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ARTICLE INFO ABSTRACT

Keywords: Rational development of antifouling materials is of great importance for fundamental research and real-world
Machine learning applications. However, current experimental designs and computational modelings of antifouling materials
Antifouling

still retain empirical flavor due to the data complexity of polymers and their associated structures/properties. In
this work, we developed a data-driven, machine learning workflow, in combination with an in-house benchmark
dataset of antifouling polymer brushes, to discover the potential antifouling property of existing polymer brushes
using the descriptor-based artificial neural network (ANN) model and design the new antifouling polymer
brushes using the group-based supporting vector regression (SVR) model. The resultant two machine learning
models not only demonstrated their reliability, predictivity, and applicability, but also established the compo-
sition-structure-property relationships using both descriptors and functional groups. Finally, we synthesized
different repurposed and newly designed polymer brushes, as predicted by ANN and SVR models, all of which
exhibited excellent surface resistance to protein adsorption from undiluted human blood serum and plasma at
optimal film thicknesses. Overall, our data-driven machine learning models can be used as an intelligent tool for

Polymer brush

Protein adsorption

Artificial neural network
Supporting vector regression

determining, repurposing, and designing new superior antifouling materials beyond polymer brushes.

1. Introduction

Driven mostly by the Materials Genome Initiative, data-driven ma-
chine learning approaches have recently expanded their uses from
traditional research domains (i.e., drug discovery [1-3], image recog-
nition [4,5], disease diagnose [6,7], transportation analysis [8,9]) to
materials informatics [10], because they have demonstrated the
powerful data-mining ability to (i) extract the statistically significant
composition/structure-property relationships from large materials
datasets and (ii) accelerate materials design, discovery, and repurpose.
These machine learning approaches allow to rapidly predict the mate-
rials properties of interest or design new materials with desirable
properties, based purely on existing data rather than by “try-and-error”
experimentation or computations/simulations. Further, deep learning
from the reliable data sources can derive the previously undiscovered
correlations between material properties in a qualitative or quantitative
way. Most of machine learning studies in materials science have focused
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on inorganic or solid materials [11] (e.g., metals [12,13], ceramics
[14,15], zeolites [16,17], metal-organic frameworks [18,19], nano-
particles [20,21], and semiconductors [22,23]) to evaluate and predict
their specific properties (electronic/ionic conductivity [24,25], catalytic
activity [26,27], photoluminescence [28,29], thermodynamics [30,31],
and mechanical properties [32,33]). These studies have demonstrated
their promising impacts on the acceleration of new materials design, the
reduction of cost, time, efforts, and failure risks, and the improved un-
derstanding of the composition-structure—property relationship of a
given class of materials. On the other hand, different from inorganic or
solid materials with well-defined structures and reliable datasets, ma-
chine learning for soft materials with desirable functions and properties
is still at infant stage. It still remains a great challenge to use machine
learning to establish qualitative or quantitative rules for rationally
assessing and designing functional soft materials (e.g. polymers [10],
elastomers [34], and hydrogels [35]), largely because these soft mate-
rials have very diverse and flexible structures, making them difficult to
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generate consistent results for a given property. Thus, establishing a
reliable dataset containing high-quality data for both structures and
properties of soft materials is a first and important step for developing
advanced machine learning approaches for materials design and
assessment.

Antifouling materials/coatings are critical for many model systems
and practical applications, including implanted devices [36], marine
coatings/hulls [37], biosensors [38], membrane separation [39], and
drug/gene delivery [40,41]. A wide variety of antifouling materials/
coatings have been developed to resist the unwanted adsorption of
proteins, cells, bacteria, and organisms to some extents. The resultant
antifouling efficiency of a given surface is strongly depended on not only
physicochemical characteristics of materials itself (e.g. carbon spacer
lengths [42], molecular moieties [43], hydrophilic/hydrophobic ratio
[44], electrostatic repulsion [44]), but also surface characteristics (e.g.
grafting density*® [45], film thickness and roughness [46,47], chain
conformation [48]). However, current design of antifouling coatings still
retains empirical flavor and is driven by chemical/materials intuition,
trial-and-error, and similar materials compatibility. Alternative to
empirical experiments, while molecular simulations can provide atomic
details of structural, dynamics, and free energy properties for the design
and evaluation of antifouling materials/coatings [43,49-52], the “one-
at-a-time” and computational expensive nature of molecular simulations
only allows to study individual antifouling materials system, thus lack-
ing a data-driven capacity for rapid prediction and design of a large
amount of antifouling materials from a given database.

To date, very few machine learning studies of antifouling materials
have been reported. Among them, most of them simply applied the
multiple linear regression (MLR) method to establish a qualitative
relationship between several selected physicochemical properties and
antifouling results, e.g., between hydrogen bonds, branching ratios, and
constitutional diversity of chalcone derivatives and antifouling activity
against various micro- and macro-fouling species [53], between HOMO
state, L-H energy, and molar refractivity of acylamino compounds and
their antibacterial activity of E. coli [54], and between the polarizability
indices, mass, and van der Waals volume of polysiloxane-based coatings
and the fouling release activity of fouling organisms (bacteria, algae,
and barnacles) [55]. Since these studies only used a single antifouling
polymer system with some experimental variations to generate the very
limited structure-property data, they were lack of a data-driven ability
to derive a general structure-property prediction and assessment for
other antifouling polymers. Until recently, three machine learning
studies including ours have reported to use the same dataset of self-
assembled monolayers (SAMs) from the Whitesides group [56] to
construct different QSAR models of (i) descriptor-based linear (MLREM)
and non-linear (BRANNGP and BRANNLP) models [57], (ii) descriptor-
based artificial neural network (ANN) models [58], and (iii) functional
group-based ANN models for quantitatively evaluating protein adsorp-
tion on both existing and newly designed SAMs [59]. Due to the simple
synthesis, well-controlled surface structures, and a large diversity of
surface chemistry of SAMs, these studies have demonstrated SAMs as an
ideal model platform, enabling to collect reliable protein adsorption/
resistance data in a uniform and controlled manner and establish
different robust machine learning models for the design and assessment
purposes.

Surprisingly, there is a remarkably lack of machine learning studies
of antifouling polymeric coatings, not even mention to the experimental
verification of computationally designed antifouling materials. Some
major barriers still exist: (i) there are no any existing antifouling poly-
mer databases available at least in the public domain, thus it requires the
researchers to collect experimental results from literature to construct
antifouling polymer databases; (ii) due to the structural complexity/
diversity of polymers and their coatings, data inconsistence is additional
concern, and even the same antifouling polymers could perform differ-
ently at different laboratories due to experimental conditions, chemical/
materials purity, and different synthesis routes. To overcome these
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barriers, we are the first to construct an antifouling polymer brush
dataset from literatures, then use this dataset to develop two distinct
machine learning approaches for discovering the antifouling potentials
of any existing polymer brush by the descriptor-based artificial neural
network (ANN) model and designing the new antifouling polymer
brushes by the group-based supporting vector regression (SVR) model,
and finally conduct polymer synthesis and brush coatings to validate the
antifouling performance of both repurposed and newly designed poly-
mer brushes using protein assays. As a result, both models provide the
sequence-structure-property relationship of antifouling polymer
brushes at gross and fragmental levels. As guided by the both machine
learning models, we synthesized three repurposed polymer brushes and
three newly designed polymer brushes, all of which exhibited excellent
surface resistance to protein adsorption from undiluted human blood
serum and plasma, highly consistent with the predicted values from the
models. This proof-of-concept study provides the starting point, from
dataset construction of antifouling polymer brushes to development of
machine learning models, for advancing the discovery of new anti-
fouling materials and coatings by the extensive screening of the spatial,
compositional, and interaction spaces of polymers.

2. Results and discussion

Overall, Fig. 1 outlines a four-step analytic workflow of this machine-
learning study. (1) First, we started with data screening and collection of
antifouling polymer brushes from literatures by carefully removing any
redundant and inconsistent data (Fig. 1a). This is the first dataset for
antifouling polymer brushes, which will be used as a reliable source to
develop a machine-learning models for the structural-based screen and
design of next-generation antifouling materials. (2) The dataset con-
taining 28 polymer brushes with a wide variety of chemical structures
allows to extensively explore the spatial, compositional, and interaction
spaces of both polymers themselves and their coatings, in which mo-
lecular descriptors will be generated and identified to present compo-
nent and structure features of antifouling polymer brushes (Fig. 1b). (3)
To maximize the great potentials of dataset, we developed two different
machine-learning models of (i) ANN model with gross-level, property-
based descriptors for repurposing/discovering the existing polymer
brushes with antifouling properties and (ii) SVR model with fragmental-
level, group-based descriptors for designing new antifouling polymer
brushes (Fig. 1c). The resulting models were able to determine the
important molecular descriptors and functional groups critical for sur-
face resistance to proteins. (4) Finally, as guided by model prediction,
we synthesized four different polymer brushes for assessing their anti-
fouling property against protein adsorption from undiluted human
blood serum and plasma using surface plasma resonance (SPR) (Fig. 1d).
Among them, the three brushes were selected from the existing litera-
ture (not from the dataset) for discovering their new antifouling prop-
erty, while the other two brushes were newly designed with the
predicted antifouling property. SPR results showed that these predicted
polymer brushes exhibited excellent surface resistance to protein
adsorption as evidenced by a small amount of adsorbed proteins
(0.0-9.0 ng/cm?) on the polymer brushes, confirming the model pre-
dictions. This work demonstrated data-driven, machine-learning
models, built on a reliable dataset of antifouling polymer brushes, for
screening, discovering, and designing antifouling materials/coatings
and beyond.

2.1. Dataset construction of antifouling polymer brushes from literature

To construct a reliable benchmarking dataset, we selected two
different types of zwitterionic and hydrophilic polymer brushes, all of
which demonstrated their antifouling property against protein adsorp-
tion from undiluted human serum or plasma, rather than from single or
diluted protein solutions. Surprisingly, a very limited number of anti-
fouling polymer brushes have been reported after challenging with
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Fig. 1. Schematic workflow of four-step machine-learning models for the design and repurposing of antifouling polymer brushes. (a) Construction of data
repository of antifouling polymer brushes (APBs) from literatures, (b) Compositional and structural representations of antifouling polymer brushes, (c) Development
of artificial neural network (ANN) and supporting vector regression (SVR) models for repurposing and designing antifouling polymer brushes, and (d) experimental

validation of computationally screened/designed antifouling polymer brushes by surface plasma resonance (SPR).

undiluted human serum or plasma. As a result, the in-house dataset
contained 14 zwitterionic and 14 hydrophilic polymer brushes, whose
monomer structures were summarized in Fig. 2. It can be seen that both

zwitterionic and hydrophilic monomers possessed a wide combination
of functional groups of acrylates, acrylamides, carboxylates, sulfonates,
betaines, amino acids, hydroxyls, amides, olefins, peptoids, aromatics,

a Zwitterionic Monomers

b Hydrophilic Monomers

NH,*
N\ .
Z01 WHWNVCOZ 708 )\n/o\)\coz
(o] (o]
% " NH3*
Z02 /\[(“\/\/N\/\coy Z09 )ﬁ( N\/\)\C02
[e] o

H \.7 H .
703 A e 710 )\H/N 0,
/\([)( I \/\/\,L:3 ‘
o NH3*
204 )\H/O\/>N<\/ cor 71 )\”/ n\/\”)k/kcoz'
[¢] o
o
Z05 O S NNs0, 212 )ﬁ‘/n\/\w)k/\(m)?
VERN H
o 0 NH3*

i W oo %(o H COy
207 /\([)I/ NN Z14 I V\T/\/

206 )ﬁ( Do 2137 O~
) "~ ’

HO1 A~y
6
HO02 /j(\/\
6
Ho3 A(W
Ho4 /ﬁ(“\/\/\/"“
8

HO5 7Y

HO8 o
[e)

HO9 )ﬁ(\/\
o
H1O )\(O\/\/OH
o
H11 )ﬁ‘/o\)\w
H12 )\(
o
H13 H?NQk
H14 HN/\)kOH
N

Fig. 2. A summary of monomer structures used for (a) 14 zwitterionic and (b) 14 hydrophilic polymer brushes collected from literature.
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carbon space lengths, and a common double bond at the one end for
polymerization, as well as different chain architectures from linear to
branched structures. For each polymer brush, protein adsorption
amounts (ng/cmz) from undiluted human plasma or serum at different
film thicknesses were also collected, leading to a total of 94 protein
adsorption data points (Table S1), in which the brush thickness effect on
protein adsorption was also considered as one of descriptors in machine
learning models. Next, these 94 data points were used to construct gross-
level, descriptor-based ANN models for discovering and repurposing the
new antifouling property of existing polymer brushes, while 91 data
points by removing the entry of H13-01, H14-01, and H14-02 were used
to build fragmental-level, group-based SVR models for designing new
antifouling polymer brushes.

2.2. Descriptor-Based ANN models for repurposing the new antifouling
property of existing polymer brushes

For molecular descriptor-based ANN model, structural and compo-
sitional representations of antifouling polymer brushes were encoded
with 104 molecular descriptors (constitutional, topological, connectiv-
ity indices, geometrical indices, functional groups, etc), 3 energy de-
scriptors (charge-charge, charge-dipole, and dipole-dipole energies),
and film thickness, leading to a total of 108 descriptors. To avoid the
overfitting of the ANN model, we conducted the two sequential ap-
proaches to reduce the dimension of highly correlated descriptors. First,
we applied Pearson analysis to quantify the independence between de-
scriptors, where any descriptor with paired correlation coefficient of >
0.6 was removed, finally reducing to 14 descriptors (film thickness,
charge-charge energy, charge-dipole energy, Mi, RBF, 0%, nR = Cs,
nRCOOH, nRCONH2, nOHs, C-005, C-007, H-051, and ALOGP) with
relatively high independence (Fig. 3a). Next, Random Forest was carried
out to determine the importance of the resultant 14 descriptors for their
contributions to protein adsorption ability on polymer brushes. Fig. 3b
showed that only 8 out of 14 descriptors (film thickness, Mi, ALOGP,
RBF, 0%, charge-charge energy, C-005, and C-007) had an important
score of > 0.01 with most-contributing features. The resultant 8 de-
scriptors were detailed in Table 1.

With the resultant 8 descriptors, we designed a five-layer artificial

Pearson Correlation
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Table 1
Description of 8 descriptors obtained from random forest and used in the ANN
model.

No.  Descriptors Detail Description Type
1 Thickness Film thickness Experimental
condition
2 Mi Mean first ionization potential Constitutional
(scaled on Carbon atom) indices
3 ALOGP Ghose-Crippen octanol-water Molecular
partition coeff. (logP) properties
4 RBF Rotatable bond fraction Constitutional
indices
5 0% Percentage of O atoms Constitutional
indices
6 charge- Intramolecular charge-charge Calculated energy
charge energy of the molecule
7 C-005 CH3X Atom-centered
fragments
8 C-007 CH2X2 Atom-centered
fragments

neural networks to train logarithmic protein adsorption amount (log
(PAA)) as a function of the 8 descriptors, starting with the first input
layer containing 8 descriptors, followed by the second, third, and fourth
layers containing respective 64, 96, and 64 neurons, ending with an
objective function of log(PAA) on polymer brushes. During the training
procedure, Z03-01 and H07-01 (Table S1) were identified as outliers
and thus were removed from the dataset, resulting in a total of 92 data
points in the dataset. The dataset was randomly splited into a training
set and a test set at the ratio of 7:3, in which training set was used to train
the protein adsorption of polymer brushes in relation to the 8 descriptors
in a ANN model, while test set was applied to evaluate the predictive
ability of the ANN model. Fig. 3¢ shows the training epochs evolution of
the convergence of mean absolute error (MAE) of log(PAA) for training
set and test set, indicative of training performance of the ANN model. At
a first glance, MAE curves for both training and test sets were converged
rapidly at very early training of 35 epochs, indicating that the ANN
model is well trained with minimal overfitting risks. Further, we sta-
tistically counted the distribution of absolute values of prediction errors
of both training and test sets. As shown in Fig. 3d, all errors of training
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Fig. 3. Compositional and structural representations of antifouling polymer brushes for descriptor-based ANN model. (a) Correlation matrix between any
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and test sets were less than 1.0 and most of predictions errors were
smaller than 0.5, confirming the good data fitting and training perfor-
mance of the ANN model for both training and test sets.

Different approaches were also conducted to validate the ANN model
from different angles. Leave-five-out cross validation and externel vali-
dation were performed to statistically evaluate the reliability and pre-
dictivity of the ANN model. As shown in Table 2, leave-five-out cross
validation achieved Q&y = 0.86 and RMSEqy = 0.11 after five iterations
on ramdonly selected training set, while external validation of test set
produced Q% = 0.81 and RMSE¢y = 0.20, both indicating high reli-
ability and predictivity of the ANN model. Consistently, a plot of pre-
dicted log(PAA) versus experimental ones for both training and test sets
gave an 12 of 0.91 and 0.84, respectively (Fig. 3e), again confirming the
high predictive accuracy of the ANN model. Furthermore, Williams plot
was used to measure the applicable domain (AD) of chemical structures
for the ANN model in terms of leverage values against the standardized
residuals. Fig. 3f showed that all data points in training and test sets had
a h value smaller than h* = 0.422 and standardized residuals of <3,
indicating that (i) all molecules present inside AD of chemical structures
and (ii) the predicted values for all molecules can be extrapolated using
the ANN model.

To better understand the structure-antifouling property relationship
of antifouling polymer brushes, we performed Bayesian statistics to
quantify the contribution of 7 descriptors to protein adsorption capacity
(i.e., fouling index) on polymer brushes. In Fig. 4, a positive fouling
index indicates that a descriptor promotes protein adsorption on poly-
mer brushes, while a negative index indicates otherwise for resisting
protein adsorption. Among 7 descriptors, four descriptors of charge-
charge energy, Mi, C-005, and C-007 exhibited strong protein resis-
tance property as evidenced by very high negative fouling indexes of
98-100%, while the other three of RBF (78.7%), O% (73.6%), and
ALOGP (97.9%) contributed significantly to protein adsorption. The co-
presence of charge-charge energy and C-005 mainly encodes the zwit-
terionic groups of polymer brushes, which will induce strong ionic
surface hydration that forms a physical barrier to prevent protein
adsorption. Since Mi descriptor presents the first scaled ionization po-
tential relative to carbon atom, it generally is existed in the polar/hy-
drophilic functional groups involving N and O atoms, which serve as
hydrogen acceptors to form hydrogen bonds between polymer brushes
and water molecules, thus contributing to protein resistance. C-007
(CH2X») is strongly associated with the backbone of polymer chains that
mainly function as mechanical support, rather than hydrophobic moi-
ety, to retain polymer brush conformations for the enhanced protein
resistance. In contrast, RBF and ALOGP descriptors usually involves
hydrophobic properties (e.g., CHs group) that are known to associated
with high protein adsorption. 0% (percentage of oxygen atoms) is also
identified as a significant descriptor for promoting protein adsorption,
probably due to hydrogen bond donor effect. The fouling index of these
descriptors can therefore be used as primary criteria to evaluate and
design antifouling brushes. For instance, the zwitterionic, hydrogen
bonding, and moderate mechanically strong descriptors enable to
associate with water around them to form a tightly surface-bound water
layer at polymer surface, which provides a strong barrier to prevent
approaching proteins being adsorbed on the surface, consistent with the
surface hydration theory [60].

Table 2
Cross- and external validations for descriptor-based ANN model and functional
group-based SVR model.

Model Validation Q? RMSE
Descriptor-based ANN model Leave-five-out cross 0.86 0.11
validation
External Validation 0.81 0.20
Functional group-based SVR Leave-five-out cross 0.96 0.19
model validation
External Validation 0.79  0.45
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Fig. 4. Fouling index probability (%) of 7 descriptors used for predicting pro-
tein resistance and protein adsorption ability on polymer brushes in the
ANN model.

2.3. Functional Group-Based SVR models for designing new antifouling
polymer brushes

Complement to the ANN model capable of discovering the new
antifouling property of existing polymer brushes, we also constructed a
functional group-based SVR model for designing new antifouling poly-
mer brushes. As a different machine learning approach, we extracted 29
important molecular descriptors to encode the most-contributing fea-
tures of polymer brushes. Then, we implemented a factor analysis al-
gorithm to convert 29 descriptors into the more physically meaningful
functional groups. On the basis of the factor analysis of the eigenvalues
and percentage of cumulative variance (%) on 29 descriptors, the first 8
functional groups (Fig. 5a) possessed an eigenvalue of > 1 (Fig. 5b),
93.44% structural variance of the 29 descriptors (Table S2), a com-
munality value of > 0.5 (Table S3), and a rotated absolute regression
coefficient of > 0.3 (Table S4). All of these characterizations indicate
that the 8 functional groups are sufficient to interpret the compositional,
structural, geometrical, and connectivity information of 29 descriptors.
Next, we added film thickness to the 8 functional groups and reper-
formed a random forest to confirm the important contributions of these
9 factors to protein adsorption (Fig. 5¢), which were further used in the
SVR model.

To prevent underfitting and overfitting of functional group-based
SVR model, we firstly applied a grid searching algorithm to determine
the optimal hyperparameters of C and gamma. In the training process,
mean average error (MAE) was calculated to monitor the convergence of
the model. Figure S1a shows the loose grid searching on optimal C of 10
and gamma of 1.0 at global convergence, leading to the smallest MAE of
0.48. Further, a fine grid searching was also implemented to optimize C
and gamma values by searching in the grid from 1.0 to 100 for C and
from 0.1 to 10 for gamma (Figure S1b), resulting in the optimal C of
2.78 and gamma of 0.77 at the smallest MAE of 0.47. At the optimal C
and gamma, the 8 functional groups and film thickness were then
trained as inputs in response to log(PAA) of polymer brushes using SVR
with RBF kernel. Similarly, the dataset was split randomly into training
set and test set at the ratio of 7:3. Fig. 5d showed that (i) all absolute
errors were less than 1.0 for both sets and (ii) 98% (training set) and
81% (test set) errors were less than 0.5, indicating a good training
performance of the SVR model for describing the relationship between
protein adsorption and functional groups. As shown in Table 2, the
leave-five-out cross valididation on the training set yielded Q&y = 0.96
and RMSEcy = 0.19, while external validation on the test set gave rise to
Q% = 0.79 and RMSEey = 0.45. Further, the correlation of predictions
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Fig. 5. Compositional and structural representation of antifouling polymer brushes for functional group-based SVR model. (a) Molecular structures of 8
specific functional groups from factor analysis. (b) Eigenvalues (blue) and percentage of cumulative variance (%) (pink) for 29 factors. (c) Importance score ranking
of 8 functional groups and film thickness from random forest. (d) Absolute errors of predicted values with respect to experimental values of log(PAA) for both training
and test sets. (e) Correlation between predicted and experimental log(PAA) values for both training and test sets by leave-five-out cross validation and external

validation. (f) Applicability domain of training and test sets using William plot with h*=

versus experimental log(PAA) showed r? values of 0.97 for a training set
and 0.83 for a test set (Fig. 5e). The consensus predictions are normally
close to the top performance of all individual models for both cross
validation and external validations, indicating the model stability, reli-
ability, and predictivity. William plot in Fig. 5f showed that almost all of
data point (except one) fall within the boundaries of h* < 0.468 and —3
< standardized residual <3. However, there was a data in training set
outside the applicability domain, which presented h; value of 0.145
smaller than the threshold h* value of 0.468. After removing this data
point, the reliability and predictivity of the SVR model were not
improved significantly, indicating that this data has no impact on the
performance of the SVR model that is considered reliable.

Different from descriptors and their associated fouling indexes, our
factor analysis and Bayesian statistics identify 8 functional groups and
film thickness as critical factors for contributing to protein adsorption/
resistance on any polymer brush (Fig. 6). These functional groups offer
the much more straightforward chemical structures for a design pur-
pose. Among them, functional groups of 2 (amino acid-based group), 3
(sulfobetaine group), 4 (secondary amide group), 7 (carboxybetaine
group), 8 (isopropanol alcohol-like group) exhibited the much higher
probability of negative fouling indexes of 74.5-100%, indicating the
strong association with protein resistance property. Since these func-
tional groups possess either zwitterionic or hydrogen bonding moieties,
it is not surprisingly that zwitterionic polymers strongly interact with
water molecules via ionic solvation, while hydrophilic polymers (e.g.
polyacrylamides or polyacrylates) associate with water molecules via
hydrogen bonds, both of which produce a strong surface hydration layer
to resist protein adsorption. In contrast, the group 5 (methylene group)
showed a high positive fouling index of 89.8% and thus is considered as
a fouling-induced group, consistent with experimental observation that
proteins favor to be adsorbed on hydrophobic surfaces. It is sort of un-
expected results that both groups of 1 and 6 were identified as
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Fig. 6. Fouling index probability (%) of 8 functional groups for predicting
protein resistance and protein adsorption ability on polymer brushes in the
SVR model.

contributors to protein adsorption. Group 1 containing a higher ratio of
oxygen atoms that make a positive contribution to protein adsorption,
consistent with the prediction of O% in the descriptor-based ANN
model. Group 6 is terminated with -NH; group that is readily charged in
the acidic condition [61], which will induce protein adsorption on the
charged surface. The functional group-based SVR model, combining
with the predicted antifouling property of these functional groups, al-
lows to design new superior antifouling brushes.
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2.4. Experimental validation of protein adsorption on repurposed and new
polymer brushes

Based on the predictive relationship between descriptors and protein
resistance of polymer brushes, we used the ANN model to predict the
thickness-dependent protein adsorption from undiluted human serum or
plasma on 6 existing polymer brushes of polyhSBMA-1 [62],
polyhSBMA-2 [62], polyCBMA-1 [63], polyMPC [64], polyDMAEMA
[65], and polyMSEA [65], whose monomer structures were showed in
Fig. 7a. At a first glance for Fig. 7b and Table S5, for any polymer brush,
there existed an optimal film thickness to achieve the lowest protein
adsorption, i.e., too low or too high film thicknesses induced large
protein adsorption to some extents. Specifically in Fig. 7c, the four
zwitterionic polyhSBMA-1, polyhSBMA-2, polyCBMA-1 and polyMPC
brushes, which possess the higher negative fouling indexes as contrib-
uted by charge-charge energy, Mi, and —~CHjs of betaine group (C-005)
descriptors, achieved the protein adsorption of 1.41, 2.89, 2.46, and
6.21 ng/cm [2], respectively, comparable to or better than a superlow
fouling level (5 ng/cm?). PolyDMAEMA brushes, belonging to a poly-
acrylamide family, showed a low fouling property of 11.05 ng/cm? at
50 nm, due to the presence of hydrogen bonds as reflected by RBF, 0%,
and ALOGP descriptors. As a counter example, polyMSEA brush with the
higher positive fouling index of ALOGP and O% was predicted as a
weaker antifouling surface, as evidenced by high protein adsorption of
143.55 ng/cm? even at an optimal film thickness of 10 nm, consistent
with experimental results [65]. The ANN model indeed predicts the ef-
fect of film thickness of polymer brushes on protein adsorption partic-
ularly from undiluted blood plasma and serum. Consistently, collective
experimental results have shown the optimal film thickness of polymer
brushes to achieve the minimal protein adsorption at the low or super-
low fouling levels (0.3-5 ng/cm?), including poly(HEAA) brush of
10-40 nm [66], poly(AAEE) brush of 10-40 nm [67], poly(HEMA) brush
of 20-30 nm [46], poly(VBIPS) brush of 27-33 nm [47], poly(CBMA)
brush of 10-15 nm [68], poly(SBMA) brush of 5-12 nm [69], polyNAGA
brush of 25-35 nm [52], polySerMA of 30-40 nm [70], polyOrnAA of
11-12 nm [71], and polyLysAA of 11-12 nm [71]. Both the ANN model
and experimental data suggest that at optimal film thicknesses, intra-
and intermolecular associations between polymer chains are optimized
to achieve high surface hydration for effectively preventing protein
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adsorption from the surface.

Upon demonstrating the predictivity and accuracy of the descriptor-
based ANN model for existing antifouling polymer brushes, we further
applied the ANN model to screen and discover the potential antifouling
property of 14 polymer brushes with other purposes and functions as
selected from literature and summarized in Table S6. Among the 14
polymer brushes, the 7 polymer brushes have been studied for other
properties including hydrophilicity of polyDHMA [72], polyHTMA [73],
and polyNMEMA [74], boron removal property of polyHAEM [75],
thermo-responsive property of polyMA-Ala-OMe [76], bio-sensitivity of
polyNHSMA [77], and adhesive property of polyDMVSA [78], but none
of them has been reported antifouling property before. From a synthesis
viewpoint, we selected and synthesized 3 monomers of MA-Ala-OMe,
NHSMA, and DMVSA (Fig. 8a), followed by polymerization and graft-
ing them onto gold substrate using surface-initiated ATRP. The resultant
polymer brushes were then challenged by undiluted human serum and
plasma for their surface resistance to protein adsorption using SPR as-
says. SPR results in Fig. 8b showed that polyMA-Ala-OMe, polyNHSMA,
and polyDMVSA brushes exhibited very low protein adsorption of 6.0/
4.2, 9.0/8.9, and 6.8/6.2 ng/cm [2] from undiluted human serum/
plasma, comparable to computationally predicted protein adsorption of
11.55, 5.19, and 7.02 ng/cm? on polyMA-Ala-OMe, polyNHSMA, and
polyDMVSA, respectively. Clearly, the ANN model can indeed be used to
screen existing polymer brushes and to discover their potential anti-
fouling property if any.

For a material design purpose, based on the predictive relationship
between functional groups and corresponding protein resistance, we
applied the SVR model to design the three molecules via a combination
of different functional groups with negative fouling indexes. Specif-
ically, we designed a methyl vinylcarbinol (MVC) monomer consisting
of isopropanol-like (group 8) and vinyl groups, a 3-((2-hydroxyethyl)-
dimethylammonio) propanoate (EDLP) monomer made of sulfobetaine
(group 3), methylene (group 5), and hydroxyl groups, and a 2-((2-
hydroxyethyl)-dimethylammonio) ethane-1-sulfonate (DAES) monomer
made of carboxybetaine (group 7), methylene (group 5), and hydroxyl
groups, respectively (Fig. 8c). Upon SI-ATRP to form polymer brushes on
Au substrates, SPR spectra showed that the final adsorbed proteins from
undiluted blood serum/plasma were 3.2/7.0 ng/cm? on polyMVC, 9.0/
0.0 ng/cm? on PAA-EDLP and 0.0/4.0 ng/cm? on PAA-DAES (Fig. 8d),
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Fig. 7. Predicted dependence of film thickness of polymer brushes on protein adsorption by the descriptor-based ANN model. (a) Monomer structures used
for synthesizing 6 antifouling polymer brushes (hSBMA-1, hSBMA-2, CBMA-1, MPC, DMAEMA, and MSEA). (b) Predicted protein adsorption at (b) different film
thicknesses (nm) and (c) optimal film thickness (nm) of 6 polyhSBMA-1, polyhSBMA-2, polyCBMA-1, polyMPC, polyDMAEMA, and polyMSEA brushes.
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NHSMA brushes by SPR. (c) Monomer structures of MVC, EDLP, and DAES by the SVR model. (d) Protein adsorption from undiluted human serum and plasma on

polyMVC, PAA-EDLP, and PAA-DAES brushes by SPR.

in comparison with the SVR-predicted protein adsorption of 3.8-4.48
ng/cm? on polyMVC, 3.3-3.9 ng/cm? on PAA-EDLP and 3.9-4.0 ng/cm?
on PAA-DAES (Table S7). Both SPR and SVR results showed a consistent
protein resistance capacity of polyMVC, PAA-EDLP and PAA-DAES,
confirming the predictivity of the SVR model. It is not surprising to
reveal the differences in protein adsorption amounts between machine-
learning models and SPR results. Such differences could be attributed to
some surface/experimental factors (e.g. surface roughness, grafting
density, surface coverage, chain conformations, chain flexibility, etc)
that are not considered in our model. We should also note that the key
contribution of our machine-learning model does not necessarily intent
to achieve 100% predictive accuracy, instead (i) to design new anti-
fouling materials and coatings that will be validated by experiments and
(ii) to provide specific antifouling functional groups for design purposes.

3. Conclusions

In this work, we first constructed a benchmark dataset of antifouling
polymer brushes from literatures and then developed data-driven ma-
chine-learning models for determining, repurposing, and designing new
antifouling polymer brushes. Specifically, the descriptor-based ANN
model was developed to repurpose and discover the antifouling property
of existing polymer brushes with other desirable properties, while the
functional group-based SVR model was established to design new anti-
fouling brushes. Both machine-learning models (i) achieved high reli-
ability and predictivity of Q&y = 0.86 and Q2 = 0.81 (ANN) and Q3y =
0.96 and ngt = 0.79 (SVR), (ii) identified the structural/component-
dependent descriptors (charge-charge energy, Mi, C-005, and C-007)
and functional groups (amino acid-based group 2, sulfobetaine group 3,
secondary amide group 4, caboxybetaine group 5, and isopropanol-like
group 8) that contribute to the enhanced antifouling performance, and
(iii) predicted the dependence of film thickness of polymer brushes on
protein adsorption. By employing both machine learning models, we
synthesized three ANN-repurposed polyMA-Ala-OMe, polyNHSMA, and
polyDMVSA brushes and three SVR-designed polyMVC, PAA-EDLP, and

PAA-DAES brushes for discovering their new antifouling property by
SPR. The resultant polymer brushes can achieve very low protein
adsorption of 6.0/4.2 ng/cm2 on polyMA-Ala-OMe, 9.0/8.9 ng/cm2 on
polyNHSMA, 6.8/6.2 ng/cm? on polyDMVSA, 3.2/7.0 ng/cm? on pol-
yMVC, 9.0/0.0 ng/cm? on PAA-EDLP, and 0.0/4.0 ng/cm? on PAA-
DAES from undiluted human serum/plasma, respectively, thus vali-
dating the model prediction and design. This work provides a data-
driven computational workflow, built on a small benchmark dataset,
for exploring a wide range of compositional and structural spaces to
repurpose and design new antifouling materials and coatings beyond
polymer brushes.

It is worthy of adding additional remarks that the more relevant and
reliable parameters are incorporated into the machine-learning models,
the higher accurate prediction is expected. For antifouling materials/
coatings, many intrinsic properties (e.g. carbon spacer lengths, molec-
ular moieties, hydrophilic/hydrophobic ratio, electrostatic in-
teractions), surface properties (e.g., grafting density, film thickness and
roughness, chain conformation, molecular weight), and experimental
conditions (e.g., temperature, pH, salt conditions) are contributed to
antifouling properties of surface coatings to some extents. Here, we
mainly focus on (i) the structural-based design and (ii) the fundamental
structure-property relationship of antifouling materials/coatings for
several reasons: (1) Intrinsic physicochemical properties are the most
important structural information for any material design. More impor-
tantly, these intrinsic properties can be qualified by different molecular
descriptors by modern computational chemistry (e.g., simplest atom
types, functional groups, fragment counts, topological and geometrical
features); (2) Surface properties are also very critical for antifouling
performance of surface coatings. Among them, film thickness (coating
thickness) has been well demonstrated its importance and effects on
antifouling property and this property has also been often reported in
literature [46,60]. Other surface coating properties, e.g., surface
roughness, grafting molecular weight, chain conformation, were only
reported by very few studies or systems, thus we can not use these
incomplete properties to construct a consistent dataset for machine-
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learning; (3) Similarly, since experimental conditions are varied greatly
for different antifouling systems, they are not suitable to derive the
fundamental structure-property relationship of given materials. Thus,
we apply “the best we can do with the available data we have” strategy
to extract all possible composition-structure-performance information
from the limited existing data for achieving the state-of-art materials
design.

4. Materials and methods
4.1. Machine learning section

4.1.1. Dataset

We collected 94 protein adsorption data from undiluted human
serum or plasma and the corresponding film thickness (Table S1) of 14
zwitterionic-based and 14 hydrophilic-based polymer brushes (Fig. 2)
from different literatures. The dataset containing all the 94 protein
adsorption data were used to constructed descriptor-based ANN model.
The dataset possessing 91 protein adsorption data after removing data
points of entry H13-01, H14-01 and H14-02 (Table S1) was used to
build functional group-based SVR model.

4.1.2. Molecule drawing and descriptor calculation

The molecular structures of all polymer brushes were sketched using
ChembioDraw software. The geometrical optimizations of these drawn
molecular structures were carried out using Chem3D via Merck Molec-
ular Fore Field (MMFF94) with steepest descent algorithm. Three energy
descriptors (intramolecular charge-charge, charge-dipole, and dipo-
le-dipole energies) for these compounds were computed in the
geometrical optimization process. The molecular descriptors for the 28
structures were calculated using alvaDesc 1.0.8 software (https://www.
alvascience.com/alvadesc).

4.1.3. Variable reduction for machine-learning models

To reduce the high dimensional data for machine-learning models,
three-step procedures of variable reduction were performed to reduce
the number of variables for both ANN and SVR models. To select de-
scriptors for ANN model, molecular descriptors from alvaDesc software
with zero variance or near zero variance were firstly removed, giving
rise to 108 variables (104 molecular descriptors, three energy de-
scriptors, and film thickness). Followed by Pearson analysis, variables
with absolute correlation coefficient>0.6 were removed, leading to 14
variables. Then, random forest algorithm was implemented to find the
variables with key contribution to surface resistance/adsorption ability
of polymer brushes, resulting in 8 variables (6 molecular descriptors, 1
energy descriptor, and film thickness) for ANN model.

To obtain specific functional groups for SVR model, firstly, we sta-
tistically analyzed the correlation between a pool of functional group-
based and atom-centered molecular descriptors and removed redun-
dant descriptors by taking care of multicollinearity between the de-
scriptors, causing 29 molecular descriptors. Then, factor analysis [79]
was carried out to generate 8 explicit functional groups which can
summarize the entire cluster of 29 resultant molecular descriptors using
MATLAB software. Further, random forest algorithm was performed to
screen 9 variables (8 functional groups and film thickness) which highly
correlated with the antifouling property/protein adsorption ability of
polymer brushes.

4.1.4. Training and validation of machine-learning models

In general, artificial neural network (ANN), as a predictive model, is
designed by several layered structures, each layer containing input/
output neurons being functioned and weighted by the linear/nonlinear
optimization algorithms (e.g., Relu, tanh, sigmoid, or softmax). Addi-
tionally, for each layer, a bias term is added to the weighted sum of the
input neurons for adjusting the output neurons. Throughout the itera-
tion process, the input/output neurons will be optimized and weighted
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to achieve the desirable outcome. In this work, the training of a five-
layer ANN model was implemented in keras and TensorFlow modulus
of Python 3.6. The dataset was randomly divided into training set (70%)
and test set (30%). The training set was used to training the model based
on the designed neural network, while the test set was applied to vali-
date the predictivity of the model. This ANN model consists of an input
layer containing information of the resulting 8 variables (6 molecular
descriptors, 1 energy descriptor, and film thickness) and an output layer
which is a prediction of antifouling property of polymer brushes. Three
“dense” hidden layers with 64, 96, and 64 neurons were constructed to
connect the input and the output layers through every node in the
previous layer weighted connecting with every node in the next layer.
The activation functions applied in these layers are rectified linear unit
(Relu), hyperbolic tangent (tanh), and rectified linear unit (Relu) func-
tions, respectively. The inputs (X;) of the resulting 8 descriptors (6
molecular descriptors, 1 energy descriptor, and film thickness) are
neurons, followed by the weighted sum of inputs along with the bias
term x3w; + XaWwy + -+ + Xgwg + bias. The summation of resulting
outputs was subject to the activation function of Relu in the second
layer, then the weighted outputs of the second layer were fed into
activation function of tanh in the third layer, and the weighted outputs
of the third layer were functioned using activation function of Relu in
the fourth layer. The predicted log(PAA) were obtained through
weighted summation of outputs of the fourth layer with the addition of
bias term. Before training of the model, the weights between neurons of
previous layer and neurons of next layer were randomly assigned using
He normal method. During the training process, the weights between
each node of previous layer and each node of next layer were optimized.
Mean absolute errors (MAE) between the experimental log(PAA) and the
predicted log(PAA) for training and test sets were used to evaluate the
convergence of the model. To this end, the deep-learning methods
including automatic learning-rate reduction and early stopping were
implemented to avoid overfitting. When MAE of both training set and
test set reaches to their convergence, the model was regarded as the
optimal model.

The training of a SVR model used random model initiation and the
dataset was randomly split into training set and test set at the ratio of
7:3. The training of functional group-based SVR model was carried out
through two-step grid searching on hyper parameters of C and gamma
using RBF kernel. Loose grid searching was firstly carried out from 10
to 106 for both C and gamma, resulting in optimal C of 10 and gamma of
1.0. Then, fine grid searching was performed from 1.0 to 100 for C and
from 0.1 to 10 for gamma, giving rise to optimal C of 2.78 and gamma of
0.77. In the training process, MAE between the experimental log(PAA)
and the predicted log(PAA) for training and test sets was used to esti-
mate the convergence of the model.

In this work, we calculated chemical applicability domain using
leverage approach based on HAT values of the descriptors’ matrix di-
agonal in a regression model to evaluate the robustness of the two
machine-learning models. X outliers were characterized by a HAT
threshold, while Y outliers were determined by the cutoff values of three
times standardized residual. The cutoff of leverage values is 3*(k + 1)/n,
where k is the number of independent variables and n is the size of
dataset. Testing samples within the cutoff value of leverage and within 3
times standardized residuals were considered in the applicability
domain of the machine-learning models.

4.1.5. Evaluation of machine-learning models

The reliability and predictive ability of the ANN and SVR models
were evaluated using squared correlation coefficient (Q%,), root-mean-
square error (RMSEcy) from leave-five-out cross validation as well as
squared correlation coefficient (Q2,) and root-mean-square error
(RMSE,,;) from external validation. The following equations are used to
quantify Q%, (eq. (1)), RMSEcy(eq. (2)), Q%, (eq. (3)) and RMSE,y (eq.
(4):
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Where y?% and 7 rd in equation (1) and (2) are (log(PAA)) of experi-
mental and predicted values of training samples and y°* is the average
value of log(PAA) from experiment for training set, respectively, yl-“bs and

¥ redec in equation (3) and (4) are experimental and predicted log(PAA)

values of testing samples, respectively and y°* is the average value of log
(RAA) from experiment for test set.

5. Experimental section
5.1. Materials

Methacryloyl chloride, dichloromethane, L-alanine methyl ester
hydrochloride, triethylamine, sodium bicarbonate (NaHCO3), sodium
chloride (NaCl), anhydrous magnesium sulfate (MgSO4), potassium
carbonate, acetonitrile (MeCN), dimethylformamide (DMF), methyl
vinylcarbinol (MVC), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC), 4-dimethylaminopyridine (DMAP), 4-vinlybenzyl chloride,
acrylic acid, diethyl ether, ethanol, 2-(dimethylamino)ethanol, 1, 3-pro-
pane sultone, SPR chip (Au), sodium bromoalkylsulfonate, ethyl acetate,
n-hexane, MegTREN, cuprous bromide (CuBr), 2-morpholinoethyl
methacrylate and phosphate buffer saline (PBS) were purchased from
Sigma-Aldrich Co. Ltd. 100% human blood plasma and serum were
obtained from BioChemed Service (Winchester, VA). Water was purified
by a Millipore water purification system with a minimum resistivity of
18.0 MQ cm. All other chemicals or biological culture were used as
purchased without any purification.

5.2. Synthesis of N-methacryloyl-alanine methyl ester (MA-Ala-OMe)

MA-Ala-OMe was synthesized and purified by according to the pre-
vious literature [76]. Briefly, methacryloyl chloride (3.15 g) was added
to a mixture of L-alanine methyl ester hydrochloride (4 g) and trie-
thylamine (6 mL) in dichloromethane (150 mL) at 0 °C. After stirring at
room temperature overnight, the resulting mixture was washed with 1 M
HCI (100 mL), a saturated NaHCO3 solution (100 mL) and a saturated
NaCl solution (100 mL). The organic layer was dried over anhydrous
MgSOy, filtered, and then concentrated by rotary evaporation. The ob-
tained MA-Ala-OMe was purified using column chromatography (ethyl
acetate/n-hexane = 1/5) with a yield of about 65%. 'H NMR (D,0; 300
MHz): -CHg, 1.44 ~ 1.98, 6H; -COOCH3;, 3.55 ~ 3.77, 3H; -CH-, 4.50 ~
4.65, 1H; =CHy, 5.38 ~ 5.75, 2H; -CONH-, 6.30 ~ 6.36, 1H)

5.3. Synthesis of 3-(dimethyl-(4-vinylbenzyl) ammonio) propyl sulfonate
(DMVSA)

Potassium carbonate (27.6 g, 0.20 mol), 4-vinlybenzyl chloride
(15.3 g, 0.10 mol) and dimethylamine solution (10.0 mL, 0.90 g/ml)
were dissolved in 100 machine learning of ethanol in a flask. After
degassed by nitrogen flow, the flask was heated to 50 °C for 24 h with
magnetic stirring. The crude product, obtained by suction filtration and
rotary evaporation in turn, was purified by column chromatography and

10
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distillation in vacuum to get a transparent liquid. The transparent liquid
(6.0 g, 37.03 mmol) and 1, 3-propane sultone (4.5 g, 36.88 mmol) were
dissolved in 160 machine learning of dry acetonitrile in a flask. Then, the
flask was heated to 50 °C for 48 h under magnetic stirring. A white
precipitate, DMVSA monomer, was obtained by suction filtration and
dry in a vacuum oven at room temperature. 1 NMR (D20; 300 MHz):
—CHj-, 2.25 ~ 3.30, 6H; -NCHj3, 2.90 ~ 2.96, 6H; -CH2-, 4.40 ~ 4.43,
2H; CHy = CH-, 5.36 ~ 6.80; -CgH4, 7.56 ~ 8.00, 4H.

5.4. Synthesis of 3-((2-hydroxyethyl)dimethylammonio)propanoate
(EDLP)

EDLP was synthesized by coupling equivalent amounts of acrylic
acid and 2-(dimethylamino)ethanol under vigorous stirring. In brief, 2-
(dimethylamino)ethanol was added dropwise into acrylic acid solution
using a simple ice-water bath. After approximately 30 min, the viscous
mixture was further reacted at room temperature for 3 h. The resultant
was crushed and washed with a small portion of MeCN and dried under
reduced pressure (white powder; yielding: ~90%). IH NMR (D20; 300
MHz): (-CHg-, 2.50 ~ 2.55, 2H; -NCH3, 3.00, 6H; —-CHj-, 3.33 ~ 3.35,
2H; -CHj,-, 3.45 ~ 3.50, 2H; —-CH,-, 3.86 ~ 3.90, 2H; —OH, 4.24 ~ 4.30,
1H).

5.5. Synthesis of 2-((2-hydroxyethyl)dimethylammonio)ethane-1-
sulfonate (DAES)

DAES was synthesized by a substitution reaction. Briefly, sodium
bromoalkylsulfonate (25.0 mmol) was added into 100 mL of DMF in a
250 mL flask. After heated to 70 °C for 1 h, the quadruple molar-ratio 2-
(dimethylamino)ethanol was added to the mixture and stirred for
another 48 h. The resultant white powders were obtained by filtering the
suspension, followed by dimethylformamide and diethyl ether washing.
HNMR (D20; 300 MHz): -NCH3g, 3.22, 6H; —CHj, 3.45-3.48, 2H; ~CH,,
3.55-3.57, 2H; —-CHj,, 3.79-3.82, 2H; —OCH>, 4.06—4.09, 2H.

5.6. Grafting polymer brushes onto SPR chip

Surface plasma resonance (SPR) chip was rinsed with ethanol,
acetone and water sequentially, later treated under UV ozone for 20 min,
washed by DI-water and finally air-dried. Subsequently, an initiator self-
assembled monolayer (SAM) was anchored onto the SPR chips by
soaking SPR chips into 1 mM o-mercaptoundecyl bromoisobutyrate
(initiator) ethanol solution at room temperature overnight. Secondly,
one tube containing monomer (0.6 ~ 1.2 g), Me¢TREN (40 pL), and
degassed methanol: water (1:1, v%) solution was transferred to the
second tube containing SPR gold chip coated with immobilized initiators
and CuBr (20 mg), undergoing SI-ATRP reaction at room temperature.
After the controlled reaction time, the reaction was stopped by exposing
to air. In order to remove unreacted monomers or unbounded polymer,
the chips were soaked in PBS buffer overnight. Polymer brushes with
various thicknesses were controlled by tuning the polymerization time
(6 ~ 24 h). Since SPR chip (Au/silicate layers) is quite tedious to etch
directly, the corresponding grafted polymer brushes are hard to obtain.
Therefore, to characterize the molecular weight and polymerization
distribution index (PDI) for each polymer brush, we also added 0.1 mM
dissociative sulfhydryl modified initiators (®-mercaptoundecyl bro-
moisobutyrate) into solution to obtain free single polymer chains. The
free polymer chains were expected to possess similar molecular weight
and PDI performances with polymer brushes after undergoing a same
polymerization environment.

Due to the unique structure of polyzwitterions, PAA-EDLP and PAA-
DAES brushes were synthesized by post-modification of the synthetic
PAA (poly(acrylic acid)) brushes. For instance, after preparing the PAA
brushes on SPR chips, the SPR substrates were washed and further
immersed into 10 mL of aqueous solution containing EDLP (or DAES;
2.0 g) and EDC/DMAP (1.5 g/1.8 g). The active pair groups of hydroxyl
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and carboxyl would undergo a condensation reaction, thus the target
structural polymer brushes would be prepared (Figure S2).

5.7. Protein adsorption by SPR measurement

A customized SPR sensor based on wavelength interrogation was
used to determine protein adsorption performance on polymer brushes
with different thicknesses. The solution (undiluted human protein so-
lution or PBS buffer) was flowed through 4 channels under the pressure
of peristaltic pump. Specifically, the SPR chip coated with polymer
brushes was connected to the surface of prism. A normal baseline signal
was measured by flowing PBS solution through the detector of sensor.
Each protein solution, i.e. 100% human blood plasma or serum, was
independently flowed through channels for ~ 10 min, and SPR wave-
length would shift if any protein adsorption happened. Usually, due to
the nonspecific adhesion of the protein, the wavelength pattern would
generate an ascending “step”. After that, the protein solution was
replaced by PBS solution again to remove the unbound or slightly
bounded protein on the prism surface and maintained > 10 min. The
flow rate of solutions was controlled at 0.05 mL-min~*. The wavelength
shift, mainly derives from the difference value between the PBS base-
lines obtained before and after corresponding protein solution flow. It
should be pointed out that a 1 nm SPR wavelength shift at 750 nm
corresponds to ~15 ng-cm 2 protein adsorption according to the pre-
vious reported strategy [80].

5.8. Gel permeation chromatography

We also performed parallel synthesis and characterization to qualify
the molecular weight and PDI of polymer in solution. The polymers
produced from the solution ATRP method is often used to roughly mimic
the polymers grafted on the surface via the SIFATRP method under the
same condition. Gel permeation chromatography (GPC) analysis was
characterized on a Tosoh EcoSEC HLC-8320 GPC using
chromatographic-level THF as an eluent. Dissociative polymers extrac-
ted from SI-ATRP solutions were dialyzed into pure water for at least 3
days to remove unreacted monomer and cupric salts. The obtained
polymers were subsequently dissolved into chromatographic-level THF
and further filtered by using a 0.2 pm PTFE syringe filter. GPC traces
showed the low distribution of PDI of 1.02 and molecular weight of
6452 g/mol for polyDMVSA and PDI of 1.04 and molecular weight of
4692 g/mol for polyMVC, indicating good control of the final product
molecular characteristics (Table S8).
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