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Flat topological bands and eigenstate criticality in a quasiperiodic insulator
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The effects of downfolding a Brillouin zone can open gaps and quench the kinetic energy by flattening
bands. Quasiperiodic systems are extreme examples of this process, which leads to new phases and critical
eigenstates. We analytically and numerically investigate these effects in a two-dimensional topological insulator
with a quasiperiodic potential and discover a complex phase diagram. We study the nature of the resulting
eigenstate quantum phase transitions; a quasiperiodic potential can make a trivial insulator topological and
induce topological insulator-to-metal phase transitions through a unique universality class distinct from random
systems. This wealth of critical behavior occurs concomitantly with the quenching of the kinetic energy, resulting
in flat topological bands that could serve as a platform to realize the fractional quantum Hall effect without a
magnetic field.
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Introduction. The interplay of topology and strong corre-
lations produces fascinating phenomena, with the fractional
quantum Hall effect [1] serving as the quintessential example.
Conventionally, the magnetic field induces topology in the
electronic many-body wave function; however, Berry curva-
ture of the band structure is sufficient to induce topological
single-particle wave functions that can survive the presence
of interactions (see Ref. [2] for a review). Despite strong
numerical evidence of fractional Chern and Z2 insulators
[3–8], identifying a clear experimental route to the many-
body analog of the fractional quantum Hall effect without a
magnetic field remains challenging. Research in this direc-
tion has aimed to identify lattices with flat topological bands
that quench the kinetic energy, promoting strong correlations
[9–15].

Recent work on twisted graphene heterostructures opened
up new platforms to study strongly correlated physics, includ-
ing correlated insulators [16], superconductivity [17,18], and
Chern insulators [19–21]. Proposals for realizing flat topolog-
ical bands in these systems have followed [22–30]. It was
also recently shown in Refs. [31,32] that the incommensu-
rate effect of the twist could be emulated by a quasiperiodic
potential. Consequently, a class of models, dubbed magic-
angle semimetals, show similar phenomena to twisted bilayer
graphene (e.g., the formation of minibands and the vanishing
Dirac cone velocity) at or near an eigenstate phase transition.
Similarly, to understand the theory for fractional Chern and
Z2 insulators in incommensurate systems and how eigenstate
criticality plays a role, it is essential to build a simple model to
theoretically study and experimentally realize. The notion of
flat band engineering with incommensuration has broad appli-
cability outside twisted heterostructures, including ultracold
atomic gases [33–35] and metamaterials [36–39].

In this Letter, we study a minimal model for a two-
dimensional topological insulator (TI) with a quasiperiodic

potential to find a controllable route to create flat topo-
logical bands and induce quantum phase transitions beyond
the Landau-Ginzburg paradigm, as there is no spontaneous
symmetry breaking involved. These transitions represent a
universality class beyond the Altland-Zirnbauer classification
of random matrices for disordered systems [40,41]. While
the study of new metallic phases with quasiperiodicity came
into focus with Refs. [42,43], the existing work on topol-
ogy in nonperiodic systems focused on the topological to
normal insulator transition [44,45] and appearance of finite
energy topological bands [6,46]. Using analytic and nu-
meric techniques we unite these ideas and find an intricate
phase diagram, as shown in Fig. 1. Particularly, quasiperi-
odicity creates practically flat topological bands near where
finite-energy states exhibit criticality. At the transition be-
tween topological and trivial insulators, the system realizes a
magic-angle semimetal with features previously studied [31].
We further characterize the critical properties of the various
eigenstate transitions, understanding them as localization and
delocalization transitions in momentum- or real-space bases.
Importantly, these transitions and phases could be directly
realized in twisted bilayer graphene that is close to aligned
with a hexagonal boron nitride substrate [47–49].

Model. To describe a two-dimensional topological insula-
tor, we use the Bernevig-Hughes-Zhang (BHZ) model [50]
with a two-dimensional (2D) quasiperiodic potential. The
square-lattice Hamiltonian (with sites r) is block diagonal,

H =
∑
r,r′

c†r′

(
hr′r 0

0 h∗
r′r

)
cr +

∑
r

c†rV (r)cr, (1)

where cr are four-component annihilation operators and
V (r) = W

∑
μ=x,y cos(Qrμ + φμ) is the quasiperiodic poten-

tial (QP) with amplitude W , wave vector Q, and random
phase φμ; hr′r is a two-by-two matrix describing one block
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FIG. 1. Phase diagram of the Bernevig-Hughes-Zhang (BHZ)
model in Eq. (1) at the band center with topological mass M and
quasiperiodic potential strengthW . There are five illustrated phases:
topological (TI), normal (NI), and Anderson (AI) insulators, Dirac
semimetal (SM), and critical metal (CM). The green and red data
points use the density of states in Eq. (3) to locate the transitions
between TI and NI. Among them, the green data points and the
green vertical line at M = 2 are SMs, terminated at magic-angle
transitions (see [53]) at the green stars. The black dashed lines
are the perturbative prediction for the SM lines [e.g., Eq. (7)]. The
blue circles use transport [Eq. (2)] to determine the CM to AI
boundary.

of the BHZ model (h∗, its complex conjugate). The nonzero
elements of h are hrr = (M − 2t )σz and hr,r+μ̂ = h†r,r−μ̂ =
1
2 t (−iσμ + σz ) for μ = x, y with Pauli matrices σμ. Topo-
logical mass M and the hopping t = 1 set the energy scale.
Most analyses are done on the two-by-two matrix since time-
reversal symmetry relates each block, and V (r) does not
couple blocks. To reduce finite-size effects, we average over
twisted boundary conditions implemented with t → teiθ̃μ/L

for a twist θ̃μ in the direction randomly sampled from [0, 2π ).
The model is invariant under M → 4 − M, so we focus on
M � 2. For 2 < M < 4, the band structure (i.e., W = 0) is
topological with a quantized spin Hall effect Q = σ+

xy − σ−
xy

where σ±
xy are Hall conductivities for the blocks defined by

h and h∗ respectively. The superscript ± will be dropped as
we focus on the h block only. At M = 2 [M = 4], the model
is a Dirac semimetal with Dirac points at X = (π, 0) and
Y = (0, π ) [M = (π, π )] with velocity v0 = t .

Quasiperiodicity is encoded in Q, which in the thermo-
dynamic limit we define as Q/(2π ) = [2/(

√
5 + 1)]2. For

simulations, we take rational approximates such that Q ≈
QL = 2πFn−2/Fn, where Fn is the nth Fibonacci number, and
the system size is L = Fn. See the Supplemental Material for
other values of Q [53].

Methods. We investigate the phase diagram and phase tran-
sitions with spectral observables and eigenstates. Because the
model in Eq. (1) lacks translational symmetry, we treat the
entire L × L system as a supercell, where the thermodynamic
limit is L → ∞. At finite L, we define an effective band

structure that is downfolded into a mini Brillouin zone (mBZ)
of size 2π/L × 2π/L.

We apply the kernel polynomial method (KPM) [51] to
compute spectral quantities and Lanczos or exact diagonal-
ization to compute eigenstate properties (specified in [53]).
While the KPM and Lanczos work for larger L than exact
diagonalization, KPM introduces broadening to the data con-
trolled by polynomial expansion cutoff Nc [51] and Lanczos
limited to a small range of the spectrum.

To distinguish trivial, topological, and Anderson insulator
phases, we calculate the conductivity tensor defined through
the Kubo formula [52],

σαβ = 2e2h̄

L2

∫
f (E )dE ImTr

[[
vα

dG−

dE
vβδ(E − H )

]]
, (2)

where f (E ) = [eβ(E−μ) + 1]−1 is the Fermi function at in-
verse temperate β and chemical potential μ, vα is the velocity
operator, G− is the retarded Green function, and [[· · · ]] de-
notes an average over phases in the QP (φμ) and twists (θ̃μ) in
the boundary condition. To determine phase boundaries and
transition properties, we compute the density of states (DOS)
which reflects band gaps and the low energy behavior of the
semimetallic phase. The DOS at energy E is

ρ(E ) = 1

2L2

[[ ∑
i

δ(E − Ei )

]]
, (3)

where Ei denotes the energy eigenvalues. The gap centered
at zero energy 
 is estimated with the KPM via the DOS
satisfying ρ(E ) < 0.001 and with shift-invert Lanczos about
E = 0. Along the semimetal lines the low-energy DOS goes
like ρ(E ) ∼ ṽ−2|E |, where ṽ is the renormalized velocity of
the Dirac cones that we calculate through the scaling with Nc.
A detailed discussion of obtaining 
 and ṽ is in [53].

For wave functions, we compute the inverse participation
ratios (IPRs) in real and momentum space to discern localized,
extended or critical states. The IPR in a basis indexed by α is

Iα (E ) =
∑

α

[[|〈α|ψE 〉|4]] (4)

using normalized wave functions in the momentum space
(α = k) or real space (α = r) basis. For systems localized
in basis α, Iα is L independent; for delocalized systems,
it goes like Iα ∼ 1/L2. At a localization transition [54,55]
Iα ∼ 1/Lγ where 0 < γ < 2 is the fractal dimension (D2);
γ is extracted from the finite size effect when calculating Iα

at various system sizes [53].
To study band flatness and topology of the effective band

structure in the mBZ, we calculate the wave unction |ψEn (θ)〉,
where θ is the crystal momentum of the L × L supercell (via
the twist in the boundary condition as θ = θ̃/L) and En is
the energy of the nth band labeled in ascending order. The
bandwidth is then defined as wn = max |En(θ) − En(θ

′)|θ,θ′

and the direct band gap is 
n = En+1(θ) − En(θ). The flatness
ratio, which measures a band’s flatness and its isolation from
the neighboring bands, is defined following [14] as

fn = min{
n,
n−1}/wn. (5)

The Berry curvature 
n(θ) and Chern number Cn can be
determined via momentum-space plaquettes defined by the
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four momenta θ → θ1 → θ2 → θ3 → θ [56] and they can be
calculated following [57]


n(θ) = Im ln
Un(θ, θ1)Un(θ1, θ2)

Un(θ, θ3)Un(θ3, θ2)
, Cn = 1

2π

∑
θ


n(θ),

(6)
where Un(θa, θb) = 〈ψn(θa)|ψn(θb)〉/|〈ψn(θa)|ψn(θb)〉| and
the sum to obtainCn is over the mBZ [0, 2π/L)2. Last, we use
machine learning of the wave functions to provide an efficient
survey of a large parameter space (in W , M, and E ) as an
additional validation of the phase diagram in Fig. 1. This also
reveals intriguing features of the Anderson insulating phase,
as elaborated in [53].

Phase diagram. Using diagrammatic perturbation theory
and numerical calculations with the KPM and Lanczos we
obtain the phase diagrams shown in Fig. 1. There are five
phases pictured: topological insulator (TI), normal insulator
(NI), critical metal (CM), Anderson insulator (AI), and lines
of Dirac semimetals (SMs) between TI and NI phases. Both
band-insulating and SM phases are stable to weak quasiperi-
odicity. Finite band gaps and quantized (zero) spin Hall
conductivity describe the TI (NI) phase, calculated using the
KPM method with Eq. (2). Low-energy scaling of the DOS
ρ(E ) ∼ ṽ−2|E | captures the SM phases (marked with green
data points). Other boundaries between gapped and finite DOS
at E = 0 are marked with red data points. These DOS results
trace the phase boundaries between TI and NI (green) and
between TI and CM (red). The AI phase has a finite DOS but
zero conductivity and localized wave functions (i.e., real space
IPR that is L independent), with the phase boundary marked
by blue circles with error bars. The structure revealed is Q
dependent [53] and reminiscent of other studies of insulating
phases perturbed by quasiperiodicity [58].

Upon increasingW , for M � 4 and M � 5 we traverse the
phases TI/NI → CM → AI. However, more complicated cuts
are possible betweenM = 4.5 andM = 5.3, where quasiperi-
odicity drives trivial phases topological (for 4 < M � 5.0)
and into and out of metallic and topological phases at zero
energy. An example is shown in the Supplemental Material
[53], where increasingW leads to the phases NI → SM → TI
→ CM → TI → SM → NI → CM → AI.

The physics on the SM lines emanating from M = 2 or
M = 4 at W = 0 agrees with the universal features found in
Ref. [31] and reveals magic-angle transitions marked by green
stars in Fig. 1(a). Concentrating on M = 2, the semimetal is
stable with a velocity (calculated from the DOS, see [53]) that
vanishes like ṽ ∼ [Wc(M = 2) −W ]β/2 whereWc(M = 2) =
1.42 ± 0.02 and β = 2 ± 0.3, which is close to the universal
value β ≈ 2 obtained in other models and symmetry classes
[31,32]. A CM phase is found as well as a localization transi-
tion atWA(M = 2) = 1.50 ± 0.03.

For smaller values of W , we use perturbation theory to
map out the phase diagram and estimate the location of the
NI-to-TI and SM-to-CM transitions (see [53]). These phase
transitions can be assessed in this regime (i.e., near M = 4)
by computing the renormalized mass M̃ and velocity ṽ. We
obtain up to second order inW ,

M̃ − 4 =
[
(M − 4) +W 2 (4−M )+(cosQ−1)

(4−M )2+2(3−M )(cosQ−1)

]
1 +W 2/[(4 − M )2 + 2(3 − M )(cosQ − 1)]

. (7)

FIG. 2. Demonstration of the TI-to-CM transition. (a) Tracking
the density of states computed with the KPM in Eq. (3), we see
the (hard) band gap closes as a power law 
 = [Wc(M ) −W ]νz

and find νz ≈ 1 at the TI-to-CM transition across each value of
M. Panel (b) shows the conductivity computed with the KPM in
Eq. (2) as a function of quasiperiodic strength W for M = 4.0. The
Hall conductivity σxy saturates to a finite value in the TI phase, but
forWc(M = 4) ≈ 2 �W � 3 the longitudinal conductivity becomes
finite and the Hall part is suppressed. The system is localized when
W � 3. Note that the feature near W = 0 is due to M = 4 being a
SM. We stress that this metallic phase and therefore this transition
does not exist in the presence of randomness.

By solving for M̃ = 4, we obtain the phase boundary be-
tween insulating phases, illustrated by the black dotted line
in Fig. 1(a) (at fourth order in W ), which is in excellent
agreement with the numerics. The curvature to this line
demonstrates that quasiperiodicity can drive a topological
phase transition NI to TI, which is the deterministic analog
of the disordered topological Anderson insulator [59,60]. For
M = 2, there is no renormalization of M̃. Using numerics to
access higher M and W , when M � 5.4, the NI transitions
into the CM. The magic-angle transition (i.e., SM to CM) is
obtained by solving ṽ → 0 on the line M̃ = 4.

TI-to-CM transition. To analyze topological transitions that
are forbidden in disorder systems we use numerics to capture
the full, nonperturbative transition to the CM phase located at
Wc(M ). Near the transition, the correlation length diverges as
ξ ∼ |W −Wc|−ν while scale invariance implies that the gap

 ∼ ξ−z; therefore the gap vanishes like 
 ∼ |W −Wc|νz.
Through the KPM calculation of DOS and Lanczos calcula-
tion of lowest energy states, we find νz ≈ 1 for each M value
we have considered; see Fig. 2(a).

These exponents indicate a unique universality class driven
by quasiperiodicity distinct from random systems. Since our
system breaks up into two blocks, each in the same symmetry
class as the quantum Hall effect (i.e., class A), random disor-
der does not allow for a metallic phase [41,55,61]. Therefore,
topological phase transitions driven by quasiperiodicity host
unique universality classes beyond the ten Altland-Zirnbauer
random matrix classes [40].

When the gap closes at Wc(M ), the conductivity at E =
0 becomes finite, and the Hall conductivity is no longer
quantized, indicating the onset of the CM phase. As seen
in Fig. 2(b), the Hall conductivity drops, and σxx peaks at
the transition, remaining finite for the duration of the CM.
The transition does not involve any symmetry breaking; it
occurs when the topological gap closes and σxy is no longer
quantized. For larger values ofW , we find a transition into an
Anderson insulating phase [55,62] with exponentially local-
ized wave functions in real space and a vanishing σxx.
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Criticality and flat topological bands. At smallW , the insu-
lating band gap [computed via the DOS in Eq. (3)] increases
for some values of M but decreases for larger W , which is
beyond the perturbative theory in Eq. (7). This nonmonotonic-
ity is demonstrated in [53] and coincides with the onset of
criticality in the finite energy states (i.e., a mobility edge) near
the edge of the gap centered about E = 0 (e.g., in Fig. 3 this
corresponds to the states near E ≈ −0.5 for W ≈ 1). Due
to the interplay of topology, criticality, and quasiperiodic-
ity several physically interesting effects occur near the gap
maximum. This is demonstrated in Fig. 3 for M = 4.0 as a
representative cut of the phase diagram in Fig. 1 that we now
explore in more detail.

It can be seen from Fig. 3(a) that the states [63] near
E ≈ −0.5 narrow around W ≈ 1 and are well isolated from
other states by hard gaps. Additionally, by calculating σxy,
Fig. 3(b) (leftmost panel) shows that this collection of bands
has a total Chern number equal to 1, independent of L.
Meanwhile, these states become critical, as measured by the
IPR in momentum and position space (1/Iα ≈ Lγα ) with
0 < γα < 2, showing that they are delocalized in both bases
(α = x, k) [Fig. 3(a) where color shows γk]. Interestingly, we
observe a self-similarity in these critical bands; the sequence
of decreasing energy windows shown in Fig. 3(b) have the
same Chern number as we increase the supercell size. When
M = 4 and W = 1.015 41 the relevant energy window E ∈
[−0.49,−0.47] has (Fn−5)2 states for a system size L = Fn.
When we can identify the lowest band [depicted by the green
line in Fig. 3(b)] in this energy window the value of its
Chern number follows the self-similar sequence of C = −2
for L = F2n andC = 1 for L = F2n−1 (in each case examined).

The flatness of the lowest (green) band is apparent in the
dispersion in the mBZ in Fig. 3(b) as well as by its large
effective mass [53]. By computing the flatness ratio (of the
green band) fg and Berry curvature 
g [in Eqs. (5) and (6),
respectively] our data also demonstrate that larger L leads to
flatter, isolated topological bands in the mBZ at some optimal
W . As shown in Figs. 3(b) and 3(c), left, for increasing L
the peak in fg sharpens concomitantly with the development
of critical eigenstates [Fig. 3(a)] as the Chern bands in the
mBZ occur at an increasingly fine energy scale. At the W
with maximal fg, we also see a reduction in the fluctuation in
Berry curvature
g (of the green band), probed via its standard
deviation divided by the mean across the mBZ [53], Fig. 3(c),
right. The reduction of fluctuations of 
g for increasing L
suggests that the model could host a fractional Chern insu-
lating state in the presence of interactions [64,65]; however,
it is possible that an incommensurate charge density wave
state could be stabilized instead (see [53] for Berry curvature
profiles in the mBZ).

Conclusion. This simple two-dimensional model of a TI
shows how quasiperiodicity can induce flat bands, eigen-
state criticality, and phases outside the AZ disordered
classification. This not only has implications for correlated
physics but to twisted heterostructures, ultracold atoms, and
metamaterials—all of which have realized 2D TIs [33–39]. In
fact, these metallic phases should show up in experiments of
density and time-of-flight measurements (to see delocalization
in real and momentum space, respectively) and the phase
diagram can be obtained from transport experiments [66]
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xyxx
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FIG. 3. Flat Chern bands and eigenstate criticality. (a) Plot of the
Momentum-space IPR system-size scaling [as defined in Eq. (4)].
Notice that around W ∼ 0.95 low energies become delocalized in
momentum space while at higher energies Ik ∼ L−γk for 0 < γk < 2
indicating critical eigenstates along the mobility edge; the value of
γk is given by the color. The lowest energy states (and narrowest
set of states) has a Chern number of 1. The white regions are hard
gaps. (b) Left: Conductivity calculated from Eq. (2) with L = 377
and cutoff Nc = 214. Right: Dispersion relation En(θ) along a repre-
sentative cut in the mBZ for a sequence of L = Fn with even n, for
W = 1.0154. For each L, the green band carries Chern number −2,
the first four bands (from green to cyan) sum to Chern number 1,
and the 25 bands pictured in each plot sum to Chern number 1 (for
L = 55, the pattern appears to hold but the lowest bands do not have a
well-defined gap). (c) Flatness ratio fg [left, as defined in Eq. (5)] and
the normalized standard deviation of Berry curvature 
g [as defined
in Eq. (6)] across the folded Brillouin zone (right) of the first band
above E = −0.5, for various L values. For L = 233 and L = 377, the
peak of the flatness ratio appears near where the Berry curvature has
less fluctuations. The filled markers (•) indicate topological bands
while empty markers (◦) indicate trivial bands (excluded in the right).
The squares (�) and circles (•) correspond to L = Fn such that n is
odd and even, respectively.

and spectral function measurements [67] in cold atomic sys-
tems, and absorption in metamaterials of microwave resonator
arrays.
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