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A B S T R A C T   

Accurate characterization of the mechanical properties of the human brain at both microscopic and macroscopic 
length scales is a critical requirement for modeling of traumatic brain injury and brain folding. To date, most 
experimental studies that employ classical tension/compression/shear tests report the mechanical properties of 
the brain averaged over both the gray and white matter within the macroscopic regions of interest. As a result, 
there is a missing correlation between the independent mechanical properties of the microscopic constituent 
elements and the composite bulk macroscopic mechanical properties of the tissue. This microstructural 
computational study aims to inversely predict the hyperelastic mechanical properties of the axonal fibers and 
their surrounding extracellular matrix (ECM) from the bulk tissue’s mechanical properties. We develop a 
representative volume element (RVE) model of the bulk tissue consisting of axonal fibers and ECM with the 
embedded element technique. A multiobjective optimization technique is implemented to calibrate the model 
and establish the independent mechanical properties of axonal fibers and ECM based on seven previously re
ported experimental mechanical tests for bulk white matter tissue from the corpus callosum. The result of the 
study shows that the discrepancy between the reported values for the elastic behavior of white matter in liter
ature stems from the anisotropy of the tissue at the microscale. The shear modulus of the axonal fiber is seven 
times larger than the ECM, with axonal fibers that also show greater nonlinearity, contrary to the common 
assumption that both components exhibit identical nonlinear characteristics. 

S T A T E M E N T  O F  S I G N I F I C A N C E   

The reported mechanical properties of white matter microstructure used in traumatic brain injury or brain 
mechanics studies vary widely, in some cases by up to two orders of magnitude. Currently, the material pa
rameters of the white matter microstructure are identified by a single loading mode or ultimately two modes of 
the bulk tissue. The presented material models only define the response of the bulk and homogenized white 
matter at a macroscopic scale and cannot explicitly capture the connection between the material properties of 
microstructure and bulk structure. To fill this knowledge gap, our study characterizes the hyperelastic material 
properties of axonal fibers and ECM using microscale computational modeling and multiobjective optimization. 
The hyperelastic material properties for axonal fibers and ECM presented in this study are more accurate than 
previously proposed because they have been optimized using seven or six loading modes of the bulk tissue, which 
were previously limited to only two of the seven possible loading modes. As such, the predicted values with high 
accuracy could be used in various computational modeling studies. The systematic characterization of the ma
terial properties of the human brain tissue at both macro- and microscales will lead to more accurate compu
tational predictions, which will enable a better understanding of injury criteria, and has a positive impact on the 
improved development of smart protection systems, and more accurate prediction of brain development and 
disease progression.   
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1. Introduction 

The human brain is divided into two distinct layers: the thin super
ficial gray matter and the larger core white matter. Gray matter consists 
primarily of neuronal cell bodies, while white matter is comprised of 
axonal fibers covered with myelin sheaths [1]. Mechanical testing of 
brain tissue, in gray or white matter, is a challenging task due to its high 
mechanical compliance and complex composition. As a result, most 
experimental studies report controversial and diverse mechanical 
properties for the human brain at both global macroscopic and smaller 
localized length scales [2–7]. Human brain tissue shows a highly 
nonlinear and viscoelastic mechanical response [91] with a noticeable 
compression-tension asymmetry [2, 8, 9]. Therefore, material parame
ters identified for a single loading mode cannot be used to accurately 
predict the realistic mechanical response under multiaxial loading. The 
study of the mechanical behavior of white matter is more difficult than 
studies of gray matter because the tissue exhibits structural and me
chanical anisotropy [10]. This is attributable to the presence of stiff 
myelinated axonal fibers embedded within the soft ground substance 
(extracellular matrix) [11–13]. These fibers are clearly visible in a 
sample electron micrograph of murine corpus callosum (CC) in Fig. 1. 
Axons are cross-linked by microtubule associated proteins [14]. The 
diameter and length of these microtubule bundles can reach several 
orders of magnitude [15, 16]. Myelin is a lipid-rich substance whose dry 
mass is composed of 70-85% lipids and 15-30% protein [17]. Its purpose 
is to insulate electrical signal propagation and improve electrical func
tion [18]. Brain stiffness is related to its fundamental microstructure, in 
particular the local myelin content [19, 20]. Prior studies reveal that the 
density and diameters of axonal fibers vary with anatomical site in the 
CC and corona radiata [21–25]. These impact the localized mechanical 
behavior of the tissue [26]. 

Reported values for the relative stiffness ratio of axonal fibers to 
ground substance can vary greatly, with stiffness ratios of 1.8, 2, 3, 7, 10, 
and 11 previously disclosed for different applied strain ranges [11, 12, 
28]. At small strains, this discrepancy is mainly attributed to the pro
cessing and preparation of samples, testing tools and methods, variances 
in regional/directional of brain tissues, and implemented computational 
models to predict the mechanical properties [7]. With the timely need to 
obtain more accurate mechanical properties of the brain for the 
improved modeling of brain trauma, brain folding, and tumor growth, 
models need to be compared with experimental data. As an available 
technique, magnetic resonance elastography (MRE) typically measures 
the average bulk mechanical properties of the whole brain and is not a 
sufficiently powerful tool to capture the directional dependency of the 
tissue. Axonal fibers are locally distributed and oriented in specific re
gions of the white matter; therefore, the induced stress, strain, and de
formations fields are considerably anisotropic. This places MRE at a 
neurological diagnostic disadvantage because brain disorders are mostly 
localized or have disruptions in specific regions. Furthermore, there are 
occasional contradictions between reported results of the bulk me
chanical stiffness of the brain, and regional variations in stiffness re
ported by MRE [29–35]. 

A majority of prior white matter constitutive models assume isotropy 
or transverse-isotropy [12, 13, 36–38]. Isotropic hyperelastic material 
models, such as neo-Hookean, Ogden, Mooney-Rivlin, Hyperfoam, 
Polynomial, and Arruda-Boyce [2, 4, 5, 39], have also been proposed as 
well as anisotropic models [11, 40–43]. However, these models define 
only the mechanical response of the assumed bulk and homogenized 
white matter at a macroscopic scale and cannot explicitly capture the 
connection between the microstructural composition and the bulk 
anisotropic mechanical properties of the tissue. It has been shown that 
quantifying localized stress/strain or stiffness maps in the white matter 
are of great importance to many applications that include brain trau
matic injury (TBI), diffusive axonal injuries (DAI), and neurodegenera
tive brain disorders [44–54]. Therefore, there has been a timely need to 
develop a more accurate mechanical model of the brain that can predict 
how the tissue structure governs the microstructural mechanics of the 
tissue. To date, this effort has been impeded by the lack of independent 
mechanical data of individual axonal fibers and ECM (i.e., glia and 
vasculature), primarily due to the small scale of the constituent elements 
and limitations of experimental tools and techniques that can evaluate 
these components [55]. In response to this need, contemporary micro
mechanical models have been developed that couple the heterogeneous 
microstructure of white matter with the macroscale bulk material 
behavior [56–64]. 

In micromechanical models, accurate characterization of axonal 
fiber and ECM mechanical properties is an essential component of 
correlating micro- and macroscale material responses. To date, most 
micromechanical modeling studies [56, 59, 60] have assumed that the 
axonal fibers are three times stiffer than the ECM, according to the 
provided data by Meaney [65]. However, more recently, a study that 
employed analytical and computational embedded element methods 
indicated that the axonal fibers are almost ten times stiffer than the 
ground substance under large deformations [62]. Results of this latter 
study shows a better agreement with experimental results [12]. 
Although these micromechanical modeling studies give valuable infor
mation regarding the micro- and macromechanics of brain white matter, 
results still vary widely; the stiffness ratios of axonal fiber to ECM vary 
between 1 and 11, greater than an order of magnitude in difference [11, 
12, 28]. In all past micromechanical studies, an identical degree of 
nonlinearity has been assumed for the axon and ECM. This assumption is 
questionable because axonal fibers and ECM have substantial differ
ences in their respective composition [18, 19, 66, 67]. Furthermore, the 
mechanical properties of the constituent materials have been extracted 
from only one or two loading modes of the bulk tissue. As the result, the 
accuracy and findings of the computational models of TBI or brain 
folding, which include axons or axonal fiber bundles, are likely to be 
limited [45, 68–70]. Therefore, there is a need to characterize the pre
cise material behavior of axonal fibers and ECM in brain white matter on 
a comprehensive scale. To fill this knowledge gap, we construct an RVE 
model with an embedded element technique to uniquely determine the 
hyperelastic mechanical properties of the axonal fibers and the ECM. In 
doing so, we develop a multiobjective optimization process to calibrate 
the RVE and determine the independent mechanical properties of axonal 
fibers and the ECM based on the results of mechanical tests of white 
matter under seven loading modes. 

2. Materials and methods 

Micromechanical model 

A micromechanical model is established that enables the mechanical 
behavior of the individual axonal fiber and ECM constituents to be 
inversely predicted from bulk mechanical testing of white matter. This is 
achieved through construction of a cubic three-dimensional RVE of CC, 
as shown in Fig. 2. In composite materials, RVE is the smallest volume in 
which its response is similar to the whole system [71–74]. The CC of 
white matter is selected as the region of interest because it has a tight 

Fig. 1. Electron microscopy of corpus callosum. An axonal fiber includes an 
axon and a myelin sheath. Figure adopted and used by permission 
from Ref. [27]. 
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bundle of highly aligned axonal fibers. The unmodified homogeneous 
cubic model represents the ECM alone. Axonal fibers are then embedded 
into this RVE with a random distribution, as shown in Fig. 2(c). Due to 
the alignment of axonal fibers in the CC, embedded fibers are repre
sented by straight cylinders with an axon radius, Ra, and myelin radius, 
Rf [56–60]. 

To generate an accurate RVE model, empirical distributions of 
axonal fiber diameters and volume fractions in the CC are required, 
which are extracted from previous reports [25]. In total, six sets of 
diameter and volume fraction distributions are used, with n = 2 inde
pendent measurements each from n = 3 locations in human CC: Genu, 
Body, and Splenium. Table 1 shows the average, standard deviation 

(SD), median, and maximum and minimum axonal fiber diameters 
(inner diameter of the myelinated axons) from the samples [25]. Fig. 3 
shows the log-normal distribution of the axons’ diameters based on an 
average of the six sets of data in Table 1. 

Table 1 reports the outer diameter of axonal fibers. However, this 
length does not account for the surrounding myelin sheath. Several 
studies indicate that myelin has a significant effect on the overall com
posite mechanical properties of the white matter [19, 20]. To account 
for this increased thickness, we establish a g ratio in three different lo
cations of the CC (genu, truncus, splenium), which denotes the ratio of 
the inner to the outer axon fiber diameter. The g ratios for genu, main 
body, and splenium are 0.55, 0.6, and 0.7, respectively [22]. These are 
employed to obtain the full axonal fiber diameters. 

The Fiber volume fraction (FVF) is defined as the proportion of the 
whole tissue volume that is filled with axonal fibers: 

FVF =

∑N
1 πri

2L
L3 =

∑N
1 πri

2

L2 (1)  

where ri is the i-th fiber radius (axon plus myelin), and L is the edge 
length for the cubic model. Because axonal fibers are aligned in only one 
direction, the FVF is reduced to the ratio of the total surface area 
occupied by the fibers to the surface area of the cube face. To obtain the 
correct FVF in the RVE, Fractional Anisotropy (FA) of the CC in the 
experimental work [2] is converted to FVF using the expression [22] 

FVF = 0.883FA2 − 0.082FA + 0.074 (2) 

For instance, Budday et al. [2] reported FA of 0.65 for CC. This re
sults in an FVF close to 0.4, which indicates 40% of the CC is occupied by 
axonal fibers. Axonal fibers are sequentially embedded at random lo
cations within the RVE as parallel cylinders orthogonal to the RVE face, 
which maintain a uniform cross-sectional area that extends to the 
opposite face. For simplification, fibers that cross RVE perimeter 
boundaries are removed and distributed again until the FVF reaches 
40%. This simplification eliminates the need to apply a geometric pe
riodic constraint on the edges of the RVE. The diameters of the 
embedded axonal fibers conform to the log-normal distribution pre
sented in Fig. 3. To avoid overlap between fibers, a 0.05 μm threshold is 
assigned as the minimum acceptable distance between the outer di
ameters of two adjacent fibers. Both axonal fibers and ECM are meshed 
using a 10-node quadratic tetrahedron elements (C3D10H) in Abaqus 
finite element package [75]. C3D10H are hybrid elements and mostly 
intended for simulating incompressible materials. Optimum size of the 
RVE and mesh convergence are then studied. To investigate the reli
ability of the RVE, size and mesh independency studies were completed 
by varying the RVE edge length and mesh size. For this testing, all 
models were subjected to a 20% strain relative to the RVE edge length. 

Fig. 2. (a) Corpus callosum of the human brain and its three major regions; Genu, Body, and Splenium. b) Three-dimensional cubic macromodel including soft matrix 
and aligned embedded axonal fibers. c) Three-dimensional RVE model with the randomly embedded axonal fibers and ECM. The circular cross-section of an axonal 
fiber includes the axon diameter and the myelin thickness. d) An axonal fiber consists of axon and myelin sheath. g ratio is defined as the ratio of the inner diameter of 
the axon to the outer diameter of the fiber: g = Ra/Rf . 

Table 1 
Mean value, standard deviation (SD), median, maximum and minimum value of 
axonal diameters (inner diameter of myelinated axons) in μm for different lo
cations of CC. Permission to reprint this data has been granted from [25].   

Mean/SD Median Max Min 
Human Brain 1     
Genu 0.67±0.42 0.53 2.56 0.17 
Body 0.67±0.44 0.53 3.16 0.19 
Splenium 0.74±0.47 0.59 2.8 0.24 
Human Brain 2     
Genu 0.73±0.45 0.58 2.43 0.19 
Body 0.64±0.42 0.51 3.03 0.19 
Splenium 0.7±0.56 0.51 5.13 0.18  

0

Fig. 3. The distribution of the axon fiber diameters from Table 1.  
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2.1.1. Periodic boundary condition 
Periodic boundary conditions (PBC) are applied to the boundaries of 

the RVE that include all faces, edges and corners [76]. This ensures that 
parallel faces of the RVE exhibit the same deformation/orientations 
compatibility and enables stress continuity. The details of the period 
boundary conditions are presented in the Appendix. 

2.1.2. Material model 
It has been shown that the brain tissue under quasi-static loading 

conditions behaves as an incompressible hyperelastic material [5, 39, 
77]. From the literature, the Ogden material model is reported as one of 
the best mechanical models of the white and gray matters [2, 39]. 
Therefore, the following Ogden material formulation is used for axonal 
fibers and ECM: 

U =
∑N

i=1

2μi

α2
i

(
λαi

1 + λαi
2 + λαi

3 − 3
)

(3)  

Where U is the strain energy per unit of reference volume, μ is the shear 
modulus, α is a material constant that represents nonlinearity of the 
material, and λi indicate the principal stretches. Because the response of 
axonal fibers and ECM is modeled by an incompressible material, the 
volumetric term of the potential energy is omitted, which simplifies the 
material model into two independent constants: μ and α. For both axonal 

fibers and matrix, an Ogden material model is used. Moreover, 
hyperelastic material models of neo-Hookean and Moony-Rivlin will 
also be examined for comparison. The following equations represent the 
strain energy function of the neo-Hookean and Mooney-Rivlin material 
models, respectively. 

For neo-Hookean: 

U = C10(I1 − 3) (4)  

where C10 and D1 are material parameters; I1 is the first deviatoric strain 
invariant. 

For Mooney-Rivlin: 

U = C10(I1 − 3) + C01(I2 − 3) (5)  

Where C10, C01, and D1 are material parameters; I1 and I2 are the first 
and second deviatoric strain invariant, respectively. 

2.1.3. Embedded element method 
A well-established method of modeling a composite material by 

embedded fibers in a matrix is employed [78–82]. In this technique, the 
translation degrees of freedom (DOF) of embedded nodes are con
strained to the interpolated values of the corresponding DOFs of the host 
element. Using the embedded element method to create a heterogeneous 
RVE has distinct advantages. First, the mesh is structurally regular, 

Fig. 4. Seven loading modes for the experimental tests and optimization flowchart. a) Compression/tension along axonal fibers direction. b) Compression/tension in 
transverse to the axonal fiber direction. c) Shear on the transversal face along the transversal direction of axonal fibers. d) Shear on transversal face along the axonal 
fibers’ direction. e) Shear on fibers face along the transversal direction of axonal fibers. f) Optimization cycle flowchart. 
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which makes finding the pair of nodes easier. The independent meshing 
of constituent parts also reduces the total number of elements, which 
reduces computational costs. The model is created with two domains: a 
guest domain or fibers and a host domain or matrix. The guest domain 
itself contains two material properties: the material property of the fiber 

and the material property of the matrix. Because fibers are embedded in 
the matrix, the material property of the matrix is added to the material 
property of the fiber. Thus, there are two material models in a single 
domain. From superposition, the total strain energy density of this 
domain can be written as follows: 

Fig. 5. Deformed von Mises stress contour of a sample RVE under different loading modes. a) Tension-FF, b) Tension-TT, c) Compression-FF, d) Compression-TT, e) 
Shear-FT, f) Shear-TT, and (g) Shear TF. Applied normal and shear stains in the models is 20%. Fiber volume fraction (FVF) of the model is 0.4. FF denotes aligned 
with the axonal fibers, while TT denotes transverse to the axonal fibers. 
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Wt(λ1, λ2, λ3) = Wg(λ
′

1, λ
′

2, λ
′

3) + Wh(λ′′
1, λ′′

2, λ′′
3) (6)  

where λi=1,2,3 are terms of principal stretches and Wg and Wh are the 
strain energy density of the guest and host domains, respectively. The 
substitution of the Ogden material model in Eq. 6 results in 

Wt(λ1, λ2, λ3) =
2μg

α2
g

(
λ

′

1
αg
, λ

′

2
αg
, λ

′

3
αg

− 3
)

+
2μh

α2
h

(
λ′′

1
αh , λ′′

2
αh , λ′′

3
αh − 3

)
(7)  

where μg, αg, μh, and αh are material constants of guest and host do
mains, respectively. To simplify the material model, almost all prior 
studies that use this methodology consider an identical value of α for 
both guest and host domains. While Eq. 7 is simplified with this 
assumption to a one-term Ogden material model with μ = μg + μh, the 
significant difference between the composition of axonal fibers and ECM 
from the biological point of view makes the assumption unrealistic [18, 
19, 66, 67]. Instead, we alternatively consider two different material 
models for axonal fibers and ECM with independent material constants. 
Considering the point that in the embedded element method the DOFs of 
corresponding nodes of the guest and host domains are fully coupled, the 
principal stretches are equal. Therefore, Eq. 7 reduces to 

Wt(λ1, λ2, λ3) =
2μg

α2
g

(
λαg

1 + λαg
2 + λαg

3 − 3
)

+
2μh

α2
h

(λαh
1 + λαh

2 + λαh
3 − 3) (8) 

Eq. 8 can be considered as a two-term Ogden material model. 
Consequently, the material property of the axonal fiber can be expressed 
by a two-term Ogden material model with constants derived from the 
host (matrix) and the guest (embedded fiber). In another words, if the 
model is created based on the embedded element method, the material 
property of the embedded axonal fiber is a one-term Ogden material 
model with μg, αg constants. However, if the model created with separate 
matrix and fibers (direct mesh method), the material property of the 
axonal fiber is a two-term Ogden material model with μg, αg, μh, and αh 

constants. In this study, μfE and αfE represent the material property of the 
axonal fiber in the embedded format, and μf and αf represent the actual 
material properties of the axonal fiber. 

Optimization process 

An optimization process is developed to enable the material prop
erties of axonal fibers and ECM to be inversely calculated from the 
experimental mechanical data of bulk CC. Fig. 4(a)-(e) shows a sche
matic of the seven different experimental loading modes that prior 
studies have performed on human bulk CC [2]. These are compression 
and tension modes both aligned and orthogonal to the axonal fiber 
orientation, and three simple shear modes. Fig. 4(f) shows a flowchart of 

the optimization process. An archive-based microgenetic algorithm is 
used to implement the multiobjective optimization cycle. The optimi
zation process finds four independent variables: μfE , αfE , μECM, and αECM. 
For each set of variables, seven simulations are performed, which 
correspond to the seven loading modes. For each cycle, the sum of the 
absolute area difference between the stress-strain curve of the simula
tion and the experiment is calculated. The objective of the optimization 
cycle is to collectively minimize sum of the absolute area difference 
between the stress-strain curve of the experiment and simulation for all 
seven loading modes. The algorithm population size was n=40 and 1500 
iterations were performed in total. Further, to minimize simulation 
costs, all variables were defined as discrete values in a specific limited 
boundary, consistent with prior literature [62, 80]. The boundary for the 
variables is set to μfE ∈ [100 2000] Pa with step size of 2Pa, (αECM,αfE ) ∈

[− 3030] with step size of 1 except [-1, 0, 1], and μECM ∈ [1500] Pa with 
step size of 2Pa. The insensitivity of the optimization process to the 
randomly selected initial values was checked by running the process for 
five different initial values. 

3. Results and discussions 

An RVE is developed to enabled inverse independent characteriza
tion of axonal fiber and ECM mechanical properties from the bulk me
chanical properties of human CC tissue. Fig. 5 shows the von Mises stress 
contour for the developed RVE under seven different loading modes. The 
RVE in Fig. 5 corresponds to the smallest dimensions of brain white 
matter with mechanical properties identical to those of the bulk tissue. 
As the embedded element method is used in the RVE, two materials 
overlap in the axonal fiber sections. Therefore, the cross-sections of 
axonal fibers are blurry. Fig. 5 (a) and (c) show contours of tension and 
compression along the axonal fiber direction, respectively. In these 
cases, the effect of the periodic boundary condition is negligible. How
ever, this effect is more profound in the three shear modes, and 
compression and tension transverse to the axonal fiber direction, Fig. 5 
(b), (d), (e), and (f). 

Fig. 6 shows the results of the size and mesh convergence studies for 
the developed RVE. The nominal stresses in the RVE are calculated by 
dividing the total reaction force by the initial surface area. Here, the 
calculated nominal stresses are normalized with respect to µECM to 
enable comparisons to be made between the different loading modes. 

Fig. 6(a) indicates that for the cases with edge size of 5, 6 and 7, μm 
all the loading modes produce the same results. As such, an edge length 
of 5 μm was chosen as the RVE size. Fig. 6(b) shows the result of the 
mesh convergence study. Changes in the nominal normalized stress are 
plotted against the number of mesh nodes in the range ~25,000 to 
75,000. The stress becomes independent of the mesh approaching 
55,000 nodes. This number was therefore chosen to be the mesh size. 

Fig. 6. Size and mesh convergence studies of the developed RVE. a) Normalized nominal stress versus size of RVE for the different loading modes. b) Normalized 
nominal stress versus mesh size of the RVE with 5µm edge length. 
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Budday et al. report that a one-term modified Ogden hyperelastic 
constitutive model can accurately predict the bulk material properties of 
CC mechanical behavior under different loadings (tension, compression, 
shear). Seven stress-strain experimental curves from Ref. [2] associated 
with the seven loading modes in Fig. 4(a)-(e) of the bulk CC are used as 
the constitutive model of the RVE hyperelasticity. Then, the seven 
loading modes simultaneous optimization process inversely predicts the 
hyperelastic material coefficients of axonal fibers and ECM from the 
hyperelastic mechanical properties of the bulk CC. 

Using this model, the optimization process predicts the following: μfE 

= 756 ± 2 Pa, αfE = − 24 ± 1, μECM = 106 ± 2 Pa, and αECM = −

14 ± 1. These values minimize the sum of the absolute area difference in 
stress-strain curve between experiments and simulations for the seven 
loading modes. Negative values for both αfE and αECM capture the 
asymmetric behavior of the brain tissue in the compression-tension tests. 
Fig. 7 compares the experimental stress-strain curves for the bulk CC 
tissue with the generated stress-strain curves by the optimized values. 

The RVE’s stress-strain curves are based on best fitting the model to 
the seven different experimental stress-strain curves simultaneously. 
Fig. 7 shows that the optimized model and associated constitutive 
axonal fiber and ECM material coefficients accurately predicts the me
chanical response of bulk CC tissue for numerous loading conditions, in 
particular under tension both aligned and orthogonal to the axonal fi
bers. However, discrepancies exist between simulated and experimental 
results for compressive loading orthogonal to the axonal fibers, shear FT, 
and shear TF. Nonetheless, predicted macroscale loading responses fall 

within the uncertainty of the experimental data, with the exception of 
the shear TF loading mode. During the optimization process, compres
sion orthogonal to the axonal fiber orientation considerably affects the 
accuracy of the other loading modes. Experimental results indicate that 
the CC is stiffer when compressed orthogonally to the axonal fibers 
relative to compression aligned with the fibers [2]. However, the 
developed model shows an opposite behavior. While the stiff axonal 
fibers would be more engaged in the aligned configuration, compressive 
loading orthogonal to the axonal fiber direction would be expected to be 
governed predominantly by the mechanical properties of the compliant 
ECM. As speculation, however, the composite shows a softer response 
along fibers’ direction when axonal fibers show a tension-compression 
asymmetry behavior or buckling happens in axonal fibers. In our 
work, because we have assumed a very wide nonlinearity range for 
axonal fibers and ECM, the material nonlinearity, e.g., 
tension-compression asymmetry, is not the reason for the poor fitting in 
one of the seven loading modes. In the RVE, because the 
length-to-diameter ratio of fibers is not realistic and possesses a small 
value, fibers cannot buckle inside the matrix. As a result, the modeled 
composite shows a greater stiffness in the compression along the fibers 
compared to the transversal compression. Furthermore, because the 
experimental results are averaged for all the samples, those curves are 
not for a single sample; therefore, it is expected that a simultaneous 
optimization for seven loading modes will not perfectly fit to all 
experimental curves. We speculate that another source of the discrep
ancy is due to the sizable standard deviations of the compression test 

Fig. 7. The mechanical response of the RVE according to the optimized material properties by seven loading modes in comparison with the experimental data in 
Ref. [2]. Mechanical behavior under a) tension; b) Compression; c) Shear. Error bars show the standard deviations of the experimental tests. FF denotes the alignment 
with the axonal fibers, while TT denotes transverse to the axonal fibers. FT denotes shear within a plane both aligned and transverse to the axonal fibers. 
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transverse to the axonal fibers. There are still samples in Fig. 7(b) that 
show stiffer response in compression along the fibers than the orthog
onal compression. The optimization process has been applied to the RVE 
with a unique architecture in all loading modes, while the experimental 
data have been collected and averaged from several samples, which 
means their mean response is not representative for all individual 
samples. It also should be mentioned that the model is based on a 
structure with a specific FVF, while experimental results are established 
from several tests with samples that have intrinsically varying FVF 
values. 

To establish if the optimization of this specific compressive loading 
mode limited the overall accuracy of predictions for the other six loading 
modes, the model was reoptimized excluding the compression mode 
orthogonal to the axonal fiber direction. Fig. 8 demonstrates the varia
tion of the absolute value of the normalized area difference between the 
stress-strain curves of the experimental data and RVE results for each 
loading mode in each iteration for the optimization with the six loading 
modes. The transparent lines show the normalized area difference in 
each iteration, and the solid curves show the 20-period moving average 
trendline of each loading mode during the optimization process. To 
make the results comparable, for each loading mode, the absolute area 
difference is normalized by scaling by the corresponding surface area 
under the experimental stress-strain curve. The aborted analyses, 
repeated results, and the early outlier data have not been presented in 
Fig. 8. The trendlines indicate that in all loading modes, the normalized 
absolute area difference decreases during optimization. 

Results of the optimized model, shown in Fig. 9, show a better fit to 
the experimental results. In comparison with the model optimized to 
seven loading modes, the results of this new model do not exhibit dis
crepancies of shear FT or shear TF. Simulated FF compression loading 
mechanical results are also improved. The reoptimized model predicts 
the following: μfE = 722 ± 2 Pa, αfE = − 23 ± 1, μECM = 110 ± 2 Pa, 
and αECM = − 6 ± 1. Fig. 9 further compares the optimum response of 
the models with the experimental data and model predictions by 
Hoursan et al. [80] for tensile loading aligned and orthogonal to the 
axonal fiber directions. The results show a notably improved fit 

compared to the previous model for compression and shear loading 
modes. However, predictions for compression orthogonal to fiber 
alignment remain poor. Results of the previous model shown in Fig. 9 
are in places established from the material coefficients presented in their 
work, given that they did not directly report predictions for the 
compressive loading modes. This model considered a 30% FVF. As such, 
an RVE with 30% FVF was created and used to obtain the predictions 
shown. We anticipate that the optimized material parameter predictions 
reported here provide more accurate mechanical properties of fiber and 
ECM mechanical properties, which will aid in improving the accuracy of 
future computational models that examine multiaxial loading of brain 
tissues. 

In many prior studies of bulk white and gray matter mechanical 
behavior, neo-Hookean and Moony-Rivlin constitutive models have 
been utilized [45, 83–87]. These material models are easy to implement 
in finite element models. To ensure a comprehensive assessment of this 
predictive model, optimization processes for the six loading modes 
(excluding compression TT) were completed to obtain the optimal ECM 
and axonal fiber material coefficients using neo-Hookean and 
Moony-Rivlin constitutive models. From Eq. 7, the shear modulus of 
axonal fibers can be simply established by summing the two constituent 
values, μf = μfE + μECM. The optimization process predicts μf =

310 ± 2 Pa and μECM = 70 ± 2 Pa. Fig. S1 in Supplemental Materials 
compares the neo-Hookean model predictions with the experimental 
results. This model adequately predicts the tension and shear behavior 
of axonal fibers and ECM but fails to capture the responses in both 
compression loading modes. 

Our optimization process for the Moony-Rivlin model predicts the 
following: C10fE = 190 ± 2 Pa, C01fE = 100 ± 2 Pa, C10ECM = 60 ±

2 Pa, and C01ECM = 6 ± 2 Pa. For small strains, the embedded shear 
modulus of axonal fibers and actual shear modulus of ECM are estimated 
to be μfE = 580 Pa and μECM = 132 Pa, respectively. In this material 
model, the actual material properties of the axonal fibers can be calcu
lated by summation of the embedded axonal fiber and ECM material 
constants. Thus, the actual material properties of the axon can be rep

Fig. 8. Normalized absolute area difference between the stress-strain curves of the six loading modes of the experimental data and the modeled RVE during the 
simultaneous optimization. 
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resented by C10f = 250 Pa and C01f = 106 Pa. Fig. S2 shows and 
compares predicted stress-strain curves with experimental results for the 
six loading modes. The results indicate that the accuracy of the Moony- 
Rivlin model is comparable to the neo-Hookean results in Fig. S2. In 
summary, only an Ogden model is accurate enough to present hypere
lastic material behavior of axonal fibers and ECM. 

Table 2 shows a comparison between predicted constitutive model 
coefficients and those from prior studies. While previous micro
mechanical models can predict the realistic mechanical behavior of CC 
in a multiaxial loading, they are unable to predict tension-compression 
asymmetry because they examine only one or two loading modes of the 
bulk tissue to calibrate their model. From Table 2 there is a wide range of 
the material constants for both axonal fiber and ECM in the literature. 
Moreover, prior studies additionally assume the same nonlinearity co
efficient, α, for both axonal fibers and ECM, even though axonal fibers 
and ECM are different materials with different compositions [18, 88]. 
Hoursan et al. [80] argue that this assumption is made because the 
nonlinearity will not be sensitive to the loading direction. However, our 

Fig. 9. The mechanical response of the RVE according to the optimized material properties by six loading modes in comparison with the experimental data in [2] and 
numerical study in [80]. Mechanical behavior under a) Tension; b) Compression; c) Shear. Error bars show the standard deviations of the experimental tests. 

Table 2 
Comparison of the optimum material constants obtained in present study with 
values presented in previous studies.    

µaxon (Pa) αaxon µECM 

(Pa) 
αECM Reference 

Present 
Study 

Embedded 
Method 

722 -23 110 -6 - 

Direct 
Meshing 

µ1 = 722 
µ2 = 110 

α1 =

-23 
α2 =

-6 

110 -6 - 

Hoursan 
(RVE)  

1062.78 4.89 80.12 4.89 [80] 

Hoursan 
(SVE)  

738.3 4.49 99.36 4.49 [80] 

Yousefsani  1130.3 4.91 87.4 4.91 [81] 
Meaney  290.82 6.16 - - [65] 
Pan  33280 8.22 11093 8.22 [60]  

Table 3 
Summary of the predicted actual material coefficients for axonal fibers and ECM.  

Material Model Material Parameters Material Parameters Values R2 

Axonal Fiber ECM Tension Compression Shear 
FF TT FF TT FT TT TF 

Ogden µ, α µ1=722 Pa,α1= -23,µ2=110 Pa,α2= -6 µ=110 Pa, α=-6 0.974 0.989 0.493 0.974 0.954 0.910 0.876 
neo-Hookean µ, α µ= 380 Pa, α=2 µ=70 Pa, α=2 0.976 0.974 0.459 0.246 0.899 0.829 0.888 
Moony-Rivlin C01, C10 C101=250, C011=106 Pa C10=60,C01=6 Pa 0.975 0.967 0.517 0.254 0.890 0.791 0.900  
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study shows that there is a considerable difference between the 
nonlinearity coefficient of axonal fibers and ECM, with αfE almost twice 
that of αECM. Predictions of shear moduli, however, closely align a pre
vious model [80] that has utilized a statistical volume element (SVE) 
approach. However, nonlinearity coefficients differ between the two 
studies. Table 2 further reveals that in comparison with the results of the 
current study, Meaney et al. [65] underestimates the shear modulus of 
both the axonal fibers, while Hoursan et al. (RVE method) [80], You
sefsani et al. [61], and Pan et al. [60] overestimate it. Our results show 
that for to capture the tension-compression asymmetry in a single ma
terial model, a negative value of the α should be employed. In Table 1, 
there are two possible representations for the material parameters of 
axonal fibers. For the studies that use the embedded element method, 
values in the first row without any material correction can be used for 
axonal fibers, while the real material properties of axonal fibers for 
direct meshing models are characterized by a two-term Ogden material 
model in the second row (see Methods Section). 

The results of the optimization process for the three different mate
rial models, Ogden, neo-Hookean, and Moony-Rivlin, are summarized in 
Table 2. Material coefficients in Table 3 can be directly used in finite 
element packages for the material properties of axonal fibers and ECM. 

Fig. S3 shows the stress-strain curves of the axonal fibers and ECM 
according to the reported values in Table 3. It is clear that the axonal 
fiber has a greater asymmetry and nonlinearity degree than the ECM. 
For the ECM, Ogden, neo-Hookean, or Mooney-Rivlin hyperelastic ma
terial models can each be used with a reasonable accuracy. However, 
only an Ogden model is sufficiently accurate for axonal fibers. 

The measurement of the mechanical properties of the axonal fibers 
when coupled with imaging data (DTI, fiber tractography) may offer 
new tools to overcome the disadvantages of MRE and identify or eval
uate brain disorders such as Alzheimer’s, multiple sclerosis, and autism. 
Findings of this study have a direct and important impact on the precise 
and unbiased computational modeling of TBI/DAI and brain folding that 
include axonal fiber bundles [46, 89, 90]. In TBI/DAI computational 
models, in addition to the hyperelastic material behavior, the visco
elastic material behavior of axonal fibers and ECM should be included. 
However, the characterization of the viscoelastic behavior of axonal fi
bers and ECM was not a scope of this study. 

Similar to other computational modeling studies, there are a few 
limitations in this study: a) Only parallel axonal fibers were considered 
in RVE, while in vivo axonal fibers can have a distribution of orienta
tions. However, the effect of this limitation is negligible as the CC has 
highly aligned axonal fiber bundles; b) Circular cross-sections were used 
for the axonal fibers, while axonal fibers typically have nonsymmetric or 
elliptical cross-section profiles (Fig. 1). However, our results (not re
ported here) showed that the distribution of axonal fibers’ diameter has 
a negligible effect on the simulation results. The diameter distribution 
has no effect on tension and compression and is negligible in shear; c) 
The optimized material coefficients predicted are for the combined axon 
and myelin sheath as a composite material. Those values cannot be used 
exclusively for the axon or the myelin independently. d) The most 
important parameter that has a considerable effect on the results is the 
FVF. All predictions are based on an FVF of 40%. By increasing or 
reducing the FVF, new optimum material coefficients will be achieved. 
Fig. S4 demonstrates that an increase in the percentage of axonal fibers 
in the matrix results in a greater stiffness of the tissue. Therefore, the 
precise determination of FVF in CC by electron microscopy or any other 
experimental tool could increase the accuracy of the results; e) The brain 
tissue also shows viscoelastic and poroelastic behaviors [8, 54]. The 
viscoelasticity was not considered in this study because in a quasi-static 
loading condition the effect of viscosity is negligible. To find the asso
ciated viscoelastic material properties of axonal fibers and ECM, another 

optimization process with different material parameters is needed. f) 
The used RVE was simple enough to be able to perform the optimization 
process including finite element simulations in order of thousands. This 
simplification can affect the fitting results. Adding more complexity, e.g. 
buckling, into the RVE might well model the actual tissue composition. 
An experiment-based customized RVE is required to get more accurate 
predictions. Finally, g) The predicted constitutive coefficients are 
established by fitting the hyperelastic model to experimental measure
ments of excised CC, which themselves contain inherent uncertainties. 

4. Conclusion 

In this study, the independent hyperelastic mechanical properties of 
myelinated axonal fibers and the surrounding extracellular matrix 
(ECM) are extracted from macroscale mechanical measurements of 
corpus callosum (CC) white matter tissue using a microstructural 
modeling and an optimization process. Results of the study show that an 
Ogden incompressible hyperelastic material model can accurately pre
dict the mechanical behavior of axonal fibers and ECM. Both axonal 
fibers and ECM show a highly nonlinear behavior under different 
loading modes. However, the degree of the nonlinearity in axonal fibers 
is greater than the ECM, in opposition to the previous assumptions for 
considering similar nonlinearity coefficients. In addition to the Ogden 
model, the material coefficients for neo-Hookean and Moony-Rivlin 
hyperelastic models were predicted and discussed. Alterations of 
microscale constituents of the brain tissue greatly impact the mechanical 
properties of the tissue at the macroscale. 

The hyperelastic material properties for axonal fibers and ECM 
presented in this study are more accurate than previously proposed 
because they have been optimized using seven or six loading modes of 
the bulk tissue, not just one or two. Therefore, predicted values can be 
used to improve and update other modeling studies that relate to trau
matic brain injury, deep brain stimulation probe insertion, brain folding, 
and fluid-solid interactions in the brain. 
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Appendix 

Fig. A1 and equations A1-A10 illustrate the relation between mesh nodes on faces, edges, and corner points of the RVE. 

(ui)cj
+ (ui)ck

= 0, i = 1, 2, 3, {
j = 2

k = 1 ,

{
j = 4

k = 3 ,

{
j = 6

k = 5 (A1)  

(ui)Fj
+ (ui)Fk

+ 2(u)ck
= 0, i = 1, 2, 3, {

j = 2
k = 1 ,

{
j = 4

k = 3 ,

{
j = 6

k = 5 (A2)  

(u)Ejk
+ (u)Elm

+ 2
(

(ui)cl
− (u)ck

)
= 0, (A3)  

i = 1, 2, 3, {
jk = 23

lm = 14 ,

{
jk = 25

lm = 16 ,

{
jk = 46

lm = 36  

(ui)Ejk
+ (ui)Elm

+ 2
(

(ui)cl
+ (ui)cm

)
= 0, (A4)  

i = 1, 2, 3, {
jk = 24

lm = 13 ,

{
jk = 26

lm = 15 ,

{
jk = 46

lm = 35  

(ui)C235
+ (ui)C146

+ 2
(

(ui)c1
− (ui)c3

− (ui)c5

)
= 0, i = 1, 2, 3 (A5)  

(ui)C236
+ (ui)C145

+ 2
(

(ui)c1
− (ui)c3

+ (ui)c5

)
= 0, i = 1, 2, 3 (A6)  

(ui)C245
+ (ui)C136

+ 2
(

(ui)c1
+ (ui)c3

− (ui)c5

)
= 0, i = 1, 2, 3 (A7)  

(ui)C246
+ (ui)C135

+ 2
(

(ui)c1
+ (ui)c3

+ (ui)c5

)
= 0, i = 1, 2, 3 (A8)  

where Fi, Eij, Cijk, and ci imply faces, edges, corners, and centers of the RVE, respectively. ui (i=1, 2, 3) shows displacement of each node on a face, edge, 
corner, or center of the RVE along the 1, 2, and 3 directions, respectively. Using these equations, the displacement of each slave node on faces (F2, F4, 
F6), edges (E23, E24, E25, E26, E45, E46), centers (c2, c4, c6), and corners (C235, C236, C245, C246) is related to their relevant master nodes on faces (F1, F3, 
F5), edges (E14, E13, E16, E15, E36, E35), centers (c1, c3, c5), and corners (C146, C145, C136, C135), respectively. Finding pair nodes and applying these 
constraints are implemented using a Python script in Abaqus. 

Fig. A1. Definition of the face, centers, edges, and corners of RVE for the application of periodic boundary condition.  
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