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A B S T R A C T   

Rational development of antifouling materials is of great importance for fundamental research and real-world 
applications. However, current experimental designs and computational modelings of antifouling materials 
still retain empirical flavor due to the data complexity of polymers and their associated structures/properties. In 
this work, we developed a data-driven, machine learning workflow, in combination with an in-house benchmark 
dataset of antifouling polymer brushes, to discover the potential antifouling property of existing polymer brushes 
using the descriptor-based artificial neural network (ANN) model and design the new antifouling polymer 
brushes using the group-based supporting vector regression (SVR) model. The resultant two machine learning 
models not only demonstrated their reliability, predictivity, and applicability, but also established the compo
sition-structure–property relationships using both descriptors and functional groups. Finally, we synthesized 
different repurposed and newly designed polymer brushes, as predicted by ANN and SVR models, all of which 
exhibited excellent surface resistance to protein adsorption from undiluted human blood serum and plasma at 
optimal film thicknesses. Overall, our data-driven machine learning models can be used as an intelligent tool for 
determining, repurposing, and designing new superior antifouling materials beyond polymer brushes.   

1. Introduction 

Driven mostly by the Materials Genome Initiative, data-driven ma
chine learning approaches have recently expanded their uses from 
traditional research domains (i.e., drug discovery [1–3], image recog
nition [4,5], disease diagnose [6,7], transportation analysis [8,9]) to 
materials informatics [10], because they have demonstrated the 
powerful data-mining ability to (i) extract the statistically significant 
composition/structure–property relationships from large materials 
datasets and (ii) accelerate materials design, discovery, and repurpose. 
These machine learning approaches allow to rapidly predict the mate
rials properties of interest or design new materials with desirable 
properties, based purely on existing data rather than by “try-and-error” 
experimentation or computations/simulations. Further, deep learning 
from the reliable data sources can derive the previously undiscovered 
correlations between material properties in a qualitative or quantitative 
way. Most of machine learning studies in materials science have focused 

on inorganic or solid materials [11] (e.g., metals [12,13], ceramics 
[14,15], zeolites [16,17], metal–organic frameworks [18,19], nano
particles [20,21], and semiconductors [22,23]) to evaluate and predict 
their specific properties (electronic/ionic conductivity [24,25], catalytic 
activity [26,27], photoluminescence [28,29], thermodynamics [30,31], 
and mechanical properties [32,33]). These studies have demonstrated 
their promising impacts on the acceleration of new materials design, the 
reduction of cost, time, efforts, and failure risks, and the improved un
derstanding of the composition-structure–property relationship of a 
given class of materials. On the other hand, different from inorganic or 
solid materials with well-defined structures and reliable datasets, ma
chine learning for soft materials with desirable functions and properties 
is still at infant stage. It still remains a great challenge to use machine 
learning to establish qualitative or quantitative rules for rationally 
assessing and designing functional soft materials (e.g. polymers [10], 
elastomers [34], and hydrogels [35]), largely because these soft mate
rials have very diverse and flexible structures, making them difficult to 
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generate consistent results for a given property. Thus, establishing a 
reliable dataset containing high-quality data for both structures and 
properties of soft materials is a first and important step for developing 
advanced machine learning approaches for materials design and 
assessment. 

Antifouling materials/coatings are critical for many model systems 
and practical applications, including implanted devices [36], marine 
coatings/hulls [37], biosensors [38], membrane separation [39], and 
drug/gene delivery [40,41]. A wide variety of antifouling materials/ 
coatings have been developed to resist the unwanted adsorption of 
proteins, cells, bacteria, and organisms to some extents. The resultant 
antifouling efficiency of a given surface is strongly depended on not only 
physicochemical characteristics of materials itself (e.g. carbon spacer 
lengths [42], molecular moieties [43], hydrophilic/hydrophobic ratio 
[44], electrostatic repulsion [44]), but also surface characteristics (e.g. 
grafting density43, [45], film thickness and roughness [46,47], chain 
conformation [48]). However, current design of antifouling coatings still 
retains empirical flavor and is driven by chemical/materials intuition, 
trial-and-error, and similar materials compatibility. Alternative to 
empirical experiments, while molecular simulations can provide atomic 
details of structural, dynamics, and free energy properties for the design 
and evaluation of antifouling materials/coatings [43,49–52], the “one- 
at-a-time” and computational expensive nature of molecular simulations 
only allows to study individual antifouling materials system, thus lack
ing a data-driven capacity for rapid prediction and design of a large 
amount of antifouling materials from a given database. 

To date, very few machine learning studies of antifouling materials 
have been reported. Among them, most of them simply applied the 
multiple linear regression (MLR) method to establish a qualitative 
relationship between several selected physicochemical properties and 
antifouling results, e.g., between hydrogen bonds, branching ratios, and 
constitutional diversity of chalcone derivatives and antifouling activity 
against various micro- and macro-fouling species [53], between HOMO 
state, L-H energy, and molar refractivity of acylamino compounds and 
their antibacterial activity of E. coli [54], and between the polarizability 
indices, mass, and van der Waals volume of polysiloxane-based coatings 
and the fouling release activity of fouling organisms (bacteria, algae, 
and barnacles) [55]. Since these studies only used a single antifouling 
polymer system with some experimental variations to generate the very 
limited structure–property data, they were lack of a data-driven ability 
to derive a general structure–property prediction and assessment for 
other antifouling polymers. Until recently, three machine learning 
studies including ours have reported to use the same dataset of self- 
assembled monolayers (SAMs) from the Whitesides group [56] to 
construct different QSAR models of (i) descriptor-based linear (MLREM) 
and non-linear (BRANNGP and BRANNLP) models [57], (ii) descriptor- 
based artificial neural network (ANN) models [58], and (iii) functional 
group-based ANN models for quantitatively evaluating protein adsorp
tion on both existing and newly designed SAMs [59]. Due to the simple 
synthesis, well-controlled surface structures, and a large diversity of 
surface chemistry of SAMs, these studies have demonstrated SAMs as an 
ideal model platform, enabling to collect reliable protein adsorption/ 
resistance data in a uniform and controlled manner and establish 
different robust machine learning models for the design and assessment 
purposes. 

Surprisingly, there is a remarkably lack of machine learning studies 
of antifouling polymeric coatings, not even mention to the experimental 
verification of computationally designed antifouling materials. Some 
major barriers still exist: (i) there are no any existing antifouling poly
mer databases available at least in the public domain, thus it requires the 
researchers to collect experimental results from literature to construct 
antifouling polymer databases; (ii) due to the structural complexity/ 
diversity of polymers and their coatings, data inconsistence is additional 
concern, and even the same antifouling polymers could perform differ
ently at different laboratories due to experimental conditions, chemical/ 
materials purity, and different synthesis routes. To overcome these 

barriers, we are the first to construct an antifouling polymer brush 
dataset from literatures, then use this dataset to develop two distinct 
machine learning approaches for discovering the antifouling potentials 
of any existing polymer brush by the descriptor-based artificial neural 
network (ANN) model and designing the new antifouling polymer 
brushes by the group-based supporting vector regression (SVR) model, 
and finally conduct polymer synthesis and brush coatings to validate the 
antifouling performance of both repurposed and newly designed poly
mer brushes using protein assays. As a result, both models provide the 
sequence-structure–property relationship of antifouling polymer 
brushes at gross and fragmental levels. As guided by the both machine 
learning models, we synthesized three repurposed polymer brushes and 
three newly designed polymer brushes, all of which exhibited excellent 
surface resistance to protein adsorption from undiluted human blood 
serum and plasma, highly consistent with the predicted values from the 
models. This proof-of-concept study provides the starting point, from 
dataset construction of antifouling polymer brushes to development of 
machine learning models, for advancing the discovery of new anti
fouling materials and coatings by the extensive screening of the spatial, 
compositional, and interaction spaces of polymers. 

2. Results and discussion 

Overall, Fig. 1 outlines a four-step analytic workflow of this machine- 
learning study. (1) First, we started with data screening and collection of 
antifouling polymer brushes from literatures by carefully removing any 
redundant and inconsistent data (Fig. 1a). This is the first dataset for 
antifouling polymer brushes, which will be used as a reliable source to 
develop a machine-learning models for the structural-based screen and 
design of next-generation antifouling materials. (2) The dataset con
taining 28 polymer brushes with a wide variety of chemical structures 
allows to extensively explore the spatial, compositional, and interaction 
spaces of both polymers themselves and their coatings, in which mo
lecular descriptors will be generated and identified to present compo
nent and structure features of antifouling polymer brushes (Fig. 1b). (3) 
To maximize the great potentials of dataset, we developed two different 
machine-learning models of (i) ANN model with gross-level, property- 
based descriptors for repurposing/discovering the existing polymer 
brushes with antifouling properties and (ii) SVR model with fragmental- 
level, group-based descriptors for designing new antifouling polymer 
brushes (Fig. 1c). The resulting models were able to determine the 
important molecular descriptors and functional groups critical for sur
face resistance to proteins. (4) Finally, as guided by model prediction, 
we synthesized four different polymer brushes for assessing their anti
fouling property against protein adsorption from undiluted human 
blood serum and plasma using surface plasma resonance (SPR) (Fig. 1d). 
Among them, the three brushes were selected from the existing litera
ture (not from the dataset) for discovering their new antifouling prop
erty, while the other two brushes were newly designed with the 
predicted antifouling property. SPR results showed that these predicted 
polymer brushes exhibited excellent surface resistance to protein 
adsorption as evidenced by a small amount of adsorbed proteins 
(0.0–9.0 ng/cm2) on the polymer brushes, confirming the model pre
dictions. This work demonstrated data-driven, machine-learning 
models, built on a reliable dataset of antifouling polymer brushes, for 
screening, discovering, and designing antifouling materials/coatings 
and beyond. 

2.1. Dataset construction of antifouling polymer brushes from literature 

To construct a reliable benchmarking dataset, we selected two 
different types of zwitterionic and hydrophilic polymer brushes, all of 
which demonstrated their antifouling property against protein adsorp
tion from undiluted human serum or plasma, rather than from single or 
diluted protein solutions. Surprisingly, a very limited number of anti
fouling polymer brushes have been reported after challenging with 
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undiluted human serum or plasma. As a result, the in-house dataset 
contained 14 zwitterionic and 14 hydrophilic polymer brushes, whose 
monomer structures were summarized in Fig. 2. It can be seen that both 

zwitterionic and hydrophilic monomers possessed a wide combination 
of functional groups of acrylates, acrylamides, carboxylates, sulfonates, 
betaines, amino acids, hydroxyls, amides, olefins, peptoids, aromatics, 

Fig. 1. Schematic workflow of four-step machine-learning models for the design and repurposing of antifouling polymer brushes. (a) Construction of data 
repository of antifouling polymer brushes (APBs) from literatures, (b) Compositional and structural representations of antifouling polymer brushes, (c) Development 
of artificial neural network (ANN) and supporting vector regression (SVR) models for repurposing and designing antifouling polymer brushes, and (d) experimental 
validation of computationally screened/designed antifouling polymer brushes by surface plasma resonance (SPR). 

Fig. 2. A summary of monomer structures used for (a) 14 zwitterionic and (b) 14 hydrophilic polymer brushes collected from literature.  
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carbon space lengths, and a common double bond at the one end for 
polymerization, as well as different chain architectures from linear to 
branched structures. For each polymer brush, protein adsorption 
amounts (ng/cm2) from undiluted human plasma or serum at different 
film thicknesses were also collected, leading to a total of 94 protein 
adsorption data points (Table S1), in which the brush thickness effect on 
protein adsorption was also considered as one of descriptors in machine 
learning models. Next, these 94 data points were used to construct gross- 
level, descriptor-based ANN models for discovering and repurposing the 
new antifouling property of existing polymer brushes, while 91 data 
points by removing the entry of H13-01, H14-01, and H14-02 were used 
to build fragmental-level, group-based SVR models for designing new 
antifouling polymer brushes. 

2.2. Descriptor-Based ANN models for repurposing the new antifouling 
property of existing polymer brushes 

For molecular descriptor-based ANN model, structural and compo
sitional representations of antifouling polymer brushes were encoded 
with 104 molecular descriptors (constitutional, topological, connectiv
ity indices, geometrical indices, functional groups, etc), 3 energy de
scriptors (charge-charge, charge-dipole, and dipole–dipole energies), 
and film thickness, leading to a total of 108 descriptors. To avoid the 
overfitting of the ANN model, we conducted the two sequential ap
proaches to reduce the dimension of highly correlated descriptors. First, 
we applied Pearson analysis to quantify the independence between de
scriptors, where any descriptor with paired correlation coefficient of >
0.6 was removed, finally reducing to 14 descriptors (film thickness, 
charge-charge energy, charge-dipole energy, Mi, RBF, O%, nR = Cs, 
nRCOOH, nRCONH2, nOHs, C-005, C-007, H-051, and ALOGP) with 
relatively high independence (Fig. 3a). Next, Random Forest was carried 
out to determine the importance of the resultant 14 descriptors for their 
contributions to protein adsorption ability on polymer brushes. Fig. 3b 
showed that only 8 out of 14 descriptors (film thickness, Mi, ALOGP, 
RBF, O%, charge-charge energy, C-005, and C-007) had an important 
score of > 0.01 with most-contributing features. The resultant 8 de
scriptors were detailed in Table 1. 

With the resultant 8 descriptors, we designed a five-layer artificial 

neural networks to train logarithmic protein adsorption amount (log 
(PAA)) as a function of the 8 descriptors, starting with the first input 
layer containing 8 descriptors, followed by the second, third, and fourth 
layers containing respective 64, 96, and 64 neurons, ending with an 
objective function of log(PAA) on polymer brushes. During the training 
procedure, Z03-01 and H07-01 (Table S1) were identified as outliers 
and thus were removed from the dataset, resulting in a total of 92 data 
points in the dataset. The dataset was randomly splited into a training 
set and a test set at the ratio of 7:3, in which training set was used to train 
the protein adsorption of polymer brushes in relation to the 8 descriptors 
in a ANN model, while test set was applied to evaluate the predictive 
ability of the ANN model. Fig. 3c shows the training epochs evolution of 
the convergence of mean absolute error (MAE) of log(PAA) for training 
set and test set, indicative of training performance of the ANN model. At 
a first glance, MAE curves for both training and test sets were converged 
rapidly at very early training of 35 epochs, indicating that the ANN 
model is well trained with minimal overfitting risks. Further, we sta
tistically counted the distribution of absolute values of prediction errors 
of both training and test sets. As shown in Fig. 3d, all errors of training 

Fig. 3. Compositional and structural representations of antifouling polymer brushes for descriptor-based ANN model. (a) Correlation matrix between any 
two pair of decriptors from Pearson analysis. (b) Importance score ranking of 8 descriptors from random forest. (c) Training epochs evolution of MAE and (d) relative 
errors of predicted values with respect to experimental values of log(PAA) for both training and test sets. (e) Correlation between predicted and experimental log 
(PAA) values for both training and test sets by leave-five-out cross validation and external validation. (f) Applicability domain of training and test sets using William 
plot with h*=0.422. 

Table 1 
Description of 8 descriptors obtained from random forest and used in the ANN 
model.  

No. Descriptors Detail Description Type 

1 Thickness Film thickness Experimental 
condition 

2 Mi Mean first ionization potential 
(scaled on Carbon atom) 

Constitutional 
indices 

3 ALOGP Ghose-Crippen octanol–water 
partition coeff. (logP) 

Molecular 
properties 

4 RBF Rotatable bond fraction Constitutional 
indices 

5 O% Percentage of O atoms Constitutional 
indices 

6 charge- 
charge 

Intramolecular charge-charge 
energy of the molecule 

Calculated energy 

7 C-005 CH3X Atom-centered 
fragments 

8 C-007 CH2X2 Atom-centered 
fragments  
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and test sets were less than 1.0 and most of predictions errors were 
smaller than 0.5, confirming the good data fitting and training perfor
mance of the ANN model for both training and test sets. 

Different approaches were also conducted to validate the ANN model 
from different angles. Leave-five-out cross validation and externel vali
dation were performed to statistically evaluate the reliability and pre
dictivity of the ANN model. As shown in Table 2, leave-five-out cross 
validation achieved QCV

2 = 0.86 and RMSECV = 0.11 after five iterations 
on ramdonly selected training set, while external validation of test set 
produced Qext

2 = 0.81 and RMSEext = 0.20, both indicating high reli
ability and predictivity of the ANN model. Consistently, a plot of pre
dicted log(PAA) versus experimental ones for both training and test sets 
gave an r2 of 0.91 and 0.84, respectively (Fig. 3e), again confirming the 
high predictive accuracy of the ANN model. Furthermore, Williams plot 
was used to measure the applicable domain (AD) of chemical structures 
for the ANN model in terms of leverage values against the standardized 
residuals. Fig. 3f showed that all data points in training and test sets had 
a h value smaller than h* = 0.422 and standardized residuals of <3, 
indicating that (i) all molecules present inside AD of chemical structures 
and (ii) the predicted values for all molecules can be extrapolated using 
the ANN model. 

To better understand the structure-antifouling property relationship 
of antifouling polymer brushes, we performed Bayesian statistics to 
quantify the contribution of 7 descriptors to protein adsorption capacity 
(i.e., fouling index) on polymer brushes. In Fig. 4, a positive fouling 
index indicates that a descriptor promotes protein adsorption on poly
mer brushes, while a negative index indicates otherwise for resisting 
protein adsorption. Among 7 descriptors, four descriptors of charge- 
charge energy, Mi, C-005, and C-007 exhibited strong protein resis
tance property as evidenced by very high negative fouling indexes of 
98–100%, while the other three of RBF (78.7%), O% (73.6%), and 
ALOGP (97.9%) contributed significantly to protein adsorption. The co- 
presence of charge-charge energy and C-005 mainly encodes the zwit
terionic groups of polymer brushes, which will induce strong ionic 
surface hydration that forms a physical barrier to prevent protein 
adsorption. Since Mi descriptor presents the first scaled ionization po
tential relative to carbon atom, it generally is existed in the polar/hy
drophilic functional groups involving N and O atoms, which serve as 
hydrogen acceptors to form hydrogen bonds between polymer brushes 
and water molecules, thus contributing to protein resistance. C-007 
(CH2X2) is strongly associated with the backbone of polymer chains that 
mainly function as mechanical support, rather than hydrophobic moi
ety, to retain polymer brush conformations for the enhanced protein 
resistance. In contrast, RBF and ALOGP descriptors usually involves 
hydrophobic properties (e.g., CH3 group) that are known to associated 
with high protein adsorption. O% (percentage of oxygen atoms) is also 
identified as a significant descriptor for promoting protein adsorption, 
probably due to hydrogen bond donor effect. The fouling index of these 
descriptors can therefore be used as primary criteria to evaluate and 
design antifouling brushes. For instance, the zwitterionic, hydrogen 
bonding, and moderate mechanically strong descriptors enable to 
associate with water around them to form a tightly surface-bound water 
layer at polymer surface, which provides a strong barrier to prevent 
approaching proteins being adsorbed on the surface, consistent with the 
surface hydration theory [60]. 

2.3. Functional Group-Based SVR models for designing new antifouling 
polymer brushes 

Complement to the ANN model capable of discovering the new 
antifouling property of existing polymer brushes, we also constructed a 
functional group-based SVR model for designing new antifouling poly
mer brushes. As a different machine learning approach, we extracted 29 
important molecular descriptors to encode the most-contributing fea
tures of polymer brushes. Then, we implemented a factor analysis al
gorithm to convert 29 descriptors into the more physically meaningful 
functional groups. On the basis of the factor analysis of the eigenvalues 
and percentage of cumulative variance (%) on 29 descriptors, the first 8 
functional groups (Fig. 5a) possessed an eigenvalue of > 1 (Fig. 5b), 
93.44% structural variance of the 29 descriptors (Table S2), a com
munality value of > 0.5 (Table S3), and a rotated absolute regression 
coefficient of > 0.3 (Table S4). All of these characterizations indicate 
that the 8 functional groups are sufficient to interpret the compositional, 
structural, geometrical, and connectivity information of 29 descriptors. 
Next, we added film thickness to the 8 functional groups and reper
formed a random forest to confirm the important contributions of these 
9 factors to protein adsorption (Fig. 5c), which were further used in the 
SVR model. 

To prevent underfitting and overfitting of functional group-based 
SVR model, we firstly applied a grid searching algorithm to determine 
the optimal hyperparameters of C and gamma. In the training process, 
mean average error (MAE) was calculated to monitor the convergence of 
the model. Figure S1a shows the loose grid searching on optimal C of 10 
and gamma of 1.0 at global convergence, leading to the smallest MAE of 
0.48. Further, a fine grid searching was also implemented to optimize C 
and gamma values by searching in the grid from 1.0 to 100 for C and 
from 0.1 to 10 for gamma (Figure S1b), resulting in the optimal C of 
2.78 and gamma of 0.77 at the smallest MAE of 0.47. At the optimal C 
and gamma, the 8 functional groups and film thickness were then 
trained as inputs in response to log(PAA) of polymer brushes using SVR 
with RBF kernel. Similarly, the dataset was split randomly into training 
set and test set at the ratio of 7:3. Fig. 5d showed that (i) all absolute 
errors were less than 1.0 for both sets and (ii) 98% (training set) and 
81% (test set) errors were less than 0.5, indicating a good training 
performance of the SVR model for describing the relationship between 
protein adsorption and functional groups. As shown in Table 2, the 
leave-five-out cross valididation on the training set yielded QCV

2 = 0.96 
and RMSECV = 0.19, while external validation on the test set gave rise to 
Qext

2 = 0.79 and RMSEext = 0.45. Further, the correlation of predictions 

Table 2 
Cross- and external validations for descriptor-based ANN model and functional 
group-based SVR model.  

Model Validation Q2 RMSE 

Descriptor-based ANN model Leave-five-out cross 
validation  

0.86  0.11 

External Validation  0.81  0.20 
Functional group-based SVR 

model 
Leave-five-out cross 
validation  

0.96  0.19 

External Validation  0.79  0.45  

Fig. 4. Fouling index probability (%) of 7 descriptors used for predicting pro
tein resistance and protein adsorption ability on polymer brushes in the 
ANN model. 

Y. Liu et al.                                                                                                                                                                                                                                      



Chemical Engineering Journal 420 (2021) 129872

6

versus experimental log(PAA) showed r2 values of 0.97 for a training set 
and 0.83 for a test set (Fig. 5e). The consensus predictions are normally 
close to the top performance of all individual models for both cross 
validation and external validations, indicating the model stability, reli
ability, and predictivity. William plot in Fig. 5f showed that almost all of 
data point (except one) fall within the boundaries of h* < 0.468 and − 3 
< standardized residual <3. However, there was a data in training set 
outside the applicability domain, which presented hi value of 0.145 
smaller than the threshold h* value of 0.468. After removing this data 
point, the reliability and predictivity of the SVR model were not 
improved significantly, indicating that this data has no impact on the 
performance of the SVR model that is considered reliable. 

Different from descriptors and their associated fouling indexes, our 
factor analysis and Bayesian statistics identify 8 functional groups and 
film thickness as critical factors for contributing to protein adsorption/ 
resistance on any polymer brush (Fig. 6). These functional groups offer 
the much more straightforward chemical structures for a design pur
pose. Among them, functional groups of 2 (amino acid-based group), 3 
(sulfobetaine group), 4 (secondary amide group), 7 (carboxybetaine 
group), 8 (isopropanol alcohol-like group) exhibited the much higher 
probability of negative fouling indexes of 74.5–100%, indicating the 
strong association with protein resistance property. Since these func
tional groups possess either zwitterionic or hydrogen bonding moieties, 
it is not surprisingly that zwitterionic polymers strongly interact with 
water molecules via ionic solvation, while hydrophilic polymers (e.g. 
polyacrylamides or polyacrylates) associate with water molecules via 
hydrogen bonds, both of which produce a strong surface hydration layer 
to resist protein adsorption. In contrast, the group 5 (methylene group) 
showed a high positive fouling index of 89.8% and thus is considered as 
a fouling-induced group, consistent with experimental observation that 
proteins favor to be adsorbed on hydrophobic surfaces. It is sort of un
expected results that both groups of 1 and 6 were identified as 

contributors to protein adsorption. Group 1 containing a higher ratio of 
oxygen atoms that make a positive contribution to protein adsorption, 
consistent with the prediction of O% in the descriptor-based ANN 
model. Group 6 is terminated with –NH2 group that is readily charged in 
the acidic condition [61], which will induce protein adsorption on the 
charged surface. The functional group-based SVR model, combining 
with the predicted antifouling property of these functional groups, al
lows to design new superior antifouling brushes. 

Fig. 5. Compositional and structural representation of antifouling polymer brushes for functional group-based SVR model. (a) Molecular structures of 8 
specific functional groups from factor analysis. (b) Eigenvalues (blue) and percentage of cumulative variance (%) (pink) for 29 factors. (c) Importance score ranking 
of 8 functional groups and film thickness from random forest. (d) Absolute errors of predicted values with respect to experimental values of log(PAA) for both training 
and test sets. (e) Correlation between predicted and experimental log(PAA) values for both training and test sets by leave-five-out cross validation and external 
validation. (f) Applicability domain of training and test sets using William plot with h*=0.468. 

Fig. 6. Fouling index probability (%) of 8 functional groups for predicting 
protein resistance and protein adsorption ability on polymer brushes in the 
SVR model. 

Y. Liu et al.                                                                                                                                                                                                                                      



Chemical Engineering Journal 420 (2021) 129872

7

2.4. Experimental validation of protein adsorption on repurposed and new 
polymer brushes 

Based on the predictive relationship between descriptors and protein 
resistance of polymer brushes, we used the ANN model to predict the 
thickness-dependent protein adsorption from undiluted human serum or 
plasma on 6 existing polymer brushes of polyhSBMA-1 [62], 
polyhSBMA-2 [62], polyCBMA-1 [63], polyMPC [64], polyDMAEMA 
[65], and polyMSEA [65], whose monomer structures were showed in 
Fig. 7a. At a first glance for Fig. 7b and Table S5, for any polymer brush, 
there existed an optimal film thickness to achieve the lowest protein 
adsorption, i.e., too low or too high film thicknesses induced large 
protein adsorption to some extents. Specifically in Fig. 7c, the four 
zwitterionic polyhSBMA-1, polyhSBMA-2, polyCBMA-1 and polyMPC 
brushes, which possess the higher negative fouling indexes as contrib
uted by charge-charge energy, Mi, and –CH3 of betaine group (C-005) 
descriptors, achieved the protein adsorption of 1.41, 2.89, 2.46, and 
6.21 ng/cm [2], respectively, comparable to or better than a superlow 
fouling level (5 ng/cm2). PolyDMAEMA brushes, belonging to a poly
acrylamide family, showed a low fouling property of 11.05 ng/cm2 at 
50 nm, due to the presence of hydrogen bonds as reflected by RBF, O%, 
and ALOGP descriptors. As a counter example, polyMSEA brush with the 
higher positive fouling index of ALOGP and O% was predicted as a 
weaker antifouling surface, as evidenced by high protein adsorption of 
143.55 ng/cm2 even at an optimal film thickness of 10 nm, consistent 
with experimental results [65]. The ANN model indeed predicts the ef
fect of film thickness of polymer brushes on protein adsorption partic
ularly from undiluted blood plasma and serum. Consistently, collective 
experimental results have shown the optimal film thickness of polymer 
brushes to achieve the minimal protein adsorption at the low or super
low fouling levels (0.3–5 ng/cm2), including poly(HEAA) brush of 
10–40 nm [66], poly(AAEE) brush of 10–40 nm [67], poly(HEMA) brush 
of 20–30 nm [46], poly(VBIPS) brush of 27–33 nm [47], poly(CBMA) 
brush of 10–15 nm [68], poly(SBMA) brush of 5–12 nm [69], polyNAGA 
brush of 25–35 nm [52], polySerMA of 30–40 nm [70], polyOrnAA of 
11–12 nm [71], and polyLysAA of 11–12 nm [71]. Both the ANN model 
and experimental data suggest that at optimal film thicknesses, intra- 
and intermolecular associations between polymer chains are optimized 
to achieve high surface hydration for effectively preventing protein 

adsorption from the surface. 
Upon demonstrating the predictivity and accuracy of the descriptor- 

based ANN model for existing antifouling polymer brushes, we further 
applied the ANN model to screen and discover the potential antifouling 
property of 14 polymer brushes with other purposes and functions as 
selected from literature and summarized in Table S6. Among the 14 
polymer brushes, the 7 polymer brushes have been studied for other 
properties including hydrophilicity of polyDHMA [72], polyHTMA [73], 
and polyNMEMA [74], boron removal property of polyHAEM [75], 
thermo-responsive property of polyMA-Ala-OMe [76], bio-sensitivity of 
polyNHSMA [77], and adhesive property of polyDMVSA [78], but none 
of them has been reported antifouling property before. From a synthesis 
viewpoint, we selected and synthesized 3 monomers of MA-Ala-OMe, 
NHSMA, and DMVSA (Fig. 8a), followed by polymerization and graft
ing them onto gold substrate using surface-initiated ATRP. The resultant 
polymer brushes were then challenged by undiluted human serum and 
plasma for their surface resistance to protein adsorption using SPR as
says. SPR results in Fig. 8b showed that polyMA-Ala-OMe, polyNHSMA, 
and polyDMVSA brushes exhibited very low protein adsorption of 6.0/ 
4.2, 9.0/8.9, and 6.8/6.2 ng/cm [2] from undiluted human serum/ 
plasma, comparable to computationally predicted protein adsorption of 
11.55, 5.19, and 7.02 ng/cm2 on polyMA-Ala-OMe, polyNHSMA, and 
polyDMVSA, respectively. Clearly, the ANN model can indeed be used to 
screen existing polymer brushes and to discover their potential anti
fouling property if any. 

For a material design purpose, based on the predictive relationship 
between functional groups and corresponding protein resistance, we 
applied the SVR model to design the three molecules via a combination 
of different functional groups with negative fouling indexes. Specif
ically, we designed a methyl vinylcarbinol (MVC) monomer consisting 
of isopropanol-like (group 8) and vinyl groups, a 3-((2-hydroxyethyl)- 
dimethylammonio) propanoate (EDLP) monomer made of sulfobetaine 
(group 3), methylene (group 5), and hydroxyl groups, and a 2-((2- 
hydroxyethyl)-dimethylammonio) ethane-1-sulfonate (DAES) monomer 
made of carboxybetaine (group 7), methylene (group 5), and hydroxyl 
groups, respectively (Fig. 8c). Upon SI-ATRP to form polymer brushes on 
Au substrates, SPR spectra showed that the final adsorbed proteins from 
undiluted blood serum/plasma were 3.2/7.0 ng/cm2 on polyMVC, 9.0/ 
0.0 ng/cm2 on PAA-EDLP and 0.0/4.0 ng/cm2 on PAA-DAES (Fig. 8d), 

Fig. 7. Predicted dependence of film thickness of polymer brushes on protein adsorption by the descriptor-based ANN model. (a) Monomer structures used 
for synthesizing 6 antifouling polymer brushes (hSBMA-1, hSBMA-2, CBMA-1, MPC, DMAEMA, and MSEA). (b) Predicted protein adsorption at (b) different film 
thicknesses (nm) and (c) optimal film thickness (nm) of 6 polyhSBMA-1, polyhSBMA-2, polyCBMA-1, polyMPC, polyDMAEMA, and polyMSEA brushes. 
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in comparison with the SVR-predicted protein adsorption of 3.8–4.48 
ng/cm2 on polyMVC, 3.3–3.9 ng/cm2 on PAA-EDLP and 3.9–4.0 ng/cm2 

on PAA-DAES (Table S7). Both SPR and SVR results showed a consistent 
protein resistance capacity of polyMVC, PAA-EDLP and PAA-DAES, 
confirming the predictivity of the SVR model. It is not surprising to 
reveal the differences in protein adsorption amounts between machine- 
learning models and SPR results. Such differences could be attributed to 
some surface/experimental factors (e.g. surface roughness, grafting 
density, surface coverage, chain conformations, chain flexibility, etc) 
that are not considered in our model. We should also note that the key 
contribution of our machine-learning model does not necessarily intent 
to achieve 100% predictive accuracy, instead (i) to design new anti
fouling materials and coatings that will be validated by experiments and 
(ii) to provide specific antifouling functional groups for design purposes. 

3. Conclusions 

In this work, we first constructed a benchmark dataset of antifouling 
polymer brushes from literatures and then developed data-driven ma
chine-learning models for determining, repurposing, and designing new 
antifouling polymer brushes. Specifically, the descriptor-based ANN 
model was developed to repurpose and discover the antifouling property 
of existing polymer brushes with other desirable properties, while the 
functional group-based SVR model was established to design new anti
fouling brushes. Both machine-learning models (i) achieved high reli
ability and predictivity of QCV

2 = 0.86 and Qext
2 = 0.81 (ANN) and QCV

2 =

0.96 and Qext
2 = 0.79 (SVR), (ii) identified the structural/component- 

dependent descriptors (charge-charge energy, Mi, C-005, and C-007) 
and functional groups (amino acid-based group 2, sulfobetaine group 3, 
secondary amide group 4, caboxybetaine group 5, and isopropanol-like 
group 8) that contribute to the enhanced antifouling performance, and 
(iii) predicted the dependence of film thickness of polymer brushes on 
protein adsorption. By employing both machine learning models, we 
synthesized three ANN-repurposed polyMA-Ala-OMe, polyNHSMA, and 
polyDMVSA brushes and three SVR-designed polyMVC, PAA-EDLP, and 

PAA-DAES brushes for discovering their new antifouling property by 
SPR. The resultant polymer brushes can achieve very low protein 
adsorption of 6.0/4.2 ng/cm2 on polyMA-Ala-OMe, 9.0/8.9 ng/cm2 on 
polyNHSMA, 6.8/6.2 ng/cm2 on polyDMVSA, 3.2/7.0 ng/cm2 on pol
yMVC, 9.0/0.0 ng/cm2 on PAA-EDLP, and 0.0/4.0 ng/cm2 on PAA- 
DAES from undiluted human serum/plasma, respectively, thus vali
dating the model prediction and design. This work provides a data- 
driven computational workflow, built on a small benchmark dataset, 
for exploring a wide range of compositional and structural spaces to 
repurpose and design new antifouling materials and coatings beyond 
polymer brushes. 

It is worthy of adding additional remarks that the more relevant and 
reliable parameters are incorporated into the machine-learning models, 
the higher accurate prediction is expected. For antifouling materials/ 
coatings, many intrinsic properties (e.g. carbon spacer lengths, molec
ular moieties, hydrophilic/hydrophobic ratio, electrostatic in
teractions), surface properties (e.g., grafting density, film thickness and 
roughness, chain conformation, molecular weight), and experimental 
conditions (e.g., temperature, pH, salt conditions) are contributed to 
antifouling properties of surface coatings to some extents. Here, we 
mainly focus on (i) the structural-based design and (ii) the fundamental 
structure–property relationship of antifouling materials/coatings for 
several reasons: (1) Intrinsic physicochemical properties are the most 
important structural information for any material design. More impor
tantly, these intrinsic properties can be qualified by different molecular 
descriptors by modern computational chemistry (e.g., simplest atom 
types, functional groups, fragment counts, topological and geometrical 
features); (2) Surface properties are also very critical for antifouling 
performance of surface coatings. Among them, film thickness (coating 
thickness) has been well demonstrated its importance and effects on 
antifouling property and this property has also been often reported in 
literature [46,60]. Other surface coating properties, e.g., surface 
roughness, grafting molecular weight, chain conformation, were only 
reported by very few studies or systems, thus we can not use these 
incomplete properties to construct a consistent dataset for machine- 

Fig. 8. SPR validation for the repurposing and design of antifouling polymer brushes by both ANN and SVR models. (a) Monomer structures of MA-Ala-OMe, 
NHSMA, and DMVSA by the ANN model. (b) Protein adsorption (ng/cm2) from undiluted human serum and plasma on polyMA-Ala-OMe, polyDMVSA, and poly
NHSMA brushes by SPR. (c) Monomer structures of MVC, EDLP, and DAES by the SVR model. (d) Protein adsorption from undiluted human serum and plasma on 
polyMVC, PAA-EDLP, and PAA-DAES brushes by SPR. 
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learning; (3) Similarly, since experimental conditions are varied greatly 
for different antifouling systems, they are not suitable to derive the 
fundamental structure–property relationship of given materials. Thus, 
we apply “the best we can do with the available data we have” strategy 
to extract all possible composition-structure-performance information 
from the limited existing data for achieving the state-of-art materials 
design. 

4. Materials and methods 

4.1. Machine learning section 

4.1.1. Dataset 
We collected 94 protein adsorption data from undiluted human 

serum or plasma and the corresponding film thickness (Table S1) of 14 
zwitterionic-based and 14 hydrophilic-based polymer brushes (Fig. 2) 
from different literatures. The dataset containing all the 94 protein 
adsorption data were used to constructed descriptor-based ANN model. 
The dataset possessing 91 protein adsorption data after removing data 
points of entry H13-01, H14-01 and H14-02 (Table S1) was used to 
build functional group-based SVR model. 

4.1.2. Molecule drawing and descriptor calculation 
The molecular structures of all polymer brushes were sketched using 

ChembioDraw software. The geometrical optimizations of these drawn 
molecular structures were carried out using Chem3D via Merck Molec
ular Fore Field (MMFF94) with steepest descent algorithm. Three energy 
descriptors (intramolecular charge-charge, charge-dipole, and dipo
le–dipole energies) for these compounds were computed in the 
geometrical optimization process. The molecular descriptors for the 28 
structures were calculated using alvaDesc 1.0.8 software (https://www. 
alvascience.com/alvadesc). 

4.1.3. Variable reduction for machine-learning models 
To reduce the high dimensional data for machine-learning models, 

three-step procedures of variable reduction were performed to reduce 
the number of variables for both ANN and SVR models. To select de
scriptors for ANN model, molecular descriptors from alvaDesc software 
with zero variance or near zero variance were firstly removed, giving 
rise to 108 variables (104 molecular descriptors, three energy de
scriptors, and film thickness). Followed by Pearson analysis, variables 
with absolute correlation coefficient>0.6 were removed, leading to 14 
variables. Then, random forest algorithm was implemented to find the 
variables with key contribution to surface resistance/adsorption ability 
of polymer brushes, resulting in 8 variables (6 molecular descriptors, 1 
energy descriptor, and film thickness) for ANN model. 

To obtain specific functional groups for SVR model, firstly, we sta
tistically analyzed the correlation between a pool of functional group- 
based and atom-centered molecular descriptors and removed redun
dant descriptors by taking care of multicollinearity between the de
scriptors, causing 29 molecular descriptors. Then, factor analysis [79] 
was carried out to generate 8 explicit functional groups which can 
summarize the entire cluster of 29 resultant molecular descriptors using 
MATLAB software. Further, random forest algorithm was performed to 
screen 9 variables (8 functional groups and film thickness) which highly 
correlated with the antifouling property/protein adsorption ability of 
polymer brushes. 

4.1.4. Training and validation of machine-learning models 
In general, artificial neural network (ANN), as a predictive model, is 

designed by several layered structures, each layer containing input/ 
output neurons being functioned and weighted by the linear/nonlinear 
optimization algorithms (e.g., Relu, tanh, sigmoid, or softmax). Addi
tionally, for each layer, a bias term is added to the weighted sum of the 
input neurons for adjusting the output neurons. Throughout the itera
tion process, the input/output neurons will be optimized and weighted 

to achieve the desirable outcome. In this work, the training of a five- 
layer ANN model was implemented in keras and TensorFlow modulus 
of Python 3.6. The dataset was randomly divided into training set (70%) 
and test set (30%). The training set was used to training the model based 
on the designed neural network, while the test set was applied to vali
date the predictivity of the model. This ANN model consists of an input 
layer containing information of the resulting 8 variables (6 molecular 
descriptors, 1 energy descriptor, and film thickness) and an output layer 
which is a prediction of antifouling property of polymer brushes. Three 
“dense” hidden layers with 64, 96, and 64 neurons were constructed to 
connect the input and the output layers through every node in the 
previous layer weighted connecting with every node in the next layer. 
The activation functions applied in these layers are rectified linear unit 
(Relu), hyperbolic tangent (tanh), and rectified linear unit (Relu) func
tions, respectively. The inputs (Xi) of the resulting 8 descriptors (6 
molecular descriptors, 1 energy descriptor, and film thickness) are 
neurons, followed by the weighted sum of inputs along with the bias 
term x1w1 + x2w2 + ⋯ + x8w8 + bias. The summation of resulting 
outputs was subject to the activation function of Relu in the second 
layer, then the weighted outputs of the second layer were fed into 
activation function of tanh in the third layer, and the weighted outputs 
of the third layer were functioned using activation function of Relu in 
the fourth layer. The predicted log(PAA) were obtained through 
weighted summation of outputs of the fourth layer with the addition of 
bias term. Before training of the model, the weights between neurons of 
previous layer and neurons of next layer were randomly assigned using 
He normal method. During the training process, the weights between 
each node of previous layer and each node of next layer were optimized. 
Mean absolute errors (MAE) between the experimental log(PAA) and the 
predicted log(PAA) for training and test sets were used to evaluate the 
convergence of the model. To this end, the deep-learning methods 
including automatic learning-rate reduction and early stopping were 
implemented to avoid overfitting. When MAE of both training set and 
test set reaches to their convergence, the model was regarded as the 
optimal model. 

The training of a SVR model used random model initiation and the 
dataset was randomly split into training set and test set at the ratio of 
7:3. The training of functional group-based SVR model was carried out 
through two-step grid searching on hyper parameters of C and gamma 
using RBF kernel. Loose grid searching was firstly carried out from 10-6 

to 106 for both C and gamma, resulting in optimal C of 10 and gamma of 
1.0. Then, fine grid searching was performed from 1.0 to 100 for C and 
from 0.1 to 10 for gamma, giving rise to optimal C of 2.78 and gamma of 
0.77. In the training process, MAE between the experimental log(PAA) 
and the predicted log(PAA) for training and test sets was used to esti
mate the convergence of the model. 

In this work, we calculated chemical applicability domain using 
leverage approach based on HAT values of the descriptors’ matrix di
agonal in a regression model to evaluate the robustness of the two 
machine-learning models. X outliers were characterized by a HAT 
threshold, while Y outliers were determined by the cutoff values of three 
times standardized residual. The cutoff of leverage values is 3*(k + 1)/n, 
where k is the number of independent variables and n is the size of 
dataset. Testing samples within the cutoff value of leverage and within 3 
times standardized residuals were considered in the applicability 
domain of the machine-learning models. 

4.1.5. Evaluation of machine-learning models 
The reliability and predictive ability of the ANN and SVR models 

were evaluated using squared correlation coefficient (Q2
CV), root-mean- 

square error (RMSECV) from leave-five-out cross validation as well as 
squared correlation coefficient (Q2

ext) and root-mean-square error 
(RMSEext) from external validation. The following equations are used to 
quantify Q2

CV (eq. (1)), RMSECV(eq. (2)), Q2
ext (eq. (3)) and RMSEext (eq. 

(4)): 
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√

(4)  

Where yobs
i and ypredcv

i in equation (1) and (2) are (log(PAA)) of experi
mental and predicted values of training samples and yobs is the average 
value of log(PAA) from experiment for training set, respectively, yobs

i and 
ypredext

i in equation (3) and (4) are experimental and predicted log(PAA) 
values of testing samples, respectively and yobs is the average value of log 
(RAA) from experiment for test set. 

5. Experimental section 

5.1. Materials 

Methacryloyl chloride, dichloromethane, L-alanine methyl ester 
hydrochloride, triethylamine, sodium bicarbonate (NaHCO3), sodium 
chloride (NaCl), anhydrous magnesium sulfate (MgSO4), potassium 
carbonate, acetonitrile (MeCN), dimethylformamide (DMF), methyl 
vinylcarbinol (MVC), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 
(EDC), 4-dimethylaminopyridine (DMAP), 4-vinlybenzyl chloride, 
acrylic acid, diethyl ether, ethanol, 2-(dimethylamino)ethanol, 1, 3-pro
pane sultone, SPR chip (Au), sodium bromoalkylsulfonate, ethyl acetate, 
n-hexane, Me6TREN, cuprous bromide (CuBr), 2-morpholinoethyl 
methacrylate and phosphate buffer saline (PBS) were purchased from 
Sigma-Aldrich Co. Ltd. 100% human blood plasma and serum were 
obtained from BioChemed Service (Winchester, VA). Water was purified 
by a Millipore water purification system with a minimum resistivity of 
18.0 MΩ cm. All other chemicals or biological culture were used as 
purchased without any purification. 

5.2. Synthesis of N-methacryloyl-alanine methyl ester (MA-Ala-OMe) 

MA-Ala-OMe was synthesized and purified by according to the pre
vious literature [76]. Briefly, methacryloyl chloride (3.15 g) was added 
to a mixture of L-alanine methyl ester hydrochloride (4 g) and trie
thylamine (6 mL) in dichloromethane (150 mL) at 0 ◦C. After stirring at 
room temperature overnight, the resulting mixture was washed with 1 M 
HCl (100 mL), a saturated NaHCO3 solution (100 mL) and a saturated 
NaCl solution (100 mL). The organic layer was dried over anhydrous 
MgSO4, filtered, and then concentrated by rotary evaporation. The ob
tained MA-Ala-OMe was purified using column chromatography (ethyl 
acetate/n-hexane = 1/5) with a yield of about 65%. 1H NMR (D2O; 300 
MHz): –CH3, 1.44 ~ 1.98, 6H; –COOCH3, 3.55 ~ 3.77, 3H; –CH-, 4.50 ~ 
4.65, 1H; =CH2, 5.38 ~ 5.75, 2H; –CONH-, 6.30 ~ 6.36, 1H) 

5.3. Synthesis of 3-(dimethyl-(4-vinylbenzyl) ammonio) propyl sulfonate 
(DMVSA) 

Potassium carbonate (27.6 g, 0.20 mol), 4-vinlybenzyl chloride 
(15.3 g, 0.10 mol) and dimethylamine solution (10.0 mL, 0.90 g/ml) 
were dissolved in 100 machine learning of ethanol in a flask. After 
degassed by nitrogen flow, the flask was heated to 50 ◦C for 24 h with 
magnetic stirring. The crude product, obtained by suction filtration and 
rotary evaporation in turn, was purified by column chromatography and 

distillation in vacuum to get a transparent liquid. The transparent liquid 
(6.0 g, 37.03 mmol) and 1, 3-propane sultone (4.5 g, 36.88 mmol) were 
dissolved in 160 machine learning of dry acetonitrile in a flask. Then, the 
flask was heated to 50 ◦C for 48 h under magnetic stirring. A white 
precipitate, DMVSA monomer, was obtained by suction filtration and 
dry in a vacuum oven at room temperature. 1H NMR (D2O; 300 MHz): 
–CH2-, 2.25 ~ 3.30, 6H; –NCH3, 2.90 ~ 2.96, 6H; –CH2-, 4.40 ~ 4.43, 
2H; CH2 = CH–, 5.36 ~ 6.80; -C6H4, 7.56 ~ 8.00, 4H. 

5.4. Synthesis of 3-((2-hydroxyethyl)dimethylammonio)propanoate 
(EDLP) 

EDLP was synthesized by coupling equivalent amounts of acrylic 
acid and 2-(dimethylamino)ethanol under vigorous stirring. In brief, 2- 
(dimethylamino)ethanol was added dropwise into acrylic acid solution 
using a simple ice-water bath. After approximately 30 min, the viscous 
mixture was further reacted at room temperature for 3 h. The resultant 
was crushed and washed with a small portion of MeCN and dried under 
reduced pressure (white powder; yielding: ~90%). 1H NMR (D2O; 300 
MHz): (–CH2-, 2.50 ~ 2.55, 2H; –NCH3, 3.00, 6H; –CH2-, 3.33 ~ 3.35, 
2H; –CH2-, 3.45 ~ 3.50, 2H; –CH2-, 3.86 ~ 3.90, 2H; –OH, 4.24 ~ 4.30, 
1H). 

5.5. Synthesis of 2-((2-hydroxyethyl)dimethylammonio)ethane-1- 
sulfonate (DAES) 

DAES was synthesized by a substitution reaction. Briefly, sodium 
bromoalkylsulfonate (25.0 mmol) was added into 100 mL of DMF in a 
250 mL flask. After heated to 70 ◦C for 1 h, the quadruple molar-ratio 2- 
(dimethylamino)ethanol was added to the mixture and stirred for 
another 48 h. The resultant white powders were obtained by filtering the 
suspension, followed by dimethylformamide and diethyl ether washing. 
1H NMR (D2O; 300 MHz): –NCH3, 3.22, 6H; –CH2, 3.45–3.48, 2H; –CH2, 
3.55–3.57, 2H; –CH2, 3.79–3.82, 2H; –OCH2, 4.06–4.09, 2H. 

5.6. Grafting polymer brushes onto SPR chip 

Surface plasma resonance (SPR) chip was rinsed with ethanol, 
acetone and water sequentially, later treated under UV ozone for 20 min, 
washed by DI-water and finally air-dried. Subsequently, an initiator self- 
assembled monolayer (SAM) was anchored onto the SPR chips by 
soaking SPR chips into 1 mM ω-mercaptoundecyl bromoisobutyrate 
(initiator) ethanol solution at room temperature overnight. Secondly, 
one tube containing monomer (0.6 ~ 1.2 g), Me6TREN (40 μL), and 
degassed methanol: water (1:1, v%) solution was transferred to the 
second tube containing SPR gold chip coated with immobilized initiators 
and CuBr (20 mg), undergoing SI-ATRP reaction at room temperature. 
After the controlled reaction time, the reaction was stopped by exposing 
to air. In order to remove unreacted monomers or unbounded polymer, 
the chips were soaked in PBS buffer overnight. Polymer brushes with 
various thicknesses were controlled by tuning the polymerization time 
(6 ~ 24 h). Since SPR chip (Au/silicate layers) is quite tedious to etch 
directly, the corresponding grafted polymer brushes are hard to obtain. 
Therefore, to characterize the molecular weight and polymerization 
distribution index (PDI) for each polymer brush, we also added 0.1 mM 
dissociative sulfhydryl modified initiators (ω-mercaptoundecyl bro
moisobutyrate) into solution to obtain free single polymer chains. The 
free polymer chains were expected to possess similar molecular weight 
and PDI performances with polymer brushes after undergoing a same 
polymerization environment. 

Due to the unique structure of polyzwitterions, PAA-EDLP and PAA- 
DAES brushes were synthesized by post-modification of the synthetic 
PAA (poly(acrylic acid)) brushes. For instance, after preparing the PAA 
brushes on SPR chips, the SPR substrates were washed and further 
immersed into 10 mL of aqueous solution containing EDLP (or DAES; 
2.0 g) and EDC/DMAP (1.5 g/1.8 g). The active pair groups of hydroxyl 
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and carboxyl would undergo a condensation reaction, thus the target 
structural polymer brushes would be prepared (Figure S2). 

5.7. Protein adsorption by SPR measurement 

A customized SPR sensor based on wavelength interrogation was 
used to determine protein adsorption performance on polymer brushes 
with different thicknesses. The solution (undiluted human protein so
lution or PBS buffer) was flowed through 4 channels under the pressure 
of peristaltic pump. Specifically, the SPR chip coated with polymer 
brushes was connected to the surface of prism. A normal baseline signal 
was measured by flowing PBS solution through the detector of sensor. 
Each protein solution, i.e. 100% human blood plasma or serum, was 
independently flowed through channels for ~ 10 min, and SPR wave
length would shift if any protein adsorption happened. Usually, due to 
the nonspecific adhesion of the protein, the wavelength pattern would 
generate an ascending “step”. After that, the protein solution was 
replaced by PBS solution again to remove the unbound or slightly 
bounded protein on the prism surface and maintained > 10 min. The 
flow rate of solutions was controlled at 0.05 mL⋅min− 1. The wavelength 
shift, mainly derives from the difference value between the PBS base
lines obtained before and after corresponding protein solution flow. It 
should be pointed out that a 1 nm SPR wavelength shift at 750 nm 
corresponds to ~15 ng⋅cm− 2 protein adsorption according to the pre
vious reported strategy [80]. 

5.8. Gel permeation chromatography 

We also performed parallel synthesis and characterization to qualify 
the molecular weight and PDI of polymer in solution. The polymers 
produced from the solution ATRP method is often used to roughly mimic 
the polymers grafted on the surface via the SI-ATRP method under the 
same condition. Gel permeation chromatography (GPC) analysis was 
characterized on a Tosoh EcoSEC HLC-8320 GPC using 
chromatographic-level THF as an eluent. Dissociative polymers extrac
ted from SI-ATRP solutions were dialyzed into pure water for at least 3 
days to remove unreacted monomer and cupric salts. The obtained 
polymers were subsequently dissolved into chromatographic-level THF 
and further filtered by using a 0.2 μm PTFE syringe filter. GPC traces 
showed the low distribution of PDI of 1.02 and molecular weight of 
6452 g/mol for polyDMVSA and PDI of 1.04 and molecular weight of 
4692 g/mol for polyMVC, indicating good control of the final product 
molecular characteristics (Table S8). 
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