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29  Abstract

30 2D DNA origami is widely used for applications ranging from excitonics to single-molecule
31  biophysics. Conventional, single-layer 2D DNA origami exhibits flexibility and curvature in
32 solution, however, that may limit its suitability as a 2D structural template. In contrast, 2D
33 wireframe DNA origami rendered with six-helix bundle edges offers local control over duplex
34  orientations with enhanced in-plane rigidity. Here, we investigate the 3D structure of these
35 assemblies using cryogenic electron microscopy (cryo-EM). 3D reconstructions reveal a high
36  degree of planarity and homogeneity in solution for polygonal objects with and without internal
37 mesh, enabling 10 A resolution for a triangle. Coarse-grained simulations were in agreement with
38  cryo-EM data, offering molecular structural insight into this new class of 2D DNA origami. Our
39  results suggest these assemblies may be valuable for 2D materials applications and geometries that
40  require high structural fidelity together with local control over duplex orientations, rather than
41  parallel duplex assembly.

42

43 Introduction

44  DNA origami was invented in 2006 by Paul Rothemund' by rendering in DNA solid 2D geometries
45 including squares, triangles, stars, and a smiley face. In this first implementation, rectilinear,
46  parallel DNA duplexes were interconnected with crossovers of anti-parallel DNA strands consisting
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of a long scaffold strand from the M 13 phage genome hybridized to hundreds of shorter, synthetic
staple strands. This rectilinear or bricklike fabrication strategy is powerful because it offers
straightforward scaffold strand routing and staple sequence design manually or using simple
Computer-Aided Design tools?, rendering the technique broadly accessible to non-experts.
However, because these 2D origami objects are visualized nearly exclusively on 2D surfaces using
Atomic Force Microscopy (AFM) or Transmission Electron Microscopy, objects typically appear
flat despite their significant curvature, bend, or twist in 3D solution®3. Although 3D structure
prediction tools such as CanDo® have been used to reduce out-of-plane deformations’®,
experimental validation of planarity has remained elusive, together with general design rules to
attain and maintain planarity for arbitrary 2D geometries. While there have been several attempts
to both study and control the planarity of 2D DNA origami rendered with single-layer parallel
duplexes in recent years!® ! resolving the 3D structure of these assemblies in solution has remained
elusive, likely due to their significant flexibility and heterogeneity in solution, corroborated by
solution scattering data'® and AFM!!. One exception is a recent 3D cryo-EM study that revealed
significant flexibility and curvature of a rectangular origami rendered with single-layer duplexes
organized in parallel, as originally implemented by Rothemund', whereas the 3D structures of rigid
and largely homogeneous multilayer brick-like origami were reconstructed to nucleotide-resolution
in the same report!2.

While experimentally elusive to realize and validate, planarity of 2D origami is of paramount
importance to numerous applications that seek to organize secondary materials with nanometer-
scale precision!*!4, including fundamental studies of light-harvesting and excitonics'>-'8, single-
molecule'®?! and super resolution imaging'®2?, molecular biophysics?®, photonics®*, cellular
biophysics?28, and surface-based patterning and lithography?>-3°. Multilayer honeycomb?®' and
square lattice® bricklike origami designs offer alternatives to fabricating monolayer 2D origami,
but they achieve planarity while reducing the overall lateral dimension of objects that can be
rendered due to the increased length of scaffold required; they may require careful sequence design
with iterative feedback from structural simulations and experiment to reduce or eliminate intrinsic
twist®®%32; and they are largely limited geometrically to rendering rectilinear geometries that
consist of parallel duplexes throughout the object, with®3 or without curvature! 34, Attaching 2D
monolayer origami to surfaces using high affinity ligand-receptor pairs may be used to partially
flatten objects, although experimental validation is again challenging due to the perturbative nature
of AFM and the low contrast of TEM, and numerous applications are not amenable to this
biochemical immobilization strategy.

As an alternative to rectilinear, bricklike origami, 2D wireframe DNA origami has recently emerged
as an alternative for positioning secondary materials in 2D with nanometer-scale precision and local
orientational control over duplex axes*-¢, Compared with conventional, rectilinear bricklike
origami, wireframe geometries can render polyhedral geometries that are not accessible to
rectilinear duplex assemblies®>3; they reduce overall scaffold length required to render 2D objects
of a given lateral dimension due to their open, meshlike structure that minimizes the use of DNA;
and they also offer local orientational control over duplex orientations that may be required for
some applications, such as organizing chromophores to control molecular excitonics3’-3° and
photonics®.

The fully automated sequence design tool METIS offers in principle the ability to render planar 2D
wireframe objects using multilayer, 6HB edges, although to date experimental characterization has
been limited to 2D imaging that suffers similarly from potential artifacts from 2D solid support?>.
Here, we report results of 3D cryo-EM to resolve the first examples of planar 2D DNA origami
structures rendered using 6HB wireframe designs up to 80 nm in lateral dimensions. To test the

Science Advances Manuscript Template Page 2 of 18



95
96
97
98
99
100
101
102
103

104
105
106

107
108

109
110
111
112
113

114

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138

breadth and diversity of 2D objects that can be fabricated we explore two distinct categories of
wireframe objects, which are polygonal with and without internal structure. And to establish the
sizes of objects that can be rendered in this manner we vary lateral edge lengths from 42 bp to 210
bp. 3D reconstruction demonstrates homogeneous, planar objects result from our approach, with
resolutions of 10-18 A that suggest minimal structural deviation from planarity up to an ~80 nm
lateral dimension. This new class of planar DNA origami is rendered from the top down using the
fully automatic sequence algorithm METIS? implemented in the Graphical User Interface
ATHENA®, rendering it broadly useful for 2D nanoscale materials design and patterning.

Results
Computer-aided design of 2D origami

6HB edge-based 2D wireframe DNA origami structures were rendered using METIS?? within
ATHENA% (Fig. 1, Fig. S1). To investigate the planarity of origami objects, diverse target planar

geometries were chosen including hexagons, pentagons, and triangles that are symmetric versus
asymmetric. To also evaluate the effects of an internal mesh on planarity, we rendered hexagons
and pentagons both with and without internal wireframe support (Table S1). Finally, pentagons
with different edge lengths were generated as described previously*’ to explore the impact of lateral
dimensions on the planarity attained.

Planarity of 2D wireframe origami

The METIS algorithm leverages the 6HB edge motif to attain structural rigidity of edges, and
importantly the maximum number of vertex crossovers between each duplex in adjacent edges to
also endow overall rigidity and ideally planarity across the complete object (Fig. 1). While this
multi-layer design with multiway vertex connections was previously shown to enhance in-plane
structural integrity significantly compared with corresponding DX-based objects composed of only
two duplexes per edge, AFM and TEM characterization in that work was unable to determine out-
of-plane deformations versus planarity of the fabricated structures in solution®,

Using distinct target boundary geometries including a hexagon and pentagon, we used cryo-EM to
first evaluate planarity for these objects with and without an internal mesh (Fig. 2). The internal
mesh was originally introduced to reinforce the in-plane structural fidelity of the target 2D
wireframe structures, which were verified using AFM and TEM to have accurate target angles
between neighboring arms?®>. Cryo-EM imaging and 3D reconstruction here verified that the objects
not only have accurate internal angles but also remain planar within ~6 nm across their lateral 80
nm dimension, irrespective of whether or not the internal mesh is present (Fig. 2). The hexagon and
pentagon with internal mesh structures were assigned a minimum edge length of 84 bp, whereas
their corresponding hollow structures were assigned a minimum edge length of 106 bp for the
hexagon and 122 bp for the pentagon to achieve the same diameter of 80 nm. As shown in Fig. 2a,
the hexagonal structure with internal mesh is in agreement with our design when facing up during
imaging, which is consistent with its AFM and TEM images>’, although now the structures were
frozen in solution without any surface-imposed restrictions.

Individual DNA structures in different orientations are also identifiable in vitreous ice, with their
planarity apparent from different orientations of the 2D objects, and the most apparent case evident
from 2D objects in a vertical orientation (Fig. S2). Similar observations were made for the
pentagonal structure with internal mesh (Fig. S3), as well as for the hexagonal and pentagonal
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structures without internal mesh. As shown in Fig. S4-S5, both the hollow hexagon and pentagon
are planar in solution, appearing as a straight line when oriented vertically in cryo-EM imaging.
While the preponderance of objects appeared planar at the single-particle level, occasionally
structures also show some curvature (Fig. S2-S6). However, single-particle heterogeneity is
sufficiently low that 2D class averages are easily generated (Fig. 1b and Fig. S3-S5).

Aside from achieving planarity for complex wireframe origami objects, these 3D reconstructions
also offer the first reported examples of 2D cryo-EM DNA origami structures with a size of 80 nm
that we are aware of. Rotation of the objects along one axis reveals not only planarity but also lack
of overall twist, observed in another study!?. Interestingly, while most of the 6HB edges in our
structures do not show significant twist, the internal mesh of the pentagonal object does exhibit a
left-handed twist that is apparent on the inner, spoke edges. This is consistent with the correlation
coefficient between the pseudo-atomic model and density map: the pentagonal structure with
internal mesh has a correlation coefficient of 0.75, which is lower than hexagonal structure with
internal mesh (0.82). For the hollow hexagon and pentagon, the correlation coefficients are 0.84
and 0.83, respectively (Table S2). Resolutions of the four objects are also comparable, with the
hexagon and pentagon with internal mesh reconstructed to a resolution of 18 A and 17 A,
respectively, and the two hollow structures reconstructed to 16 A resolution.

Impact of edge length on planarity

In light of the planarity achieved by wireframe origami without an internal mesh, we chose the
pentagon as a model geometry to investigate whether changing edge length may impact planarity.
Comparison of 84 bp and 122 bp minimum edge length pentagonal structures showed retention of
planarity despite significant changes in edge-length, with resolutions of 16 A based on FSC curves
(Fig. 3a and Fig. S5-S6). For both structures, the pseudo-atomic model prediction (PDB file)
generated by ATHENA fits well within the density map, with the same correlation coefficient of
0.83, and there is no obvious twisting along the edges regardless of the differing edge lengths.
Because the differences in edge lengths between the two structures is not an integer number of
helical turns of DNA, the staple crossover patterns in the vertices are different between the two
pentagons even though the vertex angles are the same for both objects (Fig. S7). The fact that the
resolution, model fitting, and quality of both cryo-EM structures are the same suggests that our
vertex design parameters are likely to be generally valid. A discrete advantage of using a 6HB edge
compared with a single DNA-duplex- or DX-based edge is its relatively large persistence length of
1-2 pum associated with its rigidity*'**2, which is essential for the structural integrity of wireframe
DNA origami, particularly for the hollow structures fabricated here. To further investigate edge-
length variation, five pentagonal structures with edge lengths ranging from 42 bp to 210 bp (14 to
71 nm) were characterized by cryo-EM imaging (Fig. 3b). Smaller sized pentagons of 42 bp to 126
bp edge lengths can readily adapt to different orientations in vitreous ice, with their planarity
observed in cryo-EM imaging. In contrast, pentagons with 168 bp edge length appeared largely
regular, although they adopted fewer distinct orientations during imaging due to their larger size
(~100 nm diameter). When the edge length reached 210 bp, kinking and bending was observable
along the edge and vertex of the pentagonal structure, suggesting an upper limit of ~100 nm overall
dimension and ~60 nm edge-length for METIS to realize planar objects with accurate internal target
angles based on cryo-EM imaging results (Fig. 3b).

Rendering symmetric versus asymmetric objects

To test whether planarity is retained with asymmetric objects, asymmetric and symmetric triangles
with equal maximum edge lengths of 84 bp were examined, with reconstruction global resolutions
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of 11 A and 13 A, respectively, and planarity again retained together with target internal angles
(Fig. 4 and Fig. S8-S9). To investigate the structural fidelity of the triangular structures, pseudo-
atomic models generated by ATHENA were used to fit the density maps from the 3D cryo-EM
reconstructions. The total correlation coefficient between the atomic model and density map was
0.85 for the symmetric triangle, and 0.87 for the asymmetric triangle. For the symmetric triangle,
there was missing density in the vertex, as can be seen from the reconstructed density map. This is
consistent with molecular dynamics simulations performed in previous work?3, in which higher
local conformational flexibilities at the vertices were observed. The local resolution maps also show
lower resolutions of both symmetric and asymmetric triangle in all the vertices, whereas the highest
resolutions are observed in the edge, with up to 10 A for symmetric triangle (Fig. S10). For the
asymmetric triangle, although the vertices show better resolved electron density, the shortest edge
exhibits outward bowing that is only slightly visible in the other edges of this and the symmetric
triangular object. Comparison of the cryo-EM reconstruction of symmetric and asymmetric
triangles also offered the ability to test whether the resolution of the symmetric structures is limited
by imposing symmetry during class-averaging and 3D reconstruction. Fig. S11 shows the linear
correlation between particle number and map resolution*?, with B-factors estimated to be 1954.5
A? and 2276.8 A? for the symmetric and asymmetric triangle, respectively. Because it can be
inferred from these plots that using the same number of particles (or even triple the number) for
reconstruction will result in similar resolutions for the symmetric and asymmetric triangles, this
suggests that the limitation in resolution does not only arise from symmetry, but vertex design and
overall 6HB rigidity and structural fidelity are likely also factors that limit the highest resolution
that can be achieved. With an 11 A global resolution for symmetric triangles and 13 A for
asymmetric triangles, these represent the highest resolutions achieved for 6HB structures to date.

Molecular simulation of 2D origami objects

To gain dynamical insight into the molecular-level structure and flexibility of the designed origami
objects, we performed coarse-grained molecular dynamics simulations with oxDNA2 to
complement experimental cryo-EM data (Fig. 5). The oxXDNA2 coarse-grained model was used
because it accurately represents the thermodynamic and mechanical properties of DNA while
enabling long time-scale simulations at lower computational cost compared with classical all-atom
models***, As the largest and most complex wireframe origami folded in this study, the hexagonal
and pentagonal DNA origami objects with internal meshes were first chosen for oxDNA2
simulation (Fig. S12, S13). Simulations demonstrated general planarity of 2D DNA objects and
varied flexibility for different objects, indicated by values of RMSF (Root Mean Square
Fluctuations) relative to the mean structure (Fig. 5). Compared with the hexagon, the pentagonal
structure exhibited higher flexibility in vertices, consistent with our experimental data that showed
missing density and curved edges in the reconstructed pentagonal object. In addition, the two
triangles with the highest structural resolutions were simulated, with the symmetric triangle in good
agreement with our previous fully atomistic MD simulation®>. Moreover, there are lower RMSF
values of both triangular objects compared to larger structures such as the hexagon and pentagon.
However, the RMSF analysis reveals a higher flexibility at the vertices, while the edges showed
only minor temporary deviations from planarity leading to very flat structures on average (detailed
RMSF values and structure files are provided as Supplementary Information). At the level of
individual helices, the greater spacing between crossovers and loops led to a larger flexibility at the
vertices compared to the edges, and more pronounced splaying at the inside of sharp bends. Taken
together, these simulations corroborate the high structural fidelity and planarity of these METIS-
designed 2D DNA origami objects observed using cryo-EM.

Discussion
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2D DNA origami is emerging as a very widely used template for functional materials fabrication,
with applications to molecular biophysics®®, excitonics!>!8, photonics?4, and plasmonics'4, amongst
others. In the present work, we investigate the planarity of 2D wireframe DNA origami designed
using the algorithm METIS, as characterized by free standing cryo-EM. Planarity was exhibited by
regular shapes such as hexagonal and pentagonal objects, whether reinforced internally with an
internal mesh or not, up to an overall lateral dimension of ~80 nm. In addition, an irregular,
asymmetric triangle was reconstructed to 13 A resolution by cryo-EM, which, together with up to
10 A resolution for the symmetric triangle, represent the highest resolutions to date for DNA
origami cryo-EM structures based on the 6HB motif. The enhanced vertex designs employed by
the METIS algorithm suggest that diverse classes of 2D objects designed will remain planar,
although further experimentation is needed to support this hypothesis. These 2D planar DNA
origami may be employed in the future as a platform for the judicious placement of functional
components, such as proteins?®4%47 chromophores**#°, and nanoparticles>>>! with high structural
fidelity in solution, which opens exciting possibilities for diverse 2D functional materials and
biomolecular applications accessible to a broad community of researchers through the open source
software METIS and its GUI ATHENA.

Materials and Methods

Top-down sequence design

ATHENA was used to design 2D DNA wireframe structures using the METIS “top-down”
approach. It is provided online for wuse as standalone open-source software
(https://github.com/Icbb/athena) for the custom design of 2D & 3D wireframe scaffolded DNA
origami objects. Output files include staple strand sequences (Tables S3-S14) and PDB files for
oxDNA simulations to study structural and conformational dynamics.

Materials

DNA origami staple strands were purchased in 96-well plate format from Integrated DNA
Technologies, Inc. at 25-nmole synthesis scale, with strands purified by standard desalting and
calibrated to 200 uM based on full yield. Staple strands were mixed in equal volume from the
corresponding wells and used directly for DNA origami folding without further purification. DNA
scaffolds of lengths 2,775- and 7,249-nt were used. The 2,775-nt DNA scaffold was produced using
restriction enzyme cloning. The 2,775-nt plasmid assembled using restriction enzyme cloning was
transformed into E. coli containing the M13cp helper plasmid. The 2,775 nt scaffold was
subsequently amplified in bacteria in 2xYT incubated for 8 hours at 37°C, then harvested and
purified>?. The 7,249 nt DNA scaffold (M13mp18) was purchased from Guild BioSciences at a
concentration of 100 nM. 10x TAE buffer was purchased from Alfa Aesar. Magnesium acetate
tetrahydrate (molecular biology grade) was purchase from MilliporeSigma. 1x TAE buffer with
12.5 mM Mg(OAc): was prepared with 10x TAE buffer and magnesium acetate tetrahydrate.
Agarose (molecular biology grade) was purchased from IBI Scientific.

Origami self-assembly

All METIS structures were folded following the same protocol. 10 nM of DNA scaffold was mixed
with 15 equiv corresponding staples strands in 1x TAE buffer with 12.5 mM Mg(OAc)2, the final
volume of the self-assembly solution was 100 pL. The mixture buffer solution was annealed in a
PCR thermocycler: 95 °C for 2 min, 80 °C to 20°C at a rate of 0.5 °C per 10 min. The annealed
solution was diluted into 300 uL with 1x TAE buffer with 12.5 mM Mg(OAc), and the extra staple
strands were removed with MWCO = 100 kDa spin filter concentration columns. The purified DNA
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origami solution was concentrated in the meantime and adjusted to desired concentrations (300 nM)
for cryo-EM imaging.

Cryo-EM Imaging and 3D reconstruction

For cryo-EM imaging only: The purified and concentrated DNA origami samples (3 pL) were
applied to glow-discharged copper C-flat thick R2/1 300-mesh grids and frozen in liquid ethane
using a Vitrobot (ThermoFisher) with 3 s blot. Grids were then imaged on a Talos Arctica scope
(ThermoFisher) with a Falcon 3EC detector, operated at 200 kV and 57,000x magnification (2.54
A nominal pixel size), using EPU software (ThermoFisher) to collect micrographs. For the cryo-
EM imaging and 3D reconstructions: Three microliters of the DNA origami samples were applied
onto the glow-discharged 200-mesh Quantifoil 2/1 grid coated with continuous carbon film, blotted
for 2 s and rapidly frozen in liquid ethane using a Vitrobot Mark IV (Thermo Fisher Scientific). For
hexagonal DNA origami with internal mesh (84 bp edge-length), pentagonal DNA origami with
internal mesh (84 bp edge-length), and pentagonal DNA origami without internal mesh (84 bp edge-
length), the grids were imaged on a Titan Krios G3i cryo-electron microscope (Thermo Fisher
Scientific) operated at 300 kV at a magnification of 53,000% (corresponding to a calibrated
sampling of 1.7 A per pixel). Micrographs were recorded by EPU software (Thermo Fisher
Scientific) with a Gatan K3 direct electron detector in counting mode, where each image is
composed of 30 individual frames with an exposure time of 6 s and a total dose of ~40 electrons
per A2, A total of 1594 images for the hexagonal DNA origami with internal mesh (84 bp edge-
length), 1048 images for the pentagonal DNA origami with internal mesh (84 bp edge-length), and
1100 images for the pentagonal DNA origami without internal mesh (84 bp edge-length) were
collected with a defocus range of -1 - -3 um. For hexagonal DNA origami without internal mesh
(106 bp edge-length) and pentagonal DNA origami without internal mesh (122 bp edge-length), the
grids were imaged on a Titan Krios G3i cryo-electron microscope (Thermo Fisher Scientific)
operated at 300 kV at a magnification of 37,000% (corresponding to a calibrated sampling of 2.1 A
per pixel). Micrographs were recorded by EPU software (Thermo Fisher Scientific) with a Falcon
4 direct electron detector in gain-normalized mrc mode, where each image is composed of 20
individual frames with an exposure time of 10 s and a total dose of ~20 electrons per A2, A total of
1170 images for the hexagonal DNA origami without internal mesh (106 bp edge-length) and a
total of 1331 images for the pentagonal DNA origami without internal mesh (122 bp edge-length)
were collected with a defocus range of -2 - -3.5 um. For symmetric triangular DNA origami (84 bp
edge-length) and asymmetric triangular DNA origami (84-73-63 bp edge-lengths), the grids were
imaged on a Talos Arctica G2 cryo-electron microscope (Thermo Fisher Scientific) operated at 200
kV at a magnification of 64,000x (corresponding to a calibrated sampling of 1.4 A per pixel).
Micrographs were recorded by EPU software (Thermo Fisher Scientific) with a Gatan K3 direct
electron detector in counting mode, where each image is composed of 40 individual frames with an
exposure time of 2.5 s and a total dose of ~50 electrons per A2. A total of 4093 images for the
symmetric triangular DNA origami (84 bp edge-length) and a total of 4135 images for the
asymmetric triangular DNA origami (84-73-63 bp edge-lengths) were collected with a defocus
range of -1.5 - -3.5 pm.

Single-particle image processing and 3D reconstruction was performed as previously described>?.
Briefly, all the images were motion-corrected using MotionCor2#’ and CTF was determined using
CTFFIND4. All particles were autopicked using NeuralNet option in EMAN2! and further
checked manually, yielding 14,029 particles for hexagonal DNA origami with internal mesh (84 bp
edge-length), 30,279 particles for pentagonal DNA origami with internal mesh (84 bp edge-length),
25,932 particles for pentagonal DNA origami without internal mesh (84 bp edge-length), 45,532
particles hexagonal DNA origami without internal mesh (106 bp edge-length), 55,991 particles for
pentagonal DNA origami without internal mesh (122 bp edge-length), 358,740 particles for
symmetric triangular DNA origami (84 bp edge-length) and 304,395 particles for asymmetric
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triangular DNA origami (84-73-63 bp edge-lengths). The particle coordinates were then imported
to RELION>*, where 2D classification were performed to remove poor 2D class averages. For all
objects, a variety of orientations of the particles and their 2D class averages were observed,
including classes that were not perpendicular to the camera, which was important for 3D
reconstruction. The final 3D refinements were performed in CryoSPARC?® using 7,857 particles
for hexagonal DNA origami with internal mesh (84 bp edge-length), 11,758 particles for pentagonal
DNA origami with internal mesh (84 bp edge-length), 6,145 particles for pentagonal DNA origami
without internal mesh (84 bp edge-length), 21,809 particles hexagonal DNA origami without
internal mesh (106 bp edge-length), 28,628 particles for pentagonal DNA origami without internal
mesh (122 bp edge-length), 263,617 particles for symmetric triangular DNA origami (84 bp edge-
length) and 95,277 particles for asymmetric triangular DNA origami (84-73-63 bp edge-lengths);
the corresponding maps were achieved with resolutions of 18 A, 17 A, 16 A, 16 A, 16 A, 11 A and
13 A, respectively, based on the FSC of two independent particle data sets at a threshold of 0.143.
Figures were prepared using Chimera. Notably, the 3D refinements were performed with and
without symmetry applied for the symmetric objects. While the resulting maps with and without
symmetry were similar, the resolution and correlation coefficient are generally lower without
symmetry, and we chose to highlight those with symmetry which would have a better statistically
defined map compared with the models. The resolutions described in this study were all based on
reconstructions assuming symmetry.

Coarse-grained molecular dynamics simulations using oxDNA2 model

MD simulations of DNA nanostructures were performed using the oxXDNA2 model and simulation
software*#35657  The oxDNA model is a coarse-grained approximation to study the
thermodynamic and mechanical properties of DNA, enabling longer time scales and larger system
sizes to be simulated***. Fully atomistic DNA nanostructures from ATHENA were converted into
0xDNA file format using tacox DNA33, Systems were simulated at a salt concentration of 1 M [Na*],
as recommended by the developers of 0xDNA to represent typical experimental conditions.? All
structures were energy minimized for 2000 steps, followed by short simulations to equilibrate the
structures for 3.03-30.3 us (10°-107 steps) at 300 K using the Langevin thermostat (diff coeff2.5).
The production simulations were run for 0.303 ms (108 steps, time step: 0.1515 ps) at 300 K using
the Anderson-like john thermostat (diff coeff 2.5). Initial velocities were refreshed from a
Maxwellian distribution. The simulations were visualized using oxView and analyzed using
0xDNA analysis tools>”-.
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Fig. 1.

Cryo-EM characterization of 2D wireframe structures. The input used for
ATHENA software can be specified as arbitrary shaped target geometries. Based on
the target geometry, the METIS algorithm was used to generate scaffold and staples
routing of wireframe DNA origami with six-helix-bundle (6HB) edges. Maximum
crossovers between adjacent edges are used to ensure the rigidity of the vertex
design. The pseudo-atomic model was generated to compare to the structure
determined by cryo-EM 3D reconstruction.
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Fig. 2. 6HB-based wireframe DNA origami structures with and without internal mesh

characterized by cryo-EM. (a) A representative METIS 2D wireframe DNA
origami structure characterized by cryo-EM: a hexagonal origami with internal
mesh. Different random orientations of the structure under cryo-EM imaging and
2D class-averages reflected its planarity. 3D reconstruction shows the hexagonal
origami structure is 2D and planar, with a diameter of 80 nm and a thickness of only
5 nm. Scale bars: 50 nm. (b) Two different geometries (hexagon and pentagon) with
the same diameter were generated with the computer-aided design tool. The
predicted atomic models are compared to the reconstructed 3D structures, which
show good matches for all four structures. As demonstrated by side views, the
wireframe structures without internal mesh show almost perfect planarity, similar to
the corresponding structures with internal mesh. No significant twisting was
observed for most of the edges shown above, except the internal mesh edges of the
pentagon structure as pointed out by the arrow (row 2). Missing density in the vertex
was also observed in these areas.

Science Advances

Manuscript Template Page 14 of 18



574
575

576
577
578
579
580
581
582
583

126 bp (42 nm)

168 bp (57 nm) 210 bp (71 nm}

Fig. 3. Pentagon-shaped wireframe DNA origami structures designed with diffrent

edge lengths and characterized by cryo-EM. (a) The 3D reconstruction of two
pentagon structures, one designed with 84 bp minimum edge length, the other
designed with 122 bp minimum edge length. Both structures are planar and their
vertex designs match well with the reconstructed structure. (b) Cryo-EM imaging of
different sized pentagon structures, from 42 bp to 210 bp edge length. Scale bars: 50
nm and 100 nm (zoom-in and zoom-out images, respectively).
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symmetric triangle with equal edge lengths of 84 bp, and an asymmetric triangle
with edge lengths of 84-73-63 bp were characterized by cryo-EM. The fitting
between pseudo-atomic model and density map shows good agreement between the
design and reconstructed structure. For both structures, the features that show
disagreement were highlighted, such as the missing of density in the vertex for the
symmetric triangle and the slight bowing of the edge for the asymmetric triangle.
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594 Fig. 5. Comparison between o0xDNA2 coarse-grained simulations and cryo-EM
595 structures. Hexagonal and pentagonal origami with internal mesh, and symmetric
596 and asymmetric triangles were chosen for oxDNA simulations. Subtle structural
597 features predicted by the simulations are consistent with experimental observations,
598 as highlighted by arrows. The structures from the trajectory with the lowest RMSF
599 to the mean structure are shown (= centroid structures). The RMSF (nm) values were
600 represented as a color bar: 0.64 (blue) to 4.84 (red). Ranges of RMSF (nm) for each
601 structure, from top to bottom: 1.14-3.15; 1.43-4.84; 0.64-1.70; 0.67-1.92.
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Supplementary Materials

Figs. S1to S13
Tables S1 to S14

The simulation results were provided as a separate Supplementary Materials file as a zip file,
which contains the results of 0ox-DNA simulations shown in main text Figure 5.

oxDNA-results:

Asymmetric_triangle 84bp (top file; centroid structure; mean structure; RMSF file)
Hexagon _mesh 84bp (top file; centroid structure; mean structure; RMSF file)
Pentagon_mesh 84bp (top file; centroid structure; mean structure; RMSF file)
Symmetric_triangle 84bp (top file; centroid structure; mean structure; RMSF file)
Readme-oxDNA -results
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