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ABSTRACT

GPUReplay (GR) is a novel way for deploying GPU-accelerated
computation on mobile and embedded devices. It addresses high
complexity of a modern GPU stack for deployment ease and secu-
rity. The idea is to record GPU executions on the full GPU stack
ahead of time and replay the executions on new input at run time.
We address key challenges towards making GR feasible, sound,
and practical to use. The resultant replayer is a drop-in replace-
ment of the original GPU stack. It is tiny (50 KB of executable),
robust (replaying long executions without divergence), portable
(running in a commodity OS, in TEE, and baremetal), and quick
to launch (speeding up startup by up to two orders of magnitude).
We show that GPUReplay works with a variety of integrated GPU
hardware, GPU APIs, ML frameworks, and 33 neural network (NN)
implementations for inference or training. The code is available at
https://github.com/bakhi/GPUReplay.

CCS CONCEPTS

« Security and privacy — Systems security; Operating systems
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1 INTRODUCTION

GPU stacks Smartphones or IoT devices commonly use GPUs to
accelerate machine learning (ML). As shown in Figure 1(a), a mod-
ern GPU software stack spans ML frameworks (e.g. Tensorflow [11]
and ncnn [97]), a GPU runtime (e.g. OpenCL or Vulkan runtimes)
that translates APIs to GPU commands and code, and a GPU driver
that tunnels the resultant code and data to GPU. A GPU stack! has
alarge codebase. Arm Mali, reported to be the most pervasive GPUs

1We stress that the GPU stack is software code running on CPU, not GPU
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Figure 1: The overview of GR

in the world [24], has a runtime of a 48-MB executable; the driver
has 45K SLoC [25]. The stack often has substantial proprietary code
and undocumented interfaces.

Such a sophisticated GPU stack has created a number of dif-
ficulties. (1) Weak security [53, 90, 107]. In the year of 2020, 46
CVEs on GPU stacks were reported, most of which are attributed
to the stack’s complex internals and interfaces. (2) Deployment dif-
ficulty [101]. For instance, ncnn, a popular mobile ML framework,
requires the Vulkan API. Yet the Vulkan runtime for Arm GPUs
only exists on Android but not GNU/Linux or Windows [26]. Even
on a supported OS, an ML app often only works with specific com-
binations of runtime/kernel versions [39, 49, 76]. (3) Slow startup.
Even a simple GPU job may take several seconds to launch because
of expensive stack initialization. This paper will show more details.

The complexity of a GPU stack was mostly for its original design
goal: to support interactive apps with numerous dynamic GPU
jobs. Such a goal is less important to ML apps, which often run a
prescribed set of GPU jobs (albeit on new input data) [105]; many
ML apps run GPU job batches without user interactions; they can
multiplex on GPU at long intervals, e.g. seconds. The ML apps just
need to quickly shove computation into GPU. They should not be
burdened by a full-blown GPU stack.

Our approach GPUReplay (GR) is a new way to deploy and exe-
cute GPU compute with little changes to the existing GPU stack. We
focus on integrated GPUs on system-on-chips (SoCs). Figure 1(b)
overviews its workflow. At development time, developers run their
ML app and record GPU executions. The recording is feasible: de-
spite much of the GPU stack is a blackbox, it interacts with the GPU
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at a narrow interface — registers and memory, which is managed by
an open-source driver. Through lightweight instrumentation, an
in-driver recorder can trace CPU/GPU interactions as a series of reg-
ister accesses and memory dumps which enclose proprietary GPU
commands and instructions. They are sufficient for reproducing
the GPU computation.

To replay, an ML app invokes the recorded GPU executions
on new input data. To the app, the GPU stack is substituted by a
replayer, which is much simpler as it avoids GPU API translation,
code generation, and resource management. It simply accesses
GPU registers and loads memory dumps at specified time intervals.
Throughout the process, the recorder/replayer remain oblivious to
the semantics of most register accesses and memory dumps.

Use cases Figure 1 shows deployment scenarios of the replayer.
D1. Co-existing with a GPU stack on the same OS. This applies to
smartphones. Common interactive apps without GR run on the GPU
stack. When they are not using GPU, the OS runs GR-supported ML
with replay. Once the interactive apps ask for GPU, the OS preempts
GPU from the ongoing replay with short delays (Section 5).

D2. In TEE. This applies to Arm TrustZone [88]. On the same ma-
chine, apps not using GR run on the GPU stack in the normal world
and GR-supported ML runs atop a replayer in the secure world. A
secure monitor at EL3 switches GPU between the two worlds.

D3. As a replacement for the system’s GPU stack. This applies to
headless devices such as robots, where GR-supported ML apps share
GPU cooperatively. Each ML app runs its own replayer instance.

Benefits GR offers the following benefits:

(1) Security First, GR better shields the GPU stack. The GPU
stack serving the target ML app is detached from the app and instead
resides on the developer’s machine for recording only. Hence, the
stack is no longer exposed to many threats in the wild but instead
protected as part of software supplychain, for which attacks require
high capabilities and long commitment [31]. Second, on target
machines, the replayer replaces the GPU stack for the app (D1/D2)
or for the whole system (D3). As a result, either the app or the
whole system is free from vulnerabilities from the GPU stack, which
originate in rich features such as buffer management [2, 8] and fine-
grained sharing [4, 7, 10], as well as complex interfaces such as
framework APIs [3], IOCTLs [6], and directly mapped memory [9].
By comparison, the replayer only has a few K SLoC and exposes
several simple functions; replay actions have simple, well-defined
semantics and are amenable to checks.

(2) Ease of ML deployment The replayer can run in various
environments: at user or kernel level of a commodity OS, in a TEE,
inalibrary OS, and even baremetal. Section 6 will present the details.
GR brings mature GPU compute such as Tensorflow NN to these
environments without porting full GPU stacks. GR is compatible
with today’s GPU ecosystems. It requires no reverse engineering
of proprietary GPU runtimes, commands, and shaders. Agnostic to
GPU APIs, GR can record and replay diverse ML workloads.

(3) Faster GPU invocation GR reduces the GPU stack initializa-
tion to baremetal: register accesses and GPU memory copy. It re-
moves expensive abstractions of multiple software layers, dynamic
CPU/GPU memory management, and just-in-time generation of
GPU commands and code.
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Challenges First, we make reproduction of GPU workloads feasi-
ble despite the GPU’s complex interfaces and proprietary internals.
We identify and capture key CPU/GPU interactions and memory
states; we selectively dump memory regions and discover the in-
put/output addresses operated by GPU commands/shaders.
Second, we ensure GR’s replay is correct in the face of non-
deterministic CPU/GPU interactions. A key insight is that replay
correctness is equivalent to the GPU finishing the same sequence
of state transitions as recorded. To this end, we prevent many state
divergences by eliminating their sources at the record time; we
tolerate non-deterministic interactions that do not affect the GPU
state at the replay time. GR’s approach to nondeterminism sets it
apart from prior record-and-replay systems [29, 48, 106]: targeting
program debugging, they seek to reproduce the original executions
with high fidelity and preserve all nondeterministic events in replay.
Third, we investigate a variety of practicality issues. We identify
the minimum GPU hardware requirements. We show that GR re-
quires low developer efforts, and such efforts are often amortized
over a family of GPUs supported by one driver. We explore GR’s
deployment ranging from smartphones to headless IoT devices. We
investigate how to map an ML workload to GR recordings and quan-
tify the impact of recording granularities. We propose a scheduling
mechanism for the replayer to share GPU with interactive apps.

Results GR works on a variety of GPUs (Arm Mali and Broadcom
v3d), APIs (OpenCL, GLES compute, and Vulkan), ML frameworks
(ACL [22], ncnn [97], Tensorflow [11], and DeepCL [89]), and 33
NN implementations. We build replayers for userspace, kernel,
TrustZone, and a baremetal environment. We show that a recording
with light patching can be replayed on different GPU hardware of
the same family. Compared to the original GPU stack, the replayer’s
startup delays are lower by up to two orders of magnitude; its
execution delays range from 68% lower to 15% higher.
This paper makes the following contributions:
(1) GPUReplay (GR), a new way to deploy GPU computation.

(2) A recorder that captures the essential GPU memory states and
interactions for replay.

(3) A safe, robust replayer that verifies recordings for security,
supports GPU handoff and preemption, and detects and recovers
from replay failures.

(4) Realization of the design in diverse software/hardware environ-
ments.

2 MOTIVATIONS
2.1 The GPU Stack and Its Problems

CPU/GPU interactions As shown in Figure 2, CPUs request com-
putation on GPUs by sending jobs to the latter. The GPU runtime
directly emits GPU job binaries — GPU commands, metadata, and
shaders — to GPU-visible memory?. The runtime communicates
with the driver with ioctl syscalls, e.g. to allocate GPU memory or
to start a job.

Why are GPU stacks complex? Several key features of a GPU
stack cater to graphics.

2GPU memory for short, with the understanding it is part of shared DRAM
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(1) Fust-in-time (FIT) job generation. Graphics apps emit numerous
GPU jobs, from uploading textures to rendering fragments. For
instance, during a game demo of 50 seconds [92], the v3d GPU
executes 32K jobs. A game may rewrite shader sources for jobs [44].
Unable to foresee these jobs, the GPU stack generates their com-
mands and shaders just in time.

(2) Dynamic resource management. Depending on user interactions,
graphics apps generate GPU jobs with various input sizes, data
formats, and buffer lengths. They require dynamic management
of GPU time and memory, which may further entail sophisticated
CPU/GPU coordination [13].

(3) Fine-grained multiplexing. Concurrent programs may draw on
their screen regions. To support them, the GPU stack interleaves
jobs at fine intervals and maintains separation.

Compute for ML shows disparate nature unlike graphics.

Prescribed GPU jobs: One app often runs pre-defined ML algo-
rithms [105], requesting a smaller set of GPU jobs repeatedly exe-
cuted on different inputs. Popular neural networks (NN) often have
tens of GPU jobs each (§7). The needed GPU memory and time can
be statically determined.

Coarse-grained multiplexing: On embedded devices, ML may run
on GPU for long without sharing (e.g. object detection on a smart
camera). On multiprogrammed smartphones, ML apps may run in
background, e.g. model fine-tuning. Such an app tolerates delays of
hundreds of milliseconds or seconds in waiting for a GPU; once on
GPU, it can generate adequate workloads to utilize the GPU.

Runtime blackboxes Most GPUs have proprietary runtime, job
binaries, and shaders. While GR can be more efficient had it known
these internals or changed them, doing so requires deep reverse
engineering and makes deployment harder. Hence, we avoid chang-
ing these blackboxes but only tap in the Linux GPU drivers which
are required to be open-source.

Design Implication A GPU stack’s dual modality for graphics
and compute becomes a burden. While an ML app still needs the
GPU stack for translating higher-level programming abstractions
to GPU hardware operations, the translation can happen ahead of
deployment. At run time, the ML app just needs a simple path to
push the resultant operations to GPU.

2.2 GPU Trends We Exploit

GPU virtual memory Today, most integrated GPUs run on virtual
address spaces. To configure a GPU’s address space, the GPU stack
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ence delay modestly. ACL [22] + OpenCL on Mali G71

populates the GPU’s page tables and links GPU commands and
shaders to the virtual addresses.

GPU autonomy To reduce CPU overhead, a GPU job packs in
much complexity — control flows, data dependency, and core sched-
ule. The GPU parses a job’s binary, resolves dependency, and dis-
patches compute to shader cores. A job may run as long as a few
seconds without CPU intervention.

Take Mali G71 as an example: a job (called a “job chain”) encloses
multiple sub jobs and the dependencies of sub jobs as a chain. To
run AlexNet for inference, the runtime (ACL v20.05) submits 45
GPU jobs, 5-6 GPU jobs per NN layer; the GPU hardware schedules
a job over 8 shader cores.

Synchronous job submission Asynchronous GPU job submis-
sion is crucial to graphics, for which GPU executes smaller jobs. To
hide job management delays, CPU streams jobs to GPU to keep the
latter busy. Yet for compute, a job’s management delay is amortized
over the job’s longer execution. For simplicity, shallow job queues
in GPU drivers are common (max two outstanding jobs in Mali [16]
and one in v3d/vc4 [56, 65]). Figure 3 shows that synchronous job
submissions incur minor computation performance overhead: with
six NN inferences on Mali G71 (see Table 6 for details), we find that
enforcing synchronous jobs only adds 4% delays on average (max:
11%, min: 2%).

2.3 Design Choices

The trends above motivate the following choices.

GR focuses on synchronous GPU jobs, queuing them and execut-
ing one job at a time. It eschews recording or replaying concurrent
GPU jobs. This deliberate decision ensures replay determinism:
with concurrent GPU jobs, the number of possible CPU/GPU inter-
actions would grow exponentially, making faithful replay difficult.
The overhead of synchronous jobs is low as shown above.

For the same reason, GR eschews GPU sharing across apps dur-
ing record and replay. Even without sharing, GR has important
use cases. On smartphones, examples include background ML such
as photo beautification and model fine-tuning; on headless smart
devices without graphics, examples include ML pipelines for vi-
sion and prediction. Furthermore, the replayer can yield GPU to
interactive apps with low delays (§5).

GR records at the lowest software level, i.e. the CPU/GPU bound-
ary. This makes the replayer small and portable. By contrast, record-
ing at higher levels, e.g. GPU APIs [43] or ML frameworks [52],
would require the replayer to incorporate extensive runtime or
driver functionalities.
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3 GR
3.1 Using GR

A recording encodes a fixed sequence of GPU jobs, including
the CPU/GPU interactions and GPU memory dumps needed to
execute these jobs. To capture a workload in one recording, the
workload is required to execute all its jobs regardless of input, i.e.
the workload’s job graph contains no conditional branches that lead
to different types of GPU jobs. The requirement does not preclude
conditional branches inside a GPU job, i.e. among GPU instructions.
This is because GR dumps a job’s entire binary, which includes all
the branches within, no matter whether they were exercised at the
record time.

The above requirement is met by most, if not all, popular NN,
including all 44 NNs shipped with ACL, ncnn, and Tensorflow [22,
97, 98]. Note that some NN (e.g. SqueezeNet and GoogLeNet) use
“branches” to refer to routes in their job graphs, which are in fact
executed unconditionally.

As examples, Figure 4 shows two common NN workloads.

e NN inference runs a sequence of NN layers {L;...L, }, each execut-
ing a sequence of GPU jobs unconditionally. To record, developers
run the inference once and create recordings {R;...R }, one record-
ing per NN layer. An ML app supplies input and replays {R;y...R,}
in sequence. After the replay, the replayer extracts output from
GPU memory to the app.

e NN training runs a sequence of NN layers {L;...L, } iteratively;
after each iteration, it evaluates a predicate & and terminates if
& shows the result has converged. To record, developers run one
iteration and create a sequence of recordings {R;...R,}. They do
not handle conditionals. An ML app runs a training iteration by
replaying {R;...R,}. After the iteration, the app code on CPU eval-
uates &Z. Unless & shows convergence, the app replays {Ry...R,}
again on refined input.

The only exception to the above requirements, to our knowledge,
is a conditional NN [45] using branches to choose among normal
NNs. In this case, developers record branches as separate record-
ings; at run time, an ML app evaluates branch conditions on CPU
and conditionally replays recordings. Conditional NNs are rare in
practice to our knowledge.

CPU/GPU coordination Beyond the examples above, GR sup-
ports a workload consisting of interleaved CPU/GPU phases. For
such a workload, the recorder generates multiple recordings, one
recording per GPU phase. At run time, the app executes the CPU
phases (not recorded) and replays for the GPU phases.
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Such a hybrid execution is possible because GR stitches CPU
and GPU phases by their input/output. To do so, the recorder au-
tomatically discovers input/output addresses for GPU recordings;
before and after replaying each recording, the replayer deposits/ex-
tracts data to/from the GPU memory, respectively. In particular,
CPU/GPU synchronizations (e.g. CPU waits for an OpenCL event)
are recorded/replayed by GR as waits for GPU interrupts at the
driver level. See Section 4 for details.

Recording granularity is a tradeoff between composability and
efficiency; it does not affect correctness. In the examples above, de-
velopers record separate NN layers; alternatively, they may record
a whole NN execution as one recording. While per-layer recordings
allow apps to assemble new NNs programmatically, a monolithic
recording improves replay efficiency due to reduction in data move
and cross-job optimizations. Section 7 will evaluate these choices.

Recording portability By default, GR expects the GPU hardware
(SKUs) and firmware versions used for record and replay to exactly
match. As Section 6 will show, record/replay with different SKUs
of the same family is possible, yet lightweight patching is needed.

Developer efforts are on three aspects. (1) Instrumenting a GPU
driver to build a recorder. The effort is no more than 1K SLoC
per GPU family, as the instrumentation applies to the family of
GPU SKUs supported by the driver. See Section 4 for examples. (2)
Recording their ML workloads. The effort is per GPU SKU. With
minor patches, a recording can further be shared across GPU SKUs
of the same family. (3) Building a replayer. The effort is a few K
SLoC per deployment environment, e.g. for a TEE.

3.2 The GPU Model

GR builds on a small set of assumptions as summarized in Table 1.
As the “least common denominator® of modern integrated GPUs,
the assumptions constrain GPU behaviors to be a reproducible
subset.

e CPU/GPU interfaces include memory-mapped registers, shared
memory, and interrupts. Some GPUs, e.g. NVIDIA Tegra X1, may
invoke DMA to access GPU registers [77]. All these interactions
can be captured at the driver level.

o Synchronous job submission. Disabling asynchronous jobs avoids
interrupt coalescing and the resultant replay divergence. The per-
formance loss is modest as described in Section 2.2.

o GPU virtual memory. The replayer can manipulate the GPU page
tables and load memory dumps to physical addresses of its choice.
GR can work with legacy GPUs running on physical memory. Yet,
the replayer must run on the same physical memory range as the
record time.

Replay correctness The replayer offers the same level of correct-
ness guarantee as the full GPU stack does: the replayer’s assertion
that a recorded workload (a series of GPU jobs) is completed is as
sound as an assertion from the GPU stack. Our rationale is based
on the GPU state.

A GPU state < P,C, J > is all GPU-visible information affecting
the GPU’s execution outcome: P is the GPU’s current protocol step,
e.g. wait for commands; C is the GPU’s hardware configuration; J
is the job binary being executed. We define a replay run as correct if
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Table 1: Our GPU model fits popular integrated GPUs. *=
To enforce sync job submission: Mali: reduce the job queue
length; TegraX1: inject synchronization points to a com-
mand buffer; Adreno: check submitted job completion be-
fore a new command flush. NC: no changes

Features Interface Knowledge
g - @

S © -5 5 2 2

=zt |2 § I 2

=g » |8 &
Arm Mali [25] Y Y [21] | [16] [18] [19] [17]
Bcom v3d [56] Y Y NC | [59] [61] [62] [60]
Bcom vc4 [64] Y NC | [65] N/A [67] [66]
NV TegraX1 [78] Y Y [85] | [84] [83] [79] [86]
Qcom Adreno [68] Y Y [69] | [72] [73] [71] [70]

the GPU at the replay time goes through the same state transitions
as the record time.

The full GPU driver, as it runs, continuously assesses if the GPU
state deviates from a correct transition path. The driver’s only
observations are state-changing events in CPU/GPU interactions:
the events either changing the GPU state or indicating the GPU
state has changed. State-changing events include: a register write; a
register read returning a value different from the most recent read,;
a register read with side effect; interrupts.

Based on the rationale, the replayer asserts correctness based on
matching state-changing events. If it observes the same sequence
of state-changing events with all event parameters matched, then
to the best knowledge of the GPU driver, the GPU makes the same
state transitions and completes the recorded workload. The replay
is correct per our definition.

Suppose a state divergence, such as silent data corruption, is
missed by the replayer, it could have been missed by the full GPU
driver as well. If we assume the driver is gold, i.e. it has made
sufficient interactions to assess if GPU state has deviated from the
correct transitions, then such silent divergences should neither
occur to the driver nor the replayer.

Nondeterministic CPU/GPU interaction Even to repeat the
same workload, the CPU/GPU interactions are likely to differ, e.g.
CPU may observe diverging register values or receive extra/few
interrupts. Hence, a raw trace cannot be replayed verbatim. The
major nondeterminism sources are as follows. (1) Timing. For in-
stance, a GPU job’s delay may vary; the CPU may poll the same
register for different times until its value changes. (2) GPU concur-
rency. The order of finishing concurrent jobs and the number of
completion interrupts may vary. (3) Chip-level hardware resources,
e.g. changes in a GPU’s clockrate.

Because replay correctness only depends on GPU states, we
treat nondeterminism as follows. (1) Nondeterminism not affecting
GPU states. This includes most of the timing-related behaviors. The
recorder discovers and summarizes them as replay actions, so that
the replayer can tolerate (§4). (2) Affecting GPU states; preventable.
This includes GPU concurrency and some configurable chip re-
sources. We eliminate the nondeterminism sources, e.g. enforcing
synchronous job submission as described in the GPU model above.
(3) Affecting GPU states; non-preventable. This mainly includes
strong contention and failures in chip resources, such as power
failures. The replayer detects them and attempts re-execution.
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4 RECORD

4.1 Interface Knowledge and Instrumentation

The knowledge needed by the recorder is in Table 1:

e The registers for starting a GPU job and for resetting GPU.

e The register pointing to the GPU page tables; the GPU page
table’s encoding for physical addresses. This allows to capture and
restore the GPU virtual address space.

o The set of registers on which reads or writes do not change GPU
state. This is to detect state-changing events.

o The events that a GPU interrupt handler starts and ends. Knowing
them allows the replayer to enter and leave an interrupt context
(via eret) just as the record time.

e (Optional) The events that the GPU hardware becomes busy or
idle. The recorder uses them to remove unwanted delays.

We instrument the driver code: register accessors; register writes
starting a GPU job; accessors of GPU page tables; interrupt handling.
Many of these code locations are already abstracted as macros [57]
or tracepoints [14]. We find manual instrumentation is more robust
than tracing via page faults [1].

Developer efforts to extract interface knowledge and to instru-
ment a driver are often amortized over a family of GPU SKUs
supported by the driver. We confirm this is true for 6 GPU SKUs
supported by the Arm Bifrost driver [25] and 17 GPU SKUs sup-
ported by the Adreno 6xx driver [68]. Although a driver may ex-
ecute code conditionally depending on the GPU SKUs in use, the
GPU interfaces in a GPU family, i.e. register names and semantics,
are often identical.

4.2 Register Access

A recording consists of actions listed in Table 2. An action may
summarize a sequence of register accesses showing nondetermin-
ism without affecting GPU state. For instance, CPU may wait for
GPU cache flush by polling a register [15, 58], where the number
of register reads depends on the nondeterministic flush delay. Such
polling is summarized by RegReadWait().

To do the above, the recorder recognizes nondeterministic regis-
ter accesses that do not change GPU state. With the GPU interface
knowledge described above, we inspect a driver’s register accessors
and instrument their callsites that match the patterns in Table 2. We
tap in existing macros such as wait_for() [63, 81] and instrument
tens of callsites per driver.

4.3 Dumping Proprietary Job Binaries

The recorder must record for a job’s binary: (1) GPU commands
for data copy or format conversion, often packed as nested arrays;
(2) shaders, which include GPU code and metadata; (3) GPU page
tables. A GPU binary is deeply linked against GPU virtual addresses:
GPU commands contain pointers to each other, to the shader code,
and to a job’s input data; shaders also reference to code and data.
Therefore, GR dumps all memory regions that may contain the job
binary; to replay, GR restores the memory regions at their respective
GPU virtual addresses.

Time the dump A GPU stack emits a job’s binaries and updates
GPU page tables lazily — often not until it is about to submit the
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Table 2: Replay actions in a recording

Replay Actions Descriptions

RegReadOnce(r,val,ignore)
RegReadWait(r,mask,val,timeout)
RegWrite(r,mask,val}
SetGPUPgtable(p)
MapGPUMem(size,addr)
UnMapGPUMem(addr)
Upload(d,addr)
CopyTo/FromGPU(gaddr,addr)
Waitlrg(timeout)

Unmap the GPU memory at @addr. Free physical memory.

Read register @r once. A return value # @val, then replay error. The read value may be ignored, in case of registers expected to return non-deterministic values.
Poll register @r until its bits selected by @mask become @val. After the maximum wait time @timeout, report a replay error.

Write @val to register @r. @mask selects the written bits. Other bits are unchanged.

Update the base address of GPU page table base to @p. To implement, the replayer updates a GPU register.

Allocate memory of @size and map to GPU virtual address @addr. The replayer loads a GPU page table dump and patch entries for relocation.

Upload a memory dump @d to the GPU virtual address @addr, which must be mapped first.
Move data between a GPU virtual address @gaddr and a CPU address @addr in the replayer’s address space. For injecting input and extracting output.
Wait for a GPU interrupt before the next action. Interrupt handling is done by replaying the subsequent actions. Report a replay error if timeout.

job. Accordingly, the recorder dumps GPU memory right before the
driver kicks the GPU for a new job. At this moment, the runtime
must have emitted the job’s binary to the GPU memory; the memory
dump must be consistent: synchronous job submission ensures no
other GPU jobs are running at this time and mutating the memory.

Locating job binaries in GPU memory Memory dumps must in-
clude job binaries for correctness; they should exclude GPU buffers
passed among jobs so that loading of memory dumps does not over-
write these buffers; they should leave out a job’s scratch buffers as
many as possible for space efficiency.

The challenge is that the recorder does not know exactly where
GPU binaries are in memory: the GPU runtime directly emits the
binaries to mmap’d GPU memory, bypassing the GPU driver and
our recorder therein. A naive dump capturing all physical memory
assigned to GPU can be as large as GBs. An optimization is to only
dump memory mapped to GPU at the moment of job submission,
which reduces a memory dump to MBs. Section 6 presents hardware-
specific optimizations to further shrink memory dumps.

4.4 Locating Input and Output for a Recording

Record by value vs. by address A recording accepts one or more
input buffers. By default, GR records an input buffer by address:
the recorder captures the buffer’s GPU address, allowing new data
injected at the address at replay time. Use cases include an NN’s
input buffer. If developers intend to reuse an input buffer’s values
for replay, they may optionally annotate the input as “record by
value” in the record harness. GR then captures the buffer values as
part of memory dumps. Use cases include a buffer of NN param-
eters. An input recorded by value and by address simultaneously
allows optional value overriding. Annotations only decide apps’
responsibility for providing input data at the replay time; improper
annotations do not break replay correctness.

Discover input/output addresses Recording by value is straight-
forward: just dump any memory region that may contain the input.
Recording by address is more challenging: the recorder cannot track
to which GPU address the runtime copies input, as the runtime is a
kernel-bypassing blackbox; it does not know from which addresses
the GPU code loads input, because the recorder cannot interpret
the GPU code.

To reveal these memory locations, GR adopts a simple taint
tracking. The record harness injects input magic values — synthetic,
high-entropy data — and looks for them in GPU memory dumps.
The rationale is that it is very unlikely that a high-entropy input
(e.g. a 64x64 matrix with random elements) coincides another GPU
memory region with identical values.
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Figure 5: Intervals between CPU/GPU interactions, accumu-
lated by GPU job. Intervals among earlier jobs are longer
than later ones. Workload: AlexNet inference. ACL [22] on
Mali G71. Excluded: GPU busy time; parameters loading IO

We took care of a few caveats. (1) The output often has lower
entropy because it is smaller (e.g. a class label). In case of multiple
matches of output magic in memory, GR repeats runs with different
input magics to eliminate false matches. (2) The above technique
cannot handle the case when the ML framework runs CPU code
to reshape data before/after the data is moved to/from GPU. Fortu-
nately, we did not see such a behavior in popular ML frameworks:
Tensorflow, nenn, and ACL. For efficiency, they always invoke GPU,
if available, for data reshaping. While we are aware of rigorous,
fine-grained taint tracking [30], our simpler technique is sufficient
for locating GPU input/output. This saves us from configuring sym-
bolic execution on a closed-source GPU runtime of tens of MBs,
which requires expertise and non-trivial effort.

4.5 Pace Replay Actions

CPU cannot replay as fast as possible, otherwise GPU may fail to
catch up. For example, CPU needs to delay after resetting the GPU
clock/power for them to stabilize [20, 82] and delay after requesting
GPU to flush cache [80].

The recorder sets a minimum interval T for each action: if the
replayer takes t to execute the current action, it pauses for at least
T —t to before the next action. Setting proper intervals is non-trivial.
When running the GPU stack, CPU paces its interactions with GPU
intentionally (e.g. calling delay()) or unintentionally (e.g. running
unrelated apps). The recorder should not preserve the observed
intervals, as doing so will unnecessarily slow down the replay.

Figure 5 shows an example, where most long intervals are unin-
tended delays from CPU: (1) Resource management, such as initial-
ization of GPU memory management; (2) JIT generation of GPU
commands and shaders; (3) OS asynchrony, such as scheduling
delays; (4) Recording overhead, e.g. dumping GPU memory; (5)
Abstraction tax, e.g. frequent IOCTLs. Doing none of these, the
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replayer should simply skip the resultant intervals and fast-forward
to the next action.

The challenge is to differentiate unintended delays from intended
delays. It is unrealistic for the recorder to profile the complex, multi-
threaded GPU stack. Instead, it follows a simple heuristics: if the
GPU hardware has been idle through one interval, the interval is
safely skippable. The rationale is that an idle GPU can always keep
up with CPU’s next action without pause. With this heuristics, we
add tens of lines of code per driver, which can prove GPU idle for
more than half of the observed intervals. Skipping them speeds up
the replay significantly, as we will show in Section 7. The recorder
simply preserves the remaining intervals for replay.

5 REPLAY

The replayer provides the following APIs. (1) Init/Cleanup: acquire
or release the GPU with reset. (2) Load: load a recording file, verify
its security properties, and allocate the required GPU memory. (3)
Replay: replay the recording with input/output buffers supplied by
the app. The replayer consists of a static verifier; an interpreter that
parses/executes a recording in sequence; a nano GPU driver to be
invoked by the interpreter.

5.1 Verification of Security Properties

The replayer statically verifies the following security properties.
While a full GPU driver may implement similar checks, the replayer
provides stronger guarantees due to its simplicity and independence
of an OS kernel.
o No illegal GPU register access by CPU. A recording contains GPU
register names, which are resolved by the replayer as addresses
based on the CPU memory mapping.
o No illegal memory access by GPU. A recording only specifies sizes
and GPU addresses of memory regions. It is up to the replayer
to allocate the underlying physical pages and set up GPU page
tables. The replayer ensures the allocated physical pages contain no
sensitive data. The GPU MMU prevents GPU code from accessing
any CPU memory.
e Maximum GPU physical memory usage. The replayer scans a
recording for MapGpuMem entries (Table 2) to determine the GPU
memory usage at any given moment. Based on the result, apps or
the replayer can reject memory-hungry recordings.

The replayer cannot decide semantic correctness which is or-
thogonal to security. Section 7.1 will present discussions.

5.2 The Nano GPU Driver

The nano driver abstracts GPU hardware; it only has of 600 SLoC.
Most driver functions directly map to replay actions: mapping GPU
registers to CPU addresses, copying data in and out of GPU memory,
rewriting the GPU page table entries for loading memory dumps,
etc. The driver includes a bare minimum interrupt handler, which
simply switches the CPU to the interrupt context and continues to
replay the subsequent actions. The interrupt management, such as
waiting for an interrupt, acknowledging an interrupt, and checking
interrupt sources, is done implicitly by replaying the corresponding
actions.
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Table 3: GR implementations. * = used in evaluation. See Ta-
ble 6 for evaluated recordings

GPU HW (Boards) Compatible GPU stacks Recordings Replayers
Mali-G71 * 1. ACL+OpenCL* Inference: 18 | 1.User*
(Hikey960) 2. DeepCL + OpenCL * Training: 1 2.TEE
m 3. ACL + GLES compute
————————— 1 4. Tensorflow + ACL + OpenCL
Mali G31 (Odroid C4) Driver: Arm Mali r23p0-01rel0
Brcmv3d * 1. ncnn + Vulkan * Inference: 15 | 1.Kernel*
(Raspberry Pi 4) 2. Py-videocore6 Math: 2 2.Baremetal
Driver: drm/v3d in Linux 5.11

5.3 GPU Handoff and Preemption

During replay, the replayer fully owns the GPU and does not share
with other apps. Before and after a replay, it soft-resets the GPU,
ensuring the GPU starts from a clean state without data leaking,
e.g. no subsequent apps will see unflushed GPU cache. The replayer
allows the OS to reset and preempt the GPU at any time (e.g. yield-
ing to an interactive app) without waiting for ongoing GPU jobs
to complete. Hence, preemption incurs short delays. A preemption
disrupts the current replay. To mitigate it, we implement optional
checkpointing: periodically making copies of GPU memory and reg-
isters. A disrupted replay resume from the most recent checkpoint.
Section 7 evaluates preemption and checkpointing experimentally.

5.4 Handling Replay Failures

Replay failures are GPU state divergences due to non-preventable
nondeterminism at run time. Based on our GPU model (§3), the
replayer will not miss detecting any state divergences the full GPU
stack can detect. When the replayer faces failures, it attempts to
recover through re-execution: resetting the GPU and starting over
the whole recording; if the divergence persists, the replayer injects
additional delay to the action intervals that precede the divergence
occurrence.

Re-execution with delays can overcome transient failures and
many timing-related failures, which are the most common failures
based on the driver code comments, documentations, and our own
experience. Examples include an underclocked GPU for replay fails
to keep up with the replay actions; high contention on shared
memory cause GPU jobs to timeout.

Re-execution cannot overcome persistent failures, e.g. reoccur-
ring hardware errors. A full driver is unlikely to overcome such
errors either. In this case, the replayer seeks to emit meaningful
errors as the full driver does: it reports the failed action and the
associated source locations in the full driver.

6 IMPLEMENTATIONS AND EXPERIENCES

As summarized in Table 3, we implement GR for Arm Mali (reported
to ship billions of devices [24]) and Broadcom v3d (the GPU for
RaspberryPi 4). The current implementations work for a variety
of ML workloads (inference, training, and math kernels), program-
ming abstractions (OpenCL, Vulkan, and GLES compute), and GPU
runtimes (the official ones as well an experimental runtime fully
written in Python).
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6.1 The Recorder for Arm Mali

We implement a recorder for Mali Bifrost family; it records com-
plex and diverse GPU workloads, including 18 inferences and 1
training, some of which will be evaluated in Section 7. Leveraging
ArmNN [23], our prototype for Mali is compatible with TensorFlow
NN models. We add around 700 SLoC to Mali’s stock driver, which
is 1% of the driver’s 45K SLoC.

Our recorder exploits Mali’s page permission to shrink memory
dumps. If a GPU-visible page is mapped as executable to GPU, the
recorder treats the page as part of job chains and dumps it. If a
GPU-visible page is non-executable to GPU and is unmapped from
CPU, the recorder treats the page as part of GPU internal buffers
and excludes it from dumping. This is because GPU-visible pages
are mapped to CPU on demand; an unmapped page must never
have been accessed by CPU.

6.2 The Recorder for Broadcom V3D

Our recorder for v3d adds around 1K SLoC to v3d’s stock driver. To
dump GPU memory, the recorder follows v3d’s registers pointing
to shaders and control lists. It handles the cases where lists/shaders
may contain pointers to other lists/shaders of the same or different
memory regions. Unlike Mali, the v3d page tables lack executable
bits. Being conservative, the recorder has to dump more pages than
Mali in general. To further exclude unwanted GPU memory regions
from dumping, the recorder exploits as hints the flags of syscalls
that allocate the GPU memory. To reduce the storage overhead, the
recorder compresses the memory dumps with zlib [47].

6.3 Replayers in Various Environments

A baremetal implementation As a proof of concept, we built a
standalone replayer for v3d without any OS.

To avoid filesystems, we statically incorporate compressed record-
ings in the replayer binary. The whole executable binary (excluding
recordings) is around 50 KB. In the executable, the replayer itself is
about 8 KB. We link zlib [47] for recording decompression (about
9 KB) and a baremetal library [94] for Rpi4. The library functions
include CPU booting, interrupts, exception, and firmware interfaces
(about 15 KB executable); CPU cache, MMU, and page allocation (4
KB); timers and delays (4 KB); string manipulation and linked lists
(9 KB).

A major challenge is to bring up the GPU power and clocks. Mod-
ern GPUs depend on power/clock domains at the SoC level [104].
Linux configures power and clocks by accessing various registers,
sometimes communicating with the SoC firmware [93]. The pro-
cess is complex, SoC-specific, and often poorly documented. While
replayers at the user or the kernel level reuse the configuration
done by the kernel transparently, the baremetal replayer must con-
figure GPU power and clocks itself. To do so, we instrument the
Linux kernel, extract the register/firmware access, and port it to
the replayer.

A user-level implementation We built a replayer for Mali as a
daemon with kernel bypassing [36, 37]. To support the daemon,
the kernel parses the device tree and exposes to the userspace the
GPU registers, memory regions, and interrupts. The replayer maps
GPU registers and memory via mmap(); it directly manipulates
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Table 4: Codebase comparisons. Binaries are stripped.

The original stack Ours

GPU | ML Fr k Runtime Driver | Rec Replayer
| @ ACL: 500 KSLoC, 30MB libmali.so: e Usr+kernl: 2.2+0.6 KSLoC
Mali | | beepcL: 18 KSLoC, 48 MB 45K 07K oBeo0k

Bifrost SLoC SLoC

e In-TEE: 1K SLoC, 10 KB

e Kernel only: 1K SLoC;

107 KB (whole driver)

e Baremetal: 4K SLoC, 50 KB

2.1MB

libvulkan_

broadcom.so: 3 w
7MB SLoC SLoC

Bcm
v3d

e ncnn: 223 KSLoC, 11
MB

GPU page tables via mapped memory; it receives GPU interrupts
by select() on the GPU device file.

A Kkernel-level implementation We built a replayer for v3d as
a kernel module. The replayer directly invokes many functions of
the stock GPU driver, e.g. for handling GPU interrupts and memory
exceptions; it exposes several IOCTL commands for an app to load
a recording and inject/extract input/output. Once turned on, the
replayer disables the execution of the stock driver until replay
completion or GPU preemption.

A TrustZone implementation We built a replayer for Mali in
the secure world on the Hikey960 board. We added a small driver
(in 100 SLoC) to the TrustZone kernel (OPTEE) for switching the
mappings of GPU register and memory between the normal/secure
worlds. The replayer is a straightforward porting of the user-level
replayer. The replayer is in around 1K SLoC, only 0.3% of the whole
OPTEE (300K SLoC).

6.4 Reusing Recordings Across GPU SKUs

It is possible to share recordings across GPUs of the same fam-
ily: these GPUs are likely to share job formats, shader instruction
sets, and most register/page table semantics. We analyze three Mali
GPUs: G31 (low end), G52 (mainstream), and G71 (high end). We
manage to patch a recording from G31/G52 and replay it on G71.
Our patch adjusts: (1) Page table format: re-arranging the permis-
sion bits in the G31 page table entries, which are in a different
order than G71 due to G31’s LPAE support. (2) MMU configuration:
flipping a bit in the translation configuration register to enable
read-allocation caching expected by G71. (3) Core scheduling hints:
changing the value of core affinity register (JS_AFFINITY) so a
job is mapped to G71’s all 8 shader cores. Overall, the patch in-
cludes fixes for two registers per recording and one register per job.
Section 7.5 reports replay performance of a patched recording.

Despite our limited success above, we note that it would be diffi-
cult to replay with fewer GPU resources (e.g. record on G71 and
replay on G31). This is because doing so would require (1) propri-
etary GPU knowledge, e.g. to relocate GPU shaders and compact
memory and (2) a more sophisticated replayer, e.g. to swap GPU
memory.

7 EVALUATION
We evaluate GR with the following questions.
e Does GR make GPU computations more secure?

o Overhead: Do recordings increase app sizes? How does the replay
speed compared to that of the original GPU stack?

e Do our key design choices matter?
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Table 5: GR eliminates common vulnerabilities and exposures (CVEs) in the GPU stack

l GR’s design (D1-3: scenarios) I Example CVEs I Description ‘ Effect ‘ Vulnerability ‘
R GPU time i CVE-2014-1376, High Improper restriction of OpenCL calls [3] Arbitrary code execution App.I
emove runtime from a
(D1,D2,D3) PP CVE-2019-5068, Med Exploitable shared memory permissions [9] Unauthorized mem access | App.C
e CVE-2018-6253, Med Malformed shaders cause infinite recursion [5] App hang App.A/GPU.A
CVE-2017-18643, High | Leak of GPU context address of GPU mem region [4] | Sensitive info disclosure Kernel.C
R GPU dri CVE-2019-20577, High | Invalid address mapping of GPU buffer [8] Kernel crash Kernel.I
emove river
(D2, D3) CVE-2020-11179, High | Race condition by overwriting ring buffer [10] Arbitrary kernel mem r/w | Kernel.I
? CVE-2019-10520, Med Continuous GPU mem allocating via IOCTL [6] GPU mem exhausted Kernel.A
CVE-2014-0972, N/A Lack of write protection for IOMMU page table [2] Kernel mem corruption Kernel.I
l Disable fine-grained GPU sharing (D1,D2) [ CVE-2019-14615, Med | Learning app’s secret from GPU register file [7] [ App data leak [ App.C l

I: Integrity; C: Confidentiality; A: Availability

7.1 Analysis

Semantic bugs, e.g. emission of wrong GPU commands, may pre-
exist in the GPU stack for recording. Such bugs may propagate to
the target machines, resulting in wrong replay results. GR neither
mitigates nor exacerbates these bugs. Fortunately, semantic bugs
are rare in production GPU stacks to our knowledge. GR’s recorder
and replayer may introduce semantic bugs. The chance, however,
is slim: as shown in Table 4, they are small as a few K SLoC with
simple logic. Our validation experiments in Section 7.2 strengthen
our confidence. We next focus on security, a major objective of GR.

Threat models Corresponding to three deployment scenarios (D1-
3) in Section 1: (D1) a user/kernel-level replayer on a commodity
OS trusts the OS while facing local unprivileged and remote adver-
saries; (D2) a replayer in TEE trusts the TEE kernel while facing
the local OS adversaries and remote ones; (D3) a baremetal replayer
only faces remote adversaries.

We assume it is difficult to compromise the recording environ-
ment, including OS, GPU stack, and code signing: doing so often
requires long campaigns to infiltrate the developers’ network where
risk management is likely rigorous [31]. We will nevertheless dis-
cuss the consequences of such attacks.

Thwarted attacks corresponding to three deployment scenarios
are as follows. (D1) When a replayer coexists with the GPU stack
on the same OS, the app using the replayer is free of GPU runtime
vulnerabilities which cause unauthorized access to app memory [9],
arbitrary code execution in the app [3], and app hang [5]. (D2)
When a replayer runs in TEE and coexists with the GPU stack
outside the TEE, the app is free from attacks against the GPU stack
by the local OS. (D3) When a replayer completely replaces the GPU
stack in a system, the system is free from GPU stack vulnerabilities
that cause kernel information disclosure [4], kernel crash [8], and
kernel memory corruption [2]. Table 5 summarizes the eliminated
vulnerabilities.

Attacks against GR (1) Attacks against developers’ machines or
recording distribution. This is difficult as described above. Never-
theless, successful adversaries may fabricate recordings containing
arbitrary actions and memory dumps. A fabricated recording may
hang GPU but cannot break security guarantees enforced by the
replayer, e.g. no illegal register access (§5.1). (2) Attacks against the
replayer or its TCB. The chance of replayer vulnerabilities is slim
due to simplicity. Nevertheless, successful adversaries may subvert
recording verification. By compromising a user-level replayer or
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Table 6: NN inference for evaluation. Choices of NNs for
Mali vs. v3d are slightly different because their ML frame-
works do not implement exactly the same set of NNs

GPU Mem # # RecSize (MB)
Model (#layers) (MB) Jobs  ReglO Unzip Zipped
MNIST (4) 47 18 2977 22 0.1
AlexNet (8) 6832 45 8542 38 02
MobileNet (28) 449 54 12663 2.7 0.1
SqueezeNet (26) 369 71 12129 2.8 0.1
ResNet12 (12) 2613 78 15934 3.4 0.1
VGG16 (16) 17383 71 23056 6.4 04

(a) Mali Bifrost
GPU Mem # # RecSize (MB)
Model (#ayers) (MB) Jobs  ReglO Unzip Zipped
YOLOvé-tiny (38) 757 92 4708 2.0 03
AlexNet (8) 1392 40 2024 95 03
MobileNet (28) 423 66 3057 47 02
SqueezeNet (26) 268 85 4323 180 05
ResNet18 (18) 87.0 119 5253 66.0 1.7
VGG16 (16) 4235 71 3742 44 03

(b) v3d

kernel-level/baremetal replayers, adversaries may gain unrestricted
access to the GPU or the whole machine, respectively.

7.2 Validation of Replay Correctness

We add extensive logging to both the original driver code and
the replayer: they log all the GPU registers on each CPU/GPU
interaction; they take snapshots of GPU memory before each job
submission and after each interrupt. We then compare these logs
across runs and look for any discrepancies.

We run two inference workloads, MNIST and AlexNet, each
for 1,000 times. In each replay run, we create strong interferences
with GPU by co-executing CPU programs that: (1) generate high
memory traffic which contends with GPU register and memory
access; (2) burn CPU cycles to trigger SoC thermal throttling. We
also repeat the tests with GPU running at different clockrates. Each
MNIST (AlexNet) run generates a log of 3K (8K) registers accesses
and 46 (120) memory snapshots, respectively. The only detected
discrepancies are the numbers of register polling and GPU job
delays, which do not affect GPU states; all other logs match.

We further verify that the replayer produces correct compute
results. We replay all the workloads in Table 6 (a) 2,000 times each.
We create random input, inject interference, and compare the GPU’s



ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Heejin Park and Felix Xiaozhu Lin

| OGPU Runtime Driver B Sync M Replayer ‘
5 5 5 10 5 15 20 10 20 20 20 20
4 4 4 8 4 16 8 16 16 16 16
3 3
L 3 3 3 6 3 £ 12 6 12 12 12 12
g g
8 2 AN 2 4 2 & 8 4 8 8 8 8
a 7 a
1 1 4 1 2 1 4 2 4 4 4 4
2 _|
0 0 0 0 0 0 0 0 0
0S GR 0S GR 0S GR 0S GR GR 0S GR 0S GR 0S GR 0S GR 0S GR 0S GR
MNIST AlexNet MobileNet SqueezeNet ResNetl12 YOLOv4Tiny AlexNet MobileNet SqueezeNet  ResNetl18 VGG16
(a) Mali G71 (b) v3d

Figure 6: Startup delays prior to NN inference. The replayer (GR) takes much less time than the original GPU stack (OS).
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Figure 7: NN inference delays. The replayer (GR) incurs similar delays as compared to the original GPU stack (OS).
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Figure 8: NN training delays. Benchmark: MNIST training
atop DeepCL + OpenCL on Mali G71 (OS: orig stack; GR: GR).

outcome with the reference answers computed by CPU. The re-
player always gives the correct results. The reasons are (1) our
design enforces determinism, e.g. by disallowing concurrent ker-
nels and (2) no hardware errors during our benchmarks.

Failure detection & recovery We run a CPU program to artifi-
cially inject transient, non-preventable failures during the replay
of AlexNet: (1) offlining GPU cores forcibly and (2) corrupting GPU
page table entries. The replayer successfully detects the failures as
diverging reads of a status register and GPU memory exceptions,
because the original driver checks the register and enables the in-
terrupt. Re-execution resets GPU cores and re-populates the page
table, finishing the execution.

7.3 Memory Overheads

Recording sizes A GPU recording is as small as a few hundred
KBs when compressed as shown in Table 6. The size is a small
fraction of a smartphone app, which is often tens of MBs [28]. Of a
recording, memory dumps are dominant, e.g. on average 72% for
Mali. Some v3d recordings are as large as tens of MBs uncompressed
because they contain memory regions that the recorder cannot
safely rule out from dumping. Yet, these memory regions are likely
GPU’s internal buffers; they contain numerous zeros and are highly
compressible.
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Figure 9: Mali G71 can replay recordings from other GPUs
at full hardware speed. Benchmark: 16M elements vecadd

CPU/GPU memory The replayer’s GPU memory consumptions
show a negligible difference compared to that of the original GPU
stack, because the replayer maps all the GPU memory as the latter
does. The replayer’s CPU memory consumption ranges from 2 — 10
MB (average 5 MB) when executing NN inference, much lower than
the original stack (220 — 310 MB, average 270 MB). This is because
the replayer runs a much smaller codebase; by directly loading
GPU memory dumps, it avoids the major memory consumers such
as GPU contexts, NN optimizations, and JIT commands/shader
generation.

7.4 Replay Speed

We study the inference delays on a variety of NNs as listed in
Table 6. Compared to the original GPU stacks (native execution), the
replayer’s startup delays are significantly lower: by 26% — 98% (Mali)
and lower by 77% - 99% (v3d); Our replay is even 20% faster (Mali)
and only 5% slower (v3d) on average. Our overhead is much lower
than prior TEE systems for secure GPU computation [46, 99, 100].

Startup delays We measure the startup delay from the time the
testing app initializing a GPU context until the first GPU job is ready
for submission. Figure 6 shows the results. Both the stacks for Mali
and v3d take seconds to start up, yet showing different bottlenecks:
Mali is bottlenecked at the runtime (libMali.so) compiling shaders
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Figure 10: GR removes unnecessary intervals between re-
play actions. Benchmark: ACL NN inference atop Mali G71

and allocating memory; v3d is at the framework (ncnn) loading NNs
and optimizing pipelines. By contrast, the replayer spends most
time on GPU reset, loading of memory dumps, and reconstructing
page tables.

Our startup comparison should not be interpreted as a quantita-
tive conclusion, though. We are aware of optimizations to mitigate
bottlenecks in GPU startup, e.g. caching compiled shaders [32] or
built NN pipelines [96]. Compared to these point solutions, GR is
systematic and pushes the caching idea to its extreme — caching
the whole initialization outcome at the lowest software layer.

NN inference delays We measured the delay from the moment
an app starting an inference with its ML framework to the moment
app getting the outcome. The results are shown in Figure 7. In
general, on benchmarks where the CPU overhead is significant, the
replayer sees lower delay than the full stack, e.g. by 70% on MNIST
(Mali). This is because the replayer minimizes user-level executions,
kernel-level memory management, and user/kernel crossings such
as IOCTLs. On larger NNs with long GPU computation, GR sees
diminishing advantages and sometimes disadvantages. GR’s major
overheads are (1) loading of memory dumps containing unneeded
data that GR cannot exclude, e.g. 66 MBs for ResNet18 (v3d); (2)
short GPU idles from synchronous jobs (0.5% — 3% on Mali); (3)
pause between replay actions.

NN training delays GR shows similar advantages. Our bench-
mark is MNIST with DeepCL [89] atop OpenCL. Each training iter-
ation runs 72 GPU jobs and 5.7K register accesses. DeepCL already
submits jobs synchronously with CLFlush(). As shown in Figure 8,
the replayer incurs 99% less startup delay due to the removal of
parameter parsing and shader compilation. Over 20 iterations, the
replayer incurs 40% less delays because it avoids DeepCL and the
OpenCL runtime.

7.5 Validation of Key Designs

Cross-GPU record/replay (§6.4) Figure 9 demonstrates it on dif-
ferent GPUs of the same family. We have recorded the same work-
load on Arm Mali G31 (low-end, 1 shader core) and G52 (main-
stream, 2 cores). We attempt to replay the two recordings on Mali
G71 (high-end, 8 cores). With patched GPU page tables and MMU
register values, the replay completes with correct results, albeit
with 4x — 8x lower performance. Further patching the core affinity
register makes the replay utilize G71’s all 8 shader cores, resulting
in full performance.

Skip intervals in replay (§4.5) Without the technique, the re-
player’s NN inference will be 1.1x — 4.9x longer, as shown in Fig-
ure 10; startup delays will be up to two orders of magnitude longer,
closer to that of a full stack (not shown in the figure).
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Figure 11: NN inference delays (including startup) with var-
ious granularities. The count of recordings is annotated.

Impact of recording granularity We tested three granularities:
one monolithic recording per NN (high efficiency); one recording
per NN layer (high composability); per fused layer with layer fusion
done by ACL [22] (a middle ground). Figure 11 shows that record-
ings of fused layers incur only 15% longer delays on average than
a monolithic recording. The additional delays come from replayer
startup (see Figure 6). We conclude that for NN inference, recording
every fused layer is a useful tradeoff between composability and
efficiency.

Preemption delay for interactiveness (§5.3) We measure the
delay perceived by an interactive app when it requests to preempt
GPU from the replayer. On both tested GPUs, the delay is below 1
ms, which translates to minor performance degradation, e.g. loss
of 1 FPS for a 60 FPS app. The reason is preemption simplicity: a
preemption primarily flushes GPU cache and GPU TLB followed
by a GPU soft reset.

Checkpoint & restore (§5.3) Our results show that GPU state
checkpointing is generally inferior to re-executing the whole replay.
For instance, MobileNet making one checkpoint every 16 GPU jobs
(50-60 jobs in total) slows down the whole NN execution by 8x.
The primary cause is memory dump. MobileNet takes 140 ms to
dump all GPU memory (51 MBs) while re-executing the NN takes
only 45 ms.

8 RELATED WORK

Record and replay was primarily used for diagnosis and debug-
ging [29, 48, 106]. It has been applied to mobile Ul apps [38, 91], web
apps [75], virtual machines [35], networks [102], and whole sys-
tems [42]. None of prior work has applied the idea to the CPU/GPU
interactions. Related to GR, Replaying syscalls and framework calls
have been popular in reverse engineering GPU runtimes [12, 27,
40, 55] and reducing GPU scheduling overhead [52], respectively.
Unlike them, GR records at the CPU/GPU boundary and therefore
achieves the goal of a lean, trustworthy replayer.

Refactoring GPU stacks To leverage TEE, recent works isolate
part of or the whole GPU stack for security. Sugar [107] subsumes a
full GPU stack to an app’s address space. Graviton [100] pushes the
function of isolation and resource management from OS to a GPU’s
command processor. Telekine [43] spans a GPU stack between local
and cloud machines at the API boundary. HIX [46] ports the entire
GPU stack to a secure enclave and restricts the IO interconnect.
HETEE [109] instantiates dedicated hardware controller and fabric
to isolate the use of GPU. While efficacy has been shown, a key
drawback is the high engineering effort (e.g. deep modifications of
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GPU software/hardware), limited to a special hardware component
(e.g. software-defined PCle fabric) and/or likely loss of compatibility
with stock GPU stacks. Contrasting to all the above approaches of
spatial refactoring, GR can be viewed as temporal refactoring of a
GPU stack - between the development time and the run time.

GPU virtualization often interposes between GPU stack layers in
order to intercept and forward interactions, e.g. to a hypervisor [95]
or to a remote server [34]. The interposed interfaces include GPU
APIs [34, 108] and GPU MMIO [33, 95]. Notably, AvA [108] records
and replays API calls during GPU VM migration. GR shares the
principle of interposition and gives it a new use — for recording
computations ahead of time and later replaying it on a different
machine.

Optimizing ML on GPU Much work has optimized mobile ML,
e.g. by exploiting CPU/GPU heterogeneity [51]. Notably, recent
studies found CPU’s software inefficiency leaving GPU under-
utilized, e.g. suboptimal CLFlush [50] or expensive data transforma-
tion [103]. While prior solutions fix the causes of inefficiency in the
GPU stack [50], GR offers blind fixes without knowing the causes:
replaying the CPU outcome (e.g. shader code) and removing GPU
idle intervals.

Secure ML Much work has transformed ML workloads rather than
the GPU stack; outsourcing security-sensitive compute to TEE, they
preserve data/model privacy or ensure compute integrity [41, 54,
74]. They often support CPU-only compute and their workload
transformation is orthogonal to GR. While Slalom [99] proposed
secure GPU offloading, it requires GPU stack in TEE and is limited
to linear operations.

9 CONCLUDING REMARKS

Broader applicability (1) The idea of GR applies to discrete GPUs.
Our GPU hardware assumptions (§3.2) see counterparts on discrete
GPUs albeit in different forms, e.g. registers and memory mapped
via PCle. In particular, GR can leverage NVIDIA MIG [87] to enable
app multiplexing: the replayer can own an MIG instance while
other apps use other instances; they are multiplexed on a physical
GPU transparently by MIG. However, discrete GPUs raise new
challenges including more complex CPU/GPU interactions, higher
GPU dynamism, and recording cost due to larger memory dumps.
(2) While this paper focuses on ML workloads, GR can extend to
more GPU computation including numeric analysis and physics
simulation. (3) GR’s principle is applicable to other TEEs. A replayer
in an SGX enclave is possible, but would need additional support
such as MMIO remoting or SGX’s extension for MMIO [46] because
by default enclaves cannot directly access GPU registers.

Recommendation to GPU vendors We build GR without ven-
dor support, respecting the GPU runtime blackbox (§2) and only
reasoning/modifying at the driver level. It would be more attractive
if vendors can implement GR and maintain as part of their GPU
stacks. On one hand, the vendors can make GR more robust with
first-party knowledge (e.g. GPU state machines for detecting state
divergence) and lightweight interface augmentation (e.g. the run-
time directly discloses a job’s input/output addresses). On the other
hand, the modifications to GPU stacks are very minor and the GPU
runtime internals still remain proprietary.
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