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The interplay between electronic interactions and strong spin-orbit coupling is expected to create a

plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic

Weyl semimetals originally proposed in the pyrochlore iridates, which are only expected to reveal their
topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic
phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available

films. Here, we report on the discovery of signatures for the long-sought magnetic Weyl semimetallic phase
in (111)-oriented Eu,Ir,O; high-quality epitaxial thin films. We observed an intrinsic anomalous Hall
effect with colossal coercivity but vanishing net magnetization, which emerges right below the onset of a
peculiar magnetic phase with all-in-all-out (AIAO) antiferromagnetic ordering. The anomalous Hall
conductivity obtained experimentally is consistent with the theoretical prediction, likely arising from the
nonzero Berry curvature emanated by Weyl node pairs near the Fermi level that act as sources and sinks of
Berry flux, activated by broken cubic crystal symmetry at the top and bottom terminations of the thin film.

DOI: 10.1103/PhysRevLett.127.277204

Quantum materials with nontrivial band topology have
rapidly developed as a central theme in condensed matter
physics [1-4]. The focus has recently shifted toward the
search and discovery of gapless topological compounds,
whose low-energy band structures can harbor Weyl or
Dirac fermionic excitations in 3D [5-11]. To date, the
sharpest observation of topological Weyl semimetals
(WSM) has been achieved in a few spatial-inversion
symmetry broken materials that yield clear signatures in
photoemission experiments and straightforward identifica-
tion and classification within ab initio calculations [11].

In contrast, magnetic WSM compounds, where the Weyl
state emerges due to spontaneous time-reversal symmetry
breaking, have remained limited and recently been dem-
onstrated in Mn3Sn [12,13], Co;Sn,S, [14,15], and PrAlGe
[16,17]. Pyrochlore iridates with a chemical formula
R)Ir,0O; (R=Y or a rare-earth element) are the most
theoretically investigated compounds toward this goal,
where the entwined band topology, large spin-orbit cou-
pling, and the moderate Coulomb interaction allow for
itinerant massless fermions surviving the Mott insulating
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tendencies [5,18-23]. Particularly, upon lowering the
temperature, all R,Ir,O; except for R = Pr show a tran-
sition from the Luttinger-Abrikosov-Beneslavskii metallic
phase [24] characterized by the quadratic band touching to
a nonmetallic ground state [1]. Concurrently, the para-
magnetic phase transits into an antiferromagnetic (AFM)
phase with the all-in-all-out (ATAO) spin configuration
stabilized on each cation tetrahedron. Such an unusual spin
configuration results in two degenerate domain structures,
AIAO and all-out-all-in (AOAI), “switchable” by the time-
reversal operation [25]. Within a single domain of the
magnetically ordered state, the time-reversal symmetry is
spontaneously broken, and the WSM phase is predicted to
emerge by ab initio calculations in realistic parameter
regions [Fig. 1(a)] [5,18,21-23]. On the other hand, despite
remarkable experimental efforts, unambiguous demons-
trations of the Weyl semimetallic state in this class of
materials have remained a challenge [26-29].

In magnetic WSMs, a nonquantized anomalous Hall
conductance (AHC) was specifically predicted, which for
one pair of Weyl points is proportional to their distance in
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FIG. 1. (a) Schematic phase diagram as a function of Ir local

Coulomb interaction Uy, displaying NM, WM, WSM, and AFL
Within DFT 4+ U, the Ir AIAO order is sustained when
Uy > U, = 0.6 eV. With increasing Uy, and magnetic moment
m% .o, the WM, WSM, and AFI phases are observed with the
transition at U, ~1.05 and U, = 1.45¢eV, respectively.
(b) XRD 260-w scan of a 40 nm (111) Eu,Ir,O5 thin film grown
on YSZ substrate. (c) high-angle annular dark-field-STEM cross
section image of the sample, confirming the expected epitaxial
relationship between Eu,Ir,O; film and YSZ substrate.

the Brillioun zone [11,30]. Thus, the observation of an
intrinsic anomalous Hall effect (AHE) accompanied by the
ATAO AFM order would serve as one of the direct evidences
for the WSM phase in pyrochlore iridates. Surprisingly,
while the spin order has been successfully identified in
several bulk crystals of pyrochlore iridates, the AHE
remained undetected [31-36]. To explain the elusive nature
of the AHE, a careful examination of the cubic Fd3m
symmetry of bulk R,Ir,O; revealed that it enforces a
complete cancellation of the Chern vectors from each pair
of the Weyl nodes [6] resulting in a zero net Hall response.
By virtue of the same argument, one can conjecture that
breaking the cubic symmetry should lead to incomplete
cancellation of the Chern vectors necessary for unveiling a
nonzero AHC. Experimentally, this can be realized by either
applying a uniaxial strain [37] or by confining the pyrochlore
lattice into a slab geometry, along the [111] direction [6,8].
Both approaches necessitate the (111)-oriented epitaxial thin
films as a crucial platform to unwrap the topological features
in pyrochlore iridates [38]. Here, by using synchrotron-based
resonant scattering and absorption techniques, magnetotran-
sport measurements, and first-principles calculations, we
report on the discovery of an emergent AHE with a colossal
coercive field in the AIAO AFM ordered phase of (111)
Eu,Ir,O5 thin films. Our results strongly indicate that these
phenomena are stark manifestations of the electronic bands
endowed with Weyl crossings in the film geometry with
broken cubic symmetry.

From the materials standpoint, we select Eu,Ir,O5
primarily for two reasons: (1) The Eu** ion is nonmagnetic,

such that the observed properties are exclusively attributed
to the Ir** sublattice [39], and (2) previous studies on bulk
Eu,Ir,O; have shown hints of the WSM phase [26,40,41].
The (111) Eu,Ir,0O5 thin films (~40 nm) were fabricated on
(111) yttria-stabilized ZrO, (YSZ) substrate by pulsed laser
deposition using the “in situ solid phase epitaxy” method
[42]. A high-resolution x-ray diffraction (XRD) 20-@ scan
over a wide range of angles confirms the formation
of a pure pyrochlore phase along the (111) orientation
[Fig. 1(b)]. A cross section image from scanning trans-
mission electron microscopy (STEM) further validates the
structural quality of the film with the expected epitaxial
relationship and atomically sharp film-substrate interface
without any buffered layer [Fig. 1(c)].

Next, we turn to investigate the low-temperature spin
structure of the film. It is noteworthy that even for bulk
iridate crystals, due to the high absorption cross section of
I, neutron scattering is hardly applicable. Alternatively, the
magnetic structure can be probed by synchrotron-based
x-ray resonant scattering. Recently, the long-range ATAO
AFM order on the Ir sublattice has been reported in bulk
R,Ir,O7 (R = Sm, Eu, Nd) [31-33]. However, such a spin
order has never been directly demonstrated in their thin
films, and is only presumed from the bulk results. Here, we
show the first experimental demonstration of the AIAO
order in our (111) Eu,Ir,O5 thin films by x-ray resonant
magnetic scattering (XRMS).

Several specific details of the scattering experiment are
noteworthy. First, the AIAO spin structure is a k =0
magnetic order, which gives rise to additional (004n + 2)
reflections that are structurally forbidden for an ideal
pyrochlore lattice with the Fd3m space group. However,
because of the intrinsic local trigonal distortion of the IrOg¢
octahedra, there exists an additional charge contribution
(known as the anisotropic tensor susceptibility (ATS)
scattering) to the (004n + 2) reflections [43]. The ATS
contribution is dominant in the o-6 channel, and can be
drastically suppressed in the o-7 channel by setting the
[011] axis of Eu,Ir,O5 film perpendicular to the scattering
plane (see Supplemental Material [44]).

As seen in Fig. 2(a), the spectra of the (00 10) reflection
in both channels exhibit a doublet feature, with the peak
position at (A) £ = 11.215 keV and (B) E = 11.22 keV,
referring to the resonant excitation from Ir 2p core to 2,
and e, levels, respectively. As the magnetism of Ir** in
pyrochlore iridates predominantly stems from the partially
filled 1,, levels, magnetic scattering is only resonantly
enhanced during the 2p-f,, excitation. As a result, the
relative intensity of peak A is significantly increased in the
o-n channel, consistent with the results from bulk [31,32].
Next, by fixing the incident energy of x rays at 11.215 keV,
L scans of the (00 10) reflection in the o-7 channel reveal
the presence of a distinct magnetic Bragg peak at 5 K,
which becomes weaker and broader, and eventually dis-
appears into the background near 120 K [Fig. 2(b)]. These

277204-2



PHYSICAL REVIEW LETTERS 127, 277204 (2021)

—~
Q
~
—
(=]
-~
—~
)
-~
™3

E'= 11215 keV/ o (0010)

— Power-law fit

©0010) ]

B T=5K rom sk
— 120K
Fl 4

Intensity (arb. units)

Intensity (arb. units)

Integrated Intensity
(arb. units)

(

[ A
-j{

s
—

N [E=11.215keV § _
o-Tr o-T1 Ne *§
1120 1122 1124 0 50 100

E (keV) T(K)
FIG. 2. Demonstration of the Ir AIAO ordering. (a) Spectra of
the intensity of Eu,Ir, O, film (0 0 10) reflection near the Ir L ; edge
in the -0 and the o-7 channels. The enhancement due to resonant
magnetic scattering is clearly seen at ~11.215 keV in the o-7
channel. (b) L scans of the (00 10) reflection in 6-7 channel with a
fixed energy at 11.215 keV at high and base temperatures.
(c) Temperature dependence of the integrated intensity (over L)
of the (00 10) reflection. The onset of magnetic phase transition is
probed at T’ around 110 K. The blue solid line is a power-law fit of
the data below T, giving rise to the scaling ~|T — T|""!.

results directly confirm the establishment of the all-in-all-
out order in (111) Eu,Ir,O5 thin films. The temperature
dependence of the (0010) integrated intensity further
reveals the onset of the magnetic transition at ~110 K
[Fig. 2(c)]. Moreover, since the intensity of XRMS in the
o-r channel is proportional to the square of the Ir magnetic
moment (denoted as mk,) [31], a fit of the intensity
below the transition temperature [solid line in Fig. 2(c)]
yields the power-law behavior (m&,q)? ~|T —T.|",
consistent with a second-order phase transition into the
long-range AFM ordered state with a mean-field expo-
nent [70].

Now we turn our attention to the key question about the
transport properties of our samples. The temperature
dependence of longitudinal resistivity p,, shows the onset
of a transition into the nonmetallic phase at 7. ~ 110 K
[Fig. 3(a)], coincident with the magnetic transition as
determined by resonant magnetic scattering. Strikingly,
the magnitude of the inverse residual resistivity ratio (RRR)
rather small, 1/RRR = p(2 K)/p(300 K) ~ 3.3, and the
p(T) curve yields a rough estimate for a putative Arrhenius
activation gap E, <4 meV [Fig. 3(a) inset]. These data
validate the semimetallic nature of the (111) Eu,Ir,O5 thin
film below T.. In addition, unlike Nd,Ir,O; with highly
metallic domain walls between the AIAO and AOAI
magnetic domains [71,72], the domain walls in Eu,Ir,0,
film contribute no discernible conducting channels, as
revealed by the practically identical p,.(T) behaviors after
“training” the film in a O T (solid orange curve) and 9 T
(dotted black curve) magnetic field applied along the (111)
direction.

Figure 3(b) displays prototypical normalized p,, curves
as a function of field taken across the transition temper-
ature. While above 110 K the metallic phase possesses a
simple parabolic-dependent p,,(H) shape; a hysteretic
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FIG. 3. Intrinsic anomalous Hall effect in (111) Eu,Ir,O; thin

film. (a) Temperature dependence of the longitudinal resistivity
under O (orange) and 9 T (black) magnetic field, respectively. The
onset of transition is found at 7. ~ 110 K. Inset: the temperature
dependence of the activation gap E, estimated using Arrhenius’s
law. (b) Normalized longitudinal magnetoresistivity and trans-
verse resistivity at a set of temperatures across T .. Note, the linear
contribution from the ordinary Hall effect has been subtracted for
each transverse curve. (c) Temperature dependence of the
anomalous Hall conductivity oapg. (d) Synchrotron XMCD
spectra on Ir L;, edges at 4 K. The magnetic field was applied
along the [111] direction, parallel to the surface normal of film.
(e) Ir Ly XMCD spectra in +6 T (red) and —6 T (blue),
respectively. The sign of XMCD is flipped by direct field
sweeping.

butterfly-dependent p, (H) takes shape at the onset of
the transition, whose magnetic coercivity H - and saturation
Hg fields dramatically increase in a narrow temperature
window from 100 to 90 K. At 70 K, due to colossal H and
Hg, only a small portion of the full hysteresis (the “cross-
ing”) remains accessible in the measurement. It is important
to note, the key part of the protocol to obtain the correct
behavior of p, (H) is to measure each branch of the
hysteresis by thermally quenching the magnetic ordering
(see Supplemental Material [44]). For example, a magneto-
transport response observed by Fujita ef al. on a 70 nm
(111) Eu,Ir,O5 film was attributed to the exotic “odd-
parity” magnetoresistance [73]. Observation of the colossal
coercivity corroborates the predicted magnetic octupole
nature of the AIAO [25], which couples weakly to the
external field; as a consequence, the domains are hardly
switchable by the direct field sweeping at lower temper-
atures [74,75].

Furthermore, following the prediction of AHE in the
WSM phase of R,Ir,O; thin films, a finite signal pyg(H)
emerges right below T'.. The magnitude of the AHE H - and
H ¢ rapidly increase with lowering temperatures [Fig. 3(b)].
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This remarkable feature immediately links the observed
AHE to the presence of the long-range AIAO AFM order
on the Ir sublattice. The complete set of pup(H) curves
down to 2 K are shown in the Supplemental Material [44].
Fig. 3(c) exhibits the deduced anomalous Hall conductivity,
OAHE = pyx/ p2., as a function of temperature. As clearly
seen, below 10 K, oy levels off at ~2 Q™' cm™!, which
corresponds to a net AHC ~ 0.23 ¢?/h.

Unlike ferromagnetic metals, where o 5yg s proportional
to net magnetization [76], the appearance of AHE in a
completely compensated AFM is highly nontrivial.
Therefore, in the discussion about the origin of this
emergent AHE in (111) Eu,Ir,O5 thin films, it is critical
to rule out the net sample magnetization. For this purpose,
we obtained the resonant Xx-ray absorption spectra taken
with left- and right-circularly polarized photons on the Ir
L;, edges at 4 K. The magnetization of Ir can be deduced
from the difference between those two spectra, the x-ray
magnetic circular dichroism (XMCD) [Fig. 3(d)]. A direct
inspection of the XMCD signal shows that even undera 6 T
magnetic field along the [111] direction, the dichroic signal
exhibits a tiny finite intensity at the Ir L; edge and a
negligible signal at the L, edge. Remarkably, the sum rules
analyses on the spectra yield a net magnetization of only
~0.009(6) up/Ir (see the Supplemental Material [44]).
Such a minute value implies the fully compensated all-
in-all-out order, where the Ir spins on each tetrahedron
point along the local (111) axis leading to the expected
perfect moment cancellation and thus zero net magnetiza-
tion. Crucially, in sharp contrast to the low-temperature
AHE behavior, the direction of magnetization is switchable
by flipping the orientation of the magnetic field at 4 K, as
indicated by the flip of the XMCD sign at the Ir L5 edge
[Fig. 3(e)]. Overall, these results lend strong support to the
unconventional nature of the observed AHE and testify to
the nontrivial topology of the electronic bands in momen-
tum space.

To shed light on the microscopic connection between the
observed phenomena and the electronic band topology, we
employ first principle calculations of Eu,Ir,O; in a thin
film geometry to directly model the experiment. Within the
Hubbard-corrected approximate density-functional theory
(DFT + U) approximation [5], the bulk electronic phase
supports the noncollinear ATAO order with Weyl points in
the effective band structure when the on site Hubbard
interaction of Ir Uy, > U, [Fig. 1(a)]. As Uy, increases, the
magnitude of the local moment mk,,. also increases. By
varying Uy, the electronic ground state can be in a normal
metal (NM), a Weyl metal (WM, with 8§ Weyl points
concomitant with metallic bands at the Fermi energy), a
Weyl semimetal (WSM, with 24 Weyl points), or a trivial
antiferromagnetic insulator (AFI) phase. Importantly, this is
qualitatively consistent with results that treat electron
correlations beyond DFT + U [77]. The cubic symmetry
enforces zero AHC in any direction in a bulk sample [37].

The thin film geometry used in the experiments naturally
breaks the cubic symmetry by selecting a preferential axis
to define the surface plane, and can thus induce a nonzero
AHE [6]. To describe the realistic thin films structure, we
constructed a slab model with L, layers along the [111]
direction that is perpendicular to the surface. For the (111)-
oriented films, the top (bottom) terminated surfaces are
kagome (triangle) Ir atomic planes, respectively, which
retain both the proper stoichiometry and critically the
vanishing net magnetization under a perfect AIAO AFM
order as suggested from experiment (the unbalanced slabs
with same terminating lattices and net magnetization
are described in the Supplemental Material [44]).
Representative results of the calculated AHC for an 11-
layer slab are displayed in Fig. 4(a), as a function of Uy, and
energy across each phase identified in the bulk simulations.
As anticipated, a much more pronounced AHC response is
revealed in the WM and WSM phases, whereas in the AFI
phase, the AHC is strongly suppressed due to the removal
of the Weyl nodes that act as sources and sinks of Berry
curvature. In addition, it is noteworthy that the Weyl
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for both WM and WSM phases. (b) L, scaling of anomalous Hall
conductance for slabs with Uy, = 1.3 eV based on calculations
using the kernel polynomial method. At L, = 11, the result from
exact diagonalization (red) is also compared. (c) The momentum-
dependent spectral function at the Fermi energy (E = 0) for an
11-layer slab at Uy, = 1.3 eV, and the associated Berry curvature
map. The orange and green spots on the map represent the
projected Weyl points with opposite chiralities. (d)—(f) Decom-
posed contributions into triangle (7')/kagome (K) termination
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physics in the WM phase can be masked by the enhanced
density of states from parasitic metallic bands at the same
Fermi energy as the Weyl nodes, which produce a much
larger longitudinal conductance (see Supplemental
Material [44]). However, this is at odds with the observed
transport results indicating a semiconducting-semimetallic
behavior below T'... Thus, the ground state of Eu,Ir,05 is in
the WSM regime, as indicated by the star marker.

Evolution of the simulated AHC in the WSM phase
(U, = 1.3 eV) with varying film thickness is shown in
Fig. 4(b), where L, is sampled up to 61 layers, which is
comparable to the thickness of our experimental films.
It is striking that slabs with various L, almost exhibit a
thickness independent behavior, leading to a primarily
constant net Hall conductance in the vicinity of the
Fermi energy. This produces a Hall conductivity that scales
like 6., ~ 1/L., which will consistently recover the zero
response in bulk imposed by the cubic symmetry.

We further explore the origin of AHC by calculating the
momentum dependent spectral function and the Berry
curvature through the local Chern marker [78] map. In
particular, we compare the total response of the slab in
Fig. 4(c) with individual contributions [Figs. 4(d)—4(f)]
decomposed into different regions of the slab, namely, the
T termination, the middle region, and the K termination.
We observe two distinct contributions to the Hall conduct-
ance. First, the major contribution comes from the smooth
variations of the local Berry curvature on the surface and in
the bulk, which is associated with the quantization of
bulklike states due to the finite slab geometry that form
effective quantum well states. In addition, by comparing to
the surface spectral function, there is a novel minor
contribution from the Fermi arc surface states, as revealed
by the enhanced surface Berry curvature emanating out of
the Weyl node projections on the surface, which is tightly
confined in momentum space.

In summary, the combined experimental and theoretical
results strongly suggest the emergence of the long-sought
magnetic Weyl semimetal in (111) Eu,Ir,O; thin films.
These findings identify thin films of pyrochlore iridates as a
stimulating ground for realizing topologically nontrivial
states (e.g., quantum AHE in the quasi-2D limit, axionic
insulators, topological magnons), and may open new
prospects for the nascent field of topological antiferromag-
netic spintronics.
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