Exh are the cell boundary terms obtained from integration
by parts, and they are the so-called numerical fluxes. On the cell boundary
de, nlin) = (nﬁ”), n?(fn)) represents the unit normal vector pointing towards
the outside of the element e.

To define the numerical fluxes in a triangulation, we firstly pick a fixed
direction 3 not parallel to any triangle boundary edge. On each boundary
edge of an element, there is an outward normal direction, n, orthogonal to
that edge. We call a side as the “right” side if n-3 < 0, and the “left” side if
vice versa. We apply the commonly used alternating fluxes in LDG methods
into our scheme, which are defined as choosing E,j, and E; on the “right”
side and Hj, on the “left” side:

(15) E., = EE
(16) Eyh = ng;”
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(17) H, = HE.

A more detailed explanation of alternating fluxes for triangulations can
be found in [45]. It is easy to check that in a rectangular mesh, when
B = (1,1), the definitions of the “left” and “right” sides are consistent
with the exact left (bottom) and right (top) sides on a vertical (horizontal)
boundary. The above definition of alternating fluxes is enough when apply-
ing the periodic boundary condition. However, to satisfy the PEC boundary
condition in (6), we take

zh = U, O Yy = ¢, aq,
(18) E 0 Y d
(19) Eyh =0, onz=a,b,
(20) H), = H]gm), on 0f).

3.1. The stability analysis

In this subsection, we will show that the solutions of our proposed semi-
discrete DG method satisfy the same energy identity as in the continuous
level (8), which leads to the stability of the method.

Theorem 3.1. For the semi-discrete DG method (11)-(14) with alternating
fluzes (15)-(20), we define the energy:

(21)
ENGh(t) = HachHZ + HMéthQ + €9 A2 <HMA2atthH2

-3 NV
+ 205 | My 2 OB P + || M Eh|\2> + pops (wil|0cHa|* + H(‘)tthHz)} (t),
then, the energy satisfies the following energy identity: For any t > 0:

t
ENG(t)-ENG,(0) =2 / [eOAQ (M3 0p By + wiM, Ey, 0,Dy,)
(22) ‘
=+ (Mcach, 6tth) + w; (Mth, @tEh):| (S)dS.

Furthermore, it leads to the stability:

(23) ENGy(t) < exp(C*t) - ENGL(0),  Vte[0,T],
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with the constant C* depending only on the physical parameters g, po, d, H1,
Hs and w.

Proof. To make our proof easy to follow, we divide it into several major
parts.
(I) Choosing u = 0D}, in (13), we obtain

(24

| =

d 1
= 19Dl + IMEDAIP| = eoda (M0 En + WM By, 0,Ds)

Differentiating (13) with respect to t and choosing u = 02 E},, we have

(25)
60)\2 d _% 9 9 _% )
2 dt [HMA O Ep|[” + wpl[My* OB ] = (0p Dy + Mc0; Dy, 0p Ep,) .

Adding (24) and (25) together, we obtain

(26)
L d 2 % 2 7% 2 2 *% 2
3 {H@Dhll + |[M& Dyl + ez (HMA 0= E|[? + w2|| M, 2 0, By )}

= €gAa (Mglatth + ng;lEh, ach) + (O Dy, + Mc0 Dy, 02 Ey,) .

(IT) To control the term E}, on the right hand side (RHS) of (26), we
choose u = 9, Fy, in (13) to obtain

60)\2 i
2 dt

(27) [||z\4fat15h||2 + w2 |M;5Eh|]2} — 82Dy, + M Dy, ,E) .

Multiplying (27) by wf, , then adding the result to (26), we have

(28)
1d 1 _1 _1
s 10D+ 1VEDUIE + ora (17200l + 28017 0B
+ wﬁHMA?EhFH = A2 (M '0pEp + wM; ' Ey, 0,Dy,)
+ (Op Dy, + Mc0 Dy, 02 Ep,) + wz (0p2Dp, + Mo Dy, 0, E}) .

(ITI) Now we need to control the terms 0y Dy, and Op2Dj, on the RHS
of (28).
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Differentiating both (11) and (12) with respect to t, choosing ¢, = OrEy},
and ¢, = O;Fy, in (11) and (12), respectively, then adding the results to-
gether, we have

/8t2Dh OBy + /8tHh(8y8tExh — 6x8tEyh)

(29)
—/ atHhat S;Ll)né ) / 8tHhatE(m) (in ):0
Oe

Differentiating (14) with respect to ¢, choosing ¥ = 0;H}, then using
integration by parts, we have

(30)
o / Oy Hy, 0, Hy, + / OLH (00, Eyp, — 0,0y Egp) — / B o H | n )

+ / 8tES;;)(9tH,(fn)ném) +/ ((%Eyhng“) _ 3tEmhn§]”))8tH}(f”) —0
Ode e

Adding (29) and (30) together over all elements, we have

(31) 3 [ 02Dy 011 + “;” I OcH| 2 + Fy — F, =0,
e€Th

where we define

(32)

F=3 / (~o S ™ + O H B n™ — oH™ OB i)
e€Th

(33)

Fy— Z / atHhat yllzl)n(zn) atH}(L’m)at ZSh )n(m) 1+ 0, H( )at yhn(zn))
66771,

By regrouping terms by sides of the elements and using the definitions



106 Xinyue Yu et al.

of the numerical fluxes H, n, and Ewh, we have:
(34)

Fy =) nlf / <—atH,§atE§h + 0,HE0,EL + 0,HEO, ER,
SEST s

— 0HFO,EL — 0, HEO,ER + 8tH}f@tEf71> +

S ol / (—atﬁhatEf,?) +0,H™ 9, E™ —atHgi”)atExh) +

SESTop
S oaf / (—atﬁfhatEi?) + 0, H ™o, B — 0,1™ Exh> —0,
SE€ESBottom s

where S; denotes the set of all non-boundary sides, St,, represents the set
of sides on y = d, and Spottom ON Yy = c.

Similarly, we can prove that F, = 0.

Then using the results of F,, = F}, = 0 in (31), we obtain

d
(35) SN [ 02Dy 0B, = —*Lg—”anatﬂhu?
e€Th €

Following the same argument, we can prove that

d
(36) > [ 06Dn-0pBy = ~EE 210 Hil
e€Tr ” ¢

Substituting (35) and (36) into (28), we obtain
(37)
d 2 % 2 _% 2 2 _% 2
— HachH + ||M0Dh|| + €A ||MA 8tth\| +2wp||MA 8,5Eh|\ +

| =

t

MBI + on (0P + |00 4P
= €92 (Mglath + w}%MglEh,ach) +
(Mcach, 6t2Eh) + wg (Mth, 8tEh) .

Integrating (37) with respect to ¢t from 0 to t, we obtain the energy
identity (22). Then we apply the Cauchy-Schwarz inequality to all terms in
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the RHS of (37), and use the Gronwall inequality to complete the proof. [
3.2. The error analysis

In this section, we will show the sub-optimal error estimate of the semi-
discrete DG method on unstructured meshes, and the optimal error esti-
mate of the DG method with a modified alternating flux on tensor-product
rectangular meshes with tensor-product DG spaces.

3.2.1. The error analysis on unstructured meshes. The errors be-
tween the exact solutions (Ey, £y, D, Dy, H) of (1)-(4) and the correspond-
ing numerical solutions (£, Eyn, Dy, Dy, Hy) of the semi-discrete scheme
(11)-(14) are denoted as

EEI =Fy; — E:Ehy gEy = Ey - Eyhu EDI =D, — Da:h)
Ep, =Dy — Dyp, Eg = H — Hy,

and we define £ = (ép,, €p,), and € = (€E,, &E,).
Subtracting (11)-(14) from the weak formulation of the PDEs (1)-(4),
we obtain the following error equations:

(39)
/&Squber/EHay% —/ é‘H¢§Cin)n$‘n) =0,
€ € Oe

(39)

/athy¢y - /5Hax¢y+/ 5H¢§in)n(xm) =0,
€ e Oe

(40)

€02 / (M;latng + wf,Mglé‘E) u = / <8t25D + MCED) - u,

(41)

won [ ouEut ~ [ €00+ [ 0,0+ [ (Ennli™ - Epnf)ut o
e e e Oe

Then, we have the following theorem:

Theorem 3.2. Suppose that the analytical solutions (Ey, Ey, Dy, Dy, H) of
(1)-(4) are smooth enough, and (Eyp, Eyn, Dy, Dyp, Hy) are the correspond-
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ing numerical solutions of (11)-(14). With the alternating fluz (15)-(17) and
the PEC boundary condition (18)-(20), we have the following error esti-
mate:

(42)

[HatD — 0 Dy||* + |[|ME(D — Dy)||* + eoe (HMAz(aﬁE — O Ey)|”
22| M D — 0|2 + M (E — Ehw?)
T pop (wiuatﬂ COH P + |0 H aﬁHhH?)] 0

< Ch* + |1|0.D — 0, Dy||* + || M& (D — Dy,)|[*+

€02 (\Mf(atzE —0pEy)|* + zwf,HMf(atE — 0:Ep)||*+

whl|M 42 (E — Eh)|’2> + pop (w2l |0:H — 0 Hy||* + ||0p2 H — 8t2Hh|2)] (0).

Here k > 1 is the order of the basis function th, and C'is a positive constant
independent of the mesh size h.

Proof. We first decompose each of the error function (£g,, &g, ,€p,,€p,, €m)
into two parts respectively:

Ep, = Ey — By, = (IIE, — Eyp,) — (IIE, — Ey) = &g, — E,,

gEy =Ey — Ey, = (HEy - Eyh) - (HEy - Ey) = ny —NE,,
Ep, = Dy — Dyp = (I1Dy — Dyp) — (IID; — D2) := &p, — 1D, ,
&p, = Dy — Dyn = (IIDy — Dyh) — (IIDy — Dy) = §p, — D,

Ey = H—H, = (IH —Hy,)— (IIH — H) = &y —ny,

where II presents the standard Lo projection onto th .
Similar as the stability proof, we take u = 9;{ and u = 9,{ respec-
tively in (40), and we differentiate (40) with respect to t and let u = 0p2&py.
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Then we sum over all elements in the domain. By putting all terms con-
taining 7 to the RHS, and the rest terms to the left hand side (LHS), we
get:

1d 1 _ _
Sq [H@&DHQ + HM@&DHQ] — oy (M 0pé g +wpM € g, 0ép)
43
) = (9enp,%€p) + (Mcnp, € p)
- 60)\2 (Mglatan + MglnE)até-D) )
€Az d -3 2 2" 2|
5 7t IM 20 glI° + wy | IM 4 2SRl (0pép + Mcép, 0 R)
44 _ _
(44) = o2 (M3 0png, 0k R) + codows (M 'ng. 0 E)
— (0pnp + Mcnp, 0 E)
(45)
O A e g2 + 2 IIM S P12 - (0 Modip, 0
5 7t 1M, 20pEg|I” + wil M 20l gII° | — (0pép + Mcdiép, 0réE)

= go\2 (MglatanE,atng) + 60)\2&)2 (MglﬁtnE, 8t2§E)
— (Opnp + McOmp,oeéE) ,

where £ = (€p,,¢p,), and £ = (€E,,&E,)- np and ng are defined simi-
larly.

Next, we differentiate (38), (39), and (41) with respect to t, and choose
¢r = OE,, ¢y = Ofp, and Y = Oy respectively. Then we sum up
these three equations, and sum over all elements in the domain to ob-

tain:
(0pEp. 0l Eg) + nom(0pEr, 0ién) + (0:lm, 0y0:E, — 0:0£R,)
(1)~ (O€n, 0:0iEn) + (O, 0,0Em) + 3 (— /8 0 Er DR nii™)
eeTh ¢

+ 5 8t‘§Hat§J(Eij)”§cm) ‘F/(9 (3thyn§;in) - @fEmn(yi”))atéZ")) =0.

By applying the error decomposition, we have:
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(47)
(8t2€Da 8t§E) + MOM(@#{H, OtﬁH) —+ (6t§H, 8y8t€Em _ araté.Ey)

_ (athy7axat§H) + (8{;€E1,,ayat§H) + Z (_/a atéHaté-gil)nz(jn)

e€Thn
+/a A 8t§gj)n§j”) + /a (O, ni™) — 3téEmng(/m))at§1(;n)>
= (01D, HER) + o Penu, i) + (Oinm, 0ydilp, — 8,0,Ek,)

_ (8t77Eya azatgH) + (6t77EI, Gy(?tgH) —+ Z <_ ; atﬁHatfgil)n?(f")

e€Th

+/ Orfhiz atégj)ng’m) + / (Ovip, ™ — Ovig, n?(;m))atfgn)>.
Oe e

Using the same argument as the stability analysis on the LHS, we ob-
tain:
(48)

(aﬁfD, atﬁE) + %@H&e&{!?

= (atQ”?Da 3t§E) + pop (O, Om) + (5t77H, 0y, — 3x3thy)

—_ (atnEyv axatfH) + (ﬁme,ﬁyﬁtgH) + Z <_A atﬁHaté-(Ezl)n?(;n)

e€Th

+/ Orfhi atggj)ném) * / (Oriip, n™ — 3tﬁEmn§in))3t£gn)).
Ode e

Similarly, by differentiating (38), (39), and (41) with respect to t2, and
choosing ¢, = 0p2€E,, ¢y = Op2&p, and ¢ = 0p2{y respectively, we have:
(49)

(96¢p- OeE) + 55 0r0ngull?
= (8enp. 0elR) + nop(Osnm, 0ptn) + (Opnm, 8,0p8r, — 0:0pLE,)
_ (atany, @,Gtsz) Jr (atanI, 6y8t2§H) + Z </d atzﬁHatzggj)ngln)

e€Th

+ 02 ﬁHatQ fglj)nggm) + / (8152 ﬁEy nSn) - atQﬁEz Tlg(;m))atz gn)> .
Oe ’ Je
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We multiply (44) and (48) by w? and sum them with (43), (45) and (49)
to attain the formula for the LHS:

(50)
1d 2 3 2
LHS = 2 10 plI© + [I1MEEpII~+
€02 (HM,P@#&EW+2W§||Mfat€EH2+w§!|Mf§E||2)
+ pop (Wil |1 + 10e€u|?) | — code (M4 0pé g +woM g, 06 D)

— (Mcdp, 0plE) — ,% (Mcép,0g) -

Next, we consider the RHS. Using the fact that {g,, §g,, {D,, {p, and
&m are in space Pg(e), the property of the projections (ITu); = Iuy, and the
definition of the Lo projection:

/(Hu —u)vdr =0 Yov € Px(e),

e

we conclude that all inner products of 7 and £ terms equal to zero. Therefore,

we obtain:
(51)
RHS =Y <wg (- /8 B dER nlm + /6 Qi OsE nl™
e€Th ¢ c

+ /8 (O, n™ —@%mﬁ“)aﬁﬁ”)) - /8 O Oy €3y ™)

+/a OOy ™ + /a (O, ™) — 8t277Emng(/m))at2§gn)>.

Consider the first term on the RHS, by applying the Cauchy-Schwarz
inequality firstly, and using the approximating property of polynomial pre-
serving operators (Theorem 3.4.1 in [9]) on the g and the standard inverse
inequality [9] on the {f, , we have
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(52)
R in in 1 R in
S [ ainoggnim <3 o | (ol +on [ Joel
eceTh de eeT Oe Oe
1
<C Z (g”at??HH%M(e) + 5h2||5t€Ew||%oc(e)>
6677»

< Oh2k||8tHH%{k’+l(Q) + CHathwH?}(Q)’

with any § > 0. Note that the constant C' may have different values in each
term, but is independent of the mesh size h.

Using the same arguments on the remaining terms, we obtain the fol-
lowing inequality:

(53)
1d

3 10 plI* + [1MEEDIIP + 60)‘2<HMA28152€E’2 + 2w ||M, 2 0 g

+ AN EpI?) + non (10l + ||atzgm|2)]
< OO0y + 100 B Bynos + 10 By -+ 1100 Hl e )

; O(HatsEH? 0l + 9 + Hatzgm?)

+eodo (My'0plp + i Mg, 0 p) + (Modikp, 0péR)
+w) (Mcép. 0 E) -

Finally, applying the Cauchy-Schwarz inequality, and then using the
Gronwall inequality, the error estimates of the Lo projections, and the tri-
angle inequality, we can conclude the proof. O

3.2.2. The error analysis on rectangular meshes. In general, using
the flux and boundary condition (15)-(20), the stability and error analysis
on tensor-product rectangular meshes are the same as those on triangu-
lar meshes. However, inspired by [33], if we modify the fluxes at the PEC
boundary by adding suitable jump terms, and by using tensor-product DG
spaces, the optimal error accuracy can be proved mathematically, and can
be observed in the numerical tests.
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We firstly define the rectangular mesh. For simplicity, we consider a
rectangular domain Q = [ay, bs] % [ay, by], which is discretized by the cells
L; = [xi_%,xH%] X [yj_%,yj+%] =L xJjfor1<i< Nyand 1 <j <N,
The mesh sizes are defined as hf = z;,1 —z; 1 and h? = Y41 —yj_1, with

2 2 2 2
h* = mMaXxj<;<nN, hf, hY = maxlSjSNy hél, and h = max(hx, hy) The finite
element space th is chosen as

Vi = {v o, € Q%(I)},

where Qk(IZj) is the space of the tensor products of one dimensional polyno-
mials with degree at most k over the cell [;;. For simplicity, let uh(x;;l,y)
2

(or u;(xwr%,y) or (uh);r%’y) and uh(x;L%,y) (or u,:(xH%,y) or (uh);r%’y)

denote the limit value of u, at x; +1 from the right cell I;1; ;, and from
the left cell I; ; respectively. uh(x,y;%) (or uZ(:z,ijr%) or (uh);ﬂ%), and
uh(x,yjjr%) (or u}:(ac,yﬂ%) or (uh);ﬂ%) are defined similarly. By setting
the fixed direction B = (1,1), the alternating fluxes become:

54

(54) (@, Y54 1) = By (2,954 1),
(55) Eyh(l‘ur;ay) = E;rh(xi—i-%ay)a
(56) Ah(xvy]-i-%) = H, (2,y;,1),
(57) ﬁh(%r;ay) = Hy (zi11,y).

To achieve the optimal convergence, instead of letting the fluxes H n(x, y%) =

H*(z, y1) and ﬁh(w%,y) = Hﬂx;,y) as in (20), we apply the PEC bound-
ary condition as stated below:

(58) Ez‘h(x¢y%) =0,
(59) Eyp(z1,y) =0,
(60) I:Ih(xay%) :H;J{(%y%)ﬂLCo [[Emh(may%)ﬂv
(61) Hy(1,y) = Hf (z1,y) = co [[Eyh(m;,y)ﬂ.

The constant cq is independent of the mesh size h, and in the follow-
ing numerical tests, cg is chosen as % The jump cross the cell boundaries
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is denoted as [u] = u™ — u~. Here [Ey(z,y1)] = EJ; (z,y1) — 0, and

[Eyn(zr,9)] = By (x1,y) — 0.

Using the fluxes and boundary conditions (54)-(61), and following the
same argument as in Section 3.1, we can verify the stability of the method.
For the error analysis, we have the following theorem.

Theorem 3.3. Suppose that the analytical solutions (Ey, Ey, Dy, Dy, H) of
(1)-(4) are smooth enough, and (Eyp, Eyn, Dyn, Dyp, Hy) are the correspond-
ing numerical solutions of (11)-(14) on the rectangular mesh. With the al-
ternating fluz (54)-(57) and the PEC boundary condition (58)-(61), we have
the following error estimate:

(62)

[llatD — D[] + [|ME&(D — Dy)[|> + coXs (HME(&ZE — 0pEp)|?

1
2

22| M OB — 0|2 + M (B — Eh>||2)

+ pop (wpl|OH — OHy|* + 1100 H — 2 Hal ) | (2)

< Ch**2 4+ |||8,D — 8, Dy| | + ||M&(D — Dy)| >+

€0A2 (\MA2 (0pE — 0pEp)||* + 2w§HMf (OLE — O.Ey)||*+
wyl|M 42 (E — Eh)|’2> + pop (w2 |0:H — 0 Hy||* + ||0p2 H — 3t2Hh\2)] (0).

Here k > 1 is the order of the basis function th, and C'is a positive constant
independent of the mesh size h.

Proof. To prove the theorem, we firstly need to define some new projections
[33]. The 1D projections in the x direction

PEHY(L) — Pr(l)
are defined as the functions in the k-th degree polynomial space that satisfy
(63)

(Pfu—u)vder =0 Yo e Py_1(L), and P;u(a:j_l) =u(x’ ),
Ii 2 2
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(64)
/I.(qu —uw)vder =0 Yov € Pr_1(L;), and P;u(:c;r%) = u(a;;_%).

The 1D projections in the y direction Pyi are defined in the same way.
Besides, the standard Lo projections in the z and y directions are denoted
as

P, : HY(I}) — P(L}), P, : H'(J;) = Pr(J)).

Next, we use the tensor products of the 1D projections to define the 2D
projections in cell I;;. In particular, we define the projection

I} = P, ® B+ H*(I;;) = Qu(I3j),

which satisfies that: For any u € H?(I;;) and any test function ¢ € Q(I;;):

(65) /I7 Mu(z,y) aqb(aa;, y) dxdy = /I u(z, y)%zy)dxdy,

ij

(66) /I ITu (:E,y;i%) o (:c,y]t%) dr = /I U (:U,y]t%> o (m’y]tQ d.

The projection
I = P @ Py : H*(I;;) — Qi(1ij),
which satisfies that: For any u € H%(I;;) and any ¢ € Qx(I;;):

(67) /I.ng(x,y)%zy)dxdy:/l u(m,y)%dwdy,

ij ij

) [ (e yw)o (s yn)ar= [ (e pw)o(rn)

J J

The projection
Iy =P, ® P, : H*(I;;) — Qu(1y),

which satisfies that: For any v € H%(I;;) and any ¢ € Qx—1(1;;):
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©) [ Muteélededy= [ ulz)ot.g)dods

I; I;

(70) /, Mg (x’yj'_+%> ¢ (x’ya'_+%> dr = /1 “ <x’ yj;%) ¢ <$’yj_+§) dz,
[ (o) ()i [ oo )

(72) Myu (o507, ) =u (059503
Finally, the usual 2D Ly projection is denoted as
Iy = P, ® Py« H*(I;j) — Qi(Iij).
The good properties of the projections including the uniqueness and the

optimal error estimate can be found in Lemmas 3.1-3.3 in [33].

The errors between the exact solutions and the numerical solutions can
be decomposed by using the above projections:

Ep, = By — Epp = (ILWEy — Epp) — (IWEy — Ey) = &g, —nE,,
e, =E,— By, = (HQEy - Eyh) — (HgEy — Ey) = &g, —NE,
&p, = Dy — Dyp = (yDy — Dyp) — (Wa Dy — Dy) == &p, — b,
€p, = Dy — Dyp, = (IL4Dy — Dyh) — (Il4Dy — Dy) = §D, — "D,

w = H-H, = (II3H — Hy) — (IIsH — H) = &g —nm,

Then, following the exact steps in Sect. 3.2.1, and using definitions of the
projections (63)-(72) and the property (Ilu); = Ilu;, we obtain the equation
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of the errors:

(73)
1d
2dt

10 plI* +[[Meepl* + 60>\2<\!MA23t2§E\I2 + 2wyl | M, O gl

+ wﬁl!MfﬁEHQ) + popt (wpl |0 |” + ||3t2€H||2)]

N, N,

<GD+uw} Z TEX;(Omm, 0éE,) + Z TEY;(0mu, 0k, )
j=1 i=1
N.

y Nz
+ TEXj(atan,ﬁtngm) + ETEYi(Gtan,ﬁtngy)
=1 i=1

N, N,
B O30 LA RS Y KL
1= K J]=

i

i

N, N,
o ;CU /[i(at2fgm(13ay§))2 +;CO /Iv(ﬁtzfgy(x%,y))Q

The GD, which contains all good terms, is defined as:

GD = —go)y (M 0png, 0£p) + codow (M 'ng. 0 D)
+eohawy, (M4 0enp, O p) + codawy, (M4 np, O )
+eode (M 0png, 0ty + ng\gwf, (MglamE, OréE)
+ popwr (Opnm, 0:ér) + pop(Opnm, Opén)
+eode (M} ' 0pég +wpMy'€g. 0i€p)

+ (Mcdp, 0plR) +wi (Mcép. 0 E) ,

and the terms TEX;(ng,{g,) and TEX;(n#,{E,) are defined as

(75)
N,

TEX; = Z<—/ (ﬁH&EI (2, Y1) — g, (fb’,yj_g)) + / UHﬁnym)

i=1 I I
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(76)
TEY; = Z(/ (77H§E (zir1.y) — &g, (fi_;,y)> - /I UH(%ny>.
By using the following inequalities in [33, Lemmas 3.3-3.4]:
N’H
> TEX;(nu, ép,) < Ch*F2 4 ||¢g, |2,
j=2
N,
> TEYi(nu,ép,) < CR***? +||ég, |1?
(77) = N
TEX1(nu,€6,) — Y o /1 (&4, (@,92))* < Ch**¥2 4 |igg, |7,
i=1 i
Ny
TEYl(UH,ny) — CO/[ (fgy(l’%?y))Q < Ch2k+2 + ||£EyH27
=1 7L
we have

(78) RHS < GD + w(Ch* 2 4+ C||0&g1?) + (Ch* 12 + C||0p g |7).

Applying the Cauchy-Schwarz inequality on the good terms, and using the
optimal error estimate of the projections (see Lemma 3.3 in [43]), and finally
applying the Gronwall inequality and the triangle inequality, we conclude
the proof. O

4. The fully-discrete DG method

In this section, we propose the leap-frog DG method to solve the carpet cloak
model on unstructured meshes. Before we define the fully-discrete scheme,
we introduce the following central difference operators in time: For any time
sequence function u",

=

1
untl — Srute — g

+1 2" n—1
2 —2u" +u
S;utr = 52" = = .

T T T2

The averaging operators are defined as:

n+1 n—1
U T HFu on _

2 ’ 2
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Moreover, we need the following discrete Gronwall inequality to prove
the discrete stability:

Lemma 4.1. [/1, Lemma 4.1.2] Assume that the sequence u, satisfies

n—1
ug < go, and wug < go+TTZus, Vn > 1,
s=0

where gg, r and T are some positive constants. Then we have
un < go- (14 r7m)" < go-exp(rnrt), ¥n > 1.

Now we consider the following leap-frog LDG scheme: For any n > 0,
find DI, DY BT ESEL BN € VF such that

(79)
/5TD;L;'5¢$+/H:+E y(bﬂﬁ/a ﬁ;+§¢;(gzn)n?8m) =0,
(80)

ntg n+; At L (in), (in
/67Dyh2¢’”_/Hh ’ $¢y+/a Hy, 2 pmnlm =0,
(81)

ks [ (MG'2B}+ 0 B} -u = [ (32D} +McD}) .

(82)
/LoM/(S-,—H}?Q/J —/ ;lham’l/) + /E;}haygb +/3 (E;Lhn;m) _ E';lhn?(jn)) P =0,

for all test functions ¢, ¢y, u,? € th, with the following fluxes consistent
with (15)-(20):

(83) o = B

(84) o, = Bl

(85) arts = gt

(86) E}, =0, ony=c,d
(87) E;h =0, onx=a,b
(88) ﬁ;fé = H,?+%’(in), on 0.
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With the above preparation, we can now prove the following energy
identity, which is really the discrete form of the energy identity (22).

Theorem 4.2. For the solution (DZ“, HZJFE,EZH) of the leap-frog LDG

scheme (79)-(82), we define the discrete energy at time level m:
(89)

met 1 3 pm 3 Hym
ENGy(m) = 6-D P+ 5 (IMEDP P + ME DR

2
80/\2wp

_1 _1 41 _1 _1
T ool [M S2ETH (3HMA26TE? N2 4 s B 2||2)

4
80)\2wp

-3 192 ~3 2
(et B+ 1nr )
+1 _1
+ pop [wg(éTH;”“,éTH,T) +(O2HE 52l 2)} .
Suppose the time step satisfies the constraint:

1 Veora
R S T
Veoda|| M %] + Wl w, | Ma M|

9

(90) 7 < min

then we have
(91) ENG;f(m) < C-ENG;#(0) - exp(emt), Ym > 1,
where C' and ¢ are positive constants independent of mesh size h and time

step T.

Proof. To make the proof easy to follow, we divide it into several major
parts.

(I) Choosing u = %(5TDZ+5 + 5TDZ_5) = T(STDZ in (81), and using
the identity

(MDD} 36077 4.0, 7))

D'+ Dyt (D - Dy + (D) - Dz‘1>>
2 ’ 2

o) = (MC

1,1 Lo
= ;(IMEDE? = [|ME D),
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we have
1 n+3 n—1 1 1 1 _
=(ll6: D), *[|* = [|6-D;, *[]*) + Z(IIMCDZ“H2 —||MEDP)

(93) B
= Teoe | (M 62E}, 6, Dy) + w2(M; ' E},, 6. D)) .

(II) Choosing u = %((LEZJFE + 5TE275) = 76, E, in (81), and using

the identity
_15=sn T n+1 n—1
(M3'B;, S0, + 0, B, )
<M1 Bt (5 B + (B - Ez—1>>
A
2

(94) ’ 2
_ 1(|1M;5E’,;+1|\2 —|IM P EYR),
we obtain
Eo)\2 2 35 32
(1M, 25E H —||M,26-E, 2|%)
(95) & S g — )

—r (53Dh + M Dy, 6By )

Using (81) to subtract themselves with n replaced by n—1, then choosing
= L(82E} + 2E} ) = (5ZEZ_5, and using the identity

—n-1, 1 n n—
<M (E) — E), )5(53 W+ O E), 1)>

(B By - (B} + By
A

9

2

n+1 n—3 n+1 n—32

(96) 0B, "~ 0B, *  0.E," ~4.F,
27 2T

ot NS S
- <M (6:B, " + 0,y *).6,B), " ~0,E, )

»bl»—ubh—‘

(1M 6.8 2| — (M, 26 B |1),
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we obtain

60)\2 : -3 _
——=(||M 2 02ER|? — [|M 202 )

80/\2&1 _1 n—3
(97) + L(|\M 0B - ||M 20 B
:T(aiDh C+ Moo D, 82 7).

(ITT) Multiplying (95) by w , and adding the result together with (93)
and (97), we have

(98)
! + 22y 4 Lo : o
S (16D 3| 116: D55 |B) + S (IMEDH P — | MEDy )

80)\2 3 _%
O (|| SB[ (|0 262 E )

60)\2w _1 n—l
DI 6 1P (| 6B
50)\2w 1 n—=L
(I 26 By 2 — (M6, By
50)\20.1

DI B2 1M B )

= reoda (M ' 2E} + w2M'E}, 6. D))
+ 7 (82D, + Mco, Dy 702y ) + 7w (92D + MoD, 6, B, )

After dividing both sides of (98) by 7, we can see that (98) is really a
discrete form of (28)!

(IV) Similar to the semi-discrete case, now we need to bound the terms
6§DZ+% and 62D} on the RHS of (98).

Using (79) and (80) to subtract themselves with n replaced by n — 1,
respectively, then letting ¢, = %(LEZ,Z and ¢, = %571?2,1 and adding the
results together, we have

/ 82D} - 6. E) + / 5-HP - 0,0, ET, — / S, H - 0,0-ET,
(99) e e
O Hy - 5, ) [ 6 - 8, BN nl) = 0.

y
de de
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Using (82) with n replaced by n + 1 to subtract itself with n replaced
by n — 1, then choosing ¥ = %&H};, and using the identity

n+1 n n n—1
Eyh - Eyh + Eyh - Eyh

ETL+1 _ Enfl =T
yh yh ( T T

(100) = r(éTE;j% i 5TEZ}:%)
= QTdTE;‘h,
we have
(101)
% ((5TH;LZ+1 _ 5TH;Z—1)5TH,7 — /571771% - 00, HJ' + /571}779% - 8,0, H}!
e e e

+ / (6, B — 5, Bmnm)s, H70M) = 0,
Oe

Adding (99) and (101) together, then using integration by parts, and
summing up the result over all elements, we obtain

(62D}, 6, By) + D56, Ht — 0,y 6, )

)
e€Ty 4
102 ) o ) . o )
TS [ o s B 4 B B )
86777 86
s / (6, Emynlim — 5, Bnnlm)s, 10 = o,
667—11 86

We assign all boundary integral terms of (102) into G, and G, classes:

(103)

Go=>_ / (=0 Hp - 5. Enli™ + 6, Hp - 5, En™ — 5, H} - 5Téghngi”>),
66771 86

Gy=> / (O-Hp - 5-Enl™ — 6. Hy - 6. Eyn{™ + 6. HJ' - 5TE’;}hn§Em>).
867']1 86

By regrouping terms by sides of the elements and using the definitions
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of the numerical fluxes H;' and E7;, we have:

(104)

SES

—O HIE 6 B 5 HR S ER s i E"’R) +

Yon / o H o B 4 6 b s B — o s B ) +

SESTOP

Y on / ot B 5 s B — oy " B, )

5€SBottom

=0,

where St denotes the set of all non-boundary sides, St,, represents the set
of sides on y = d, and Spottom 0N Yy = C.

Similarly, we can prove that G, = 0. Substituting G, = G, = 0 into
(102), we have

(105) (62D", 5, E)) = “20“(5 H = 5 HY Y 5 HY),

which is the discrete form of (35).
(V) Following the same technique as (IV), we can obtain

(06)  (BD) 6B, ) = Bt - g2 02 ),

which is the discrete form of (36).
Substituting (105) and (106) into (98), we have

7)

(10
1 n—y 1 3 % n—
5 (llo- D} | - |5, D) I + S (IMEDEH? = [[ME D)

+ —(HMA252 IR RO =2 2/l

25 gt 35 g5
p(”MA 5B, PP~ M6 By 2P

P(IM 26, By P~ (M 5B )

ID(HMFEZHII2 —|IM > ERHP)
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fiop - n+3 n=3 s2g" 3
+ 8- [wg(aTH;;H — S HPT 5 HP) + (02H, T — 2H, 7 62H) )}

= oM 62 + MG T8, D) + - (Mos, D028, )
+ 7wl (MDD}, 0, By,)
which is the discrete form of (37).

Multiplying (107) by 2, then summing up the result from n = 1 to
n = m, and using the identity

m

(108) Z(anJrl — Qp—1, an) = (aerla am) - (ala (10),
n=1

we obtain

(109)

ENGrp(m) — ENGLp(0) =

NE

2 [T€0)\2(MA1572_ Z + ngXIEZ, 5TDZ)

1

) + Tw2(Mc Dy, 5TEZ)} .

3
I

v n—

+7(Mcé, D, *,6%E,

N =

Then, we just need to bound the RHS terms of (109) and use Lemma 4.1
to finish the proof. By using the following two inequalities and estimating
the RHS terms one by one:

b\> 1
2ab < a® + b, <a+ > §§(a+b)2,
we obtain the following four estimates:

m
Z2T50)‘2(M£1672-En’57'j)2)
n=1
S _% _% 2 pn 1 "+% n—%
<D 2reoha| M3 |10, 7 2 |l 50- (D, + Dy )|
(110) n=1

1 m 71
swsoAzHMAzuZ(soxzuMAzaz 2
n=1

1 n+% n—%
+ 516D} + 10D H )
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m
z 27‘50)\20‘)5(]\421@2, 5TDZ)

n=1

m
_1 _11 B
<) 2rephowp || M, 2 || M, 2 §(EZ+1 +Ep )|
n=1

1 n+% nfé
[I56-(Dy, * + Dy, 2l

2
(111) < 7y/eoha|| M HZQ EOAMH (M 2En+1+M 2E” Hil
Lo o+t o prt
38Dy 4 D)
1 m 60)\2004 1 1
< Vel Y (R M B P + )
n=1

1 n—1

#5010 D} P + 10,0 P))
n _1
> 2r(Mgé. D), TSR
n=1
m +1 3 1

n+= n—= _

o R R A A T R )
m

Z 7||M, MBH

(112) —  Veok

-2\|—5T(D 5+DZ )| - Veora|| M, -52 n En)

THM MB|| ( 9 n—2 o
< —F— (l6, D) " H + [|6-D,, *|I%)
s :

€02

+ 22 (g z||2+||MA262Ez—1||2>),

and

m
Z 27‘(4)]22(M0EZ, 5TEZ)

n=1
“ 1] 1]
=> 27w <M02§(DZ+1 + DY, MEAM M, F50r
n=1
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(BB

Twy|| MEAM || & 1] B
< p C7A 2”A42_(1)n+1+_1)n 1)H
Ve 2 IMeR PR D

_11 el n_l
Veorawp|[ My * 50 (B, * + By )

TprM MA
50A2

(113)

H 2 2
Z IIM sDR P+ IMEDE )

€0A2 wp

_1 n_1l
(M 26, Bl |2 4 M 25, “’H2)>

Substituting (1 10) (113) into (109) and choosmg the time Step T to make

the coefficients of HMZD”HH |0~ D H | M, E”+1H | M, 26 E H on
the LHS smaller than those on the RHS

IN

MAM:| 1 MM
Twp|[ MG M|l - T\/e—)\HM +T” A" Mg <1,
(114) 2\/€0A2 2 2\/€0A2

L Tyl MAM |
Ve[ M, 2| <1, —E =A<,
H A " \/gax;

which is equivalent to (90). Finally by applying the discrete Gronwall in-
equality given in Lemma 4.1, we finish the proof. O

5. Numerical results
In this section, we present two accuracy tests of the leap-frog DG methods
(79)-(82) on the rectangular mesh and unstructured mesh, to verify the
proved convergence results. Additionally, some numerical simulations of the
cloaking phenomenon will be shown.

5.1. The error table on triangular meshes

We use the model in [34, Sect. 5] to test the convergence rate of our model:

OH
11 Dy =—,
(115)  ab.=5
H
(116) oD, = 2

Oz
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(117)
(118)
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eode (M 0o E +wiMy ' E) = 02D + McD + f(tn),
,LL[),LL@tH =-VXxE,

where the source term f is

(119)

f(z,y,t) =ecoho (M '02E +w!M,'E) — 92D — McD.

The model has exact solutions

(120)
(121)

(122)
(123)

(124)

E.(z,y,t) = cos(wz) sin(wy)e !,

Ey(z,y,t) = — sin(wz) cos(wy)e ",
—2
Dy(z,y,t) = w2 cos(wz) sin(wy)e 7,
popw?
—2w ) Cont
Dy(z,y,t) = 5 (— sin(wx) cos(wy))e ",
popw?
H(z,y,t) = —— cos(wz) cos(wy)e ™t

Jopw

We use the unit square as our physical domain, which is partitioned by
the triangular mesh. Fig. 2 shows a sample coarse mesh.

Figure 2: Sample mesh for the unit region.

We couple the leap-frog time discretization with the second and third
order DG methods, and apply the alternating fluxes and the PEC boundary
conditions (83)-(88) to solve the model. The physical parameters in the test

are chosen as:

H, =005, Hy=02, d=02, e¢¢g=pu=m, p=4nr, T =0.1.
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Table 1: Lo errors and orders obtained the DG method for E,D, and H on
the unstructured mesh

k=1
Level of refinement FE error order D error order H error order
1 1.15 E-01 5.31 E-01 9.91 E-02
2 417 E-02 1.29 2.09 E-01 134 3.06 E-02 1.69
3 1.38 E-02 1.77 5.98 E-02 1.80 1.33 E-02 1.19
4 4.67 E-03 1.56 1.88 E-02 1.66 2.49 E-03 2.42
5 2.24 E-03 1.05 8.69 E-03 1.11 6.63 E-04 191
k=2
Level of refinement FE error order D error order H error order
1 2.66 E-02 1.21 E-01 1.99 E-02
2 4.60 E-03 2.53 2.07 E-02 254  3.49 E-03 2.51
3 7.31 E-04 2.65 3.11 E-03 2.73 4.71 E-04 2.88
4 1.27 E-04 2.51 4.90 E-04 2.66 6.68 E-05  2.82
5 2.82 E-05 2.17 1.50 E-04 2.21 9.10 E-06  2.87

The time step is chosen as 7 = 0.01h for the second order DG method,
and 7 = 0.01Ah2 for the third order DG method, where h is the mesh size.
The Ly errors and the corresponding convergence rates of || E} ! — E(t,41)||,
||D}* — D(t11)]], and HHZJFE — H(tn+%)]| are shown in Table 1. We ob-

serve the sub-optimal convergence rates of O(h*) in the L? norm, which is
consistent with Theorem 3.2.

5.2. The error table on rectangular meshes

Next, we partition the unit square domain with the rectangular mesh, and
apply the alternating fluxes with additional jump terms on the PEC bound-
ary conditions (54)-(61) to simulate the model (115)-(118). To achieve the
optimal order of convergence, we set the initial conditions as:

E.,(0) =11, E,(0), Eyh(O) =11,E,(0), Dx(0) =114D,(0),
Dy (0) = 4D, (0), Hy(0) = II3H(0).

Table 2 shows the L? errors and the convergence rates in this case. As
proved in Theorem 3.3, the optimal order of accuracy is obtained.

5.3. The wave propagation cross the cloaking region

To see the invisibility cloaking phenomenon, we test our leap-frog DG scheme
on Example 2 in [34], where the physical domain is [-0.6,0.6]m x [0, 0.6]m,
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Table 2: Ly errors and orders obtained from the leap-frog DG method for
E.D, and H on the rectangular mesh

k=1
# cells FE error order D error order H error order
10 x 10 1.38 E-02 8.98 E-02 1.38 E-02

20x20 3.40E-03 195 226E-02 196 3.40 E-03 1.95
40 x40  8.67 E-04 197 573 E-03 198 8.67E-04 197
80x8 218 E-04 199 143 E-03 199 218E-04 1.99
160 x 160 5.47 E-05 2.00  3.60 E-04 1.99 5.47 E-05 2.00

k=2
7 cells E error order D error order H error order
10 x 10  7.93 E-03 2.18 E-02 6.57 E-03

20x20 9.85E-04 3.00 275 E-03 298 841 E-04 2.96
40 x40  1.22 E-04 3.01 347 E-04 298 1.10 E-04 297
80 x 80 1.2 E-05 3.00 433E-05 299 137E-05 3.01
160 x 160 1.90 E-06 3.00 542 E-06 2.99 1.71 E-06 3.00

and the physical parameters for the simulation are
Hy=0.1m, Hy=04m, d=0.4m, 7=1le— 13s.

The domain is partitioned by the unstructured triangular mesh with
mesh size h = 0.0lm, and it is surrounded by a perfectly matched layer
(PML) of thickness 15h to absorb outgoing waves. In this paper, we use the
classical 2D Berenger PML, whose governing equations are [30]:

(125) 0O, E + < oy 0 ) E =V x H,,
0 oy
OFE
(126) ,antHzac +omaH e = _a—xya
OFE
(127) P00 H oy + oy Hoy = ayx’

where H, = H., + H, represents the magnetic field, and the parameters o;
and o, 4, © = 2,y denote the electric and the magnetic conductivities in the
x- and y- directions respectively.

In the domain, an incident Gaussian wave

|z — .|

H(z,y,t) =sin(2r f) exp(— I )
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Figure 4: Example 5.3 (with metamaterial). The magnetic field H obtained
at 12000, 24000, 40000, and 50000 time steps (oriented counterclockwise).

is imposed along a line segment with endpoints (—d, d/2) and (—d/2,d). We
set the frequency f = 2GHz, L = 0.25v/2d, and x. = (—3d/4,3d/4), where
x = (xz,y) is an arbitrary point on the segment. The Fig. 3 shows that
the computational domain is wrapped by the green PML region. The red
quadrilateral region represents the cloaking region, where the carpet cloak
model (1-4) is solved. The rest blue region is vacuum, where the standard
Maxwell equation is solved. The numerical magnetic field H at different time
steps are shown in Fig. 4, and it can be observed that the wave looks like
the one reflecting from the flat ground, and the the hidden region is invisible
to the observers at the far end.

For the comparison, the simulation of the magnetic field H without
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Figure 5: Example 5.3 (without metamaterial). The magnetic field H ob-
tained at 12000, 24000, 40000, and 50000 time steps (oriented counterclock-
wise).

the cloaking material is presented in Fig. 5, and the cloak phenomenon
disappears in this case.

5.4. The wave propagation with a vertical incident wave source

We repeat Example 5.2, and substitute the incident Gaussian wave to a
vertical source wave H(x,y,t) = 0.1sin(27f) with the frequency f = 2GHz
on edge x = —0.6m. The numerical solutions of H at each time step are
shown in Fig. 6. This result shows that the plane wave pattern is perfectly
recovered after passing through the cloaking region, and we conclude that
the cloaking phenomenon is also achieved in this case.

6. Conclusion

In this paper, we develop the leap-frog DG scheme for solving the time-
domain carpet cloak model. We prove the stability and the sub-optimal
order of convergence for the semi-discrete scheme on triangular meshes, and
the optimal order of convergence on rectangular meshes with tensor-product
DG spaces. Then, the conditional stability for the fully-discrete scheme with
the time step constraint 7 = O(h) is proved. Numerically, the sub-optimal
convergence rate on unstructured meshes and the optimal convergence rate
on rectangular meshes with tensor-product DG spaces are verified in the
error accuracy tests. Moreover, simulations of wave propagation in the carpet
cloak region are presented.
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Figure 6: Example 5.4. The magnetic field H obtained at 12000, 24000,
40000, and 50000 time steps (oriented counterclockwise).
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