
OpenWaters: Photorealistic Simulations For Underwater
Computer Vision

Mehdi Mousavi
smousavi2@student.gsu.edu
Georgia State University
Atlanta, Georgia, USA

Shardul Vaidya
svaidya2@student.gsu.edu
Georgia State University
Atlanta, Georgia, USA

Razat Sutradhar
rsutradhar1@student.gsu.edu

Georgia State University
Atlanta, Georgia, USA

Ashwin Ashok
aashok@gsu.edu

Georgia State University
Atlanta, Georgia, USA

ABSTRACT
In this paper, we present OpenWaters, a real-time open-source un-
derwater simulation kit for generating photorealistic underwater
scenes. OpenWaters supports creation of massive amount of under-
water images by emulating diverse real-world conditions. It allows
for �ne controls over every variable in a simulation instance, includ-
ing geometry, rendering parameters like ray-traced water caustics,
scattering, and ground-truth labels. Using underwater depth (dis-
tance between camera and object) estimation as the use-case, we
showcase and validate the capabilities of OpenWaters to model
underwater scenes that are used to train a deep neural network for
depth estimation. Our experimental evaluation demonstrates depth
estimation using synthetic underwater images with high accuracy,
and feasibility of transfer-learning of features from synthetic to
real-world images.
ACM Reference Format:
Mehdi Mousavi, Shardul Vaidya, Razat Sutradhar, and Ashwin Ashok. 2021.
OpenWaters: Photorealistic Simulations For Underwater Computer Vision .
In The 15th International Conference on Underwater Networks and Systems
(WUWNet’21), November 22–24, 2021, Shenzhen, Guangdong, China. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3491315.3491336

1 INTRODUCTION
Computer vision can turn noticeably more di�cult when applied to
under water images. Light transport in a dense medium like water
creates phenomena such as caustics, refraction, dense scattering and
absorption. Availability of large volume datasets has enabled deep
learning methods to achieve state-of-the-art results in computer
vision depth estimation. However, these datasets are immutable,
and modi�cation of imaging characteristics is not possible after
acquisition.

Manual labeling of depth in underwater images is very challeng-
ing, so one is limited to active depth sensing (e.g., RGB-D sensors)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WUWNet’21, November 22–24, 2021, Shenzhen, Guangdong, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9562-5/21/11. . . $15.00
https://doi.org/10.1145/3491315.3491336

or passive methods like disparity matching. Gathering data from
underwater sources often requires expensive, delicate equipment
that need to be enclosed in watertight containers, which can par-
ticularly a�ect depth estimation cameras [3], by blocking depth
sensing rays in active depth sensing cameras; or making it di�cult
to track points in passive stereo vision cameras. All assuming that
there is access to a controlled, physical underwater setup (i.e. a pool)
to gather images from. As such, underwater vision problems rarely
have large amounts of labelled data with accurate ground-truth
annotations.
OpenWaters. To address the fundamental limitations in data col-
lection for underwater computer vision, in this paper, we have
designed OpenWaters , an underwater simulation kit designed to
be highly customizable, easily extendable, run in real-time and
open-source. An OpenWaters simulation can be shaped for any
underwater visual task, including visible light communications,
depth estimation and image enhancement. OpenWaters is capable
of generating dynamic, massive image datasets in highly complex
scenarios. As we detail further in section 3, OpenWaters is a modu-
lar set of customizable abstract classes developed within NVIDIA’s
RTX Branch of Unreal Engine 4 (Epic Games, USA)[8, 18]. Open-
Waters is built with compatibility and low entrance barrier in mind,
allowing even those researchers who are unfamiliar with Unreal
Engine to create, maintain and iterate on their own photorealistic
customized datasets for any vision task underwater. OpenWaters
contains three key modules: (1) A stochastic scene generation sys-
tem that creates the geometry of a scene based on parameters like
objects, objectives, camera type, lighting, and backgrounds; (2) A
ground truth core that automatically calculates and overlays a wide
variety of accurate, pixelwise ground-truth annotations; (3) A data
ablation core that enables changing characteristics of the simula-
tion (i.e water, environment, lighting, timescale or rendering) in
real-time without a�ecting scene composition.

In summary, the key contributions of this paper are as follows:

(1) Design of a simulation tool system for underwater camera
scene generation emulating real-world conditions.

(2) A convolutional neural network (CNN) deep learning model
for underwater depth estimation using OpenWaters data.

(3) Experimentation data trace based evaluation of depth esti-
mation accuracy using OpenWaters synthetic and real-world
data.

https://orcid.org/0000-0001-8948-8011
https://orcid.org/0000-0001-9916-7828
https://orcid.org/0000-0001-7210-7358
https://orcid.org/0000-0002-6827-9154
https://doi.org/10.1145/3491315.3491336
https://doi.org/10.1145/3491315.3491336

WUWNet’21, November 22–24, 2021, Shenzhen, Guangdong, China Mousavi, et al.

2 RELATEDWORK
Underwater Simulations. Currently, there are open-source un-
derwater simulations available. Prior simulations exclusively de-
veloped for underwater uses are UWSim (published in 2012) [20]
and UUV (Unmanned Underwater Vehicle) Simulator (published
in 2016) [14]. These tools generally allow for visualization of vir-
tual underwater scenarios, and provide simulations of rigid body
dynamics or sensors such as sonar or pressure sensors. However,
these simulation tools haven’t been recently updated or developed
to support modern hardware. More importantly, these simulations
do not focus on real-time, realistic image rendering with hardware-
accelerated ray tracing, nor they are designed for modern diagnos-
tic methods such as data ablation. [16, 26]. In comparison to other
simulation tools, our system — OpenWaters — uses hardware ray
tracing to accurately generate Photorealistic images in real time,
its designed to be user friendly, and has integrated tools for data
ablation experiments.
Underwater Depth Estimation. Scattering and absorption make
underwater depth estimation more challenging in comparison to
on-land scenarios[6, 19]. Prior work on Depth estimation has pro-
duced state-of-the-art results for in-land datasets such as NYUv2
or DIODE-Depth [7, 24]. Using deep learning, pixelwise accurate
measurements can be achieved that all but eliminate the need for
active depth sensing or stereo cameras for indoor scenes [2, 16].
The indoor data-sets gathered with active depth sensing cameras
can use the structure of the scene to infer a pixel-wise depth map.
Although these laser cameras work on indoor or outdoor scenes,
submerging them underwater will interfere with their depth sens-
ing capabilities [3]. This has led to studies using unsupervised
methods for underwater depth estimation [10], or bringing images
from other domains (Style transfer) using methods such as Genera-
tive Adversarial Networks (GANs), so they resemble underwater
images [11, 12]. Generally, these studies seem to be hampered by
the lack of reliable, �exible data [11, 25].
Using Synthetic Data. Modern computer graphics can achieve
near-photorealism, so synthetic data has become a viable alterna-
tive in situations where acquiring or labeling real data is di�cult.
Synthetic data has been proven to be useful in complex computer
vision tasks, such as depth estimation [16, 21, 22], surface normal
estimation, robotic grasping [13, 22] and object segmentation [15]
by multiple independent researchers [9, 16, 22].

3 OPENWATERS SIMULATION KIT
OpenWaters is a set of customizable classes, made in Unreal Engine
for generating massive computer vision datasets in underwater
scenarios. Unreal Engine 4 (UE4) is a graphics engine for projects
with high-resolution, real-time 3D graphics. It is free for both com-
mercial and non-commercial use and its source code is publicly
available and extended by the community. We use one such ex-
tended version created for hardware accelerated ray-tracing by
NVIDIA RTX graphics cards [18].

The key contributions of OpenWaters are: (i) Open-source, free
set of user-friendly, extendable tools for creating customized datasets
of underwater scenarios, (ii) A set of curated, customizable photore-
alistic scenes for underwater visual communications using real-time

Figure 1: OpenWaters Simulation Architecture

hardware ray-tracing, (iii) Extendable, Automatic, multi-modal, ac-
curate ground-truth generation for visual tasks, and (iv) Compatible
Python scripts for data acquisition and processing.

Figure 1 depicts the architecture of our OpenWaters simulation
toolkit. Below, we describe the key elements of the system.
Environments Core: This module contains the over-all code for
generating novel scenes. It also contains several extendable abstract
classes that can be used to target a wide range of domains. This
covers the environment geometry and objects (e.g. pool or light
transmitters), lighting (direct sunlight, di�used skylight, pool lights),
water (clarity, color, surface level, surface agitation), rendering
features(caustics, ray-tracing settings, resolution), Scene Materials
and time (dilation or freezing).
Data Ablation Core: This module translates control signals from
a human operator or a python script. These control signals apply
changes in the environments generated by the environments core.
We can adjust the cameras (camera matrix), lighting, Items, Render-
ing (e.g. re�ection pro�les or HDRI maps), Geometry and properties
of the materials in the scene. Additionally, all of the ray-tracing
engine parameters are exposed for experimentation within the Data
Ablation module. The features of the data ablation core are adapted
from [15, 16].
Ground-truth Core: OpenWaters includes scripts for automati-
cally estimating depth, surface normals (world space and camera
space), object masks and caustics segmentation. The Ground Truth
Core is easily extendable by adding ormodifying the existing scripts.
We overlay these properties directly over the image with pixel-
perfect alignment between the data and the ground-truth labels. In
this work we explore only the depth ground truth core. This core
annotates the calculated and normalized distance between each
pixel that belongs to a speci�c object and the camera. By default,
we set the real-life range of depth to 1000 centimeters, which covers
the entire environment. This range is customizable in the GT Core.

4 EVALUATION
To validate our OpenWaters Simulation, we use it to generate a
dataset of 13,000 640⇥480 RGB and Depth images, then we train
a deep convolutional neural network (DCNN) from scratch to es-
timate depth in underwater scenarios. We chose depth since our
real ZED camera did not produce reliable depth images underwa-
ter (See Figure 4.) Our images feature moderate to high levels of
scattering and absorption (normal and murky water). In particular,
since we aim to see the transference of learned features into the real
domain for underwater depth estimation. Since reliable, accurate

OpenWaters: Photorealistic Simulations For Underwater Computer Vision WUWNet’21, November 22–24, 2021, Shenzhen, Guangdong, China

ground-truth data is not available for underwater depth estima-
tion in real domain, we exclusively use synthetic data for training.
Our experiments show the model learns transferable features from
the synthetic domain, that can be applied to real setup and infer
depth from monocular images. Our data ablation experiments show
the model attempting to extract perspective clues from the struc-
ture and texture, and using absorption and scattering as clues in
predicting depth.

4.1 Experimental Setup

Figure 2: Our physical experimentation setup.

To gather real underwater images, we constructed a physical
underwater setup. As Figure 2 shows, our physical setup is an Intex
pool of size 20’⇥10’⇥5’, with custom steel rails held together by
cinder blocks that allow for horizontal movement of the camera and
LED capsule. Our transmitter and the receiver (ZED stereo camera)
[23] are submerged and mounted on the mentioned rails inside Blue
robotics watertight enclosure capsules [5]. Our Simulation instance
is modeled after this physical setup.

4.1.1 Simulation Instance. To model the physical setup, we create
a set of custom 3D meshes. For the transmitter capsules, we model
them inside Unreal Engine as per the technical details provided by
their manufacturer [4]). We also model the Intex pool’s dimensions
in the physical setup. These meshes are available for public use
with the released open-source code. The virtual transmitter and
receiver are mounted similarly to our physical setup on virtual
rails that allow for horizontal movement. The environments core
generates a random location along the mounting bar to place the
transmitter, and pseudo-random transform (location, pitch, yaw,
roll) for the receiver. In each scenario, the transmitter and receiver
are automatically mounted on random locations along the rails, and
the objects are moved horizontally (similar to the physical setup)
to introduce depth variety. Additionally, the main light source (sun)
is randomly rotated in every frame to introduce lighting variety in
the data.
Metrics. For evaluation, we used the same metrics as those used
in [7]: average relative error (REL), root mean squared error (RMS),
average log10 error, and threshold accuracy (�i < 1.25i f or i =
[1, 2, 3]).
Hardware.We conducted all our experiments on a Computer with
an AMD Ryzen 5 5600x CPU, a GeForce RTX 2080 Ti graphics card,
and 16 GBs of RAM.
Deep Neural Networks.We used the encoder-decoder architec-
ture, and loss function from [17], with implementation from [2]. We
train our model on purely synthetic data generated by OpenWaters
simulation for 50 epochs. Dataset size is 13000 Images, split 80%
(10400) for Training and 20% (2600) for validation.

Figure 3: Qualitative Analysis - Performance of the model
on Real images. From Left: Real image, Prediction of model
trained on OpenWaters synthetic data, Ground-truth simu-
lated from OpenWaters, Prediction of DenseDepth model.

5 RESULTS AND DISCUSSION
To test our model, we generate 80 images in various scenarios
using the data ablation utilities in the simulation. For each scenario,
camera and lighting are set at random positions, then the data
ablation core freezes time to prevent changes in the caustics pattern,
scattering and water particles. Then, it captures ground-truth and
the test image. To accurately measure the e�ects of change in the
isolated features, the test images are exactly the same, with only
the speci�ed parameters changing. (See Figure 5).
Performance onRealDomain.To get a better grasp of themodel’s
performance, we recreated images from the physical setup in Open-
Waters, where we have access to accurate depth ground-truth.
These recreations are featured in �gure 3.We thenmanuallymatched
the real images and synthetic ground-truth by overlaying them
pixel-by-pixel in Adobe Photoshop [1]. This allows us to run a
semi-quantitative evaluation on the performance of the model. As
seen in Table 3 performance of the model in real images is consis-
tent with our data ablation diagnostic analysis on synthetic images.
Overall, our model can generate depth maps in real underwater
images without being trained on real data. Based on our qualitative
and semi-quantitative analysis, it seems to have picked up useful
features from its training with synthetic data. Figure 3 also shows
predictions of our model vs. DenseDepth [2] in our real underwater
setup.
Unreliable Depth Ground-truth in Real images. As seen in
Figure 3, our model can generate a depth map by from a monocular
real image without prior training on real data. We con�rm the �nd-
ings of other studies that depth cameras do not yield reliable results
when submerged underwater [3]. Passive depth sensing cameras
like the ZED Camera [23] use disparity matching to calculate a
depth map. In underwater images, there are fewer structural key
points to track for depth. Furthermore, lens-like curvature of the
blue robotics capsule [5] used to submerge the camera setup un-
derwater introduces an uneven pincushion distortion around the
edges of the frame that further interferes with disparity matching
in camera. As such, our ZED camera does not produce an accurate

WUWNet’21, November 22–24, 2021, Shenzhen, Guangdong, China Mousavi, et al.

Table 1: To evaluate the robustness of the model, we run a set of data Ablation tests in the same domain. As indicated by the
results, Our model is robust to changes in lighting or murkiness. Arrows indicate if higher or lower values are better.

Experiment Goal �1 " �2 " �3 " REL# RMS# log10#
Blue Intex Pool Sanity Check (Same domain test set) 0.9699 0.9895 0.9949 0.0444 0.0214 0.0193
Murky E�ect of heavy scattering in same domain 0.9671 0.9885 0.9945 0.0486 0.0256 0.0216
No Sunlight E�ect of sunlight in same domain 0.9652 0.9877 0.9941 0.0529 0.0264 0.0234

Table 2: DataAblation tests. In each experiment, image features are isolated to determine the result of experiment goal. Arrows
indicate if higher or lower values are better

Experiment Goal �1 " �2 " �3 " REL# RMS# log10#
Blue Intex Pool Sanity Check 0.9699 0.9895 0.9949 0.0444 0.0214 0.0193
Procedural Tiles E�ect of change in pool texture 0.5878 0.6533 0.7198 0.1027 0.1255 0.2273
Procedural Tiles: Murky E�ect of heavy scattering + pool texture 0.6053 0.6698 0.7043 0.7968 0.1076 0.2723
Clay bottom E�ect of change in pool texture 0.5921 0.6781 0.7283 0.4378 0.1178 0.2567
Clay bottom: Murky E�ect of heavy scattering + pool texture 0.6007 0.6855 0.7408 0.6138 0.1423 0.2166
Ceramic Tiles E�ect of change in pool texture 0.3098 0.4458 0.5372 0.5971 0.2645 0.4428
Ceramic Tiles: Murky E�ect of heavy scattering + pool texture 0.5885 0.6437 0.6727 0.4417 0.1125 0.3465
Irregular Tiles E�ects of Non-Cubic texture 0.4184 0.5678 0.6734 0.5317 0.2171 0.2707
Irregular Tiles: Murky E�ects of Non-Cubic texture + Scattering 0.6540 0.7385 0.7887 0.4067 0.0847 0.1887
Dark Pattern E�ects of Non-Cubic texture 0.1641 0.3483 0.5089 0.6850 0.3116 0.3574
Dark Pattern: Murky E�ects of Non-Cubic texture + Scattering 0.6077 0.7201 0.7806 0.4193 0.0982 0.1909
Cobblestone E�ects of Non-Cubic texture 0.2794 0.4357 0.5108 0.5724 0.2603 0.5011
Cobblestone: Murky E�ects of Non-Cubic texture + Scattering 0.5590 0.6081 0.6288 0.4181 0.1226 0.3798

Table 3: Semi-Quantitative analysis of model performance on Real Images. Performance drop is consistent with our data
ablation diagnostic results. These numbers serve as a rough representation of model performance on real images, and not its
actual performance. Arrows indicate if higher or lower values are better.

Experiment Goal �1 " �2 " �3 " REL# RMS# log10#
Blue Intex Pool Sanity Check (Same domain test set) 0.9699 0.9895 0.9949 0.0444 0.0214 0.0193

Real Setup Semi-quantitative analysis 0.3862 0.5709 0.7195 0.4215 0.2653 0.2556

Figure 4: Comparison between ZED camera raw depth out-
put andOpenWaters depth prediction. The ZEDCamera out-
put is unreliable in underwater scenarios.

depth map in the real underwater setup. As Seen in Figure 4, our

depth estimation neural network can predict depth where the real
camera produces an unreliable depth image.

5.1 Data Ablation Diagnostic Analysis
Table 1 shows the performance of our network, trained entirely on
synthetic data generated by OpenWaters Simulation. In particular,
the �rst table shows that our Depth estimation model achieves
close to 97% (� < 1.253) accuracy in the test set, which contains
challenging features such as water caustics, scattering and lighting
variety. Our depth estimation model is quite robust to changes in
lighting or scattering amount (murkiness). We argue this is due
to these features being present in the training data. This table
further con�rms the feasibility of training deep learning models
on synthetic data. In particular, it shows the model can learn to
estimate depth from monocular synthetic images.

Table 2 shows the results for our data ablation tests (sample
images in Figure 5) on the e�ects of pool texture and scattering on
the performance of the depth estimation model. Below, we go over
our insights from the Data Ablation diagnostic analysis.

OpenWaters: Photorealistic Simulations For Underwater Computer Vision WUWNet’21, November 22–24, 2021, Shenzhen, Guangdong, China

Figure 5: Data Ablation: Isolating speci�c features (in these
images, murkiness and pool material) inside the exact same
image, to evaluate their e�ects on the performance of a neu-
ral network. (Figure best viewed on screen)

E�ect of change in pool texture. Using the data ablation core in
OpenWaters, we perform experiments that are extremely di�cult
to do in real physical setups. One of which is introducing a change
in the pool texture, while keeping all else exactly the same. The
texture of the pool is directly related to the environment, since an
object’s surface material will a�ect its interactions with light, and
it can dramatically change how it appears in an image. We see an
expected performance drop similar to a dataset shift problem when
switching to other types of texture materials for the pool.
Looking for Perspective clues. One reason for trying di�erent
pool textures is seeing the e�ect of perspective clues in the per-
formance of the model. Many pools come with uniform, uni-color,
often cubic tiles that can easily be tracked by the model as an easy
perspective clue. In fact, this e�ect can be seen in our real images
test, where the model guesses depth on the pool bottom almost
perfectly. However, in case of a more complex texture like proce-
dural tiles or non-cubic textures like cobblestone, we see a sharp
decrease in performance. (see table 2) We argue this is because it
is much harder for the model to extract perspective information
from such irregular textures, compared to uniform tiles. We might
be able to improve this by using the data ablation core to add more
variety to the training data.

6 CONCLUSION & FUTUREWORK
In this paper, we introduced OpenWaters: an open-source, extend-
able and user friendly simulation kit that enables �ne control over
every variable, including realistic rendering parameters and ground-
truth labels. We used OpenWaters to train a deep neural network,
predicting depth from single underwater images. We demonstrated
our model’s ability to learn from synthetic images generated from
OpenWaters, and provided semi-quantitative and qualitative analy-
sis on how this model can perform in real images. In addition, we
showcased the diagnostic tools provided with OpenWaters by per-
forming data ablation diagnostic analysis on the depth estimation
model to determine its weak points and infer insights for train-
ing neural networks for underwater computer vision. We posit
that our analysis serves as an example of the types of experiments
OpenWaters simulation kit enables in the future.

REFERENCES
[1] Adobe Inc. 2018. PhotoShop CC19.1.2. https://www.adobe.com/products/

photoshop.html
[2] Lbraheem Alhashim and Peter Wonka. 2018. High Quality Monocular Depth

Estimation via Transfer Learning. arXiv e-prints abs/1812.11941, Article
arXiv:1812.11941 (2018). arXiv:1812.11941 https://arxiv.org/abs/1812.11941

[3] Atif Anwer, Syed Saad Azhar Ali, Amjad Khan, and Fabrice Mériaudeau. 2017.
Underwater 3-D Scene Reconstruction Using Kinect v2 Based on Physical Models
for Refraction and Time of Flight Correction. IEEE Access 5 (2017), 15960–15970.
https://doi.org/10.1109/ACCESS.2017.2733003

[4] Blue Robotics. 2021. Technical Details of Watertight Enclosure for ROV/AUV
(6" Series). https://bluerobotics.com/store/watertight-enclosures/6-series/wte6-
asm-r1/#tab-technical-details

[5] Blue Robotics. 2021. Watertight Enclosure for ROV/AUV (6" Series). https:
//bluerobotics.com/store/watertight-enclosures/6-series/wte6-asm-r1/

[6] P. Drews, Jr., E. do Nascimento, F. Moraes, S. Botelho, and M. Campos. 2013.
Transmission Estimation in Underwater Single Images. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV) Workshops.

[7] David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth Map Prediction
from a Single Image using a Multi-Scale Deep Network. CoRR abs/1406.2283
(2014). arXiv:1406.2283 http://arxiv.org/abs/1406.2283

[8] Epic Games. 2020. Unreal Engine 4.26. https://www.unrealengine.com
[9] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. 2016. Virtual

Worlds as Proxy for Multi-Object Tracking Analysis. arXiv:1605.06457 [cs.CV]
[10] Honey Gupta and Kaushik Mitra. 2019. Unsupervised Single Image Underwater

Depth Estimation. arXiv:1905.10595 [cs.CV]
[11] Jie Li, Katherine A. Skinner, Ryan M. Eustice, and Matthew Johnson-Roberson.

2018. WaterGAN: Unsupervised Generative Network to Enable Real-Time Color
Correction of Monocular Underwater Images. IEEE Robotics and Automation
Letters 3, 1 (2018), 387–394. https://doi.org/10.1109/LRA.2017.2730363

[12] Na Li, Ziqiang Zheng, Shaoyong Zhang, Zhibin Yu, Haiyong Zheng, and Bing
Zheng. 2018. The Synthesis of Unpaired Underwater Images Using a Multistyle
Generative Adversarial Network. IEEE Access 6 (2018), 54241–54257. https:
//doi.org/10.1109/ACCESS.2018.2870854

[13] Je�rey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu
Liu, Juan Aparicio Ojea, and Ken Goldberg. 2017. Dex-Net 2.0: Deep Learning
to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics.
arXiv:1703.09312 [cs.RO]

[14] Musa Morena Marcusso Manhães, Sebastian A. Scherer, Martin Voss, Luiz Ricardo
Douat, and Thomas Rauschenbach. 2016. UUV Simulator: A Gazebo-based
package for underwater intervention and multi-robot simulation. In OCEANS
2016 MTS/IEEE Monterey. 1–8. https://doi.org/10.1109/OCEANS.2016.7761080

[15] Mehdi Mousavi and Rolando Estrada. 2021. SuperCaustics: Real-time, open-
source simulation of transparent objects for deep learning applications.
arXiv:2107.11008 [cs.GR]

[16] Mehdi Mousavi, Aashis Khanal, and Rolando Estrada. 2020. AI Playground:
Unreal Engine-based Data Ablation Tool for Deep Learning. In International
Symposium on Visual Computing. Springer, 518–532.

[17] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. 2012. Indoor
Segmentation and Support Inference from RGBD Images. In ECCV.

[18] NVIDIA. 2021. NvRTX Branch of Unreal Engine. https://github.com/NvRTX/
UnrealEngine/tree/NvRTX_Caustics-4.26

[19] Yan-Tsung Peng, Xiangyun Zhao, and Pamela C. Cosman. 2015. Single underwater
image enhancement using depth estimation based on blurriness. In 2015 IEEE
International Conference on Image Processing (ICIP). 4952–4956. https://doi.org/
10.1109/ICIP.2015.7351749

[20] Mario Prats, Javier Pérez, J. Javier Fernández, and Pedro J. Sanz. 2012. An open
source tool for simulation and supervision of underwater intervention missions.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2577–
2582. https://doi.org/10.1109/IROS.2012.6385788

[21] Konstantinos Rematas, Ira Kemelmacher-Shlizerman, Brian Curless, and
Steven M. Seitz. 2018. Soccer on Your Tabletop. CoRR abs/1806.00890 (2018).
arXiv:1806.00890 http://arxiv.org/abs/1806.00890

[22] Shreeyak S. Sajjan, Matthew Moore, Mike Pan, Ganesh Nagaraja, Johnny Lee,
Andy Zeng, and Shuran Song. 2019. ClearGrasp: 3D Shape Estimation of Trans-
parent Objects for Manipulation. arXiv:1910.02550 [cs.CV]

[23] StereoLabs. 2021. ZED Stereo Camera. https://www.stereolabs.com/zed/
[24] Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo, HaochenWang, Falcon Z.

Dai, Andrea F. Daniele, Mohammadreza Mostajabi, Steven Basart, Matthew R.
Walter, and Gregory Shakhnarovich. 2019. DIODE: A Dense Indoor and Outdoor
DEpth Dataset. CoRR abs/1908.00463 (2019). http://arxiv.org/abs/1908.00463

[25] Yang Wang, Jing Zhang, Yang Cao, and Zengfu Wang. 2017. A deep CNN method
for underwater image enhancement. In 2017 IEEE International Conference on
Image Processing (ICIP). 1382–1386. https://doi.org/10.1109/ICIP.2017.8296508

[26] Olaya Álvarez Tuñón, Alberto Jardón, and Carlos Balaguer. 2019. Generation and
Processing of Simulated Underwater Images for Infrastructure Visual Inspection
with UUVs. Sensors 19, 24 (2019). https://doi.org/10.3390/s19245497

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop.html
https://arxiv.org/abs/1812.11941
https://doi.org/10.1109/ACCESS.2017.2733003
https://bluerobotics.com/store/watertight-enclosures/6-series/wte6-asm-r1/#tab-technical-details
https://bluerobotics.com/store/watertight-enclosures/6-series/wte6-asm-r1/#tab-technical-details
https://bluerobotics.com/store/watertight-enclosures/6-series/wte6-asm-r1/
https://bluerobotics.com/store/watertight-enclosures/6-series/wte6-asm-r1/
https://arxiv.org/abs/1406.2283
http://arxiv.org/abs/1406.2283
https://www.unrealengine.com
https://arxiv.org/abs/1605.06457
https://arxiv.org/abs/1905.10595
https://doi.org/10.1109/LRA.2017.2730363
https://doi.org/10.1109/ACCESS.2018.2870854
https://doi.org/10.1109/ACCESS.2018.2870854
https://arxiv.org/abs/1703.09312
https://doi.org/10.1109/OCEANS.2016.7761080
https://arxiv.org/abs/2107.11008
https://github.com/NvRTX/UnrealEngine/tree/NvRTX_Caustics-4.26
https://github.com/NvRTX/UnrealEngine/tree/NvRTX_Caustics-4.26
https://doi.org/10.1109/ICIP.2015.7351749
https://doi.org/10.1109/ICIP.2015.7351749
https://doi.org/10.1109/IROS.2012.6385788
https://arxiv.org/abs/1806.00890
http://arxiv.org/abs/1806.00890
https://arxiv.org/abs/1910.02550
https://www.stereolabs.com/zed/
http://arxiv.org/abs/1908.00463
https://doi.org/10.1109/ICIP.2017.8296508
https://doi.org/10.3390/s19245497

	Abstract
	1 Introduction
	2 Related Work
	3 OpenWaters Simulation Kit
	4 Evaluation
	4.1 Experimental Setup

	5 Results and Discussion
	5.1 Data Ablation Diagnostic Analysis

	6 Conclusion & Future work
	References

