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Equations of motion for compressible point vortices
in the plane are obtained in the limit of small Mach
number, M, using a Rayleigh-Jansen expansion and
the method of Matched Asymptotic Expansions. The
solution in the region between vortices is matched
to solutions around each vortex core. The motion
of the vortices is modified over long time scales
O(M? log M) and O(M?). Examples are given for co-
rotating and co-propagating vortex pairs. The former
show a correction to the rotation rate and, in general,
to the centre and radius of rotation, while the latter
recover the known result that the steady propagation
velocity is unchanged. For unsteady configurations,
the vortex solution matches to a far field in which
acoustic waves are radiated.

This article is part of the theme issue ‘Mathematical
problems in physical fluid dynamics (part 2)’.

1. Introduction

Vorticity is a key aspect of fluid mechanics, in particular
in high-Reynolds-number and turbulent flows. Many
flows are dominated by intense vortices, and efforts
to obtain reduced systems and equations have led
to the development of models with singular vorticity
distributions. Of these, point vortices in the plane
are the simplest example, with the vortices” motion
being governed by a set of ODEs. A discussion of
the justification for the equations of motion of point
vortices and generalizations is given in [1], including
a review of the momentum argument set out by [2].

© 2022 The Author(s) Published by the Royal Society. All rights reserved.
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The majority of the work to date on point vortices has been for plane incompressible flows [2].
Attempting to extend the notion of a point vortex to plane compressible flows is a daunting task
in the general case, but for the case of low-Mach number flows, a Rayleigh—Jansen expansion in
Mach number provides one approach. With the Mach number used in the expansion defined by
the velocities induced by the vortices” motion and the speed of sound, the O(1) incompressible
velocity field increases so as to become supersonic near the location of a point vortex. One needs
to consider further physics near the vortex location, i.e. the vortices have a small core region.
Barsony-Nagy, Er-El & Yungster (hereafter BNEEY) [3] showed how to obtain steady point vortex
configurations in this manner, relating the core behaviour to a solution obtained by Taylor [4].

Since then, there have been a few similar studies. These have examined the translating vortex
pair [5-7], for which it was found in [7] (hereafter L06) that the speed of propagation was
unchanged at O(MZ), and the von Karman vortex street [8], for which the speed of propagation for
both staggered and unstaggered streets can either increase or decrease depending on parameters
of the flow. (There have also been works on steady weakly compressible hollow vortices, as in
[9-11], but these do not consider point vortices.)

As pointed out by [5], the existence of a family of continuous shock-free transonic compressible
flows with embedded vortices is of intrinsic interest, given that similar flows for transonic
aerofoils do not persist under small perturbations. Our goal is to extend the work on weakly
compressible point vortices to the unsteady case. We extend the approach of BNEEY to obtain
equations of motion for the positions of the vortices up to O(M?). Our approach is based on
conservation of momentum, which has been used for incompressible constant-density flows and
which we now review (see [1]). We compute the rate of change of momentum inside a moving
closed contour C from Newton’s Second Law in complex notation,

dr . i o m
a :1ng pdz — 3 i pwl(w — W)dz — (w — W) dz], (1.1)

where the contour C is described in the positive sense, the complex momentum inside C is given
by the area integral P = [ 5 pww dS, the complex position and velocity are z=x +iy and w =u — iv
respectively, and the velocity of C is given by W = U — iV. Using Bernoulli’s equation, substituting
local expansions for the variables into (1.1), and taking the limit as the contour shrinks down to the
vortex, gives ¢; = W =, since the contour moves with the vortex. Here, @ is the desingularized
velocity at the vortex: physically, a point vortex moves with the local desingularized flow.

In this incompressible argument, point vortices have no internal structures, but for the
compressible case, we will need to consider the flow in the vortex cores on scales of O(M) smaller
than the distance between vortices. In addition, at large distances of O(M~') from the vortical
region, as pointed out by L06, the Rayleigh-Jansen expansion will become disordered, indicating
the presence of a wavelike far field. This feature was already present in previous work on sound
generation by vortical flows in aeroacoustics using matched asymptotic expansions (MAE; see
[12,13] for an overview).

Terms in the Rayleigh-Jansen expansion will evolve on slow time scales to allow the position of
vortices to change. Figure 1 illustrates the different regions of the flow and gives some notation.
In §2, we present the governing equations for the vortical region, and then examine the core
region to understand the nature of the expansion. In §3, we obtain the equations of motion for
a vortex to O(M?) by solving at successive orders in the Rayleigh-Jansen expansion, and then
discuss the form of the global solution. We examine the case of two compressible vortices in §4.
We discuss the far field in §5 and relate it to previous work. Finally, §6 concludes the paper.
Electronic supplementary material includes details of algebra, as well as an account of the formal
matching near the vortex cores.

2. Problem formulation

We consider irrotational adiabatic compressible flow in the plane. The adiabatic relation between
pressure, p*, and density, p*, takes the form p*/pf = (0*/p;)”, where y is the constant ratio of
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Figure 1. Schematic illustrating the different regions of the flow.

specific heats, and pjj and pjj are reference values for pressure and density, taken to be the values
at infinity where the flow is at rest. The momentum equation can be transformed into the unsteady
Bernoulli equation,

8¢* oy dp* 8¢* " 2 c

L B A T @)
where ¢* is the velocity potential and the speed of sound (squared) is given by ¢? = dp*/dp*|s =
yp*/p* with constant value C% =ypy/pg at infinity. It is convenient to combine the above equation
and the continuity equation into a single equation for the velocity potential, the Blokhintsev
equation [7,14].

We non-dimensionalize using a length characteristic of the distance between vortices L, a
typical velocity V induced by one vortex on another, the resulting time scale L/V, as well as
the value of density at large distances, pg and the dynamic pressure scale pg V2. Then the Mach
number is M = V/cp, and the Blokhintsev equation becomes, dropping the stars and using the
summation convention with subscripts running from 1 to 2,

22l (22 4 Lo P9 00 %0 39 09 %9
Vie=M {(y 1)(3t+2|v¢|> ¢+8t2+28x13x78t+8xi8x]'3x1-8x]-' 22)

along with

1 y/(r=1)
P=e [1 —(y - )M? (8—¢ + ,| ¢|2>] (2.3)
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ap 1 v

p=|1-( =DM ( =+ SIVeP : (24)

ot 2
The above equations are valid in the region of length scale L between vortices, which we call
the vortex region. They break down near the vortex cores, as pointed out by BNEEY and also
examined by L06. To understand the flow behaviour in a vortex core and its impact on the
subsequent matching process, we work in a reference frame co-moving with the vortex, so that
for a vortex at location X moving with velocity U, one has

x=%+X, u=a+U, t=F and ¢=d+U-%, (2.5)

where X and # are the position and velocity with respect to the vortex core in the moving frame,
respectively. Here, t is used to emphasize that partial time- and space-derivatives in the core
frame are taken with constant & and #, respectively. The velocity potential in the core frame is .
Following previous authors, we now define an appropriately scaled variable in the core region
using ¥ = Ms, so that the radial coordinate measured from the vortex core is ¥ = Ms. In terms of
these variables, the Blokhintsev equation becomes

ad 10 9d : 1 32
1-(y-D(M>— + -—— + MPUs; — -M?*UU; | | —
[ (v )( o7 +3 7, 95, + 5 = 5 iU; .

as;

92d b 92d b 0D %P
=M poM2 T T MO
a2 s; 9s;0t ds; ds; 0s0s;
57 4 5 0D
+M UjS]' - M U]-ll]-+M Uj*, (2.6)
35]‘

where dots above U; indicate time derivatives.

The Rayleigh—Jansen expansion is an expansion in small Mach number. Before writing it down
in §3, we consider the momentum equation in complex form, as in [1], taken over the small circle
with radius e. We take e > M, as we are interested in the momentum balance over circles that are
asymptotically small with respect to the region between vortices but much larger than the vortex
cores, i.e. e is an intermediate variable in the terminology of MAE. This means that one can use
either the core solution or the vortex solution when evaluating the right-hand side of (1.1), since
the terms on the right-hand side are all contour integrals evaluated at radius e. The left-hand side,
however, is a surface integral that must be calculated in the inner variable. To leading order in
M, we have & = x6 where « = I'/(27) is the scaled circulation and 6 is the polar angle, so that in
vectorial form, the momentum is

/M A /M 2 Ve

H HM~1¥ d)M%s ds do %szgj 1-(y -1 [—t—i— u] sdsds, (27)
s s 252 Ms

where t is the unit vector tangential to the circle. The lower limit s, is the smallest value of s for
which the pressure and density in (2.3) and (2.4) are positive, and is obtained from the condition
25,2 = (y — 1)x%. We see that the term in # cancels by symmetry. In complex form, we then obtain

4
P=7W [ez + 1K2M?log M — k*M?loge + M?C + O (M2)} (2.8)
e
for e > M, where
00 K2 K2 ) )
CZZL, 1—(y—1)@ —1+@ sds — s, +«“logs, (2.9)
=2B[Y(B) — ¥(1) — 1] + 2 — 5,% + k* log sy, (2.10)

where ¥(z) is the digamma function and we write f =(y — 1)1 for brevity. We see that (2.8)
contains a term of O(M? log M) if the flow is unsteady. This means that such a term must exist in
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appropriate time-derivatives of the Rayleigh-Jansen expansion, either as a term in the expansion
or as a result of slow time variation.

3. Derivation of the equation of motion for a vortex

(a) Rayleigh—Jansen expansion of the global solution in the vortical region and time
dependence

Motivated by the discussion above, we consider a modified version of the Rayleigh—Jansen
expansion in the form

¢(t/ z, Z) = ¢0(t1 Z) + M2 IOgM¢1 (t, Z) + M2¢2(t, Z, E) +---, (31)

where the arguments of the two first terms reflect the fact that they correspond to incompressible
flow in the vortical region, since from (2.2) we have V2¢y = V2 =0. The governing equation
for ¢,
2, _ 00 o 90 ¢ dpo 8790
\% ¢2 =— + 2 ~ s
8xi 3Xj Bxiaxj

2 Ax; ox;ot (3.2)
does not contain y.

Define a complex potential Fo = ¢ + i/, since the flow at leading order is incompressible and
irrotational. Similarly, there is a complex potential F1 = ¢1 + iy1. These potentials are harmonic
functions that decay far from the vortex. Since Fy has logarithmic singularities, F; cannot have
singularities of higher order, while logarithmic singularities in F; are disallowed by requiring
the vorticity to be entirely at O(1). Hence, as an analytic function bounded at infinity with no
singularities, F1 is a constant that can be taken to be 0 without loss of generality. This means that
the Rayleigh-Jansen expansion does not in fact have a term at O(M? log M). The term entering
the matching from (2.8) must therefore come from taking the O(M? log M) time dependence into
account appropriately, as is done in (3.6) below.

Using ¢g = (Fo + Fo)/2, (3.2) becomes

92F, 1 - —
V%FQ&E+LQ:?%WM%JW+%ﬂ%+QQ, (3.3)

where c.c. stands for complex conjugate and we have defined a function Fj(t,z,z) such that
¢ = (F2 + F,)/2. Note that, because the flow at O(M?) is no longer incompressible, there is no
streamfunction corresponding to ¢,, so we call F, a potential but not a complex potential. Only
the real part of F matters, and the complex velocity wy= 1y — iv; is given by w, = 8,(F» + F>). We
can integrate (3.3) and obtain a particular solution for ¢, as the real part of

1 — 1 1 —
F2(2,9) = 1~ Z0)]@) + 3Fa@Fo@ + 700(1@ + GE@), (34

where Z is a time-dependent centre of vorticity that can be picked to simplify the analysis for
specific cases. The functions I(z) and ](z) are defined globally by

Z Z
nn=Ja%@ and ﬂn:JPwdz (35)
2z z
The integration limits z; and zj will also be picked depending on the global nature of the flow.
The full O(M?) potential (3.4) is composed of an inhomogeneous part and a homogeneous part,
G(z). The function G(z) is made up of homogeneous solutions of the Poisson equation (3.2), i.e.
solutions of Laplace’s equation that can be written as functions of z. They are used to enforce
single-valuedness of the velocity field, appropriate behaviour near the vortices and boundary
conditions.

It turns out that the location of the vortex, considered as an expansion in Mach number, is not
uniquely defined. We can remove this ambiguity by requiring that the location not be expanded
in Mach number (this is reminiscent of slaving principles as in [15]). However, we need to allow
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the position to evolve in time at higher order in M to allow matching of the terms in (2.8). This
leads to the use of multiple time scales. Given the form of (2.8), we consider all variables to be
functions of ty = t, t; = tM? log M and t, = tM? (and possibly further time scales). We define

d @ , 3 , 0 )

—=—+MlogM— + M"— M?). 3.6

&t = pg T M8 M+ Mg+ o) (36)

Hence d¢/dt =W =Wy + M?log MW + M?W, +o(M?), so that Wo=2C, Wi=2C1, Wa=0,,
where we write ¢;=09¢/0t;. We can now write pressure and density using the full time
dependence by expanding (2.3) and (2.4) written in complex notation
1 _
po= —E(Iwol2 + Foo + Fop), (3.7)
1 _
p1= —E(Fo,l +Fop), (3-8)
p2= —E(Fo,z +Fop2) + g(lwol + Fo,0 + Foo)
1 o o _
- E(wowz + Wowa + F2,0 + F2,0) (3.9)
1 _
and p2 == (lwol* + Fop + Fop). (310)
There is a dynamically irrelevant component p_ = (yM?)~! that can be ignored, while py = 1.

(b) Local solution for the O(M?) potential

We now consider the solution near the vortex located at z = ¢. The following expansions provide
the terms needed to compute the equations of motion, writing ¢ =z — ¢ and e = |¢|:

1 1
Fo=—ikloge + fo + fie + Efzez + §f363 +0(e?), (3.11)
ikl
Foo=—"=+foo —fito+ (fro — f2lo)e +0(e), (3.12)
2
%o, S0
Fopo=ix | ==+ =5 | +foe0 = (hg0)o — (fo = 2L0)50 +0(1), (3.13)

£2
J=ix [4‘,00 loge — EO} +Jo + [fo00 — (Fig0),0 — (fro — f280)¢0]e + o(e), (3.14)

wo = _I:K +fi + fa€ + €% + 0(e?) (3.15)

2
and I= K? — 2ikfloge + Ip + (—2ikf> +f12)e + (—ikfs + fif2)e? + 0(e?). (3.16)

We have expressed the coefficients of Fy in the above form for later convenience. The coefficients
fo, fi,... depend on time in general. While the coefficient fy appears to have no dynamical
meaning, it is different from one vortex to another and hence is kept.

The first step is to ensure that the velocity field obtained from F; in (3.4) is single-valued.
While Fy has a multi-valued logarithmic term near ¢, the resulting complex velocity, wy, is single-
valued. However, F, contains logarithmic terms of the form log € multiplied by functions of z. The
resulting velocity is not single-valued, but becomes single-valued when adding a homogeneous
solution with the same z-dependence multiplied by loge. This corresponds to including the
following contribution in G(z):

I(z)log(z—¢)= [i(z - Zo)(—iKE,Oo) + %Po,o(z)(ifc) + lewo(z)(Zi/cfl)} loge. (3.17)
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The square bracket defines the function [(z). The effect of (3.17) in the expansion of F, near a vortex
is to replace log € terms by log é2.
We then include two homogeneous terms in G(z)

"
; +£& lOg (z—10). (3.18)

The coefficients 1 and & allow us to remove unacceptable singularities in F near € = 0. Since Fy
has logarithmic singularities, F, cannot have singularities of higher order, or else the expansion
would be disordered near € =0. Logarithmic singularities in F, are removed by requiring the
vorticity to be entirely at O(1). Unlike [8] we do not require a term in e 2.

Finally, the local expansion of G(z) also contains terms from expanding the counterparts of
the terms inside the square bracket in (3.4) due to other vortices and to other homogeneous
contributions to G(z). From the forms of Fog and of I(z), the former lead to terms of O(e™1) as
well as analytic terms. The latter are denoted by K(z). The result is a contribution g_1¢ ! + go +
g1€ + O(e?) near the vortex. (These contributions are calculated explicitly for the two-vortex case
in §4.)

We can now write down the expansion for F needed to remove singular terms:

i3 k?log é?
B 4le|? 4e

_ 1 _
Fy= (—2¢0+2f1) + E(ﬁkfo{,o

— Ty + 4p + 4 )+ﬁ + ez
ixlo +4pn + 491 4gfl = ¢ —Zo)¢p
1 . . . —
+ Z[zuc(fo,o — f1g0) + 2ik|fi [ — ik (¢ — Zo)E golloge® + £ log e + O(1). (3.19)

The term in € =2 is purely imaginary and hence can be ignored, while the term in € ~! log ¢? cancels
from the O(1) result, which will be rederived in the current framework and notation below. Since
F; only enters the solution via its real part, removing the singular terms in its real part leads to
the following conditions:

2ifolo — ik (T — Zo)ed — ikTo + 4u + k2fy +4g_1 =0 (3.20)
and

2ik(fo0 — f0) — 2k (Fo g — 18 0) +4E — k(& — Zo)T oo +ix(C — Zo)go=0.  (321)

(c) Conservation of momentum

We now return to the conservation of momentum, viewing it as a matching problem for an
expansion in M, with e serving as the independent variable. We define Q as the left-hand side
of (1.1) and express it as an expansion in the inner variable, s, and define g as the right-hand side
and express it as an expansion in the vortex variable, e. We expand the time-derivative of (2.8)
in the inner variable, using W = Wy + M? log MW1 + MZW, + .- and d/dt = a0+ M? logMd 1 +
M2 dp + .-+, giving

Q=n[Woo + M*log M(Wo1 + Wi0) + M*(Wo 2 + Wa0) + o(M?)]
x [M?s? — k2M? log s + M2C + O(M?s2))] + O(M?), (3.22)
where the final O(M?) term includes an as yet unknown dependence on s. In anticipation of using

Van Dyke’s rule (e.g. [16]), we employ the notation Q) to denote the n-term truncation of the
function Q and Q™ to denote its subsequent truncation to 7 terms when rewritten in the outer

csooznc-age 7 0s s i esieaniobunsiandaonoseior [l



Downloaded from https://royalsocietypublishing.org/ on 09 May 2022

variable. Then Qp = Q%) =0 since there are no O(1) terms in (3.22). Expanding the right-hand
side of (1.1) leads to the exact result

q0 =ijgc podz — %(J;c Wo[(wo — Wo) dz — (wp — Wo) dz]

=mik[Wo — 2 + gol + 7[fy — f2(C,0 — Wo)l . (3.23)
The (0,0) term in Van Dyke’s rule is QOO = q(O'O), so that
0=rmik[Wo — 2f; + ¢ol. (3.24)

Using ¢ = Wy leads to
Co=Wo=f1, (3.25)

i.e. the incompressible result expressed in the current notation.

We should now group the O(M?logM) and O(M?) terms together to continue with Van
Dyke’s rule. We should also compute Q(Z"). We shall avoid doing this, and instead carry out the
matching informally. This approach works, but to be safe we will revisit the formal matching in
the electronic supplementary material. In the vortex region, the right-hand side of (1.1) gives the
O(M? log M) contribution

= i(J;C p1dz — % fi;c Wo[—W1 dZ + Wy dz]
=7ik[W1 + ¢al+ 7 [fy = f2C 1 — Wi)le™. (3.26)
These two terms correspond to the terms
7 M? log M[Wo,0 + (Wo,1 + W) €’] (327)

in (3.22). The constant term gives the evolution equation on the timescale t; as

g1 =——Woo=—=200- (3.28)

At this point, the terms at O(e?) do not match. This is because the matching requires further terms
in Q, as discussed in the electronic supplementary material.
The O(M?) contribution is

Q= if#;c p2dz — % jgc p2o[(Wo — Wo) dz — (wo — Wp) dz]

-5 i Tl @o — Wo) dz — (wo — Wo) dz]
— % jﬁc Wol(@y — Wp)dz — (wy — Wh) dz]. (3.29)

To obtain this, we need to consider further terms in the local expansion of F;. Using the conditions
(3.20) and (3.21), we find

2
Fy= A+ BS + Delog & + He + LS + o(e), (3.30)
€ €

where the relation = means that the equality ignores purely imaginary terms. The coefficients
needed are

D=1 +2(fi0 —foto) + 2Fifel = Sfip, (3:31)
H= %[70 +2fo(f10 —f280) +folo +2f1(Fop = F180) +f1(=2ikf2 + )]

1_
+ Z(C = Zo)[fo,00 — (f1£,0),0 — (fr,0 — f25,0)¢0] + 81 (3.32)
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The expansion (3.30) leads to

B —¢€ 5 —€ € —€2
wy=—=—B— +D(loge”+1)+D-+H+2L- — L= +0(1) (3.33)
€ €2 € € &2

and

Fao=B (Zﬂ;—z - §'°> +o(e™ . (3.34)

€
Substituting into (3.29) and computing the integrals leads to extensive cancellation, yielding
0= _%ﬁfm + 7Kgy + wik Wy — 27icH — 27k D(1 + log €2) + o(1). (3.35)
We see from (3.22) that the loge term in g, cancels the loge term at O(M?) in Q. Recalling that
¢2 = W, gives the equation for the slow evolution of ¢ as

iW()/() K= [ — ik - C —
Co=— e C— Zf1,0+D+H=—jf1,0 <1+ﬁ> + H. (3.36)

It is useful to check the behaviour of a single point vortex. The incompressible complex
potential is Fy = —ix log (z — ¢). The point vortex does not move at O(1). Hence ¢1 =0 and

z—C s

The arbitrariness of zj is irrelevant, as it is cancelled by 1 when removing the simple pole in F;.
The leading-order term is purely imaginary so it can be ignored. Hence the O(M?) velocity of a
single point vanishes, a necessary feature for this model.

1 1 : 2 2
F= ;o0 +G@) = 4 (— <) LK_C - ZIK_} o (337

(d) Global solution

The results above are applicable near every vortex, because neither the vortex circulation nor
the vortex location has a preferred value. We can now assemble a global solution that is valid
everywhere in the vortical region. The O(M?) potential is given by the sum of the inhomogeneous
part (3.4) and of a homogeneous part. The homogeneous part takes the form

6= 3 (2 +lo + n@1og : — ) ) + K2, (339)
m

and includes contributions from each vortex of the form (3.17) and (3.18), while K(z) includes

possible further terms (e.g. to satisfy boundary conditions or to set the circulation around objects

in the flow). We now consider the expansion near vortex n of the sum in (3.38) omitting term

n, writing the rest of the sum as g_1¢; Ty 8o +g1€n + O(e%), with ¢, =z — ¢, and e, = |¢;|. The

calculations above show that gp is not needed. We find, for vortex n,

1 ey 1 )
1= 560 k(£ = £,0)108 G = 5D n(Em0 = 610 10g G (3.39)
m m
and
o Em I
gi=) |~ + 1" 1og & | + K'(¢n), (3.40)
m ;mn Cmn

where yn =y — ¢m and the prime in the summation indicates that term n is omitted (the
derivation is given in the electronic supplementary material).

4. Two vortices in the plane

We consider the simplest situation consisting of two point vortices in the infinite plane. In cases
such as this, there are no other contributions to the potential Fy beyond the vortices, which means
that K(z) =0 in (3.38). While some simple geometries can also be solved using the method of
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images and could hence be considered as consisting of a finite number of vortices, the dynamics
of the actual and image vortices are different: the latter are not physical so that their motion is set
by boundary conditions rather than matching.

Results for the leading-order potential, complex velocity, I and ] are equally simple for N
vortices; we will take N =2 after presenting general results. We have

N

I;
Fozzz—;log(z —¢y) and wo=
n=1

r, 1
_12niz—§n'

(4.1)

The decay properties of w(z) for large |z| mean that we can take zj=o0. It is known that
the incompressible two- and three-vortex cases are integrable. The system has four real
conserved quantities, two of which combine to give the complex vortex momentum ZnNzl Tutn.
Conservation of this quantity means that integral (z) is convergent at infinity, so that we can take
z; = 0. To calculate the integrals I and ], we use the primitives

z i 7
J Z |: z—- fmi| dz= Z

m

+ Z KmKn —&n (4.2)

mn Z_fm

and

m,00 Emo &m0
J me[ (e )2} dz=;ixm [{m,oolog(Z—Cm)—Z_’gm}, (4.3)

where the primed sums indicate m # n.

For the two-vortex case, the total circulation is I, =17 + I», so there are two different
cases, corresponding to Io =0 and I # 0. In the latter case, the conservation laws show that
the vortices must stay in a bounded area of the plane. The former case corresponds to a co-
propagating dipole pair in the incompressible limit. Expressions for fy, f1, Jo and g_1 for the two
vortices are given in the electronic supplementary material. The relation (3.21) gives £ =& =0
if Zg is taken to be on the line joining ¢; and ¢, although the final result for the motion of the
vortices is independent of Z.

In the co-propagating case, we can take k = k1 = —«2. Then ¢p1 and |1 12 — 5% are independent
of tg. Without loss of generality, we take the positions of the vortices at f =0 to be +iag with ag
real, yielding

t t
f=ia+ — and & =—iat —, (4.4)
2a 2a

with a =a(ty, t2) and a(0,0) = ap. Since ¢1,00 = £2,00 =0, we find from (3.28) that ¢; and ¢ do not
depend on t1, so that a=a(ty). Since f190=0, D=0, and since ({1 — ¢2),0 =0, we have g_1 =0.
Calculations (see the electronic supplementary material) lead to Hy =0, with the Z; terms
cancelling. Substituting into (3.36), along with f o =0, means that ¢ does not change with t;.
Hence we recover the result of L06 and [8]: the translation speed of the co-propagating vortex
pair does not change at O(M?). The current procedure is of course lengthier than that needed to
obtain this result in a co-moving frame in which the pair is at rest, but we can now address the
fundamentally unsteady co-rotating pair.

For the co-rotating case, k =1 =k2, so that {1 + ¢ is independent of t;. Without loss of
generality, we take the positions of the vortices at t =0 to be +ay with ag real, yielding

&1 =ae¥ and = —ae"? 4.5)

with ¢ =6 + «t/(2a%) = 6 + wt. Here, a and 6 are functions of t; and t, with (0, 0) = ag and 6(0, 0) =
0. Since ¢1 90 = —w?¢1, we find from (3.28) that

ICL!)2 K3

a1 and O1=wy=—-=c (4.6)

The radius is only a function of ¢, while the rotation rate varies with 1. Since the 6 1 term has the
same sign as the O(1) rotation rate, it leads to a slowing down of the rotational motion when
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multiplied by M?log M, which is negative since 0 < M? « 1. Fairly extensive algebra (see the
electronic supplementary material) gives

i’ i loo 422
Hi= —@e (1 —log4a®) (4.7)

and
ix =(1) C — ik C\ —
;1,2=—Ef1,0 (1+K7> +H1=8?e1“’ (1+K7 +Hl
i® (3 C
:%f <E+K72 —10g211>. (48)

Here, the constant C is given in (2.10). Once again there is a correction to the rotation speed

¥ (3 C
Or=wp = 34 <§ + ol log2a> . 4.9)

In dimensional form, we can combine the frequencies to obtain

2 * 2
. Ks K 2a*I" 3 Cr
=—1 -1 - , 4.10
@ 24, [ + 4(%;1)% ( 8 ( col? ) + 2 + K2 (4.10)

where stars represent dimensional quantities. The circulation scale is I" = LV. There is no unique
choice of scalings, but the simplest choice is probably I = 2k, and L = 2a,, so that I" is the total
circulation divided by 27 and L is the distance between vortices. Then

2
% Kx Ky K 3
=—|1 -1 —~+4C)|. 4.11
¢ 211*|:+4c(2)a§< o6 (i) F3 )} @

For the general two-vortex case, the vortices rotate about their centre of vorticity at O(1). Write
{1 =ae'? and ¢ = —be'? with aky = bky so that the centre of vorticity is at the origin with Zy =0.
Then

K1 9]
= =——— 4.12
= ba+b) a@+b) (4-12)
The O(M? log M) equations become
iK1k
f1=—f1=——. (4.13)
2ty

The velocities of the vortices are the same, but their angular velocities differ, so that as they move
their trajectories will no longer be circles. The centre of the vorticity ¢c = (k181 + x2£2)/ (k1 + «2)
moves slowly with the O(M? log M) velocity

i1k — K2)w

1= —= : (4.14)
‘ 2¢91(k1 + K2)
The O(M?) motion is
iK1k (k1 + K2) 2Cq >
f1p=—"—">=—" |3+ — —logl&ul
4122117821 ( & & (4.15)
iK1k (k1 + K2) 2C, > .
and fop=—"""—"7— 34+ ——1o [Z12] .
416121%¢ 12 ( 3 s

This slow motion can be decomposed into rotation about a slowly moving centre with the O(M?)
correction
fon= ir1h2(k1 — K2) ( 2(Cyxg — Cox1)
2=

¢ -1 2) : 416
4122112¢ 1 K1ka (k1 — k) og 1221 (4.16)
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This shows that the relative equilibrium of the co-rotating vortices evolves slowly in time due to
the weak compressibility effects, although in the symmetric case, it is only the rotation rate that
changes.

5. Outerregion

As pointed out by L06, at distances of O(M~!) from the vortices, there is a region in which the
dynamics are wave-like. We define far-field upper-case variables by X = Mx. The Blokhintsev
equation becomes

?’o o L[ 1,00 3\ 8%®
— 1M M2
=DM S T M ax

ox2 R ot e

9D 920 9P dp 92D
290 Mr 9P 99

. (5.1)
0X; 0X;ot 0X; 3Xj 3X1‘8X]‘
One can obtain expressions for the pressure and density analogous to (2.3) and (2.4).
The far-field limit of the O(1) potential in the vortical region is
Fo = —ikeo logz + g0 + 5% + &2 1 0(1z13), (5.2)

z 2
where the total circulation is 2w« and the g;(t) are functions of time alone. The incompressible
dynamics of the vortex region imply that k., and g1, which is related to the vortex impulse I [2],

are independent of time. We set g9 =0 as the global constant of integration for Fy. Rewritten in
the outer variable, we have

Fo = —ikes log MZ + M% + MZ% + OB |Z| 3. (5.3)

From (5.1), @¢ is a harmonic function, which must be k0, so that the real part matches. Since the
higher terms in (5.1) are multiplied by powers of M?, &1 is again a potential function, and must be
Re(gzzfz). This result requires checking the behaviour of F; for large |z|. We have Foo = O(lz|™3),
J=0(z72), wy = O(z| 1), I = O(|z| 1), so that the inhomogeneous terms in (3.4) are Oz~ 1), while
the sum of the separate I(z) terms is O(|z|1 log |z|) in the infinite-plane case in which )", £,0 =0.
Finally, the homogeneous terms from (3.18) are O(|z| ') since 3" &, = 0. Hence the terms in F, do
not enter the matching at O(M?).

The general question of compressible far-field waves relates to the domain of aeroacoustics.
Excellent reviews of aeroacoustics are given e.g. in [12,17]. The use of MAE in solving aeroacoustic
problems is reviewed in [13]. For the general case, we can use these results. We hence summarize
the necessary results following [12]: wavelike solutions with dipole R~2cos (20 — x) behaviour
near the origin are given by a synthesis of monochromatic solutions of the form

Re[HY (R)e*2 e ] (5.4)

that satisfy the radiation condition. Here, H(ZO) is the Hankel function of the second kind. These
solutions are superposed, with amplitude coefficients A(w) that can be related to g>. One obtains
quadrupole radiation of flow-generated sound, as expected in a situation with no boundaries or
mass sources.

For the two cases considered in §3, we can follow previous authors directly. Acoustic emission
from the co-rotating vortex pair was first examined by [18], who found a change of rotation
frequency equivalent to that in §3. The velocity of the co-propagating pair is found to be
independent of ¢, t1 and tp, so the analysis of L06, who considered a steady dipole in a moving
reference frame, is equivalent to the current one. L06 shows by using a coordinate system moving
with the vortex that the O(M) solution, a propagating dipole, is efficiently represented in the
coordinate system ((1 — M?)'/2X, Y). This is equivalent to a different way of writing an asymptotic
solution that gives the same result to the order obtained.
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6. Conclusion

We have obtained equations of motion for small-Mach-number compressible point vortices in
the plane, in which compressibility manifests itself as an evolution over slow time scales of
O(M?log M) and O(M?). The first correction (3.28) is quite simple and vanishes for steady
configurations. The second correction is more involved.

We have examined the corrections to O(M?) for the simplest case of vortex pairs. We recover the
known result for the co-propagating pair that the velocity is unchanged at O(M?). The symmetric
co-rotating vortex pair exhibits a change of angular velocity. For the general two-vortex case,
however, the centre of rotation and radius of the orbit evolve slowly, while the motion of each
vortex is instantaneously perpendicular to the line of centres and the motion remains circular on
the O(1) time scale.

The solution in the far-field region with spatial scale ML, corresponding to the wavelength
of the emitted sound, can be obtained by matching, following previous work. If the vortical flow
is steady, the response is a dipole moving with the speed of the centre of vorticity, as in L06. If the
vortical flow is unsteady, an expression for the quadrupole radiation is obtained in terms of the
quadrupole moment g>(f) (presumably this could be applied to the calculation of wave radiation
by chaotic point vortex evolution as in [19,20]). Following previous work, quantities such as the
power radiated to infinity could be obtained.

The back-reaction of the wave field is deliberately ignored here, as is usual in aeroacoustics.
This means that while radiation is present in the current formulation, the coupling of the
flow in the vortical region to the far field only appears at an order higher than M?. In the
geophysical context, the corresponding effect of gravity wave radiation on vortex dynamics has
been examined [21] (see also [22] for a related discussion for scattering). Here, this would require
a calculation to O(M*), most likely with logarithmic terms.

A list of interesting extensions comes to mind: efforts at simplifying the equations further in
special cases; possible efficient solution techniques; whether any of the other known equilibria of
point vortices survive to O(M?); the effects of more complicated boundaries and whether a better
model for the core regions is warranted. The effect of boundaries is of particular interest, following
on from BNEEY. The case of vortices inside and outside a circle is currently being examined: the
O(1) solution can be obtained using the method of images, but the corrections require extensive
algebra. A further example is the half-plane with a vortex moving around it considered in [23]).
Finally, it could be interesting to compare the present results to numerical simulations. These
would require very highly resolved aeroacoustic-type calculations with large separations of scales
between vortex cores, vortical region and wave field.!
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