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An Embedded NAND Flash Based Compute-
In-Memory Array Demonstrated in a Standard
Logic Process

Minsu Kim, Mugqing Liu, Luke Everson, and Chris H. Kim, Fellow, IEEE

Abstract— A neural network hardware inspired by the 3D NAND
flash array structure was experimentally demonstrated in a
standard 65nm CMOS process. Logic-compatible embedded flash
memory cells were used for storing multi-level synaptic weights
while a bit-serial architecture enables 8 bit x 8 bit multiply-and-
accumulate operation. A novel back-pattern tolerant program-
verify scheme reduces the cell current variation to less than 0.6pA.
Positive and negative weights are stored in adjacent bitlines,
generating a differential output signal. Our eNAND based neural
network core achieves a 98.5% handwritten digit recognition
accuracy which is within 0.5% of the software accuracy for the
same weight precision. To our knowledge, this work represents the
first physical demonstration of an embedded NAND Flash based
compute-in-memory chip in a standard logic process.

Index Terms— 3D NAND, embedded flash, deep neural network,
multiply-and-accumulate, compute-in-memory

1. INTRODUCTION

EEP neural networks (DNNs) contain multiple

computation layers each performing a massive number of
multiply-and-accumulate (MAC) operations between the input
data and trained weights. The number of layers and parameters
vary significantly depending on the specific DNN architecture,
with state-of-the-art designs exceeding 100 million parameters
as shown Fig. 1 [1]. The performance and energy-efficiency of
data-intensive DNN chips can be limited by the available
memory bandwidth and the MAC engine throughput. An
alternative approach that is gaining popularity is the compute-
in-memory (CIM) approach where the computation occurs
where the data is stored, with massively parallelized analog
MAC engines [2-16]. For the analog MAC engines, the input
data is typically loaded on to multiple memory wordlines
generating parallel cell currents that are summed up in a single
cycle and converted to a digital code. Ideally, memory cells
used for CIM architectures should be non-volatile, to avoid the
costly reloading of the weights after a power-down period. It is
also highly desirable if the memory cell can support multi-level
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Fig. 1. Accuracy versus the number of operations required for a single forward
pass of popular deep neural network architectures ([1], more recent DNNs
added). The size of circle represents the number of network parameters which
can exceed 100M in recent architectures.

storage as this can enhance the accuracy of inference tasks. One
embodiment of this approach is a resistive RAM (ReRAM)
crossbar array where weights are stored in the form of the
transconductance of ReRAM cells while the MAC operation is
performed in the analog domain [13-14]. Despite their
tremendous potential, past CIM demonstrations based on
emerging memory devices such as ReRAM and phase change
RAM are mostly limited to small-scale networks with low
precision operands (e.g. 1-2 bits) due to fabrication difficulties
[2-16]. Most array level studies on emerging memory based
CIM designs use compact models extracted from individual
device measurements which cannot capture the true circuit and
array level details. SRAM based CIMs have become a popular
research topic as they can be fabricated reliably in a standard
logic process [17-20]. However, SRAM cells are large
compared to denser 1T or 1TIR memory technologies and
hence cannot store the massive number of parameters required
in today’s DNN architectures. Furthermore, each bit can store
only one bit of resolution and the cell current is prone to process
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variation, which is a critical disadvantage for analog
computation.

To make CIM a practical reality for future DNNs with
hundreds of millions of parameters, it is imperative that the in-
memory neural network array be built in a non-volatile memory
technology that can attain ultra high density, low cost, and
highly manufacturability. 3D NAND Flash technology [21-24]
is the leading candidate that meets all these requirements,
however, no experimental data has been reported on 3D NAND
flash-based CIM designs due to the proprietary nature of the
technology and the difficulty in implementing the MAC
function in standard flash chips. The feasibility of using a 3D
NAND flash array for performing MAC functions was studied
in [25-29], but the analyses were based on the cell current
measured from individual cells rather than from a real MAC
hardware.

In this paper, we investigate the array-level operation of a 3D
NAND flash based Convolutional Neural Network (CNN)
accelerator through a physical chip implementation. To get
around the technology access problem, a demonstrator chip that
mimics a 3D NAND flash array was fabricated in a 65nm
foundry logic process. The proposed hardware features multi-
level non-volatile weight storage using a 3T flash cell, single
cycle current integration, bit-serial MAC operation, and multi-
bit output sensing. One of the highlights of this work is the
back-pattern tolerant program-verify sequence which reduces
the cell current variation to less than 0.6pA, allowing 28
individual cell currents to be summed up in a single cycle while
delivering an MNIST classification accuracy of 98.5%.

Context and scope of this work: It should be noted that
achieving an ultra-high density CIM array was not the main
objective of this work as the logic-compatible 3T flash memory
cell has a large footprint due to the thick oxide transistors
required for the bit cell implementation. Instead, the goal was
to use a logic compatible NVM cell that can be reliably
manufactured in a standard logic technology to study practical
aspects of a 3D NAND based CIM accelerator including, but
not limited to, verifying MAC operation from a NAND array,
developing an accurate and reliable erase and program scheme,
testing charge loss behavior, designing a dedicated high voltage
switch for controlling wordline signals, and demonstrating a
multi-layer neural network architecture in the NAND array. It’s
worth noting that while the proposed CIM architecture was
inspired by the 3D NAND flash array topology, significant
discrepancies exist between the logic process used in work and
a real 3D NAND flash process, that need to taken into account
before the proposed concepts can be considered for real 3D
NAND flash memory. These include the lower device mobility,
higher bitline/wordline resistances, increased interference and
disturbance issues, and the periphery circuit overhead of 3D
NAND technology.

The remainder of this paper is organized as follows. Section
IT describes the design of a neuromorphic computing engine in
a 3D NAND array. The 3T flash based NAND array mimicking
a 3D NAND is described in section III. Implementation details
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Fig. 2. (a) 3D NAND BiCS architecture [21] with 40 BLs x 4 SGDs x 16 WLs.
(b) Analog MAC ( £ X; x W;) implementation in a 3D NAND array.

of the proposed NAND flash based neural network core are
given in section I'V. Section V p provides details of the HVS
wordline driver and its measured results. Experimental results
are discussed in section VI ranging from program and erase
characteristics to inference results from a multi-layer neural
network. Finally, conclusions are drawn in section VII. The
conference version of this work was published in [30].

II. COMPUTE-IN-MEMORY INSPIRED BY 3D NAND FLASH
ARRAY

A. Analog MAC Concept in 3D NAND Array

Fig. 2 shows the 3D NAND BiCS architecture [21]
consisting of 8x16K bitlines, 4 select lines, and 96 wordlines,
along with the implementation of the analog MAC function. In
the first cycle, the least significant bits of the input data
Xo=XuX03X02Xo1 (4 bit example) is loaded on to the four
individual SGD lines while the multi-bit weights are stored in
the memory cell. Note that memory cells on the same layer of a
3D NAND array share the same wordline “plane” so the
individual bits of the input data must be loaded onto the SGD
lin es rather than onto the shared wordline planes. Similar to a
regular NAND flash read operation, a single wordline plane is
enabled by applying a read voltage while the unselected
wordline planes are biased at a pass voltage. To ensure good
linearity between the input data and the cell current, we use
binary SGD voltage levels (i.e. VDD or GND). For the weight
storage, multi-bit weights (typically 2-3 bits) can be stored in
each eflash cell in the same way as MLC (multi-level cell), TLC
(ternary-level cell), or QLC (quad-level cell). The number of
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Fig. 3. Bit-serial operation realized in our test chip with 2 bits per cell weight
storage and 8 bit weight and input parameters. The MAC operation is performed
in the analog domain while the bit position shifting and summation was done
in the digital domain.

bits stored in each cell is determined based on several factors
including the maximum cell current, program disturbance,
maximum sensing current, temperature effects, endurance limit,
and retention characteristics. Each bitline is connected to 4
NAND strings within a single memory block. The bitlines are
also connected to NAND strings in other blocks which allows a
higher number of cell currents to be accumulated. A higher
resolution (e.g. 8 bit) weight can be stored using multiple
memory cells in the same stack, and a multi-bit MAC can be
realized through bit-wise MAC operations where partial results
are summed up while accounting for the bit position difference
(details in section II-B). This step involves asserting the higher
significant bits of the input data (e.g. X;=X14X13X12X11) to the
NAND array as shown in Fig. 2.

B. Bit-Serial Operation for 8bit x 8bit MAC in 3D NAND

In this work, we incorporated the bit-serial technique for
realizing an 8 bit input % 8 bit weight MAC in the proposed
NAND array where each cell stores 2 bits of weight
information. Fig. 3 shows the bit-serial operation for two 8 bit
inputs and two 8 bit weights. Each flash cell can store 2 bits of
information, necessitating 4 cells to store a single 8 bit weight.
The example shown here is for positive weights but negative
weights can be handled in a similar manner [32]. Our test chip

can incorporate both positive and negative weights using two
separate bitlines. The bit-serial operation is briefly explained
next. In cycle 1, LSBs of the two inputs and 2 LSBs of the
weights are multiplied and accumulated as shown in the figure
to produce the partial result 15 - 01,+1,- 11,=1+3 =4. In cycle
2, the same LSB bits of the two inputs are convolved with the
next 2 bits of the two weights to obtain partial result 1,-00, +
1>-11,= 0 + 3 = 3. When combining the results from cycle 1
and cycle 2, the bit position difference is accounted for by
shifting the result from cycle 2 by 2 bits before adding it to the
result from cycle 1. This produces an output of 3-:2% + 4 = 16.
This process is repeated until all the bits of the inputs and
weights are accounted for. Finally, in cycle 32, the last MSB
bits of the inputs and the last MSB bits of the weights are
processed. The partial result of cycle 32 is multiplied by 2!
before the accumulation. For the 5x5 convolutional neural
network implemented in our hardware, the actual number of
inputs is 25.

1II. EMBEDDED NAND FOR EVALUATING 3D NAND BASED
COMPUTE-IN-MEMORY ARRAY

To experimentally verify the 3D NAND flash based CIM
concept, ideally, we would have to build a hardware prototype
in areal 3D NAND flash process. However, it is impossible for
academic researchers to access a real 3D NAND technology
due to its highly confidential nature. It is also impossible to test
the idea in standard flash chips since chip vendors do not grant
users control of the individual SGD and wordline signals. Due
to these constraints, there has been no physical demonstration
of a NAND flash based neuromorphic array to our knowledge.
Only simulation and model based studies exist.

To demonstrate a real hardware prototype in spite of these
constraints, we chose to use a 3T embedded flash memory cell
[15, 30-31] that can be built in any foundry process to emulate
the behavior of a 3D NAND neuromorphic array. Fig. 4 shows
a comparison between a standard 1T flash cell and a 3T eflash
cell vis-a-vis the erase, program, and read bias conditions. The
1T flash cell contains a floating gate layer surrounded by a thick
dielectric layer for non-volatile charge storage. The 3T eflash
cell on the other hand, consists of back-to-back connected
PMOS transistors M1 and M2, and a separate read device M3.
The floating gate node is formed by the gate poly shared by M 1,
M2, and M3 devices. The program and erase operations of both
cell types are based on the Fowler Nordheim (FN) tunneling
mechanism so their program/erase times and retention
behaviors are equivalent. The standard 1T flash cell requires a
high positive or negative voltage between the control gate and
the substrate to inject or remove electrons from the floating
gate. As for the 3T cell, the program or erase voltages are
applied between the junction ter minals of M1 and M2 (i.e.
PWL and WWL signals). Fig. 5 shows 3D NAND strings with
N stacked memory cells based on the 1T flash cell and the 3T
embedded flash cell, respectively. Each wordline of the 3T
NAND array is controlled by wordlines PWL and WWL. We
can see that the current paths of the two NAND strings are
basically the same, even though the program and erase of the
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Fig. 4. Comparison between 1T flash cell (left) and 3T eflash cell (right). FG
means floating gate and CG means control gate. For erase and program modes,
electrons are either removed or injected to the GF node via FN tunneling
mechanism [15, 25-26].

3D NAND String eNAND String

BL BL
CT (Charge SGD | PWL<N>?:
Trap) layer M,
WL<N>—] "’; Gi_‘ E
2
WL<N-1>— - WWL<N> )
PWL<0> *-
WL<1>—] él
‘ WL<0>—] I—{E
Channel SGS F wwg:ios 4
CSL CSL

Fig. 5. 3D NAND string [18] (left and middle) and corresponding eNAND
string based on 3T eflash cell (right). Each row of the eNAND array is
controlled by PWL and WWL signals.

3T cell utilizes the two PMOS devices per cell. The equivalent
between the two cell types allows us to experimentally study
the MAC operation of a standard NAND flash array using a 3T
flash based implementation.

IV. NEURAL NETWORK CORE CIRCUIT DESIGN

A. Overall eNAND Neural Network Core Architecture

Fig. 6 shows how the 3D NAND block in Fig. 2 composed
0f40 BLs, 4 SGDs, and 16 WLs, is flattened for implementation
in a standard logic process. Unlike NOR-type designs where
each memory cell requires a selection device, transistors in a
NAND string share the source/drain nodes, and hence the
selection devices are only required at the top and bottom of the
NAND string. The logic-compatible 3T eFlash cell shown in
Fig. 7 (left) consists of two asymmetrically sized PMOS
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Fig. 6. Flattened 3D NAND architecture for demonstration in a standard
logic process. The original 3D NAND block structure is shown in Fig. 2.
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Fig. 7. Simulated I-V characteristics of top and bottom eFlash cells ofa 16
stack NAND string at cold (-10°C), room (25°C), hot (70°C) temperatures.
Series resistance varies depending on the location in the stack which can be
compensated by incremental programming.

devices (M; and M) for efficient program and erase operation,
and a separate NMOS read device (M3) connected to the NAND
string. Thick oxide IO devices were used to ensure practical
retention times. The width/length of the 3 cell devices are
3.2pum /280nm (M;), 0.4pm / 280nm (M), and 0.4pum / 280nm
(M3), respectively. The M1 width is 8 times larger than those of
M2 and M3 to obtain a high coupling ratio which reduces the
program and erase voltages. Due to the series resistance of the
unselected devices, the I-V characteristics of the eNAND Flash
cell may vary depending on its location in the stack. A flash
memory cell can be programmed incrementally to mitigate
systematic variation effects such as the aforementioned stack
location dependence. The unique post-silicon tuning capability
offers significant advantage over SRAM, DRAM, MRAM, or
RRAM based neuromorphic approaches as the cell read current
can be programmed to within 0.6pA of the target (Figs. 21 and
24). Further details on the incremental program method are
given in section I'V.

Fig. 7 (right) shows the I-V curves of the first and last 3T
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flash cell in the 16 stack NAND string at -10, 25, and 70°C. We
carefully adjusted the floating gate (FG) voltage to achieve
uniform current levels of OpA, 3pA, 6pA, and 9pA. A
conservative 3LA step size was chosen to account for variation
and charge loss effects, but further studies including baking
tests at 150°C showed that a 1pA step size is also acceptable
[33]. The initial FG voltages used in the simulations are listed
in Fig. 7 (bottom) which represent the different programming
levels of the flash cell. The bitline voltage was kept constant at
0.8V during program verify and read modes, which ensures that
the cell current is accurately programmed. Simulation results in
Fig. 7 (right) show that location-dependent variation can be
canceled out by fine-tuning the FG voltage through incremental
programming. The impact of temperature on the I-V curves was
slightly different depending on the program level and the
location of the cell in the stack, but was manageable as
confirmed in our later measurements [33].

The overall chip architecture is shown in Fig. 8 (left) which
comprises two high voltage switch (HVS) circuits per row for
driving the PWL and WWL wordlines, a readout circuit, an
eNAND cell array with 16 cells per stack, and scan chains. Each
eNAND block of the chip architecture requires 32 HVSs for
driving 16 PWL’s and 16 WWL’s. The HVS has to generate a
high output voltage up to 10V during the program and erase
operations. We included a repair block where three eNAND
strings sharing the same PWL and WWL are reserved for
redundancy and fixed bias weights. The input image data is
simultaneously loaded on to 25 SGD lines, and the 3 additional
SGD lines are used for enabling the bias. The circuit diagram
and layout of the 16 stack eNAND string are shown in Fig. 8
(right). In this work, we adopted the bitline voltage regulator
circuit from [15] to pin the bitline voltage to 0.8V while the
bitline current is converted to an output voltage. An on-chip
voltage-controlled oscillator (VCO) generates a frequency that
corresponds to the output voltage. Other more compact and
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cycle and converted to an output frequency for multi-bit sensing.
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efficient analog-to-digital conversion methods [2-14] can be
devised but given that this is the first ever attempt of building a
NAND type neuromorphic array in a real chip, we intentionally
kept the peripheral circuits simple so that we can focus on
verifying the core functionality of the chip.

B. Storing positive and negative weights in eNAND Array

A pair of bitlines is used to store a single weight as illustrated
in Fig. 9. If the weight is positive, the cell current of the left
bitline is programmed accordingly while the cell current on the
right bitline is programmed to <0.1pA, and vice versa for
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Fig. 8. (Left) Overall diagram of the CNN core with high voltage wordline drivers, a 16 stack eNAND Flash array, and readout circuit. (Right) Shared BL and

readout circuit and layout of a 16 stack eNAND string.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Even BL=0.8V Odd BL=0.8V
X .
p L )
lcerio ]:__“_ICELLl
VREAD 22— ::;wli
2bit—} :
vpass ——HErri———H | |
VPAss 22t 8bit iy f:
1bit—_ pair :
VPASS iIC | |:
VPASS +—¢—% . Pos. W 7bit§ Neg. W
FG: Floati ATk
it oating :E:_lﬁ VPAS_SL'L 7 "EI
VPASS i F
SGS : 2.5V
CSL: oV
* Selected WL : VREAD(1.1V)
* Unselected WL : VPASS (2.6V)
X |Wo| Wy | X-Wq|X-Wy| lcerro | leena | Al
1(0[3| 0| 3 |ouA|9pA |-9ua )
Negative
1{0(2] 0 2 | OuA | 6pA |-6pA| 2 bit
1{0[1| 0 | 1 |OpA | 3uA |-3uA| Weights
1{0/0| 0| O |OuA | OuA |OpA
1[1]0] 1] 0 |3pA]o0pA]|3pA] positive
1(2/0| 2 | 0 |6uA|OpA [6pA | 2bit
Weights
1{3(0] 3 0 | 9pA | OpA | 9pA
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negative weights. Input data is simultaneously loaded onto the
SGD lines which activate multiple memory cell currents
connected to the same bitline. During this operation, the
selected and unselected wordlines are held to VREAD and
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Fig. 12. Timing diagram of 5 x 5 convolution operation with 8 bit data and 8
bit weights. 4 cells are used to store a single 8 bit weight while each bit of the
8 bit data is fed to the correct SGD line. Bit serial operation produces a multi-
bit inner product result.

VPASS, respectively. The sum of the individual cell currents
flows through each bitline. The bitline pair generates two
currents; i.e. positive weight and negative weight currents. Both
currents are converted to the corresponding output voltages by
the bitline regulator circuit (Fig. 9). Finally, the VCO circuit
converts the output voltage to a frequency which is measured
using off-chip equipment.

Fig. 10 shows an 8 bit weight composed of even and odd
bitline pairs and the read operation of the first two cells in the
NAND string. The 8 bit weight is represented as either a 7 bit
positive weight or a 7 bit negative weight as shown in Fig. 10.
A 7 bit positive or negative weight is stored across 4 stacked
cells each storing 2 bit, 2 bit, 2 bit, and 1 bit, respectively. The
read operation of the top 2 bit eNAND cell pair follows the
bottom table of Fig. 10. As shown in the table, if the weight is
negative, positive weight Wy set to 0. If the weight is positive,
it’s reversed. If input X is 0, both Icgrio and Icerr: are OpA,
whereas if input X is 1, IceLro and Ice; are either OpA or 3uA
depending on the weight values. Based on this operation, we
can generate the current difference Icgrro - Icerri that works
correctly for both positive and negative weights.

C. Erase and Program Operation

To update the weights in the eNAND cells, we have to first
erase and then program the cell data. Fig. 11 shows the bias
condition for erasing and programming w ordline 15 which is
the upper most row of the NAND stack. The biasing scheme is
the same for the other wordlines. During the erase operation,
we applied OV to the PWL and WWL signals of the unselected
wordlines. As for the selected wo rdline 15, we applied a high
voltage around 10V to the WWL 15 signal and 0V to the PWL
15 signal. Under these bias conditions, electrons move from the
floating gate to the M2 PMOS channel through FN tunneling.

The program operation comprises two modes as shown in
Fig. 11 (bottom). The first mode is the program mode while the
second mode is the program inhibition mode. For the program
mode, we applied a VPASS bias to the PWL and WWL signals
of the unselected word lines. For the selected wordline 15, we
applied a high voltage bias to the PWL 15 and WWL 15 signals,
and OV to the NMOS channel. Electrons move from the NMOS
channel to the floating gate through FN tunneling in the selected
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wordline. For program inhibition mode, the NMOS channel
becomes floating and hence it is boosting by the floating gate.
This limits the voltage across the tunneling oxide and hence the
electrons do not escape the floating gate node. For testing, we
used a program bias voltage ranging from 7.0V to 8.0V.

D. 5 x5 CNN Operation in ENAND Array

The timing sequence of a 5x5 convolution operation with 8
bit inputs and 8 bit weights is shown in Fig. 12. Here, we
applied the bit-serial operation described in section II where the
operand is serialized and asserted one bit at a time to the array
[32]. The bit-serial inner-product realizes the equation
Yl XX <i> 2l W <j> 226G

V. HIGH VOLTAGE SWITCH CIRCUIT AND MEASUREMENTS

A. High Voltage Switch (HVS) WL Driver Circuit

Fig. 13 shows the HVS circuit for generating the proper
wordline biases for erase, program, and read operations. The
HVS circuit was inspired by our previous cascode driver circuit
[30-31], but the following critical improvement was made in the
new design. We added a level shifter circuit for generating the
signal denoted as “F” in Fig 13, and introduced 2 additional
PMOS transistors controlled by signals M and F to generate the
VPASS bias during the program and read operations. The bias
voltages required for each operating mode of the selected
eNAND block are summarized next.

Erase Operation

VPP4=VPP

Program Operation

For the erase operation, we need the erase and default mode
voltages shown in Fig.14 (left column). We apply a 10V erase
voltage to the WWL signal of the selected wordline, and applied
0V to the PWL signal of the selected wordline as well as the
WWL and PWL signals of the unselected wordlines for the
default mode. To generate a stable 10V output while preventing
voltage overstress, we set the VPP4, VPP3, VPP2, and VPP1
voltages to be 10V, 7.5V, 5.0V, and 2.5V, respectively, as
shown in Fig. 13 and 14. Based on these biases and control
signals, a 10V output pulse is generated by the HVS circuit.

For program operation, we need to realize the program and
VPASS modes shown in Fig. 13 (middle column). The
operation of the HVS circuit during program mode is almost the
same as the erase mode. The main difference is the lower
program voltage of 7 to 8V compared to the 10V erase voltage.
WWL and PWL signals of the selected wordlines are charged
to the program voltage while a lower VPASS bias is applied to
the WWL and PWL signals of the unselected wordlines. A
maximum VPASS of 3V was used to minimize program
disturbance. When the voltage of signal M is kept at VPP1
(=0.25xVPP) and the voltages of F, G, and the Pulse signals are
keep at 0V, the output signal is held at VPASS as shown in Fig.
13 (middle column).

For the read operation, we applied the read bias voltage
(=VREAD) to WWL and PWL of the selected wordiness while

Read Operation

VPP4=10V
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Fig. 13. Operation of the modified high voltage switch driver circuit to support (a) erase mode, (b) default mode and program operation (c) program mode, (d)
VPASS mode and read operation (e) read mode, and (f) VPASS mode.
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those of the unselected wordlines were biased at VPASS. The
VPASS mode during read is the same as the VPASS mode
during program operation. During read mode, the output signal
of the HVS circuit is driven to VREAD by applying the
following bias condition; VPASS for signal F), 2.5V 10 VDD
for signal SRD, and OV for signal G as shown in Fig.14 (right).

B. High Voltage Switch (HVS) WL Driver Measurements

Fig. 15 shows the measured results for PWL and WWL of
unselected and selected wordlines in the eNAND array. First,
for a Ims erase period, we verified that the PWL and WWL
signals of the selected and unselected wordlines are correct. The
WWL of the selected wordline is raised to 10V while the PWL
and WWL of unselected wordlines are kept at 0V during the
erase operation. This is the desired result during erase and
default modes of the HVS circuit. Next, we verified the

Erase Mode (VPP 10V, VDD 1.2V, 25°C)

operation of the HVS circuit for program and VPASS modes.
The PWL and WWL signals can support a VPP voltage from
7V to 8V, and a VPASS bias range from 2.6V to 4V. Fig. 15
(middle) shows the HVS output voltage for a 20us program
operation. PWL and SWL signals of the selected wordline are
driven to VPP while PWL and SWL signals of the unselected
wordlines are kept at a VPASS bias of 2.6 to 4V. Lastly, Fig.
15 (right) shows the PWL and WWL during read operation. We
verified the voltage level of the selected wordline switches
reliably to 1. 1V while PWL and WWL signals of the unselected
wordlines are kept at the VPASS bias ranging from 2.6 to 4V
for the 2us read duration. The measured waveforms follow the
expected results of the program, read, and VPASS modes. The
HVS circuit operates correctly without consuming any static
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Fig. 14. Post-layout simulation waveforms of the HVS circuit for erase, program and VPASS modes
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Fig. 15. Measured PWL and WWL signals of the selected and unselected wordlines for erase, program, and read operation.
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Fig. 16. Cell current versus the number of program pulses for two program inhibition modes (BL high and SGD off) and program mode (bottom row). The
average current of 100 cells is shown for each wordline and 0.2V program bias increments from 7.0V to 8.0V for a constant pulse width of 20pus. Test chip data

shows reliable programming with minimal program disturbance.
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Fig. 17. Variation in the cell current versus the number of program pulses while programming a 16 layer NAND string. Results from program mode and two

program inhibition modes are shown.

current making it suitable for the proposed eNAND based
neural net hardware.

VI. EXPERIMENTAL RESULTS

Measured data in Fig. 16 confirms correct program and
program inhibition characteristics for the eflash cells in the 16
stack NAND string. Here , the cell current was measured while
increasing the program voltage from 7.0V to 8.0V with a 0.2V
voltage step. As expected, a higher program voltage induces a
larger threshold voltage shift but c auses program disturbance.
The data also shows how the location of the eflash cell in the
NAND string affects the program operation. Cells connected to
WL 15 (i.e. top of the string) show the largest cell current
change for the same number of program pulses. This is due to
the fact the same threshold voltage shift has a stronger impact
on the overall NAND string current for the cells closer to the
top of the string (further discussion can be found in Fig. 21).
Fig. 17 shows the cell current variation as a function of the
number of program pulses for the three program modes. Based
on these results, we chose a program voltage of 7.0V for the
final fine-tuning steps as the program disturbance is below
1.2pA. The VCO frequency versus the cell current was
characterized (Fig. 18) which was used to convert the measured

65nm, VDD 1.2V, 25°C
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Fig. 18. VCO frequency versus cell current for BLO to 39, and different
weights
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Fig. 19. VPASS disturbance characteristics of eNAND cells during read

operation. Cell current remains constant for VPASS below 3.3 V.
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output frequency to the cell current values. VPASS applied to
the unselected wordlines must be high enough to minimize the
series resistance of the unselected cells in the NAND string. A
high VPASS however, can lead to unwanted threshold voltage
shift in the unselected cells (i.e. program disturbance) as shown
in Fig. 19. Based on extensive testing, we chose a VPASS
voltage of 2.6V which offered a good compromise between the
two competing effects.

Another critical challenge we faced while programming the
weights into the NAND string is the so-called back pattern
dependency where the programmed cell current is affected by
the program state of other cells in the NAND string. In our
testing, we saw the cell current increase by up to 3pA
depending on whether the rest of the array is in erase mode (i.e.
all low Vt) or weight 0 mode (i.e. all high Vt). To overcome this
issue, we devised a novel back-pattern tolerant program-verify
scheme illustrated in Fig. 20 which ensures that the
programmed cell current remains constant irrespective of the
weight values stored in the rest of the array. The operating
sequence is as follows. In the first phase, we programmed the
weight 0 cells on a given wordline while inhibiting the weight
1,2, and 3 cells. To ensure that the cell currents of all weight 0
cells are below the target current of 0.1pA, we applied high
voltage (8.0V) and long duration (20us) pulses until the target
current is reached. Once this has been completed, we program
the weight 1, 2, and 3 cell currents so that the cell current is 0-
6uA higher than the target depending on the weight value, using
the additional program pulses as shown in Fig. 20. The first
pulse is applied to weight 1, 2, 3 cells. The second pulse is
applied to weight 1 and 2 cells, and the third pulse is applied to
weight 1 cells. The specific program voltage of each pulse was
chosen based on the program and program inhibition
characteristics in Figs. 16 and 17. The same sequence was
repeated for the rest of the wordlines until the entire array is
programmed. In the second phase, using smaller and shorter
pulses of 7.0V and 10us, we fine-tuned the weight 3, weight 2,
and weight 1 cells to 9pA, 6pA, and 3pA, respectively. A
VPASS voltage of 2.6V was used throughout the program-
verify sequence.

Fig. 21 shows how the cell current changes with the number
of program pulses for weight 1, 2, and 3 cells. The number of
program pulses required to converge to the desired current level
depends on the location of the eflash cell in the 16 layer NAND
stack. The general trend is that cells closer to the top of the stack
(e.g. WL15) can be programmed with fewer pulses than those
closer to the bottom of the stack (e.g. WL1). All eflash cells,
regardless of their location in the stack, undergo the same bias
condition during program mode so the difference in the number
of program pulses can be attributed to the different sensitivity
between the cell Vth and the stack current. That is, the same
amount of Vth shift has a stronger impact on the stack current
for cells closer to the top of the stack. After the program-verify
operation is complete, the cell current variation is reduced from
3uA to 0.6pA which is significantly less than the intrinsic
process variation. Our data suggests that systematic variation
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Fig. 20. Pulse sequence for programming weights 0, 1, 2 and 3 into the 16
stack eNAND array. 2 bit weight segments can be programmed into each cell
using the proposed back-pattern tolerant program-verify scheme.
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Fig. 21. Cell current versus program pulse count. Fewer program pulses are
needed to reach the desired current level for the cells closer to the top of the
NAND stack. The program-verify operation ensures a cell current variation
less than 0.6pA.
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Fig. 22. Individual cell currents in bitline and wordline directions for MNIST

trained weights. The number of cells for each weight level and their
maximum and minimum programmed cell currents are denoted.

effects can be cancelled out in flash memory cells offering
significant advantage over SRAM or MRAM based
neuromorphic implementations which do not have any post-
silicon tuning capabilities. Fig. 22 shows the measured cell
current after programming the entire array using MNIST
trained weights [34]. A total of 16,384 cells were programmed
for this test, with the number of cells for each weight level being
609 (9uA), 790 (6pA), 1211 (3uA), and 13774 (OpA). Notice
that 84.1% of the eflash array were programmed to zero because
(1) the vast majority of the MNIST trained weights are zero and
(2) the opposite polarity cells in Fig. 10 store a zero weight. The
difference between the maximum and minimum cell currents
was less than 0. 61pA which is 20.3% of the current step size
of 3.0pA. No systematic variation was observed in both bitline
and wordline directions.

Fig. 23 shows the LeNet-5 CNN demonstration flow [35] for
the MNIST handwritten digit recognition application. Weights
were trained based on 60,000 handwritten digit images from the
MNIST dataset and were preloaded to the test chip. During
inference mode, the neural network core generates a frequency
output based on an image with 28x28 pixels in 8 bit grayscale
precision, and the preloaded 8 bit weights. Due to the long test
time, this paper presents classification results of 1,000
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Fig. 24. Retention characteristics of weight 0, 1, 2 and 3 cell currents confirm
that cell current variation is maintained below 0.59pA after baking the chip
at 150°C for 16 hours.
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Fig. 25. Die microphotograph and test chip feature summary.

randomly chosen MNIST images. The classification accuracy
measured from the test chip was 98.5% (Fig. 23) which is
within 0.5% of the software accuracy for the same weight and
data precision. The discrepancy can be attributed to noise and
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Fig. 23. (Upper) LeNet-5 Convolutional Neural Network (CNN) flow [26] using the proposed neural network core. (Low) Hand written digit recognition results

measured from the test chip for 1,000 8 bit grayscale MNIST test images.
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This work ISSCC’21 [37] | ISSCC’20 [36] | ISSCC’19 [14]| ISSCC’19 [11] IEDM’18 [15] ISSCC’18 [13] | IEDM’17 [16]
Technology 65nm 22nm 22nm 55nm 55nm 65nm 65nm 180nm
Voltage 1.2V 0.8V 0.8V 1.0V 1.0V 1.0V 1.0V 2.7V
Cell Type NAND NOR NOR NOR NOR NOR NOR NOR
Non volatile? Yes (eFlash) | Yes (ReRAM) | Yes (ReRAM) | Yes (ReRAM) No (SRAM) Yes (eFlash) Yes (ReRAM) | Yes (Eflash)
Pure CMOS? Yes No No No Yes Yes No No
Program-verify? Yes No No No No Yes No Yes
Weight . . . . . . . .
Resolution 8 Bits 8 Bits 4 Bits 3 Bits 5 Bits 2.3 Bits 3 Bits 2 Bits
LGRS 8 Bits 8 Bits 4 Bits 2 Bits 2 Bits 1Bit 3 Bits 1 Bit
Resolution
Fofcuments 28 Cells 4Cells 4cCells 8 Cells 32 Cells 68 Cells 14 Cells 4Cells
Summed up
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L CUEILCE CNN CNN CNN CNN CNN MLP CNN MLP
Architecture

Fig. 26. Comparison with prior works

variation effects in the real chip. The measure inference power
was 4.95uW per bitline. This power does not include the
peripheral circuit power which was too small to be measured
due to the low speed testing setup. The estimated energy-
efficiency assuming a 50nsec read time is 129 TOPS/W where
an operation is defined as a single 5x5 convolution using 8 bit
data and 8 bit weights which requires 32 bit-serial cycles (Fig.
4). Charge loss was minimal when the eflash cells were baked
at 150°C for 16 hours as shown in Fig. 24. Our MNIST
demonstration was based on a conservative 2 bit per cell weight
storage, but the cell retention data shows that 3 bit storage is
possible. A more detailed study on the cell retention time and
variation characteristics can be found in [33].

The die photo and chip feature summary are given in Fig. 25.
Comparison with previous NOR-type neuromorphic core
designs based on various memory technologies is shown in Fig.
26. To our knowledge, this work represents the first physical
demonstration of an embedded flash based network engine
inspired by the 3D NAND flash architecture with 16 cells per
string, 8 bit MAC operation, and summation of 28 cell currents.

VII. CONCLUSIONS

An embedded flash based 8bit % 8bit convolutional neural
network core inspired by the 3D NAND flash array architecture
was demonstrated in a 65nm standard logic process. The
eNAND array mimics the operation of a 3D NAND flash and
consists of 16 stack NAND strings where each eFlash cell can
storage a 2 bit weight. We adopted the bit-serial scheme to
achieve the full 8bit x 8bit MAC operation. A novel back-
pattern tolerant program verify operation enables precise
weight storage within 0.3pA of the target current with a
program disturbance less than 1.1pnA @ VPGM=7.0V.
Experimental data from a 65nm test chip confirms a 98.5% digit
recognition accuracy, which is within 0.5% of the software
accuracy for an equivalent 2-layer LeNet5 CNN benchmark.
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