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Equations of motion for compressible point vortices

in the plane are obtained in the limit of small Mach

number, M, using a Rayleigh–Jansen expansion and

the method of Matched Asymptotic Expansions. The

solution in the region between vortices is matched

to solutions around each vortex core. The motion

of the vortices is modified over long time scales

O(M2 log M) and O(M2). Examples are given for co-

rotating and co-propagating vortex pairs. The former

show a correction to the rotation rate and, in general,

to the centre and radius of rotation, while the latter

recover the known result that the steady propagation

velocity is unchanged. For unsteady configurations,

the vortex solution matches to a far field in which

acoustic waves are radiated.

This article is part of the theme issue ‘Mathematical

problems in physical fluid dynamics (part 2)’.

1. Introduction
Vorticity is a key aspect of fluid mechanics, in particular

in high-Reynolds-number and turbulent flows. Many

flows are dominated by intense vortices, and efforts

to obtain reduced systems and equations have led

to the development of models with singular vorticity

distributions. Of these, point vortices in the plane

are the simplest example, with the vortices’ motion

being governed by a set of ODEs. A discussion of

the justification for the equations of motion of point

vortices and generalizations is given in [1], including

a review of the momentum argument set out by [2].

2022 The Author(s) Published by the Royal Society. All rights reserved.
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The majority of the work to date on point vortices has been for plane incompressible flows [2].

Attempting to extend the notion of a point vortex to plane compressible flows is a daunting task

in the general case, but for the case of low-Mach number flows, a Rayleigh–Jansen expansion in

Mach number provides one approach. With the Mach number used in the expansion defined by

the velocities induced by the vortices’ motion and the speed of sound, the O(1) incompressible

velocity field increases so as to become supersonic near the location of a point vortex. One needs

to consider further physics near the vortex location, i.e. the vortices have a small core region.

Barsony–Nagy, Er-El & Yungster (hereafter BNEEY) [3] showed how to obtain steady point vortex

configurations in this manner, relating the core behaviour to a solution obtained by Taylor [4].

Since then, there have been a few similar studies. These have examined the translating vortex

pair [5–7], for which it was found in [7] (hereafter L06) that the speed of propagation was

unchanged at O(M2), and the von Kármán vortex street [8], for which the speed of propagation for

both staggered and unstaggered streets can either increase or decrease depending on parameters

of the flow. (There have also been works on steady weakly compressible hollow vortices, as in

[9–11], but these do not consider point vortices.)

As pointed out by [5], the existence of a family of continuous shock-free transonic compressible

flows with embedded vortices is of intrinsic interest, given that similar flows for transonic

aerofoils do not persist under small perturbations. Our goal is to extend the work on weakly

compressible point vortices to the unsteady case. We extend the approach of BNEEY to obtain

equations of motion for the positions of the vortices up to O(M2). Our approach is based on

conservation of momentum, which has been used for incompressible constant-density flows and

which we now review (see [1]). We compute the rate of change of momentum inside a moving

closed contour C from Newton’s Second Law in complex notation,

dP

dt
= i

∮
C

p dz −
i

2

∮
C

ρw[(w − W) dz − (w − W) dz], (1.1)

where the contour C is described in the positive sense, the complex momentum inside C is given

by the area integral P =
∫
S

ρw dS, the complex position and velocity are z = x + iy and w = u − iv

respectively, and the velocity of C is given by W = U − iV. Using Bernoulli’s equation, substituting

local expansions for the variables into (1.1), and taking the limit as the contour shrinks down to the

vortex, gives ζ t = W = w̃, since the contour moves with the vortex. Here, w̃ is the desingularized

velocity at the vortex: physically, a point vortex moves with the local desingularized flow.

In this incompressible argument, point vortices have no internal structures, but for the

compressible case, we will need to consider the flow in the vortex cores on scales of O(M) smaller

than the distance between vortices. In addition, at large distances of O(M−1) from the vortical

region, as pointed out by L06, the Rayleigh–Jansen expansion will become disordered, indicating

the presence of a wavelike far field. This feature was already present in previous work on sound

generation by vortical flows in aeroacoustics using matched asymptotic expansions (MAE; see

[12,13] for an overview).

Terms in the Rayleigh–Jansen expansion will evolve on slow time scales to allow the position of

vortices to change. Figure 1 illustrates the different regions of the flow and gives some notation.

In §2, we present the governing equations for the vortical region, and then examine the core

region to understand the nature of the expansion. In §3, we obtain the equations of motion for

a vortex to O(M2) by solving at successive orders in the Rayleigh–Jansen expansion, and then

discuss the form of the global solution. We examine the case of two compressible vortices in §4.

We discuss the far field in §5 and relate it to previous work. Finally, §6 concludes the paper.

Electronic supplementary material includes details of algebra, as well as an account of the formal

matching near the vortex cores.

2. Problem formulation
We consider irrotational adiabatic compressible flow in the plane. The adiabatic relation between

pressure, p∗, and density, ρ∗, takes the form p∗/p∗
0 = (ρ∗/ρ∗

0 )γ , where γ is the constant ratio of
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Figure 1. Schematic illustrating the different regions of the flow.

specific heats, and p∗
0 and ρ∗

0 are reference values for pressure and density, taken to be the values

at infinity where the flow is at rest. The momentum equation can be transformed into the unsteady

Bernoulli equation,

∂φ∗

∂t
+

1

2
|∇φ∗|2 +

∫
dp∗

ρ∗
=

∂φ∗

∂t
+

1

2
|∇φ∗|2 +

c2

γ − 1
=

c2
0

γ − 1
, (2.1)

where φ∗ is the velocity potential and the speed of sound (squared) is given by c2 = dp∗/dρ∗|s∗ =

γ p∗/ρ∗ with constant value c2
0 = γ p∗

0/ρ
∗
0 at infinity. It is convenient to combine the above equation

and the continuity equation into a single equation for the velocity potential, the Blokhintsev

equation [7,14].

We non-dimensionalize using a length characteristic of the distance between vortices L, a

typical velocity V induced by one vortex on another, the resulting time scale L/V, as well as

the value of density at large distances, ρ0 and the dynamic pressure scale ρ0V2. Then the Mach

number is M = V/c0, and the Blokhintsev equation becomes, dropping the stars and using the

summation convention with subscripts running from 1 to 2,

∇2φ = M2

{

(γ − 1)

(

∂φ

∂t
+

1

2
|∇φ|2

)

∇2φ +
∂2φ

∂t2
+ 2

∂φ

∂xi

∂2φ

∂xi∂t
+

∂φ

∂xi

∂φ

∂xj

∂2φ

∂xi∂xj

}

, (2.2)

along with

p =
1

γ M2

[

1 − (γ − 1)M2

(

∂φ

∂t
+

1

2
|∇φ|2

)]γ /(γ−1)

(2.3)
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and

ρ =

[

1 − (γ − 1)M2

(

∂φ

∂t
+

1

2
|∇φ|2

)]1/(γ−1)

. (2.4)

The above equations are valid in the region of length scale L between vortices, which we call

the vortex region. They break down near the vortex cores, as pointed out by BNEEY and also

examined by L06. To understand the flow behaviour in a vortex core and its impact on the

subsequent matching process, we work in a reference frame co-moving with the vortex, so that

for a vortex at location X moving with velocity U, one has

x = x̂ + X, u = û + U, t = t̂ and φ = Φ̂ + U · x̂, (2.5)

where x̂ and û are the position and velocity with respect to the vortex core in the moving frame,

respectively. Here, t̂ is used to emphasize that partial time- and space-derivatives in the core

frame are taken with constant x̂ and t̂, respectively. The velocity potential in the core frame is Φ̂.

Following previous authors, we now define an appropriately scaled variable in the core region

using x̂ = Ms, so that the radial coordinate measured from the vortex core is r = Ms. In terms of

these variables, the Blokhintsev equation becomes
[

1 − (γ − 1)

(

M2 ∂Φ̂

∂ t̂
+

1

2

∂Φ̂

∂sj

∂Φ̂

∂sj
+ M3U̇jsj −

1

2
M2UjUj

)]

∂2Φ̂

∂s2
i

= M4 ∂2Φ̂

∂ t̂2
+ 2M2 ∂Φ̂

∂si

∂2Φ̂

∂si∂ t̂
+ M6 ∂Φ̂

∂si

∂Φ̂

∂sj

∂2Φ̂

∂si∂sj

+ M5Üjsj − M4UjUj + M3U̇j
∂Φ̂

∂sj
, (2.6)

where dots above Uj indicate time derivatives.

The Rayleigh–Jansen expansion is an expansion in small Mach number. Before writing it down

in §3, we consider the momentum equation in complex form, as in [1], taken over the small circle

with radius e. We take e � M, as we are interested in the momentum balance over circles that are

asymptotically small with respect to the region between vortices but much larger than the vortex

cores, i.e. e is an intermediate variable in the terminology of MAE. This means that one can use

either the core solution or the vortex solution when evaluating the right-hand side of (1.1), since

the terms on the right-hand side are all contour integrals evaluated at radius e. The left-hand side,

however, is a surface integral that must be calculated in the inner variable. To leading order in

M, we have Φ̂ = κθ where κ = Γ/(2π ) is the scaled circulation and θ is the polar angle, so that in

vectorial form, the momentum is

∮ ∫ e/M

sv

ρ̂(M−1
∇̂Φ)M2s ds dθ ≈ M2

∮ ∫ e/M

sv

[

1 − (γ − 1)
κ2

2s2

]1/(γ−1)
[ κ

Ms
t + U

]

s ds dθ , (2.7)

where t is the unit vector tangential to the circle. The lower limit sv is the smallest value of s for

which the pressure and density in (2.3) and (2.4) are positive, and is obtained from the condition

2sv
2 = (γ − 1)κ2. We see that the term in t cancels by symmetry. In complex form, we then obtain

P = πW

[

e2 + κ2M2 log M − κ2M2 log e + M2C + O

(

M4

e2

)]

, (2.8)

for e � M, where

C = 2

∫∞

sv

⎧

⎨

⎩

[

1 − (γ − 1)
κ2

2s2

]β

− 1 +
κ2

2s2

⎫

⎬

⎭

s ds − sv
2 + κ2 log sv (2.9)

= 2β[ψ(β) − ψ(1) − 1] + 2 − sv
2 + κ2 log sv , (2.10)

where ψ(z) is the digamma function and we write β = (γ − 1)−1 for brevity. We see that (2.8)

contains a term of O(M2 log M) if the flow is unsteady. This means that such a term must exist in

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 M

ay
 2

0
2
2
 



5

royalsocietypublishing.org/journal/rsta
P
h
il.
Tra
n
s.
R
.So

c.
A
380:20210052

...............................................................

appropriate time-derivatives of the Rayleigh–Jansen expansion, either as a term in the expansion

or as a result of slow time variation.

3. Derivation of the equation of motion for a vortex

(a) Rayleigh–Jansen expansion of the global solution in the vortical region and time

dependence

Motivated by the discussion above, we consider a modified version of the Rayleigh–Jansen

expansion in the form

φ(t, z, z) = φ0(t, z) + M2 log Mφ1(t, z) + M2φ2(t, z, z) + · · · , (3.1)

where the arguments of the two first terms reflect the fact that they correspond to incompressible

flow in the vortical region, since from (2.2) we have ∇2φ0 = ∇2φ1 = 0. The governing equation

for φ2,

∇2φ2 =
∂2φ0

∂t2
+ 2

∂φ0

∂xi

∂2φ0

∂xi∂t
+

∂φ0

∂xi

∂φ0

∂xj

∂2φ0

∂xi∂xj
, (3.2)

does not contain γ .

Define a complex potential F0 = φ0 + iψ0, since the flow at leading order is incompressible and

irrotational. Similarly, there is a complex potential F1 = φ1 + iψ1. These potentials are harmonic

functions that decay far from the vortex. Since F0 has logarithmic singularities, F1 cannot have

singularities of higher order, while logarithmic singularities in F1 are disallowed by requiring

the vorticity to be entirely at O(1). Hence, as an analytic function bounded at infinity with no

singularities, F1 is a constant that can be taken to be 0 without loss of generality. This means that

the Rayleigh–Jansen expansion does not in fact have a term at O(M2 log M). The term entering

the matching from (2.8) must therefore come from taking the O(M2 log M) time dependence into

account appropriately, as is done in (3.6) below.

Using φ0 = (F0 + F0)/2, (3.2) becomes

∇2φ2 = 2
∂2F2

∂z∂z
+ c.c. =

1

2
(F0tt + 2F0zF0zt + F0zzF2

0z + c.c.), (3.3)

where c.c. stands for complex conjugate and we have defined a function F2(t, z, z) such that

φ2 = (F2 + F2)/2. Note that, because the flow at O(M2) is no longer incompressible, there is no

streamfunction corresponding to φ2, so we call F2 a potential but not a complex potential. Only

the real part of F2 matters, and the complex velocity w2= u2 − iv2 is given by w2 = ∂z(F2 + F2). We

can integrate (3.3) and obtain a particular solution for φ2 as the real part of

F2(z, z) =
1

4
(z − Z0)J(z) +

1

2
F0t(z)F0(z) +

1

4
w0(z)I(z) + G(z), (3.4)

where Z0 is a time-dependent centre of vorticity that can be picked to simplify the analysis for

specific cases. The functions I(z) and J(z) are defined globally by

I(z) =

∫ z

zI

w2
0 dz and J(z) =

∫ z

zJ

F0tt dz. (3.5)

The integration limits zI and zJ will also be picked depending on the global nature of the flow.

The full O(M2) potential (3.4) is composed of an inhomogeneous part and a homogeneous part,

G(z). The function G(z) is made up of homogeneous solutions of the Poisson equation (3.2), i.e.

solutions of Laplace’s equation that can be written as functions of z. They are used to enforce

single-valuedness of the velocity field, appropriate behaviour near the vortices and boundary

conditions.

It turns out that the location of the vortex, considered as an expansion in Mach number, is not

uniquely defined. We can remove this ambiguity by requiring that the location not be expanded

in Mach number (this is reminiscent of slaving principles as in [15]). However, we need to allow
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the position to evolve in time at higher order in M to allow matching of the terms in (2.8). This

leads to the use of multiple time scales. Given the form of (2.8), we consider all variables to be

functions of t0 = t, t1 = tM2 log M and t2 = tM2 (and possibly further time scales). We define

d

dt
=

∂

∂t0
+ M2 log M

∂

∂t1
+ M2 ∂

∂t2
+ o(M2). (3.6)

Hence dζ/dt = W = W0 + M2 log MW1 + M2W2 + o(M2), so that W0 = ζ ,0, W1 = ζ ,1, W2 = ζ ,2,

where we write ζ,i = ∂ζ/∂ti. We can now write pressure and density using the full time

dependence by expanding (2.3) and (2.4) written in complex notation

p0 = −
1

2
(|w0|

2 + F0,0 + F0,0), (3.7)

p1 = −
1

2
(F0,1 + F0,1), (3.8)

p2 = −
1

2
(F0,2 + F0,2) +

1

8
(|w0|

2 + F0,0 + F0,0)2

−
1

2
(w0w2 + w0w2 + F2,0 + F2,0) (3.9)

and ρ2 = −
1

2
(|w0|

2 + F0,0 + F0,0). (3.10)

There is a dynamically irrelevant component p−2 = (γ M2)−1 that can be ignored, while ρ0 = 1.

(b) Local solution for the O(M2) potential

We now consider the solution near the vortex located at z = ζ . The following expansions provide

the terms needed to compute the equations of motion, writing ε = z − ζ and e = |ε|:

F0 = −iκ log ε + f0 + f1ε +
1

2
f2ε

2 +
1

3
f3ε

3 + o(e3), (3.11)

F0,0 =
iκζ,0

ε
+ f0,0 − f1ζ,0 + (f1,0 − f2ζ,0)ε + o(e), (3.12)

F0,00 = iκ

[

ζ,00

ε
+

ζ 2
,0

ε2

]

+ f0,00 − (f1ζ,0),0 − (f1,0 − f2ζ,0)ζ,0 + o(1), (3.13)

J = iκ

[

ζ,00 log ε −
ζ 2

,0

ε

]

+ J0 + [f0,00 − (f1ζ,0),0 − (f1,0 − f2ζ,0)ζ,0]ε + o(e), (3.14)

w0 = −
iκ

ε
+ f1 + f2ε + f3ε

2 + o(e2) (3.15)

and I =
κ2

ε
− 2iκf1 log ε + I0 + (−2iκf2 + f 2

1 )ε + (−iκf3 + f1f2)ε2 + o(e2). (3.16)

We have expressed the coefficients of F0 in the above form for later convenience. The coefficients

f0, f1, . . . depend on time in general. While the coefficient f0 appears to have no dynamical

meaning, it is different from one vortex to another and hence is kept.

The first step is to ensure that the velocity field obtained from F2 in (3.4) is single-valued.

While F0 has a multi-valued logarithmic term near ζ , the resulting complex velocity, w0, is single-

valued. However, F2 contains logarithmic terms of the form log ε multiplied by functions of z. The

resulting velocity is not single-valued, but becomes single-valued when adding a homogeneous

solution with the same z-dependence multiplied by log ε. This corresponds to including the

following contribution in G(z):

l(z) log (z − ζ ) =

[

1

4
(z − Z0)(−iκζ ,00) +

1

2
F0,0(z)(iκ) +

1

4
w0(z)(2iκf 1)

]

log ε. (3.17)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

9
 M

ay
 2

0
2
2
 



7

royalsocietypublishing.org/journal/rsta
P
h
il.
Tra
n
s.
R
.So

c.
A
380:20210052

...............................................................

The square bracket defines the function l(z). The effect of (3.17) in the expansion of F2 near a vortex

is to replace log ε terms by log e2.

We then include two homogeneous terms in G(z)

µ

z − ζ
+ ξ log (z − ζ ). (3.18)

The coefficients µ and ξ allow us to remove unacceptable singularities in F2 near ε = 0. Since F0

has logarithmic singularities, F2 cannot have singularities of higher order, or else the expansion

would be disordered near ε = 0. Logarithmic singularities in F2 are removed by requiring the

vorticity to be entirely at O(1). Unlike [8] we do not require a term in ε−2.

Finally, the local expansion of G(z) also contains terms from expanding the counterparts of

the terms inside the square bracket in (3.4) due to other vortices and to other homogeneous

contributions to G(z). From the forms of F0,0 and of I(z), the former lead to terms of O(e−1) as

well as analytic terms. The latter are denoted by K(z). The result is a contribution g−1ε
−1 + g0 +

g1ε + O(e2) near the vortex. (These contributions are calculated explicitly for the two-vortex case

in §4.)

We can now write down the expansion for F2 needed to remove singular terms:

F2 = −
iκ3

4|ε|2
+

κ2 log e2

4ε
(−2ζ,0 + 2f 1) +

1

4ε
(2iκf 0ζ,0

− iκI0 + 4µ + 4g−1) +
κ2

4ε
f1 +

iκ

4ε
(ζ − Z0)ζ 2

,0

+
1

4
[2iκ(f0,0 − f1ζ,0) + 2iκ|f1|

2 − iκ(ζ − Z0)ζ ,00] log e2 + ξ log ε + O(1). (3.19)

The term in ε−2 is purely imaginary and hence can be ignored, while the term in ε−1 log e2 cancels

from the O(1) result, which will be rederived in the current framework and notation below. Since

F2 only enters the solution via its real part, removing the singular terms in its real part leads to

the following conditions:

2iκf 0ζ,0 − iκ(ζ − Z0)ζ 2
,0 − iκI0 + 4µ + κ2f 1 + 4g−1 = 0 (3.20)

and

2iκ(f0,0 − f1ζ,0) − 2iκ(f 0,0 − f 1ζ ,0) + 4ξ − iκ(ζ − Z0)ζ ,00 + iκ(ζ − Z0)ζ,00 = 0. (3.21)

(c) Conservation of momentum

We now return to the conservation of momentum, viewing it as a matching problem for an

expansion in M, with e serving as the independent variable. We define Q as the left-hand side

of (1.1) and express it as an expansion in the inner variable, s, and define q as the right-hand side

and express it as an expansion in the vortex variable, e. We expand the time-derivative of (2.8)

in the inner variable, using W = W0 + M2 log MW1 + M2W2 + · · · and d/dt = ∂
,0 + M2 log M∂

,1 +

M2∂,2 + · · · , giving

Q = π [W0,0 + M2 log M(W0,1 + W1,0) + M2(W0,2 + W2,0) + o(M2)]

× [M2s2 − κ2M2 log s + M2C + O(M2s−2))] + O(M2), (3.22)

where the final O(M2) term includes an as yet unknown dependence on s. In anticipation of using

Van Dyke’s rule (e.g. [16]), we employ the notation Q(n,.) to denote the n-term truncation of the

function Q and Q(n,m) to denote its subsequent truncation to m terms when rewritten in the outer
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variable. Then Q0 = Q(0,.) = 0 since there are no O(1) terms in (3.22). Expanding the right-hand

side of (1.1) leads to the exact result

q0 = i

∮
C

p0 dz −
i

2

∮
C

w0[(w0 − W0) dz − (w0 − W0) dz]

= π iκ[W0 − 2f 1 + ζ,0] + π [f 1,0 − f 2(ζ ,0 − W0)] e2. (3.23)

The (0, 0) term in Van Dyke’s rule is Q(0,0) = q(0,0), so that

0 = π iκ[W0 − 2f 1 + ζ,0]. (3.24)

Using ζ,0 = W0 leads to

ζ ,0 = W0 = f1, (3.25)

i.e. the incompressible result expressed in the current notation.

We should now group the O(M2 log M) and O(M2) terms together to continue with Van

Dyke’s rule. We should also compute Q(2,.). We shall avoid doing this, and instead carry out the

matching informally. This approach works, but to be safe we will revisit the formal matching in

the electronic supplementary material. In the vortex region, the right-hand side of (1.1) gives the

O(M2 log M) contribution

q1 = i

∮
C

p1 dz −
i

2

∮
C

w0[−W1 dz + W1 dz]

= π iκ[W1 + ζ,1] + π [f 1,1 − f 2(ζ ,1 − W1)] e2. (3.26)

These two terms correspond to the terms

πM2 log M[W0,0 + (W0,1 + W1,0) e2] (3.27)

in (3.22). The constant term gives the evolution equation on the timescale t1 as

ζ,1 = −
iκ

2
W0,0 = −

iκ

2
ζ,00. (3.28)

At this point, the terms at O(e2) do not match. This is because the matching requires further terms

in Q, as discussed in the electronic supplementary material.

The O(M2) contribution is

q2 = i

∮
C

p2 dz −
i

2

∮
C

ρ2w0[(W0 − W0) dz − (w0 − W0) dz]

−
i

2

∮
C

w2[(w0 − W0) dz − (w0 − W0) dz]

−
i

2

∮
C

w0[(w2 − W2) dz − (w2 − W2) dz]. (3.29)

To obtain this, we need to consider further terms in the local expansion of F2. Using the conditions

(3.20) and (3.21), we find

F2 � A + B
ε

ε
+ Dε log e2 + Hε + L

ε2

ε
+ o(e), (3.30)

where the relation � means that the equality ignores purely imaginary terms. The coefficients

needed are

D =
iκ

4
[−ζ ,00 + 2(f1,0 − f2ζ,0) + 2f 1f2] =

iκ

4
f1,0, (3.31)

H =
1

4
[J0 + 2f 0(f1,0 − f2ζ,0) + f2I0 + 2f1(f 0,0 − f 1ζ ,0) + f 1(−2iκf2 + f 2

1 )]

+
1

4
(ζ − Z0)[f0,00 − (f1ζ,0),0 − (f1,0 − f2ζ,0)ζ,0] + g1. (3.32)
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The expansion (3.30) leads to

w2 =
B

ε
− B

ε

ε2
+ D(log e2 + 1) + D

ε

ε
+ H + 2L

ε

ε
− L

ε2

ε2
+ o(1) (3.33)

and

F2,0 � B

(

ζ ,0
ε

ε2
−

ζ,0

ε

)

+ o(e−1). (3.34)

Substituting into (3.29) and computing the integrals leads to extensive cancellation, yielding

q2 = −
π

2
κ2f 1,0 + π iκζ,2 + π iκW2 − 2π iκH − 2π iκD(1 + log e2) + o(1). (3.35)

We see from (3.22) that the log e term in q2 cancels the log e term at O(M2) in Q. Recalling that

ζ,2 = W2 gives the equation for the slow evolution of ζ as

ζ,2 = −
iW0,0

2κ
C −

iκ

4
f 1,0 + D + H = −

iκ

2
f 1,0

(

1 +
C

κ2

)

+ H. (3.36)

It is useful to check the behaviour of a single point vortex. The incompressible complex

potential is F0 = −iκ log (z − ζ ). The point vortex does not move at O(1). Hence ζ,1 = 0 and

F2 =
1

4
w0I(z) + G(z) =

1

4

(

−
iκ

z − ζ

)

[

κ2

z − ζ
−

κ2

zI − ζ

]

+
µ

z − ζ
. (3.37)

The arbitrariness of zI is irrelevant, as it is cancelled by µ1 when removing the simple pole in F2.

The leading-order term is purely imaginary so it can be ignored. Hence the O(M2) velocity of a

single point vanishes, a necessary feature for this model.

(d) Global solution

The results above are applicable near every vortex, because neither the vortex circulation nor

the vortex location has a preferred value. We can now assemble a global solution that is valid

everywhere in the vortical region. The O(M2) potential is given by the sum of the inhomogeneous

part (3.4) and of a homogeneous part. The homogeneous part takes the form

G(z) =
∑

m

(

µm

z − ζm
+ [ξm + lm(z)] log (z − ζm)

)

+ K(z), (3.38)

and includes contributions from each vortex of the form (3.17) and (3.18), while K(z) includes

possible further terms (e.g. to satisfy boundary conditions or to set the circulation around objects

in the flow). We now consider the expansion near vortex n of the sum in (3.38) omitting term

n, writing the rest of the sum as g−1ε
−1
n + g0 + g1εn + O(e2

n), with εn = z − ζn and en = |εn|. The

calculations above show that g0 is not needed. We find, for vortex n,

g−1 =
1

2
κn

∑

m

′κm(f
(m)
1 − ζn,0) log ζmn =

1

2
κn

∑

m

′κm(ζm,0 − ζn,0) log ζmn (3.39)

and

g1 =
∑

m

′

(

−
µm

ζ 2
mn

+
ξm + l

(mn)
0

ζmn
+ l

(mn)
1 log ζmn

)

+ K′(ζn), (3.40)

where ζmn = ζn − ζm and the prime in the summation indicates that term n is omitted (the

derivation is given in the electronic supplementary material).

4. Two vortices in the plane
We consider the simplest situation consisting of two point vortices in the infinite plane. In cases

such as this, there are no other contributions to the potential F0 beyond the vortices, which means

that K(z) = 0 in (3.38). While some simple geometries can also be solved using the method of
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images and could hence be considered as consisting of a finite number of vortices, the dynamics

of the actual and image vortices are different: the latter are not physical so that their motion is set

by boundary conditions rather than matching.

Results for the leading-order potential, complex velocity, I and J are equally simple for N

vortices; we will take N = 2 after presenting general results. We have

F0 =

N
∑

n=1

Γn

2π i
log (z − ζn) and w0 =

N
∑

n=1

Γn

2π i

1

z − ζn
. (4.1)

The decay properties of w(z) for large |z| mean that we can take zI = ∞. It is known that

the incompressible two- and three-vortex cases are integrable. The system has four real

conserved quantities, two of which combine to give the complex vortex momentum
∑N

n=1 Γnζn.

Conservation of this quantity means that integral J(z) is convergent at infinity, so that we can take

zJ = 0. To calculate the integrals I and J, we use the primitives

∫ z
∑

m

[

−
iκm

z − ζm

]2

dz =
∑

m

κ2
m

z − ζm
+

∑

m,n

′ κmκn

ζnm
log

z − ζn

z − ζm
(4.2)

and ∫ z
∑

m

iκm

[

ζm,00

z − ζm
+

ζ 2
m,0

(z − ζm)2

]

dz =
∑

m

iκm

[

ζm,00 log (z − ζm) −
ζ 2

m,0

z − ζm

]

, (4.3)

where the primed sums indicate m �= n.

For the two-vortex case, the total circulation is Γ∞ = Γ1 + Γ2, so there are two different

cases, corresponding to Γ∞ = 0 and Γ∞ �= 0. In the latter case, the conservation laws show that

the vortices must stay in a bounded area of the plane. The former case corresponds to a co-

propagating dipole pair in the incompressible limit. Expressions for f0, f1, J0 and g−1 for the two

vortices are given in the electronic supplementary material. The relation (3.21) gives ξ1 = ξ2 = 0

if Z0 is taken to be on the line joining ζ1 and ζ2, although the final result for the motion of the

vortices is independent of Z0.

In the co-propagating case, we can take κ = κ1 = −κ2. Then ζ21 and |ζ1|
2 − |ζ2|

2 are independent

of t0. Without loss of generality, we take the positions of the vortices at t = 0 to be ±ia0 with a0

real, yielding

ζ1 = ia +
κt

2a
and ζ2 = −ia +

κt

2a
, (4.4)

with a = a(t1, t2) and a(0, 0) = a0. Since ζ1,00 = ζ2,00 = 0, we find from (3.28) that ζ1 and ζ2 do not

depend on t1, so that a = a(t2). Since f1,0 = 0, D = 0, and since (ζ1 − ζ2),0 = 0, we have g−1 = 0.

Calculations (see the electronic supplementary material) lead to H1 = 0, with the Z0 terms

cancelling. Substituting into (3.36), along with f1,0 = 0, means that ζ does not change with t2.

Hence we recover the result of L06 and [8]: the translation speed of the co-propagating vortex

pair does not change at O(M2). The current procedure is of course lengthier than that needed to

obtain this result in a co-moving frame in which the pair is at rest, but we can now address the

fundamentally unsteady co-rotating pair.

For the co-rotating case, κ = κ1 = κ2, so that ζ1 + ζ2 is independent of t0. Without loss of

generality, we take the positions of the vortices at t = 0 to be ±a0 with a0 real, yielding

ζ1 = aeiϕ and ζ2 = −aeiϕ (4.5)

with ϕ = θ + κt/(2a2) = θ + ωt. Here, a and θ are functions of t1 and t2 with a(0, 0) = a0 and θ (0, 0) =

0. Since ζ1,00 = −ω2ζ1, we find from (3.28) that

a,1 = 0 and θ,1 = ω1 =
κω2

2
=

κ3

8a4
. (4.6)

The radius is only a function of t2, while the rotation rate varies with t1. Since the θ,1 term has the

same sign as the O(1) rotation rate, it leads to a slowing down of the rotational motion when
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multiplied by M2 log M, which is negative since 0 < M2 	 1. Fairly extensive algebra (see the

electronic supplementary material) gives

H1 = −
iκ3

16a3
e−iϕ(1 − log 4a2) (4.7)

and

ζ1,2 = −
iκ

2
f

(1)
1,0

(

1 +
C

κ2

)

+ H1 =
iκ3

8a3
eiϕ

(

1 +
C

κ2

)

+ H1

=
iκ3

8a4
ζ

(

3

2
+

C

κ2
− log 2a

)

. (4.8)

Here, the constant C is given in (2.10). Once again there is a correction to the rotation speed

θ,2 = ω2 =
κ3

8a4

(

3

2
+

C

κ2
− log 2a

)

. (4.9)

In dimensional form, we can combine the frequencies to obtain

ω∗ =
κ∗

2a∗

[

1 +
κ2
∗

4c2
0a2

∗

(

− log

(

2a∗Γ

c0L2

)

+
3

2
+

CΓ 2

κ2
∗

)]

, (4.10)

where stars represent dimensional quantities. The circulation scale is Γ = LV. There is no unique

choice of scalings, but the simplest choice is probably Γ = 2κ∗ and L = 2a∗, so that Γ is the total

circulation divided by 2π and L is the distance between vortices. Then

ω∗ =
κ∗

2a∗

[

1 +
κ2
∗

4c2
0a2

∗

(

− log

(

κ∗

c0a∗

)

+
3

2
+ 4C

)

]

. (4.11)

For the general two-vortex case, the vortices rotate about their centre of vorticity at O(1). Write

ζ1 = aeiϕ and ζ2 = −beiϕ with aκ1 = bκ2 so that the centre of vorticity is at the origin with Z0 = 0.

Then

ω =
κ1

b(a + b)
=

κ2

a(a + b)
. (4.12)

The O(M2 log M) equations become

ζ1,1 = −ζ2,1 =
iκ1κ2ω

2ζ 21

. (4.13)

The velocities of the vortices are the same, but their angular velocities differ, so that as they move

their trajectories will no longer be circles. The centre of the vorticity ζc = (κ1ζ1 + κ2ζ2)/(κ1 + κ2)

moves slowly with the O(M2 log M) velocity

ζc,1 =
iκ1κ2(κ1 − κ2)ω

2ζ 21(κ1 + κ2)
. (4.14)

The O(M2) motion is

ζ1,2 =
iκ1κ2(κ1 + κ2)

4|ζ21|2ζ 21

(

3 +
2C1

κ2
1

− log |ζ21|
2

)

and ζ2,2 =
iκ1κ2(κ1 + κ2)

4|ζ12|2ζ 12

(

3 +
2C2

κ2
2

− log |ζ12|
2

)

.

(4.15)

This slow motion can be decomposed into rotation about a slowly moving centre with the O(M2)

correction

ζc,2 =
iκ1κ2(κ1 − κ2)

4|ζ21|2ζ 21

(

3 +
2(C1κ2 − C2κ1)

κ1κ2(κ1 − κ2)
− log |ζ21|

2

)

. (4.16)
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This shows that the relative equilibrium of the co-rotating vortices evolves slowly in time due to

the weak compressibility effects, although in the symmetric case, it is only the rotation rate that

changes.

5. Outer region
As pointed out by L06, at distances of O(M−1) from the vortices, there is a region in which the

dynamics are wave-like. We define far-field upper-case variables by X = Mx̂. The Blokhintsev

equation becomes

∂2Φ

∂X2
i

−
∂2Φ

∂t2
= (γ − 1)M2

(

∂Φ

∂t
+

1

2
M2 ∂Φ

∂Xj

∂Φ̂

∂Xj

)

∂2Φ

∂X2
i

+ 2M2 ∂Φ

∂Xi

∂2Φ

∂Xi∂t
+ M4 ∂Φ

∂Xi

∂φ

∂Xj

∂2Φ

∂Xi∂Xj
. (5.1)

One can obtain expressions for the pressure and density analogous to (2.3) and (2.4).

The far-field limit of the O(1) potential in the vortical region is

F0 = −iκ∞ log z + g0 +
g1

z
+

g2

z2
+ O(|z|−3), (5.2)

where the total circulation is 2πκ∞ and the gi(t) are functions of time alone. The incompressible

dynamics of the vortex region imply that κ∞, and g1, which is related to the vortex impulse I [2],

are independent of time. We set g0 = 0 as the global constant of integration for F0. Rewritten in

the outer variable, we have

F0 = −iκ∞ log MZ + M
g1

Z
+ M2 g2

Z2
+ O(M3|Z|−3). (5.3)

From (5.1), Φ0 is a harmonic function, which must be κ∞θ , so that the real part matches. Since the

higher terms in (5.1) are multiplied by powers of M2, Φ1 is again a potential function, and must be

Re(g2Z−2). This result requires checking the behaviour of F2 for large |z|. We have F0,0 = O(|z|−3),

J = O(|z|−2), w0 = O(|z|−1), I = O(|z|−1), so that the inhomogeneous terms in (3.4) are O(z−1), while

the sum of the separate l(z) terms is O(|z|−1 log |z|) in the infinite-plane case in which
∑

n ζn,0 = 0.

Finally, the homogeneous terms from (3.18) are O(|z|−1) since
∑

ξn = 0. Hence the terms in F2 do

not enter the matching at O(M2).

The general question of compressible far-field waves relates to the domain of aeroacoustics.

Excellent reviews of aeroacoustics are given e.g. in [12,17]. The use of MAE in solving aeroacoustic

problems is reviewed in [13]. For the general case, we can use these results. We hence summarize

the necessary results following [12]: wavelike solutions with dipole R−2cos (2θ − χ ) behaviour

near the origin are given by a synthesis of monochromatic solutions of the form

Re[H
(0)
2 (R)e±2iθ eiωt] (5.4)

that satisfy the radiation condition. Here, H
(0)
2 is the Hankel function of the second kind. These

solutions are superposed, with amplitude coefficients A(ω) that can be related to g2. One obtains

quadrupole radiation of flow-generated sound, as expected in a situation with no boundaries or

mass sources.

For the two cases considered in §3, we can follow previous authors directly. Acoustic emission

from the co-rotating vortex pair was first examined by [18], who found a change of rotation

frequency equivalent to that in §3. The velocity of the co-propagating pair is found to be

independent of t2, t1 and t0, so the analysis of L06, who considered a steady dipole in a moving

reference frame, is equivalent to the current one. L06 shows by using a coordinate system moving

with the vortex that the O(M) solution, a propagating dipole, is efficiently represented in the

coordinate system ((1 − M2)1/2X, Y). This is equivalent to a different way of writing an asymptotic

solution that gives the same result to the order obtained.
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6. Conclusion
We have obtained equations of motion for small-Mach-number compressible point vortices in

the plane, in which compressibility manifests itself as an evolution over slow time scales of

O(M2 log M) and O(M2). The first correction (3.28) is quite simple and vanishes for steady

configurations. The second correction is more involved.

We have examined the corrections to O(M2) for the simplest case of vortex pairs. We recover the

known result for the co-propagating pair that the velocity is unchanged at O(M2). The symmetric

co-rotating vortex pair exhibits a change of angular velocity. For the general two-vortex case,

however, the centre of rotation and radius of the orbit evolve slowly, while the motion of each

vortex is instantaneously perpendicular to the line of centres and the motion remains circular on

the O(1) time scale.

The solution in the far-field region with spatial scale M−1L, corresponding to the wavelength

of the emitted sound, can be obtained by matching, following previous work. If the vortical flow

is steady, the response is a dipole moving with the speed of the centre of vorticity, as in L06. If the

vortical flow is unsteady, an expression for the quadrupole radiation is obtained in terms of the

quadrupole moment g2(t) (presumably this could be applied to the calculation of wave radiation

by chaotic point vortex evolution as in [19,20]). Following previous work, quantities such as the

power radiated to infinity could be obtained.

The back-reaction of the wave field is deliberately ignored here, as is usual in aeroacoustics.

This means that while radiation is present in the current formulation, the coupling of the

flow in the vortical region to the far field only appears at an order higher than M2. In the

geophysical context, the corresponding effect of gravity wave radiation on vortex dynamics has

been examined [21] (see also [22] for a related discussion for scattering). Here, this would require

a calculation to O(M4), most likely with logarithmic terms.

A list of interesting extensions comes to mind: efforts at simplifying the equations further in

special cases; possible efficient solution techniques; whether any of the other known equilibria of

point vortices survive to O(M2); the effects of more complicated boundaries and whether a better

model for the core regions is warranted. The effect of boundaries is of particular interest, following

on from BNEEY. The case of vortices inside and outside a circle is currently being examined: the

O(1) solution can be obtained using the method of images, but the corrections require extensive

algebra. A further example is the half-plane with a vortex moving around it considered in [23]).

Finally, it could be interesting to compare the present results to numerical simulations. These

would require very highly resolved aeroacoustic-type calculations with large separations of scales

between vortex cores, vortical region and wave field.1
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