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Abstract— N-path commutated capacitive networks provide a
practical solution to implement highly sought on-chip high-Q
filtering applications in which the use of lumped inductors is
undesirable due to their significant footprints and low Q-factors.
Recently, it has been also revealed that N-path networks can also
exhibit other interesting functionalities, such as nonreciprocal
phase-shifting and ultra-wideband true time delay, providing a
path to miniaturization of various reciprocal and nonreciprocal
devices. The analytical treatment of these networks, however,
remains challenging, because their operation involves frequency
mixing produced by the time modulation. In this article,
we present a highly accurate frequency-domain approach for
the analysis of N-path networks based on perturbation theory.
Our method compares favorably to the state-of-the-art polyphase
analysis by being much simpler mathematically, yet providing
results essentially indistinguishable from numerical simulations,
while offering physical insights into the N-path filter operation.
We particularize the solution for the high-Q operation regime
and obtain simple closed-form analytical expressions for har-
monic transfer functions, scattering parameters and baseband
impedance.

Index Terms— Switched circuits, circuit analysis, band-pass
filters, perturbation methods.

I. INTRODUCTION

DUE to the rapid development of various wireless telecom-
munication technologies, the frequency spectrum has

become extremely crowded. The exponential growth of the
number of wireless devices has fueled a dramatic increase in
demand for data bandwidth, enhancing the problem of inter-
ference of neighboring radios. To enable large data bandwidths
and reduce interference, all connectivity standards divide their
bands into several closely spaced channels, which require

Manuscript received August 2, 2020; revised October 29, 2020 and Novem-
ber 11, 2020; accepted November 12, 2020. Date of publication December 7,
2020; date of current version January 12, 2021. This work was supported in
part by the Air Force Office of Scientific Research MURI Program, in part
by the Department of Defense Vannevar Bush Faculty Fellowship, in part by
the National Science Foundation EFRI Program, and in part by the Simons
Foundation. This article was recommended by Associate Editor R. Rieger.
(Corresponding author: Andrea Alù.)

Mykhailo Tymchenko was with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX 78731 USA. He is
now with Lightmatter Inc., Boston, MA 02109 USA.

Aravind Nagulu and Harish Krishnaswamy are with the Department of
Electrical Engineering, Columbia University, New York, NY 10027 USA.

Andrea Alù is with the Photonics Initiative, Advanced Science Research
Center, The City University of New York, New York, NY 10031 USA, also
with the Physics Program, Graduate Center, The City University of New York,
New York, NY 10016 USA, and also with the Department of Electrical and
Computer Engineering, The University of Texas at Austin, Austin, TX 78712
USA (e-mail: aalu@gc.cuny.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2020.3040592.

Digital Object Identifier 10.1109/TCSI.2020.3040592

high-Q filtering to suppress the crosstalk between channels.
To operate under such stringent requirements, modern filters
must be software-controlled, provide strong blockage of other
channels and be sufficiently compact to fit into the very limited
space of modern circuit boards. Traditional high-Q filtering
approaches, such as resonant LC circuits and surface/bulk
acoustic waves (SAW/BAW) filters, have fundamental limi-
tations that do not allow them to meet these requirements.
Stand-alone inductors, in particular, are bulky components that
increase footprint and fabrication costs. Monolithic integration
of large inductances on a CMOS chip is often impractical due
to their extremely large footprints and high loss. SAW/BAW
filters, on the other hand, provide excellent linearity and out-
of-band blocking, but they are not dynamically reconfigurable
and are incompatible with CMOS technology. Multiple LC ,
SAW or BAW filters can be employed in conjunction with a
switch network to support reconfigurability, but this comes at
the cost of increased insertion loss, footprint and cost, and
is ultimately limited by the parasitics seen when multiple
switches are connected to a common point.

In view of these challenges, N-path filters (or comb filters),
originally proposed in 1950s [1]–[3], have resurfaced as a
practical solution addressing all the above challenges: they
exhibit excellent frequency selectivity, linearity and out-of-
band isolation, they are dynamically reconfigurable, and they
do not require inductors, making them fully compatible with
CMOS technology. A conventional N-path filter is shown
in Fig. 1(a). It is formed by N parallel branches, each con-
taining a shunt capacitance connected to input and/or output
ports through a switch. The input and output sets of switches
are operated in a sequential non-overlapping fashion with a
time delay [see Fig. 1(b)], so that at any instant in time only
one branch is connected to each port.

A typical transmission spectrum of such an N-path capac-
itive network consists of multiple narrow peaks located at
integer multiples of the switch modulation frequencies. While
the first N-path networks were switched using mechanical
commutators operating at kHz frequencies (thus, the name
commutated networks), modern N-path filters employ elec-
tronic switches implemented using CMOS transistors which
are extremely compact and highly linear devices that can
operate at GHz frequencies [4]. Despite the fact that N-path
networks and their key performance metrics, such as band-
width, insertion and return loss, have been known for almost
60 years, their rigorous theoretical analysis still remains
challenging. This is because N-path filters employ many
switches (i.e., frequency-mixers) modulated by square-wave
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signals which leads to mixing between an infinite number of
harmonics. In addition, the reactive elements in each branch
provide a memory effect that prevents this circuit from being
treated as a purely discrete-time sampling circuit (although
this functionality is still possible for some design parameter
values). In fact, sampling and filtering regimes of N-path
networks correspond to the two opposite asymptotic limits of
the relation between the charge/discharge time constant of the
capacitor, τ = R0C (R0 is the port impedance and C is the
capacitance of each branch), and the time over which each
switch is closed, σ = Ts/N , with Ts denoting the switching
period and N being the number of paths. The sampling regime
is achieved when τ � σ , and the filtering regime is achieved
when τ � σ . In our previous work [5] we showed that
the intermediate regime τ ∼ σ implements an ultrawide-
band true time delay functionality, which allows for dramatic
miniaturization of reciprocal and nonreciprocal devices [6],
highly beneficial for numerous applications, including analog
cancellation approaches in full-duplex applications [7], [8],
true-time-delay-based beamforming [9] and analog equalizers
[10]. Finally, commutated N-path networks can also exhibit
nonreciprocal phase responses when the input and output sets
of switches are operated with an asymmetric time delay lead-
ing to interesting opportunities for full-duplex communications
[11].

Early approaches to N-path filter analysis relied upon signal
processing techniques in the complex frequency domain in
order to derive the harmonic transfer function (HTF) of N-path
networks in the filtering and sampling regimes [12]. These
techniques use the fact that, in the vicinity of transmission
peaks, N-path filter operation resembles a sampling circuit
that enables its treatment as a discrete-time system to obtain
an elegant and useful solution for transmitted voltage given the
voltages stored in the capacitors [14]. We note, however, that
sampling and filtering functionalities correspond to two oppo-
site asymptotic limits, τ � σ and τ � σ , respectively. Thus,
the use of such sample-and-hold approximation in the filtering
regime must be treated with caution. Other frequency-domain
approaches have been based on analyzing the baseband
impedance of N-path networks in the assumption of an infi-
nitely large source [15] or load impedance [16], the deriva-
tion of HTFs using conversion matrices [17], and z-space
analysis [18], [19]. When the N-path network operates in
passive-mixer, sampler or high-Q filter modes it can be accu-
rately analyzed using the adjoint network method [20], [21].
A semi-numerical technique developed recently allows for
accelerated frequency-domain simulation of N-path networks
containing arbitrary blocks in each branch [22]. Finally, one
of the most accurate methods for N-path networks analysis is
the polyphase approach based on piece-wise reconstruction of
the temporal evolution of the network response and a subse-
quent Fourier transform [23]–[28]. The polyphase technique
provides a general solution valid for all combinations of para-
meters making it the current state-of-the-art. It also enables the
accurate analysis of effect of nonidealities such as the presence
of parasitic capacitance on N-path network performance [29].
Its drawback, however, is that it is quite cumbersome and
involved, and the final solution is so complicated that it is

Fig. 1. (a) Schematic of a 4-path 2-port switched capacitor network
with source and load impedance R0. p(n) and q(n) denote the windowing
functions used to model the current flowing through input and output switches,
respectively. (b) Profiles of the windowing functions p(n)(t) and q(n)(t)
which are 0 when the corresponding switch is open and 1 when it is closed.
The switches on each side are operated in a non-overlapping fashion with
periodicity Ts . The time over which each switch is closed is σ = Ts/N ,
where N is the number of paths (the case of N = 4 is displayed). The output
set of switches is operated with a delay �T with respect to the input set.

often difficult to understand the network’s behavior without
further analysis. Here, we introduce a simple yet effective
approach to frequency-domain analysis of N-path capacitive
networks based on modified perturbation theory. Compared to
the polyphase analysis, our approach yields an equally accurate
solution for HTFs and scattering parameters at all frequencies
while being much simpler mathematically and offering better
insights into the role of all harmonics generated by period-
ically operated switches in network’s operation. In the case
when the N-path network is operated in the high-Q filtering
regime, we derive simple closed-form expressions for HTFs,
scattering parameters and baseband impedance in the vicinity
of transmission peaks.

II. STATE-SPACE NETWORK ANALYSIS

We consider a 2-port N-path switched capacitor network
[the case with N = 4 is shown in Fig. 1(a)]. In each branch,
labeled n = 0, 1, . . . , N − 1, the switches on either side are
operated in revolving fashion with a duty cycle 1/N and
a modulation frequency fs = 1/Ts . We assume the output
switch is delayed with respect to the input switch by a time
�T ∈ [0, Ts) corresponding to a phase shift γ = −2π�T/Ts .
In the following we focus on the case of non-overlapping
clocks for the input and output switches, but we stress that
our analysis remains valid also if the clocks overlap.

We begin by noticing that the current flowing through the
capacitor in the n-th branch is equal to the difference between
the currents flowing through the input and output switches,
as shown in Fig. 2(a):

i (n)
c (t) = i (n)

1 (t) − i (n)
2 (t). (1)

To model the flow of current through the input and out-
put switches we introduce windowing functions p(n)(t) and
q(n)(t),

p(n)(t) =
{

1, t ∈ [−σ/2, σ/2] + nσ,

0, otherwise,
(2)

q(n)(t) = p(n)(t − �T ), (3)
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Fig. 2. (a) Schematic of time-varying currents flowing through the n-th
branch of the 2-port switched N-path network. (b) Periodic windowing
function p(0)(t) of the input switch versus time. The switch is closed when
p(0) = 1. (c) Fourier spectrum of the switching function p(0)(t) as a function
of the harmonics number.

which are 1 when the corresponding switch is closed and 0
at all other times, as shown in Fig. 1(b). q(n)(t) is a replica
of p(n)(t) delayed by �T . Since we assume that the switch
clocks are non-overlapping, we can relate the currents i (n)

1 (t)
and i (n)

2 (t) to the currents flowing through the source and load
resistances, i1(t) and i2(t), simply as

i (n)
1 (t) = p(n)(t)i1(t), (4)

i (n)
2 (t) = q(n)(t)i2(t). (5)

Combining Eqs. (1)-(5), we obtain

i (n)
c (t) = p(n)(t)i1(t) − q(n)i2(t). (6)

Assuming that both ports have the same constant and real
impedance R0, we apply the Kirchhoff’s voltage law to obtain

C
dv

(n)
c (t)

dt
= p(n)(t)

vin (t) − v
(n)
c (t)

R0
− q(n)(t)

v
(n)
c (t)

R0
, (7)

which after rearrangement of terms can be re-written as[
p(n)(t) + q(n)(t) + τ

d

dt

]
v(n)

c (t) = p(n)(t)vin (t). (8)

Eq. (8) is equivalent to the state-space equation (or
coupled-mode equation) for a capacitor voltage used in the
polyphase analysis [23]–[28]. Periodic windowing functions
p(n)(t) and q(n)(t) can be presented as Fourier series{

p(n)(t)
q(n)(t)

}
=

∞∑
m=−∞

{
p(n)

m

q(n)
m

}
e jmωs t , (9)

where m is integer, ωs = 2π fs is the angular switching
frequency, and p(n)

m and q(n)
m are Fourier coefficients defined

as {
p(n)

m

q(n)
m

}
= 1

Ts

∫ Ts/2

−Ts/2

{
p(n)(t)
q(n)(t)

}
e− jmωs t . (10)

Substituting (2) into (10), for p(n)
m we obtain

p(n)
m = e jmnωsσ

1

Ts

∫ σ/2

−σ/2
e− jmωs t dt = pme− j 2π

N mn, (11)

where pm are harmonics of the windowing function of the
n = 0 branch,

pm ≡ p(0)
m = 1

N
sincπ

(m

N

)
, (12)

and sincπ (x) is defined as

sincπ (x) =
⎧⎨
⎩

sin(πx)

πx
, x �= 0,

1, x = 0.
(13)

The windowing function p(0)(t) and its spectrum p(0)
m are

plotted in Fig. 2(b) and 2(c), respectively, with |p(0)
m | ≤

1/N for all m. Due to (3), the Fourier harmonics q(n)
m can

be obtained from p(n)
m by simply applying the appropriate

phase-shift:
q(n)

m = p(n)
m e− jmωs�T . (14)

The voltage v
(n)
c (t) across the capacitor in each branch can

be presented as a Floquet state containing a discrete set of
harmonics oscillating at angular frequencies ωk = ω + kωs

with ω = 2π f and k being integer:

v(n)
c (t) =

∞∑
k=−∞

v
(n)
c,k e jωkt =

∞∑
k=−∞

vc,ke− j nkωsσ+ jωk t , (15)

where vc,k ≡ v
(0)
c,k . Substituting (9) and (15) into (8), assuming

that the input voltage is monochromatic, vin (t) = vine jωt , and
invoking the Cauchy product rule, we obtain the following
infinite system of equations for the n = 0 branch:

∞∑
k=−∞

Mmkhc,k = pm, (16)

where hc,k = vc,k/vin are HTFs between the fundamental
harmonic of the source and k-th harmonic of the capacitor
voltage. The matrix elements Mmk are given as

Mmk = Umk + δm,k jωkτ, (17)

where δm,k is the Dirac’s delta-function, and Umk is a Toeplitz
matrix containing the sum of Fourier coefficients of the
windowing functions,

Umk ≡ um−k = pm−k + qm−k, (18)

so that U∗
mk = Ukm with the asterisk denoting the complex

conjugate. In vector-matrix form, the system (16)-(17) can be
recast as

M · hc = p, (19)

where

hc = (. . . , hc,−1, hc,0, hc,1, . . .)T ,

p = (. . . , p−1, p0, p1, . . .)T ,

with T denoting the transpose, and

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

u0 + jω−1τ u−1 u−2

. . . u1 u0 + jω0τ u−1 . . .

u2 u1 u0 + jω1τ

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)
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In principle, it is straightforward to solve system (19)
numerically by computing the inverse of the matrix M. How-
ever, to do so the system needs to be truncated at some
harmonic K , which for square-wave modulation results in slow
convergence, rapidly growing computation complexity and
numerical artifacts. In addition, this approach does not provide
much insight into the N-path network operation. Rather than
solving this system numerically, in the following we show
that we can leverage the peculiar structure of the matrix M to
analytically solve for hc.

III. N-PATH CAPACITIVE NETWORK ANALYSIS

USING PERTURBATION THEORY

From (12) and (14) we conclude that all terms um in
the matrix M in the system (19)-(20) have an upper bound,
|um | ≤ 2/N for all m, with the largest element being u0 =
p0 + q0 = 2/N . The magnitudes of all off-diagonal elements
of the matrix exhibit oscillatory decay as we move away
from the main diagonal, owing to interference between the
phase-shifted spectra of the windowing functions. By recalling
that ωk = ω + kωs , we also conclude that the magnitudes of
the terms jkωsτ on the main diagonal grow monotonically
with |k|. Thus, for any real ε > 0 there always exists an
integer K such that for |k| > K we have |ωkτ | − u0 > ε.
In other words, with increasing |k + ω/ωs | the magnitudes
of the terms on the main diagonal grow monotonically, and
eventually become much larger than all off-diagonal terms.

The conventional N-path filter operates in the regime when
the time-constant of the capacitance in each branch is much
larger than the time over which each switch is closed, τ � σ ,
or, equivalently, fsτ � 1/N . In this case, all elements on
the main diagonal of the matrix M are much larger than
all off-diagonal elements except, possibly, one element with
frequency fr = f + r fs which happens to be near DC,
i.e., fr ≈ 0. This can occur at f/ fs = 0, 1, 2, . . . correspond-
ing to r = 0,−1,−2, . . ., respectively. We also notice that
when fr = 0 the magnitude of the corresponding element on
the diagonal, Mrr ( fr = 0) = 2/N , is of the same order as
the off-diagonal elements. Without this unique element on the
main diagonal, we could use a standard perturbation method
[30] to analytically compute M−1 and solve the system (19).

Perturbation theory states that the inverse of a matrix A+δA
with A being a square matrix with a non-degenerate set
of eigenvalues and δA being a small perturbation, can be
computed to the first-order correction as (see Appendix A)

(A + δA)−1 ≈ A−1 − A−1 · δA · A−1. (21)

Here, the fact that the perturbation δA is small should be
understood in the sense that it does not significantly perturb
the eigenvalues of A. Eq. (21) is particularly useful when
the matrix A is diagonal, because in this case its inversion
is trivial, allowing for analytical computation of (A + δA)−1.
However, since one of the elements on the main diagonal of
the matrix M is small, we cannot apply (21) right away, as the
corresponding eigenvalue may be significantly affected.

To overcome this difficulty, we separate all harmonics in two
subsets [31]: a finite subset R containing a single or multiple

harmonics closest to DC, and an infinite subset N comprising
all other harmonics, N = I\R, where I are all integers. The
system (19) can be accordingly split into{

M{R,R} · hc,{R} + M{R,N } · hc,{N } = p{R},
M{N ,R} · hc,{R} + M{N ,N } · hc,{N } = p{N },

(22)

where the submatrices M{R,N } and M{N ,R} contain elements
Mml with m ∈ R, l ∈ N and m ∈ N , l ∈ R, respec-
tively. In turn, indices of the square submatrices M{R,R} and
M{N ,N }, and vectors hc,{R} and hc,{N }, span over the subsets
R and N , correspondingly. We also note that for the two
off-diagonal submatrices we have M{R,N } ≡ U{R,N } and
M{N ,R} ≡ U{N ,R}, which yields{

M{R,R} · hc,{R} + U{R,N } · hc,{N } = p{R},
U{N ,R} · hc,{R} + M{N ,N } · hc,{N } = p{N }.

(23)

Since the submatrix M{N ,N } is square and all its elements
on the main diagonal are much larger than the off-diagonal
elements, we can analytically compute M−1

{N ,N } using (21)
and obtain the solution for hc,{N } as a function of hc,{R}:

hc,{N } = M−1
{N ,N } · [p{N } − U{N ,R} · hc,{R}

]
. (24)

To compute the inverse of the matrix M{N ,N }, we separate
its main diagonal from the rest of the matrix:[

M{N ,N }
]

m,l = δm,ldl + (1 − δm,l)um−l , m, l ∈ N , (25)

with dl denoting the elements on the main diagonal:
dl = u0 + jωlτ, (26)

such that |dl | � u0 for all l ∈ N . Using Eq. (21), we obtain[
M−1

{N ,N }
]

l,m
≈ δl,m

1

dl
− (1 − δl,m)

ul−m

dldm
, l, m ∈ N . (27)

Substituting (27) into (24), we obtain the solution for hc,{N }:

hc,l = 1

dl

(
p̃l −

∑
r∈R

ul−r hc,r ,

)
, l ∈ N , (28)

where p̃l plays the same role as pl but re-normalized to
account for second-order scattering via all other harmonics
in the subset N :

p̃k = pk −
∑

m∈N
(1 − δk,m)

uk−m pm

dm
, (29)

where k can be any integer. From Eq. (28), it is seen that
the first term corresponds to the contribution of linear and
second-order scattering of the incoming voltage through all
windowing function harmonics in the subset N , while the sec-
ond term corresponds to re-scattering of voltage harmonics in
the subset R to the l-th harmonic. In the latter we retained
only terms linear in ul−r , because they already correspond
to second-order scattering of the input voltage through all
harmonics in the subset R.

Substituting Eq. (24) into the first equation of (22),
we obtain the following system of equations for hc,{R} only:∑

q∈R
M̃rq hc,q = p̃r , r ∈ R, (30)
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where p̃r is given by Eq. (29), and the matrix elements M̃rq

are

M̃rq = Ũrq + δr,q jωqτ, r, q ∈ R, (31)

with Ũrq playing the same role as Urq ≡ ur−q but
re-normalized to account for second-order scattering through
all harmonics in the subset N :

Ũrq = ur−q −
∑

m∈N

ur−mum−q

dm
. (32)

The new system (30) and the initial system (16) have identical
structures, but the new system is finite, i.e., quite remarkably,
we managed to reduce the system describing the commu-
tated network, with an infinite number of equations, to the
finite linear system (30) for voltage harmonics in the subset
R, which can be solved in closed form without running
into convergence issues.1 In other words, we replaced the
inversion of the originally infinite matrix M and associated
computational problems with the inversion of a small matrix
M̃{R,R} defined in Eq. (31) and a few simple summations
over windowing function harmonics that are numerically very
cheap. The parameters determining the convergence of the
solution are the size of the subsets R and N , which depend
on the specific operation of the N-path device.

The output voltage v2(t) across the load can be found as

v2(t) =
N−1∑
n=0

q(n)(t)v(n)
c (t), (33)

which after the Fourier transform becomes

v2,k =
∞∑

m=−∞

N−1∑
n=0

q(n)
k−mv(n)

c,m

=
∞∑

m=−∞

N−1∑
n=0

qk−me− jωs(k−m)nσ vc,me− jωsmnσ

=
[

N−1∑
n=0

e− jωsknσ

] ∞∑
m=−∞

qk−mhc,mvin , k ∈ I. (34)

The summation in the square brackets can be performed
explicitly:

N−1∑
n=0

e− jωsknσ = Nδk,s N , k, s ∈ N , (35)

so that we obtain

v2,k = Nδk,s N

∞∑
m=−∞

qs N−mhc,mvin

= Nδk,s N

∞∑
m=−∞

ps N−me− j (s N−m)ωs�T hc,mvin , k, s ∈ I.

(36)

1The procedure of elimination of a subset of unknown variables in a
system of equations and solving only for remaining unknowns is called Kron
reduction [32], which is an ubiquitous technique in classic circuit and graph
theory. Here, we use this technique to eliminate all harmonics in the infinite
subset N and initially solve only for harmonics in the finite subset R.

From Eq. (36) it follows that the only non-zero harmonics
at input and output ports are those with k = 0,±N,±2N, . . .,
in agreement with the operation of N-path filters. The corre-
sponding HTF between input voltage and the k-th harmonic
of v2 across the load, h21,k = v2,k/vin , is found to be

h21,k = Nδk,s N

∞∑
m=−∞

ps N−me− j (s N−m)ωs�T hc,m , k, s ∈ I.

(37)

By analogy with (33), we can also find the voltage v1,

v1(t) =
N−1∑
n=0

p(n)(t)v(n)
c (t), (38)

which, following the same procedure, yields

h11,k = Nδk,s N

∞∑
m=−∞

ps N−mhc,m , k, s ∈ I. (39)

Finally, the Floquet scattering parameter Si j,mn that relates
the amplitudes of the mth harmonic of the power wave exiting
from port i to the amplitude of the nth harmonic of the power
wave entering port j (see Appendix B) can be computed from
the corresponding HTF as (see Appendix C)

Si j,mn = 2hi j,mn − δi j δmn, (40)

where hi j,mn ≡ hi j,m−n .

A. Summary of the Solution Procedure

To help the reader navigate the solution flow, here we briefly
outline all required steps to obtain a complete and accurate
solution for all HTFs and scattering parameters of a 2-port
N-path network.

1) Given the switching functions p(0)(t) and q(0)(t), com-
pute Fourier spectra pm and qm , and their sum um =
pm + qm . This step needs to be performed once and the
obtained Fourier spectra are valid for all frequencies.

Next, for every angular frequency ω:
2) Find integer r0 < 0 for which ω + r0ωs is closest to

zero. The choice of r0 affects which harmonics will be
included in the subset R and treated separately from all
other harmonics.

3) Choose the subset R such that it is centered at r0
and includes multiple harmonics around it, e.g. R =
{r0 − 15, . . . , r0, . . . , r0 + 15}. Then chose the maximum
harmonic number M and obtain the subset N = I\R
where I is all integers, in this case N = {−M, . . . , r0 −
16, r0 + 16, . . . , M}.

4) Compute dm using Eq. (26).
5) Compute p̃k and Ũrq using Eqs. (29) and (32), respec-

tively.
6) Using Eq. (30), compute the finite submatrix M̃{R,R} and

its inverse F = M̃−1
{R,R}. If the subset R contains only one

harmonic r0, the matrix F is reduced to a single element.
7) Compute capacitor voltage HTFs hc,r in the subset R:

hc,r =
∑
q∈R

Frq p̃q, r ∈ R.
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Fig. 3. To obtain the solution over the entire frequency range, we split the
latter into intervals separated by dashed vertical lines. Each interval is centered
around −r0 fs with r0 = 0,−1,−2, . . . being the only harmonics in the subset
R. The first interval is truncated to include only positive frequencies. The final
solution is obtained by stitching together solutions in each interval.

8) Using Eq. (27), compute remaining capacitor voltage
HTFs hc,l with l ∈ N .

9) Compute HTFs for input and output voltages, h11,k and
h21,k , using Eqs. (39) and (37), respectively. To obtain
h12,k and h22,k we can simply swap windowing function
harmonics pm and qm everywhere.

10) Compute Floquet scattering parameters using Eq. (40).
If the obtained solution contains abrupt discontinuities, one
should increase the number of harmonics in the subset R (and,
possibly, in N ) and repeat steps 2-10.

IV. COMPARISON WITH NUMERIC SIMULATIONS

The accuracy of the analytical solution developed in the
previous section relies on the particular choice of the subset
R and the number of harmonics in the subset N . Since the
choice of R depends on f and fs , it needs to be revised
as the operation frequency is swept across the spectrum. For
each frequency f , the best choice of R is the one centered
around r0 = −k for which f is the closest to k fs with k =
0, 1, 2, . . ., as shown in Fig. 3. In addition, R must also include
all harmonics around r0, i.e., {r0 −m, . . . , r0, . . . , r0 +m} with
m being a positive integer, for which the condition | f +m fs | �
1/Nτ is not fulfilled. As a result of this procedure, in each
frequency interval in Fig. 3, we obtain a separate solution
curve with highest accuracy at f = k f0 that becomes less
accurate as we approach the edge of the interval. For such a
piece-wise solution, we may incur nonphysical discontinuities
at the borders between these intervals. To overcome this issue
and remove discontinuities, we can increase the number of
harmonics included in until all artifacts disappear.

In Fig. 4(a, b), we plot the amplitude and phase of the
calculated scattering parameters for an 8-path commutated
network with a shunt capacitance C = 10 pF in each branch
switched at fs = 1 GHz with a commutation phase shift
�T = Ts/2. In this case the phase response of the network
is symmetric, hence reciprocal at all frequencies. Since for
such a network τ � σ , it is sufficient to include only one
harmonic r0 in R. We also choose N = {−60, . . . , r0−1, r0+
1, . . . ,+60}. It is seen that over the entire frequency range of
interest the analytical results agree very well with simulations
performed using the Periodic Steady State (PSS) solver of
Cadence SpectreRF [33] while being computationally much
cheaper.2 Another important advantage of our approach is the

2Typical computation times for an 8-path network time-domain simulation
performed in Cadence SpectreRF running on a dedicated server are between
1 and 2 minutes. All analytic results presented in this article were computed
using a Python code [34] running on a laptop with modest specifications and
took about 20 seconds for the same number of frequency points.

Fig. 4. Magnitude (a) and phase (b) of scattering parameters of an 8-path
switched capacitor network with fs = 1 GHz, R0 = 50 ohm and C = 10 pF
corresponding to the high-Q filtering regime. Analytic curves are plotted
with solid lines; markers indicate numerical results obtained using the PSS
solver [33]. The output set of switches is delayed with respect to the input
set by a time period �T = Ts/2 in which case the network response
is fully reciprocal, S21 = S12. (c) Simulated and analytically computed
first three non-zero harmonics of S21 (8th, 16th and 32nd). (d) Phase of
scattering parameters for �T = 3Ts/4 in which case the network exhibits
a phase-nonreciprocal response. The magnitudes of the scattering parameters
are the same as in panel (a).

fact that it can easily handle an arbitrary number of paths,
while numerical simulations require setting up a new circuit
if the number of paths is modified, which can be quite time-
consuming. This feature makes the theoretical solution quite
valuable for rapid prototyping.

In Fig. 4(c), we also compare the first three non-zero
harmonics of S21 (for an 8-path network these are 8th, 16th

and 32nd harmonics). Once again, we find excellent agree-
ment between theoretical and numerical curves, except at
frequencies below 1 GHz where they differ slightly. We argue,
however, that the theoretically computed curves are more
accurate because the solution is frequency-independent, while
the time-domain simulations tend to yield less accurate results
at low frequencies due to prolonged simulation times required
to obtain an accurate spectral response. Finally, in Fig. 4(d)
we show the theoretically and numerically computed phases of
S21 and S12 for �T = 3Ts/4, leading to a nonreciprocal phase
response, which has recently enabled the realization of a mag-
netless circulator [11]. The magnitudes of the corresponding
scattering parameters in this case are the same as in Fig. 4(a).

We may now consider the same network but with C =
1.4 pF, corresponding to τ ∼ σ . In this regime the N-path
network operates as a broadband true-time delay [5], hence
we can expect more harmonics to enter into the analysis. To
obtain high solution accuracy and avoid nonphysical jumps
at intervals’ edges we need to include more harmonics to
the subset R. We choose R = {r0 − 15, .., r0 − 1, r0, r0 +
1, . . . , r0 + 15} and all remaining harmonics are included
in N = {−60, . . . ,+60}\R. The resulting magnitudes and
phases of the scattering parameters computed using our
approach and Cadence SpectreRF for �T = Ts/2 are plotted
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Fig. 5. Same as Fig. 4 but for C = 1.4 pF corresponding to the ultrawideband
transmission regime with linear phases of S21 and S12 over the entire
transmission band.

Fig. 6. Analytical (solid lines) and simulated (markers) scattering parameters
of an 8-path switched capacitor network with C = 10 pF, R0 = 50 ohm,
fs = 1 GHz, and overlapping clocks of input and output sets of switches.
Switches at port 2 lag switches at port 1 by �T = Ts/32, i.e. clock signals
have 75% overlap. Panels (a) and (b) correspond to network being excited
from port 1 and 2, respectively.

in Fig. 5(a, b). It is seen that for the chosen parameters all
results showcase excellent agreement at all frequencies. The
theoretical curves in Fig. 5 took slightly longer to compute,
yet still much faster than numerical simulations, compared to
those in Fig. 4, since in this case we have to invert a 31 × 31
matrix at each frequency.

Finally, it is instructive to compare analytical and numerical
solutions in the case when the windowing functions p(n)(t)
and q(n)(t) overlap. Indeed, the original KCL equation (6)
for the node in n-th branch does not prohibit the overlap,
and thus the solution developed in Section III is expected to
remain valid also for the case of overlapping clocks. Here we
stress that by overlapping clocks we mean clocks of input and
output switches on the same branch. The clocks of different
paths still must be non-overlapping.

In Fig. 6 we plot the magnitude of S-parameters of an
N-path network for �T = Ts/32, i.e., output clocks have 75%
overlap with input clocks. Once again we observe excellent
agreement between results obtained by means of our method
and Cadence simulations. Note that when input and output
clocks overlap, the network becomes nonreciprocal (S21 �=
S12), owing to the fact that the order in which input and
output switches are closed is different for signals entering

from port 1 and port 2. For signals entering through port 1,
the input switch is closed before the output one. In turn,
for signals entering from port 2, the output switch is closed
before the input switch. As a result, the average amount of
energy stored in the capacitors will differ slightly, leading to
nonreciprocal transmission.

V. ANALYTIC SOLUTION FOR THE N-PATH FILTER

As we saw in the previous Section, when the N-path
network is in the filtering regime, τ � σ , it is sufficient to
include only one harmonic in the subset R. In this Section,
we leverage this property to obtain closed-form expressions
for the scattering parameters of an N-path network operating
as a high-Q filter in the vicinity of its transmission peaks.
Since τ � σ , all elements dk on the main diagonal of the
matrix M are large, excluding one element dr = u0 + jωrτ
with ωr = ω + rωs ≈ 0 (r is negative integer). This condition
is achieved when f ≈ −r fs . Separating this special harmonic
from the rest, we obtain that R = {r} and N = I\R. Since
the subset R contains only a single index r , from Eq. (30) we
obtain the following equation for the corresponding HTF for
the capacitor voltage hc,r

(Ũrr + jωrτ )hc,r = p̃r , (41)

which yields

hc,r = p̃r

Ũrr + jωrτ
≈ pr

u0 + jωrτ
= pr

dr
, (42)

with the denominator dr = u0 + jωrτ containing a pole
ω

pole
r = −rωs + ju0/τ (remember that r ≤ 0) in the

complex angular frequency plane. Thus, it becomes clear that
hc,r = vc,r /vin reaches its maximum when ω = Re ω

pole
r ,

i.e., when the input monochromatic signal is in resonance
(i.e., synchronized) with the r -th harmonic of the windowing
function, pr , oscillating at |r |ωs . The width of the resonance
depends on u0/τ = 2/Nτ from which we can intuitively
understand the fact that the increase in the number of paths or
the time constant τ leads to a narrower transmission window:
the pole moves closer to the real axis leading to a higher
Q-factor.

Next, since |dl | � uk for any l ∈ N and any k, we can also
simplify the solution (28) for hc,l :

hc,l ≈ 1

dl

(
pl − ul−r pr

dr

)
, l ∈ N , (43)

where we used the fact that p̃l ≈ pl . For ωr = 0 (i.e. when
ω = −rωs), we have dr = u0, but |dl | is still much larger
than |uk | for any k. Thus, we conclude that |hc,l | � |hc,r | for
all l ∈ N , and summations in (37) and (39) reduce to a single
term:

h21,k ≈ Nδk,s N
ps N−r pr

dr
e− j (s N−r)ωs�T , (44)

h11,k ≈ Nδk,s N
ps N−r pr

dr
, k, s ∈ I. (45)
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Fig. 7. Magnitude (a) and phase (b) of the scattering parameters of an
8-path switched capacitor network operated at fs = 1 GHz, R0 = 50 ohm,
C = 10 pF (filtering regime) and �T = 3Ts/4. Simplified analytic solutions
obtained in the vicinity of f = 0, fs , 2 fs , . . . by means of Eqs. (50) and (51)
are plotted versus full analytic solution of Eqs. (37), (39) and (40).

For the fundamental harmonic, these expressions can be fur-
ther simplified to

h21,0 ≈ N
p−r pr

dr
e jrωs�T = sinc2

π (r/N)

2 + jωr Nτ
e jrωs�T , (46)

h11,0 ≈ sinc2
π(r/N)

2 + jωr Nτ
. (47)

The above expressions reveal that the response of the N-path
filter at the fundamental frequency in the vicinity of m-th
transmission peak is due to resonant excitation of the m-th
harmonic of capacitors’ voltages by a monochromatic input
and subsequent summation of these voltages at the output port.
We also see that, theoretically, we could replace square switch-
ing functions with harmonic ones with appropriate frequencies
and obtain a similar solution. The role of other harmonics in
the response of the N-path filter is largely parasitic.

From (44) and (45), we can also obtain h12,0 and h22,0 by
simply swapping p and q which yields

h12,0 ≈ sinc2
π (r/N)

2 + jωr Nτ
e− j rωs�T , (48)

h22,0 = h11,0 ≈ sinc2
π(r/N)

2 + jωr Nτ
. (49)

Finally, substituting (46)-(49) into (40) we obtain the following
solution for the scattering matrix at the fundamental frequency:

S0 =
[

S11,0 S12,0
S21,0 S22,0

]
=
[

A − 1 Ae− j rωs�T

Ae jrωs�T A − 1

]
, (50)

with

A = sinc2
π(r/N)

1 + j ωr Nτ
2

. (51)

To verify our solution, in Fig. 7 we plot the approximate
scattering parameters based on Eq. (50) in the vicinity of
transmission peaks at f = 0, fs , 2 fs , . . . against a complete
solution given by Eqs. (37), (39) and (40) for R = {r} and
N = {−60, . . . ,+60}\R for �T = 3Ts/4 and the rest of
parameters being the same as in Fig. 4. Near the transmission
peaks, the simplified solution indeed provides excellent agree-
ment with the magnitudes and phases of the exact scattering
parameters, enabling an effective design tool to optimize
the overall response. Away from the peaks, the approximate
solution predictably deviates, since the assumption of a single

Fig. 8. (a) Real and imaginary parts of the input impedance Zin = Rin+ j Xin
of an N -path network with the same parameters as in Fig. 4 computed using
full and approximate solutions. The network is connected to the input and
output port through the same real and constant impedance R0 = 50 ohm.
(b) Input impedance of the same network at the vicinity of f ≈ fs and the
input impedance of an equivalent parallel LC tank with effective capacitance
and inductance evaluated using Eqs. (58) and (59), respectively.

HTF being large does not hold anymore. From Eq. (50),
we also see that |S21,0( f = k fs)| ≈ sinc2

π (k/N) with k being
a positive integer. To illustrate this, in Fig. 7(a) we plot a
function sinc2

π ( f/N fs ) which bounds N-path filtering network
transmission for any N and fs . From Eq. (50), we can also
easily find that the 3 dB bandwidth, � f3dB, computed from
the top of each peak is

� f3dB ≈ 2
√

3

π Nτ
. (52)

For the peak centered at f = 1 GHz, we obtain � f3dB =
275.7 MHz while the actual value is 280 MHz, a discrepancy
of less than 3%. These results confirm and provide quanti-
tative evidence that an increased number of paths narrows
the bandwidth of each peak and enhances the amplitudes of
transmission for higher frequencies.

A. Input Impedance

Using the analytic scattering matrix (50), we find the
baseband impedance matrix [35] of the N-path filter:

Z = R0 B

[
1 e− j rωs�T

e jrωs�T 1

]
, (53)

with

B = 1

2

A

1 − A
. (54)

Note that the expression above is derived under the assumption
that the N-path network is connected to source and load ports
through the same real impedance R0. Using (53) we can easily
compute the baseband input impedance Zin = Rin + j Xin of
the N-path filter connected to a load R0:

Zin = Z11 − Z12 Z21

Z22 + R0

= R0
sinc2

π(r/N)

2 − sinc2
π (r/N) + jωr Nτ

. (55)

We note that Eq. (55) yields both real and imaginary parts
of the input impedance. However, exactly at the transmission
peaks k = 0, 1, 2, . . . we have ωr = 0, leading to a purely
real input impedance, as expected at resonance:

Zin,k = R0
sinc2

π(k/N)

2 − sinc2
π (k/N)

. (56)
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In Fig. 7(a), we compare the solution given by (55) in the
vicinity of transmission peaks and the exact input impedance
of the N-path network for the same combinations of parame-
ters as in Fig. 4. It is seen that the real part of the analytic
curves closely match the exact solution. The discrepancy far
from the transmission peaks originates predominantly from the
reactive part of the impedance. Most noticeably, the systematic
offset of the exact reactance curves originates from the fact that
we discarded all terms but one in summations (37) and (39).

B. Equivalent LC Circuit Model

It is known that for real source and load impedances,
the behavior of an N-path filter in the vicinity of transmission
peaks can be approximated by a parallel RLC circuit [27].
From (55) we obtain the input impedance in vicinity of the
first peak (k = −r = 1):

Z ≈ R0
sinc2

π (1/N)

1 + jω−1 Nτ
, (57)

which yields the full-width half-maximum (FWHM) band-
width �ω = 2/Nτ . The bandwidth of a parallel LC cir-
cuit connected in parallel to the real load impedance R0 is
�ωLC = 1/R0C , from which we immediately obtain the
effective capacitance

Ceff = 1

2
NC, (58)

where C is the single-branch capacitance of the N-path
network. The effective inductance can be found from the LC
resonance condition ω2

0 = 1/LC by substituting ω0 = ωs :

Leff = 2

ω2
s NC

. (59)

In Fig. 7(b), we verify our findings by comparing the input
impedance of the effective parallel LC circuit with the input
impedance of the N-path network in the vicinity of the first
transmission peak, and find a very good agreement. Eqs. (58)
and (59) are also in agreement with the expressions derived
in [27]. We once again stress that the N-path filter can be
accurately modeled as a parallel LC circuit only when its
source and load impedances are real and time-invariant.

VI. CONCLUSION

The perturbation approach presented in this article enabled
us to develop an efficient and highly-accurate frequency-
domain solution for N-path switched capacitive networks.
We obtained excellent agreement between analytic results
and circuit simulations for all combinations of parameters
including less common scenarios, such as when clocks on
each branch overlap, with significantly reduced computation
time. Our technique compares favorably to the state-of-the-art
state-space analysis by providing an equally accurate solution
for harmonic transfer functions while being substantially easier
to implement and analyze. The obtained solution remains
accurate at all frequencies and converges rapidly with the
increase in the number of harmonics included in the analysis.
Thus, our method can be used as a reliable substitute or

verification of numerical results and as a useful tool for
early-stage N-path network design, especially because it can
easily handle networks with an arbitrary number of paths.

For the case when the N-path network is operated in the
filtering regime, we obtained simple closed-form expressions
for complex scattering parameters, impedance matrix and input
impedance in the vicinity of transmission peaks, enabling
simple and accurate extraction of key performance metrics
such as insertion and return loss, bandwidth, etc.

Finally, our approach can be readily used to analyze N-
path networks with arbitrary number of ports and can also be
generalized to include the case of complex impedance blocks
in each branch.

APPENDIX A
MATRIX INVERSION USING PERTURBATION THEORY

Perturbation theory states that for any system of equations
A·x0 = b, a small perturbation δA leads to a small perturbation
δx of the solution vector x0. The smallness of perturbation
should be understood in the sense that it does not lead to
a significant change in eigenvalues of the original matrix A.
Introducing a dimensionless parameter 0 < ε � 1, we can
write the perturbed system as

(A + εδA) · x = b, (60)

and present the new vector x as a series in the power of ε as

x = ε0x0 + ε1x1 + ε2x2 + . . . . (61)

Substituting (61) into (60) and equating the terms with the
same power of ε yields:

O(ε0) : x0 = A−1 · b,

O(ε1) : x1 = −A−1 · δA · x0,

O(ε2) : x2 = −A−1 · δA · x1,

. . . (62)

Then by letting ε = 1 we obtain the following solution for x
from Eq. (61):

x = A−1 ·
∞∑

n=0

(−1)n(δA · A−1)n · b. (63)

Finally, since x = (A + εδA)−1 · b, we conclude that

(A + δA)−1 = A−1 ·
∞∑

n=0

(−1)n(δA · A−1)n . (64)

For sufficiently small perturbations, we can limit ourselves to
only the first-order correction:

(A + δA)−1 ≈ A−1 − A−1 · δA · A−1. (65)

APPENDIX B
FLOQUET SCATTERING PARAMETERS

Scattering parameters of a linear time-invariant (LTI) system
relate the amplitudes of incoming and outgoing power waves
at all ports. Specifically, for an incoming power wave a j at
the port j and the outgoing power wave bi at the port i the
scattering parameter is defined as Si j = bi/a j . Linearity of
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the network enables us to use the superposition principle to
obtain amplitudes of all outgoing power waves as a linear
combination of all incoming power waves in a matrix form:

bi =
∑

i

Si j a j . (66)

If the network is modulated with periodicity Ts = 2π/ωs ,
Eq. (66) becomes time-varying:

bi (t) =
∑

j

Si j (t)a j (t). (67)

Due to periodicity, we can present the scattering matrix
elements Si j (t) as a Fourier series:

Si j (t) =
+∞∑

n=−∞
Si j,n e jnωs t , (68)

with

Si j,n = 1

Ts

∫ Ts/2

−Ts/2
Si j (t)e

− j nωs t dt . (69)

Periodically time-varying power waves a j (t) and bi (t) can
be presented as Fourier-Floquet sums over an infinite set of
discrete harmonics ωm = ω + mωs with m = 0,±1,±2, . . .:{

a j (t)
bi (t)

}
=

+∞∑
m=−∞

{
a j,m

bi,m

}
e jωmt . (70)

Substituting Eqs. (68) and (70) into (67) and equating the
terms oscillating at similar frequencies, we obtain:

bi,m =
∑

j

∞∑
n=−∞

Si j,m−n a j,n, (71)

with Si j,mn ≡ Si j,m−n being entries of a Floquet scattering
matrix (FSM) relating the incoming and outgoing power waves
oscillating at frequencies ωm and ωn . In a vector form, we can
rewrite Eq. (71) as

bi =
∑

j

Si j · a j , (72)

where

bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
bi,−2
bi,−1
bi,0
bi,1
bi,2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, a j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
a j,−2
a j,−1
a j,0
a j,1
a j,2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (73)

and

Si j =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
...

Si j,0 Si j,−1 Si j,−2
. . . Si j,1 Si j,0 Si j,−1 . . .

Si j,2 Si j,1 Si j,0
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (74)

Fig. 9. Linear time-invariant (LTI) network connected to two ports with
impedances R01 and R02 driven by source voltages vin1 and vin2, respectively.
vi with i = 1, 2 denote port voltages; ai and bi are amplitudes of power waves
entering and exiting the network at each port.

APPENDIX C
RELATION BETWEEN FLOQUET SCATTERING PARAMETERS

AND HARMONIC TRANSFER FUNCTIONS

To establish a relation between scattering parameters
and harmonic transfer functions, consider a 2-port linear
time-invariant system connected to the two voltage sources
vin1 and vin2 through resistors R01 and R02. First, let us
assume vin2 = 0 in which case the voltages v1 and v2 can be
found through transfer functions as h11 and h21: v1 = h11vin1,
v2 = h21vin1.

Amplitudes of power waves entering and exiting the ports
(see Fig. 9) can be related to voltages vi and currents ii as [36]:

ai = 1

2
√

R0i
(vi + R0i ii ), (75)

bi = 1

2
√

R0i
(vi − R0i ii ). (76)

Applying the KVL, it is easy to see that:

a1 = 1

2
√

R01
vin1, (77)

b1 = 1

2
√

R01
(2v1 − vin1) = 2h11 − 1

2
√

R01
vin1, (78)

a2 = 1

2
√

R02
(v2 − v2) = 0, (79)

b2 = 1

2
√

R02
(v2 + v2) = h21√

R02
vin1, (80)

from where

S11 = b1/a1 = 2h11 − 1, (81)

S21 = b2/a1 = 2

√
R01

R02
h21. (82)

Following the same procedure for the case vin1 = 0, we can
similarly obtain

S12 = b1/a2 = 2

√
R02

R01
h12, (83)

S22 = b2/a2 = 2h22 − 1. (84)

Finally, we can leverage the linearity of the network to
combine Eqs. (81), (82) with (83), (84):

bi =
∑

j

Si j a j , (85)
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where

Si j = 2

√
R0 j

R0i
hi j − δi j . (86)

If the LTI block is replaced by a linear time-periodic
(LTP) network, we can follow the same procedure by treating
each harmonic at every physical port as an independent port
enabling us to establish a relation between Floquet scattering
parameters Si j,mn defined in Appendix B and harmonic trans-
fer functions hi j,mn :

Si j,mn = 2

√
R0 j

R0i
hi j,mn − δi j δmn . (87)

where i, j and m, n are port and harmonic numbers, respec-
tively. Note that Eq. (87) holds only for the case when the
impedance R0i of all ports is real and constant. If this is not
the case, a more general expression can be obtained which we
omit here for the sake of brevity.

Finally, in case when all ports have the same impedance
R0, Eq. (87) reduces to

Si j,mn = 2hi j,mn − δi j δmn. (88)
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