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 Abstract— A neural network hardware inspired by the 3D NAND 
flash array structure was experimentally demonstrated in a 
standard 65nm CMOS process. Logic-compatible embedded flash 
memory cells were used for storing multi-level synaptic weights 
while a bit-serial architecture enables 8 bit x 8 bit multiply-and-
accumulate operation. A novel back-pattern tolerant program-
verify scheme reduces the cell current variation to less than 0.6µA. 
Positive and negative weights are stored in adjacent bitlines, 
generating a differential output signal. Our eNAND based neural 
network core achieves a 98.5% handwritten digit recognition 
accuracy which is within 0.5% of the software accuracy for the 
same weight precision. To our knowledge, this work represents the 
first physical demonstration of an embedded NAND Flash based 
compute-in-memory chip in a standard logic process. 
 
Index Terms— 3D NAND, embedded flash, deep neural network, 
multiply-and-accumulate, compute-in-memory 

I. INTRODUCTION 
EEP neural networks (DNNs) contain multiple 
computation layers each performing a massive number of 

multiply-and-accumulate (MAC) operations between the input 
data and trained weights. The number of layers and parameters 
vary significantly depending on the specific DNN architecture, 
with state-of-the-art designs exceeding 100 million parameters 
as shown Fig. 1 [1]. The performance and energy-efficiency of 
data-intensive DNN chips can be limited by the available 
memory bandwidth and the MAC engine throughput. An 
alternative approach that is gaining popularity is the compute-
in-memory (CIM) approach where the computation occurs 
where the data is stored, with massively parallelized analog 
MAC engines [2-16]. For the analog MAC engines, the input 
data is typically loaded on to multiple memory wordlines 
generating parallel cell currents that are summed up in a single 
cycle and converted to a digital code. Ideally, memory cells 
used for CIM architectures should be non-volatile, to avoid the 
costly reloading of the weights after a power-down period. It is 
also highly desirable if the memory cell can support multi-level 
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storage as this can enhance the accuracy of inference tasks. One 
embodiment of this approach is a resistive RAM (ReRAM) 
crossbar array where weights are stored in the form of the 
transconductance of ReRAM cells while the MAC operation is 
performed in the analog domain [13-14]. Despite their 
tremendous potential, past CIM demonstrations based on 
emerging memory devices such as ReRAM and phase change 
RAM are mostly limited to small-scale networks with low 
precision operands (e.g. 1-2 bits) due to fabrication difficulties 
[2-16]. Most array level studies on emerging memory based 
CIM designs use compact models extracted from individual 
device measurements which cannot capture the true circuit and 
array level details. SRAM based CIMs have become a popular 
research topic as they can be fabricated reliably in a standard 
logic process [17-20]. However, SRAM cells are large 
compared to denser 1T or 1T1R memory technologies and 
hence cannot store the massive number of parameters required 
in today’s DNN architectures. Furthermore, each bit can store 
only one bit of resolution and the cell current is prone to process 
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Fig. 1.  Accuracy versus the number of operations required for a single forward 
pass of popular deep neural network architectures ([1], more recent DNNs 
added). The size of circle represents the number of network parameters which 
can exceed 100M in recent architectures.  
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variation, which is a critical disadvantage for analog 
computation.  

To make CIM a practical reality for future DNNs with 
hundreds of millions of parameters, it is imperative that the in-
memory neural network array be built in a non-volatile memory 
technology that can attain ultra high density, low cost, and 
highly manufacturability. 3D NAND Flash technology [21-24] 
is the leading candidate that meets all these requirements, 
however, no experimental data has been reported on 3D NAND 
flash-based CIM designs due to the proprietary nature of the 
technology and the difficulty in implementing the MAC 
function in standard flash chips.  The feasibility of using a 3D 
NAND flash array for performing MAC functions was studied 
in [25-29], but the analyses were based on the cell current 
measured from individual cells rather than from a real MAC 
hardware.  

In this paper, we investigate the array-level operation of a 3D 
NAND flash based Convolutional Neural Network (CNN) 
accelerator through a physical chip implementation. To get 
around the technology access problem, a demonstrator chip that 
mimics a 3D NAND flash array was fabricated in a 65nm 
foundry logic process. The proposed hardware features multi-
level non-volatile weight storage using a 3T flash cell, single 
cycle current integration, bit-serial MAC operation, and multi-
bit output sensing. One of the highlights of this work is the 
back-pattern tolerant program-verify sequence which reduces 
the cell current variation to less than 0.6µA, allowing 28 
individual cell currents to be summed up in a single cycle while 
delivering an MNIST classification accuracy of 98.5%.  

Context and scope of this work: It should be noted that 
achieving an ultra-high density CIM array was not the main 
objective of this work as the logic-compatible 3T flash memory 
cell has a large footprint due to the thick oxide transistors 
required for the bit cell implementation. Instead, the goal was 
to use a logic compatible NVM cell that can be reliably 
manufactured in a standard logic technology to study practical 
aspects of a 3D NAND based CIM accelerator including, but 
not limited to, verifying MAC operation from a NAND array, 
developing an accurate and reliable erase and program scheme, 
testing charge loss behavior, designing a dedicated high voltage 
switch for controlling wordline signals, and demonstrating a 
multi-layer neural network architecture in the NAND array. It’s 
worth noting that while the proposed CIM architecture was 
inspired by the 3D NAND flash array topology, significant 
discrepancies exist between the logic process used in work and 
a real 3D NAND flash process, that need to taken into account 
before the proposed concepts can be considered for real 3D 
NAND flash memory. These include the lower device mobility, 
higher bitline/wordline resistances, increased interference and 
disturbance issues, and the periphery circuit overhead of 3D 
NAND technology. 

The remainder of this paper is organized as follows. Section 
II describes the design of a neuromorphic computing engine in 
a 3D NAND array. The 3T flash based NAND array mimicking 
a 3D NAND is described in section III. Implementation details 

of the proposed NAND flash based neural network core are 
given in section IV. Section V p provides details of the HVS 
wordline driver and its measured results. Experimental results 
are discussed in section VI ranging from program and erase 
characteristics to inference results from a multi-layer neural 
network. Finally, conclusions are drawn in section VII. The 
conference version of this work was published in [30].  

II. COMPUTE-IN-MEMORY INSPIRED BY 3D NAND FLASH 
ARRAY 

A. Analog MAC Concept in 3D NAND Array 
Fig. 2 shows the 3D NAND BiCS architecture [21] 

consisting of 8×16K bitlines, 4 select lines, and 96 wordlines, 
along with the implementation of the analog MAC function. In 
the first cycle, the least significant bits of the input data 
X0=X04X03X02X01 (4 bit example) is loaded on to the four 
individual SGD lines while the multi-bit weights are stored in 
the memory cell. Note that memory cells on the same layer of a 
3D NAND array share the same wordline “plane” so the 
individual bits of the input data must be loaded onto the SGD 
lin es rather than onto the shared wordline planes. Similar to a 
regular NAND flash read operation, a single wordline plane is 
enabled by applying a read voltage while the unselected 
wordline planes are biased at a pass voltage. To ensure good 
linearity between the input data and the cell current, we use 
binary SGD voltage levels (i.e. VDD or GND). For the weight 
storage, multi-bit weights (typically 2-3 bits) can be stored in 
each eflash cell in the same way as MLC (multi-level cell), TLC 
(ternary-level cell), or QLC (quad-level cell). The number of 
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Fig. 2.  (a) 3D NAND BiCS architecture [21] with 40 BLs x 4 SGDs x 16 WLs. 
(b) Analog MAC ( Σ Xi × Wi) implementation in a 3D NAND array.  
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bits stored in each cell is determined based on several factors 
including the maximum cell current, program disturbance, 
maximum sensing current, temperature effects, endurance limit, 
and retention characteristics. Each bitline is connected to 4 
NAND strings within a single memory block. The bitlines are 
also connected to NAND strings in other blocks which allows a 
higher number of cell currents to be accumulated. A higher 
resolution (e.g. 8 bit) weight can be stored using multiple 
memory cells in the same stack, and a multi-bit MAC can be 
realized through bit-wise MAC operations where partial results 
are summed up while accounting for the bit position difference 
(details in section II-B). This step involves asserting the higher  
significant bits of the input data (e.g. X1=X14X13X12X11) to the 
NAND array as shown in Fig. 2.  

B. Bit-Serial Operation for 8bit × 8bit MAC in 3D NAND 
In this work, we incorporated the bit-serial technique for 

realizing an 8 bit input × 8 bit weight MAC in the proposed 
NAND array where each cell stores 2 bits of weight 
information. Fig. 3 shows the bit-serial operation for two 8 bit 
inputs and two 8 bit weights. Each flash cell can store 2 bits of 
information, necessitating 4 cells to store a single 8 bit weight. 
The example shown here is for positive weights but negative 
weights can be handled in a similar manner [32]. Our test chip 

can incorporate both positive and negative weights using two 
separate bitlines. The bit-serial operation is briefly explained 
next. In cycle 1, LSBs of the two inputs and 2 LSBs of the 
weights are multiplied and accumulated as shown in the figure 
to produce the partial result 12 · 012+12 · 112 = 1 + 3 = 4. In cycle 
2, the same LSB bits of the two inputs are convolved with the 
next 2 bits of the two weights to obtain partial result 12·002 + 
12·112 = 0 + 3 = 3. When combining the results from cycle 1 
and cycle 2, the bit position difference is accounted for by 
shifting the result from cycle 2 by 2 bits before adding it to the 
result from cycle 1. This produces an output of 3·22 + 4 = 16. 
This process is repeated until all the bits of the inputs and 
weights are accounted for. Finally, in cycle 32, the last MSB 
bits of the inputs and the last MSB bits of the weights are 
processed. The partial result of cycle 32 is multiplied by 213 
before the accumulation. For the 5x5 convolutional neural 
network implemented in our hardware, the actual number of 
inputs is 25.  

III. EMBEDDED NAND FOR EVALUATING 3D NAND BASED 
COMPUTE-IN-MEMORY ARRAY 

To experimentally verify the 3D NAND flash based CIM 
concept, ideally, we would have to build a hardware prototype 
in a real 3D NAND flash process. However, it is impossible for 
academic researchers to access a real 3D NAND technology 
due to its highly confidential nature. It is also impossible to test 
the idea in standard flash chips since chip vendors do not grant 
users control of the individual SGD and wordline signals. Due 
to these constraints, there has been no physical demonstration 
of a NAND flash based neuromorphic array to our knowledge. 
Only simulation and model based studies exist.  

To demonstrate a real hardware prototype in spite of these 
constraints, we chose to use a 3T embedded flash memory cell 
[15, 30-31] that can be built in any foundry process to emulate 
the behavior of a 3D NAND neuromorphic array. Fig. 4 shows 
a comparison between a standard 1T flash cell and a 3T eflash 
cell vis-a-vis the erase, program, and read bias conditions. The 
1T flash cell contains a floating gate layer surrounded by a thick 
dielectric layer for non-volatile charge storage. The 3T eflash 
cell on the other hand, consists of back-to-back connected 
PMOS transistors M1 and M2, and a separate read device M3. 
The floating gate node is formed by the gate poly shared by M1, 
M2, and M3 devices. The program and erase operations of both 
cell types are based on the Fowler Nordheim (FN) tunneling 
mechanism so their program/erase times and retention 
behaviors are equivalent. The standard 1T flash cell requires a 
high positive or negative voltage between the control gate and 
the substrate to inject or remove electrons from the floating 
gate. As for the 3T cell, the program or erase voltages are 
applied between the junction ter  minals of M1 and M2 (i.e. 
PWL and WWL signals). Fig. 5 shows 3D NAND strings with 
N stacked memory cells based on the 1T flash cell and the 3T 
embedded flash cell, respectively. Each wordline of the 3T 
NAND array is controlled by wordlines PWL and WWL. We 
can see that the current paths of the  two NAND strings are 
basically the same, even though the program and erase of the 
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Fig. 3.  Bit-serial operation realized in our test chip with 2 bits per cell weight 
storage and 8 bit weight and input parameters. The MAC operation is performed 
in the analog domain while the bit position shifting and summation was done 
in the digital domain.  

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

3T cell utilizes the two PMOS devices per cell. The equivalent 
between the two cell types  allows us to experimentally study 
the MAC operation of a standard NAND flash array using a 3T 
flash based implementation.  

IV. NEURAL NETWORK CORE CIRCUIT DESIGN 

A. Overall eNAND Neural Network Core Architecture 
Fig. 6 shows how the 3D NAND block in Fig. 2 composed 

of 40 BLs, 4 SGDs, and 16 WLs, is flattened for implementation 
in a standard logic process. Unlike NOR-type designs where 
each memory cell requires a selection device, transistors in a 
NAND string share the source/drain nodes, and hence the 
selection devices are only required at the top and bottom of the 
NAND string. The logic-compatible 3T eFlash cell shown in 
Fig. 7 (left) consists of two asymmetrically sized PMOS 

devices (M1 and M2) for efficient program and erase operation, 
and a separate NMOS read device (M3) connected to the NAND 
string. Thick oxide IO devices were used to ensure practical 
retention times. The width/length of the 3 cell devices are 
3.2µm / 280nm (M1), 0.4µm / 280nm (M2), and 0.4µm / 280nm  
(M3), respectively. The M1 width is 8 times larger than those of 
M2 and M3 to obtain a high coupling ratio which reduces the 
program and erase voltages. Due to the series resistance of the 
unselected devices, the I-V characteristics of the eNAND Flash 
cell may vary depending on its location in the stack. A flash 
memory cell can be programmed incrementally to mitigate 
systematic variation effects such as the aforementioned stack 
location dependence. The unique post-silicon tuning capability 
offers significant advantage over SRAM, DRAM, MRAM, or 
RRAM based neuromorphic approaches as the cell read current 
can be programmed to within 0.6µA of the target (Figs. 21 and 
24). Further details on the incremental program method are 
given in section IV.  

Fig. 7 (right) shows the I-V curves of the first and last 3T 
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Fig. 6.  Flattened 3D NAND architecture for demonstration in a standard 
logic process. The original 3D NAND block structure is shown in Fig. 2.  
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 Fig. 4.  Comparison between 1T flash cell (left) and 3T eflash cell (right). FG 
means floating gate and CG means control gate. For erase and program modes, 
electrons are either removed or injected to the GF node via FN tunneling 
mechanism [15, 25-26]. 
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flash cell in the 16 stack NAND string at -10, 25, and 70°C. We 
carefully adjusted the floating gate (FG) voltage to achieve 
uniform current levels of 0µA, 3µA, 6µA, and 9µA. A 
conservative 3µA step size was chosen to account for variation 
and charge loss effects, but further studies including baking 
tests at 150°C showed that a 1µA step size is also acceptable 
[33]. The initial FG voltages used in the simulations are listed 
in Fig. 7 (bottom) which represent the different programming 
levels of the flash cell. The bitline voltage was kept constant at 
0.8V during program verify and read modes, which ensures that 
the cell current is accurately programmed. Simulation results in 
Fig. 7 (right) show that location-dependent variation can be 
canceled out by fine-tuning the FG voltage through incremental 
programming. The impact of temperature on the I-V curves was 
slightly different depending on the program level and the 
location of the cell in the stack, but was manageable as 
confirmed in our later measurements [33].  

The overall chip architecture is shown in Fig. 8 (left) which 
comprises two high voltage switch (HVS) circuits per row for 
driving the PWL and WWL wordlines, a readout circuit, an 
eNAND cell array with 16 cells per stack, and scan chains. Each 
eNAND block of the chip architecture requires 32 HVSs for 
driving 16 PWL’s and 16 WWL’s. The HVS has to generate a 
high output voltage up to 10V during the program and erase 
operations. We included a repair block where three eNAND 
strings sharing the same PWL and WWL are reserved for 
redundancy and fixed bias weights. The input image data is 
simultaneously loaded on to 25 SGD lines, and the 3 additional 
SGD lines are used for enabling the bias. The circuit diagram 
and layout of the 16 stack eNAND string are shown in Fig. 8 
(right). In this work, we adopted the bitline voltage regulator 
circuit from [15] to pin the bitline voltage to 0.8V while the 
bitline current is converted to an output voltage. An on-chip 
voltage-controlled oscillator (VCO) generates a frequency that 
corresponds to the output voltage. Other more compact and 

efficient analog-to-digital conversion methods [2-14] can be 
devised but given that this is the first ever attempt of building a 
NAND type neuromorphic array in a real chip, we intentionally 
kept the peripheral circuits simple so that we can focus on 
verifying the core functionality of the chip.   

B. Storing positive and negative weights in eNAND Array 
A pair of bitlines is used to store a single weight as illustrated 

in Fig. 9. If the weight is positive, the cell current of the left 
bitline is programmed  accordingly while the cell current on the 
right bitline is programmed to <0.1µA, and vice versa for 
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Fig. 8.  (Left) Overall diagram of the CNN core with high voltage wordline drivers, a 16 stack eNAND Flash array, and readout circuit. (Right) Shared BL and 
readout circuit and layout of a 16 stack eNAND string. 
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cycle and converted to an output frequency for multi-bit sensing.  
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negative weights. Input data is simultaneously loaded onto the 
SGD lines which activate multiple memory cell currents 
connected to the same bitline. During this operation, the 
selected and unselected wordlines are held to VREAD and 

VPASS, respectively. The sum of the individual cell currents 
flows through each bitline. The bitline pair generates two 
currents; i.e. positive weight and negative weight currents. Both 
currents are converted to the corresponding output voltages by 
the bitline regulator circuit (Fig. 9). Finally, the VCO circuit 
converts the output voltage to a frequency which is measured 
using off-chip equipment. 

Fig. 10 shows an 8 bit weight composed of even and odd 
bitline pairs and the read operation of the first two cells in the 
NAND string. The 8 bit weight is represented as either a 7 bit 
positive weight or a 7 bit negative weight as shown in Fig. 10. 
A 7 bit positive or negative weight is stored across 4 stacked 
cells each storing 2 bit, 2 bit, 2 bit, and 1 bit, respectively. The 
read operation of the top 2 bit eNAND cell pair follows the 
bottom table of Fig. 10. As shown in the table, if the weight is 
negative, positive weight W0 set to 0. If the weight is positive, 
it’s reversed. If input X is 0, both ICELL0 and ICELL1 are 0µA, 
whereas if input X is 1, ICELL0 and ICELL1 are either 0µA or 3µA 
depending on the weight values. Based on this operation, we 
can generate the current difference ICELL0 - ICELL1 that works 
correctly for both positive and negative weights.  

C. Erase and Program Operation 
To update the weights in the eNAND cells, we have to first 

erase and then program the cell data. Fig. 11 shows the bias 
condition for erasing and programming w ordline 15 which is 
the upper most row of the NAND stack. The biasing scheme is 
the same for the other wordlines. During the erase operation, 
we applied 0V to the PWL and WWL signals of the unselected 
wordlines. As for the selected wo rdline 15, we applied a high 
voltage around 10V to the WWL 15 signal and 0V to the PWL 
15 signal. Under these bias conditions, electrons move from the 
floating gate to the M2 PMOS channel through FN tunneling.   

The program operation comprises two modes as shown in 
Fig. 11 (bottom). The first mode is the program mode while the 
second mode is the program inhibition mode. For the program 
mode, we applied a VPASS bias to the PWL and WWL signals 
of the unselected word lines. For the selected wordline 15, we 
applied a high voltage bias to the PWL 15 and WWL 15 signals, 
and 0V to the NMOS channel. Electrons move from the NMOS 
channel to the floating gate through FN tunneling in the selected 

 

Fig. 12. Timing diagram of 5 × 5 convolution operation with 8 bit data and 8 
bit weights. 4 cells are used to store a single 8 bit weight while each bit of the 
8 bit data is fed to the correct SGD line. Bit serial operation produces a multi-
bit inner product result.    
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Fig. 10.  Positive and negative weights for an 8 bit BL pair (upper). When 
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wordline. For program inhibition mode, the NMOS channel 
becomes floating and hence it is boosting by the floating gate.  
This limits the voltage across the tunneling oxide and hence the 
electrons do not escape the floating gate node. For testing, we 
used a program bias voltage ranging from 7.0V to 8.0V.    

D. 5 × 5 CNN Operation in ENAND Array 
The timing sequence of a 5x5 convolution operation with 8 

bit inputs and 8 bit weights is shown in Fig. 12. Here, we 
applied the bit-serial operation described in section II where the 
operand is serialized and asserted one bit at a time to the array 
[32]. The bit-serial inner-product realizes the equation 
∑ ∑ X < i >∙ 2i7

i=0 ∙ W < j >∙ 2(2∙(3−j))3
j=0 .  

V. HIGH VOLTAGE SWITCH CIRCUIT AND MEASUREMENTS 

A. High Voltage Switch (HVS) WL Driver Circuit 
  Fig. 13 shows the HVS circuit for generating the proper 

wordline biases for erase, program, and read operations. The 
HVS circuit was inspired by our previous cascode driver circuit 
[30-31], but the following critical improvement was made in the 
new design. We added a level shifter circuit for generating the 
signal denoted as “F” in Fig 13, and introduced 2 additional 
PMOS transistors controlled by signals M and F to generate the 
VPASS bias during the program and read operations. The bias 
voltages required for each operating mode of the selected 
eNAND block are summarized next.  

For the erase operation, we need the erase and default mode 
voltages shown in Fig.14 (left column). We apply a 10V erase 
voltage to the WWL signal of the selected wordline, and applied 
0V to the PWL signal of the selected wordline as well as the 
WWL and PWL signals of the unselected wordlines for the 
default mode. To generate a stable 10V output while preventing 
voltage overstress, we set the VPP4, VPP3, VPP2, and VPP1 
voltages to be 10V, 7.5V, 5.0V, and 2.5V, respectively, as 
shown in Fig. 13 and 14. Based on these biases and control 
signals, a 10V output pulse is generated by the HVS circuit.  

For program operation, we need to realize the program and 
VPASS modes shown in Fig. 13 (middle column). The 
operation of the HVS circuit during program mode is almost the 
same as the erase mode. The main difference is the lower 
program voltage of 7 to 8V compared to the 10V erase voltage. 
WWL and PWL signals of the selected wordlines are charged 
to the program voltage while a lower VPASS bias is applied to 
the WWL and PWL signals of the unselected wordlines. A 
maximum VPASS of 3V was used to minimize program 
disturbance. When the voltage of signal M is kept at VPP1 
(=0.25×VPP) and the voltages of F, G, and the Pulse signals are 
keep at 0V, the output signal is held at VPASS as shown in Fig. 
13 (middle column).  

For the read operation, we applied the read bias voltage 
(=VREAD) to WWL and PWL of the selected wordiness while 
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Fig. 13.  Operation of the modified high voltage switch driver circuit to support (a) erase mode, (b) default mode and program operation (c) program mode, (d) 
VPASS mode and read operation (e) read mode, and (f) VPASS mode.    
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those of the unselected wordlines were biased at VPASS. The 
VPASS mode during read is the same as the VPASS mode 
during program operation. During read mode, the output signal 
of the HVS circuit is driven to VREAD by applying the 
following bias condition; VPASS for signal F), 2.5V IO VDD 
for signal SRD, and 0V for signal G as shown in Fig.14 (right).   

B. High Voltage Switch (HVS) WL Driver Measurements  
Fig. 15 shows the measured results for PWL and WWL of 

unselected and selected wordlines in the eNAND array. First, 
for a 1ms erase period, we verified that the PWL and WWL 
signals of the selected and unselected wordlines are correct. The 
WWL of the selected wordline is raised to 10V while the PWL 
and WWL of unselected wordlines are kept at 0V during the 
erase operation. This is the desired result during erase and 
default modes of the HVS circuit. Next, we verified the 

operation of the HVS circuit for program and VPASS modes. 
The PWL and WWL signals can support a VPP voltage from 
7V to 8V, and a VPASS bias range from 2.6V to 4V. Fig. 15 
(middle) shows the HVS output voltage for a 20µs program 
operation. PWL and SWL signals of the selected wordline are 
driven to VPP while PWL and SWL signals of the unselected 
wordlines are kept at a VPASS bias of 2.6 to 4V. Lastly, Fig. 
15 (right) shows the PWL and WWL during read operation. We 
verified the voltage level of the selected wordline switches 
reliably to 1. 1V while PWL and WWL signals of the unselected 
wordlines are kept at the VPASS bias ranging from 2.6 to 4V 
for the 2µs read duration. The measured waveforms follow the 
expected results of the program, read, and VPASS modes. The 
HVS circuit operates correctly without consuming any static 
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Fig. 14.  Post-layout simulation waveforms of the HVS circuit for erase, program and VPASS modes 
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Fig. 15.  Measured PWL and WWL signals of the selected and unselected wordlines for erase, program, and read operation.  
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current making it suitable for the proposed eNAND based 
neural net hardware.  

VI. EXPERIMENTAL RESULTS 
Measured data in Fig. 16 confirms correct program and 

program inhibition characteristics for the eflash cells in the 16 
stack NAND string. Here , the cell current was measured while 
increasing the program voltage from 7.0V to 8.0V with a 0.2V 
voltage step. As expected, a higher program voltage induces a 
larger threshold voltage shift but c auses program disturbance. 
The data also shows how the location of the eflash cell in the 
NAND string affects the program operation. Cells connected to 
WL 15 (i.e. top of the string) show the largest cell current 
change for the same number of program pulses. This is due to 
the fact the same threshold voltage shift has a stronger impact 
on the overall NAND string current for the cells closer to the 
top of the string (further discussion can be found in Fig. 21). 
Fig. 17 shows the cell current variation as a function of the 
number of program pulses for the three program modes. Based 
on these results, we chose a program voltage of 7.0V for the 
final fine-tuning steps as the program disturbance is below 
1.2µA. The VCO frequency versus the cell current was 
characterized (Fig. 18) which was used to convert the measured 
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output frequency to the cell current values. VPASS applied to 
the unselected wordlines must be high enough to minimize the 
series resistance of the unselected cells in the NAND string. A 
high VPASS however, can lead to unwanted threshold voltage 
shift in the unselected cells (i.e. program disturbance) as shown 
in Fig. 19. Based on extensive testing, we chose a VPASS 
voltage of 2.6V which offered a good compromise between the 
two competing effects.  

Another critical challenge we faced while programming the 
weights into the NAND string is the so-called back pattern 
dependency where the programmed cell current is affected by 
the program state of other cells in the NAND string. In our 
testing, we saw the cell current increase by up to 3µA 
depending on whether the rest of the array is in erase mode (i.e. 
all low Vt) or weight 0 mode (i.e. all high Vt). To overcome this 
issue, we devised a novel back-pattern tolerant program-verify 
scheme illustrated in Fig. 20 which ensures that the 
programmed cell current remains constant irrespective of the 
weight values stored in the rest of the array. The operating 
sequence is as follows. In the first phase, we programmed the 
weight 0 cells on a given wordline while inhibiting the weight 
1, 2, and 3 cells.  To ensure that the cell currents of all weight 0 
cells are below the target current of 0.1μA, we applied high 
voltage (8.0V) and long duration (20μs) pulses until the target 
current is reached. Once this has been completed, we program 
the weight 1, 2, and 3 cell currents so that the cell current is 0-
6μA higher than the target depending on the weight value, using 
the additional program pulses as shown in Fig. 20. The first 
pulse is applied to weight 1, 2, 3 cells. The second pulse is 
applied to weight 1 and 2 cells, and the third pulse is applied to 
weight 1 cells. The specific program voltage of each pulse was 
chosen based on the program and program inhibition 
characteristics in Figs. 16 and 17. The same sequence was 
repeated for the rest of the wordlines until the entire array is 
programmed. In the second phase, using smaller and shorter 
pulses of 7.0V and 10μs, we fine-tuned the weight 3, weight 2, 
and weight 1 cells to 9μA, 6μA, and 3μA, respectively. A 
VPASS voltage of 2.6V was used throughout the program-
verify sequence.  

Fig. 21 shows how the cell current changes with the number 
of program pulses for weight 1, 2, and 3 cells. The number of 
program pulses required to converge to the desired current level 
depends on the location of the eflash cell in the 16 layer NAND 
stack. The general trend is that cells closer to the top of the stack 
(e.g. WL15) can be programmed with fewer pulses than those 
closer to the bottom of the stack (e.g. WL1). All eflash cells, 
regardless of their location in the stack, undergo the same bias 
condition during program mode so the difference in the number 
of program pulses can be attributed to the different sensitivity 
between the cell Vth and the stack current. That is, the same 
amount of Vth shift has a stronger impact on the stack current 
for cells closer to the top of the stack. After the program-verify 
operation is complete, the cell current variation is reduced from 
3μA to 0.6μA which is significantly less than the intrinsic 
process variation. Our data suggests that systematic variation 
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Fig. 20. Pulse sequence for programming weights 0, 1, 2 and 3 into the 16 
stack eNAND array. 2 bit weight segments can be programmed into each cell 
using the proposed back-pattern tolerant program-verify scheme. 
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Fig. 21. Cell current versus program pulse count. Fewer program pulses are 
needed to reach the desired current level for the cells closer to the top of the 
NAND stack. The program-verify operation ensures a cell current variation 
less than 0.6µA. 
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effects can be cancelled out in flash memory cells offering 
significant advantage over SRAM or MRAM based 
neuromorphic implementations which do not have any post-
silicon tuning capabilities. Fig. 22 shows the measured cell 
current after programming the entire array using MNIST 
trained weights [34]. A total of 16,384 cells were programmed 
for this test, with the number of cells for each weight level being 
609 (9µA), 790 (6µA), 1211 (3µA), and 13774 (0µA). Notice 
that 84.1% of the eflash array were programmed to zero because 
(1) the vast majority of the MNIST trained weights are zero and 
(2) the opposite polarity cells in Fig. 10 store a zero weight. The 
difference between the maximum and minimum cell currents 
was less than 0. 61µA which is 20.3% of the current step size 
of 3.0µA. No systematic variation was observed in both bitline 
and wordline directions.  

Fig. 23 shows the LeNet-5 CNN demonstration flow [35] for 
the MNIST handwritten digit recognition application. Weights 
were trained based on 60,000 handwritten digit images from the 
MNIST dataset and were preloaded to the test chip. During 
inference mode, the neural network core generates a frequency 
output based on an image with 28x28 pixels in 8 bit grayscale 
precision, and the preloaded 8 bit weights. Due to the long test 
time, this paper presents classification results of 1,000 

randomly chosen MNIST images. The classification accuracy 
measured from the test chip was 98.5% (Fig. 23) which is 
within 0.5% of the software accuracy for the same weight and 
data precision. The discrepancy can be attributed to noise and 
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Fig. 23. (Upper) LeNet-5 Convolutional Neural Network (CNN) flow [26] using the proposed neural network core. (Low) Hand written digit recognition results 
measured from the test chip for 1,000 8 bit grayscale MNIST test images. 
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Fig. 22. Individual cell currents in bitline and wordline directions for MNIST 
trained weights. The number of cells for each weight level and their 
maximum and minimum programmed cell currents are denoted.  
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Fig. 24. Retention characteristics of weight 0, 1, 2 and 3 cell currents confirm 
that cell current variation is maintained below 0.59µA after baking the chip 
at 150°C for 16 hours.  
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Fig. 25. Die microphotograph and test chip feature summary. 
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variation effects in the real chip. The measure inference power 
was 4.95µW per bitline. This power does not include the 
peripheral circuit power which was too small to be measured 
due to the low speed testing setup. The estimated energy-
efficiency assuming a 50nsec read time is 129 TOPS/W where 
an operation is defined as a single 5x5 convolution using 8 bit 
data and 8 bit weights which requires 32 bit-serial cycles (Fig. 
4). Charge loss was minimal when the eflash cells were baked 
at 150°C for 16 hours as shown in Fig. 24. Our MNIST 
demonstration was based on a conservative 2 bit per cell weight 
storage, but the cell retention data shows that 3 bit storage is 
possible. A more detailed study on the cell retention time and 
variation characteristics can be found in [33].  

The die photo and chip feature summary are given in Fig. 25. 
Comparison with previous NOR-type neuromorphic core 
designs based on various memory technologies is shown in Fig. 
26. To our knowledge, this work represents the first physical 
demonstration of an embedded flash based network engine 
inspired by the 3D NAND flash architecture with 16 cells per 
string, 8 bit MAC operation, and summation of 28 cell currents. 

VII. CONCLUSIONS 
An embedded flash based 8bit × 8bit convolutional neural 

network core inspired by the 3D NAND flash array architecture 
was demonstrated in a 65nm standard logic process. The 
eNAND array mimics the operation of a 3D NAND flash and 
consists of 16 stack NAND strings where each eFlash cell can 
storage a 2 bit weight. We adopted the bit-serial scheme to 
achieve the full 8bit × 8bit MAC operation. A novel back-
pattern tolerant program verify operation enables precise 
weight storage within 0.3µA of the target current with a 
program disturbance less than 1.1µA @ VPGM=7.0V. 
Experimental data from a 65nm test chip confirms a 98.5% digit 
recognition accuracy, which is within 0.5% of the software 
accuracy for an equivalent 2-layer LeNet5 CNN benchmark.   
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