PHYSICAL REVIEW D 104, 083027 (2021)

Discriminating between different scenarios for the formation
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Electromagnetic observations have provided strong evidence for the existence of massive black holes in
the center of galaxies, but their origin is still poorly known. Different scenarios for the formation and
evolution of massive black holes lead to different predictions for their properties and merger rates. LISA
observations of coalescing massive black hole binaries could be used to reverse engineer the problem and
shed light on these mechanisms. In this paper, we introduce a pipeline based on hierarchical Bayesian
inference to infer the mixing fraction between different theoretical models by comparing them to LISA
observations of massive black hole mergers. By testing this pipeline against simulated LISA data, we show
that it allows us to accurately infer the properties of the massive black hole population as long as our
theoretical models provide a reliable description of the Universe. We also show that measurement errors,
including both instrumental noise and weak lensing errors, have little impact on the inference.
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I. INTRODUCTION

The detection of gravitational waves in the 10-1000 Hz
band over the last six years by the LIGO/Virgo collabo-
ration [1-3] has allowed us to infer for the first time the
population of stellar-mass black hole (BH) binaries in the
Universe [4,5], shedding some light on their possible for-
mation channels (see, e.g., [6-22]). Scheduled for 2034, the
Laser Interferometer Space Antenna (LISA) [23] will be
sensitive to gravitational waves in the mHz band, and will
reveal a virtually unexplored population of compact bina-
ries. Some of the anticipated sources include Galactic
binaries, which will be so numerous that they will form a
stochastic foreground dominating over instrumental noise
but should also include ~10* individually resolvable binaries
[24,25], and massive black hole binaries (MBHBs) with total
mass in the range 10°-10° My [26-31].

Electromagnetic observations indicate that massive BHs
(MBHs) are present in the centers of most galaxies in the
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local universe [32-36], including our own Galaxy [37—40]
and M87 [41], and that their properties are correlated with
those of their host galaxies, suggesting a synergistic growth
[33,42-45]. Unfortunately, these observations are sensitive
only to active MBHs up to z ~7 (cf. e.g., [46]), or local
ones for which we can observe the gas/stellar dynamics.
Gravitational waves will allow us to probe much more
distant MBHs: LISA will be capable of detecting MBHBs
up to z ~ 20, provided that they exist at such high redshift
[23]. In this paper, we address the question of how these
observations can help constrain scenarios for the formation
and subsequent evolution of MBHs.

The population of MBHBs that LISA will observe is
the result of a complex evolutionary path, whose details
are still largely unknown. Two open issues, of particular
importance for LISA, can be highlighted. First, which
astrophysical mechanisms provided the seeds that grew
into MBHs? Several scenarios have been proposed, sug-
gesting seed masses ranging from 10? to 10° M, forming
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at 7~ 15-20 (see e.g., [47] for a review). Once these
intermediate mass BHs form, they are thought to grow via
gas accretion and successive mergers. Following the merger
of two galaxies hosting a BH at their center, dynamical
friction drives the BHs to the center of the newly formed
galaxy, where they may form a bound binary system [48]
(see however Ref. [49] for the possibility that a significant
fraction of galaxy mergers may never produce a bound
MBHB). If this happens (at ~pc separation for systems of
~10% M), dynamical friction becomes inefficient and
other processes take over to control the binary’s evolution,
including three body interactions with stars (stellar hard-
ening)[50,51], gas-driven migration [52-58] or interactions
with other MBHs [29,30,59]. The efficiency of these
processes is uncertain, but they are crucial because it is
not until ~1072 pc separations that gravitational wave
emission is sufficient to make the binary coalesce within
a Hubble time. Whether MBHBs can transition efficiently
from pc to sub-pc separation is therefore still uncertain,
which is usually referred to in the literature as the “last
parsec problem” [48]. The physics of BH seeding at high
redshift and the last parsec problem significantly affect the
properties of the population of events that LISA will
observe, such as the component masses and spins, the
redshift, and the rates themselves. Thus, by accumulating
observations with LISA, one can in principle reverse
engineer the problem, and shed light on these mechanisms.

We focus here on the ability of LISA to distinguish
between different seeding scenarios. We improve upon
Refs. [27,60] in a number of ways. We use a more refined
treatment of selection effects; we use updated astrophysical
models, with improved treatment of the baryonic physics,
of the formation of MBH pairs, of the hardening of MBHBs
and of the effect of SN winds and accretion on MBH
evolution; and we use more realistic assumptions about the
LISA data, including an up to date model of the LISA
instrument, and more realistic models for the gravitational
waveforms generated by merging MBHs. We use the
predictions of the semianalytic model of Ref. [61] (with
updates described in Refs. [29,30,62—64]) for the evolution
of galaxies and MBHs to simulate LISA data. This model
has light seed (LS) and heavy seed (HS) variants, differing
in the prescription for the initial masses of BHs. We
consider the possibility that the population of MBHs is
described by a mixture between the LS and HS scenarios.
We treat the mixing fraction between models as a hyper-
parameter controlling the population, and estimate it from
simulated datasets using a hierarchical Bayesian frame-
work. We test the robustness of our analysis by using the
predictions of different semianalytic simulations to gen-
erate data, and assess the impact of measurement errors
(due to detector noise and weak lensing) on our inference of
the MBHB population.

This paper is organized as follows. In Sec. II we explain
how LISA data is simulated and how we perform parameter

estimation. Sec. III describes the astrophysical models used
for the population of MBHs and our mixing procedure.
In Secs. IV and V we review the main aspects of the
hierarchical Bayesian analysis and how to combine it with
results from numerical simulations. We present our main
results in Sec. VI and our conclusions in Sec. VIL

II. DATA SIMULATION AND PARAMETER
ESTIMATION

LISA will observe the last stages of the coalescence of
MBHBs, where higher harmonics can be comparable in
amplitude to the (2, +-2) harmonics [65-69]. Therefore, we
use the phenomenological approximant PhenomHM [70] to
generate the signal and perform parameter estimation. In
this work we consider, for simplicity, quasicircular binaries
with component spins aligned or antialigned with the
orbital angular momentum (we comment on this in
Sec. III). We compute the full LISA response and para-
metrize MBHBs as described in [69,71]. Denoting by m;
and y, the mass and spin of the heaviest BH in a binary and
by m, and y, those of its companion, we define the chirp
mass as M, = (m;m,)3 /(m; + m,)'/3, the mass ratio as
g=m;/my>1 and the symmetric mass ratio as
n=q/(1+ q)* We also introduce the effective spin y
and the corresponding antisymmetric combination y_,
defined as y, _ = (myy; = myy,)/(my + m,). We adopt
the cosmological parameters reported by the Planck mis-
sion (2018) [72] to compute the luminosity distance D;
from the cosmological redshift z. Recall that source-frame
(subscript s) and detector-frame (subscript d) masses are
related via m, = (1 + z)m,. We use the SciRDv1 noise
curve [73], including the confusion noise due to Galactic
binaries [74], and assume a low-frequency cutoff of
1073 Hz in the LISA noise power spectral density. We
assume a mission duration of four to ten years and an ideal
100% duty cycle.

For our purposes we will not need state-of-the-art
MBHB parameter estimation, but just realistic error esti-
mates for the intrinsic parameters of the source and for
the luminosity distance. Therefore, we work in the zero-
noise approximation [75] and simply compute the Fisher
information matrix [76] to obtain the errors on source
parameters, and more specifically we use the extended
Fisher formalism of Ref. [77]. A more complete parameter
estimation study is in preparation. As shown in Fig. 1,
astrophysical models predict some events with large mass
ratios and/or large spins, far outside the range of validity of
current waveform models. Again, for simplicity, we will
use PhenomHM for our calculations.

The chirp mass is the best measured parameter, and
because we can observe the late inspiral and the merger-
ringdown with high signal-to-noise ratio (SNR) up to
thousands, we can measure the mass ratio and the spin
of the primary quite accurately. For the heaviest systems,
we can also measure the spin of the secondary. As for
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FIG. 1. Normalized population distribution for different values of the mixing fraction between the fiducial LS and HS models. We
show the 68% and 90% confidence intervals. The (source-frame) chirp mass distribution is the most sensitive to a. The redshift
distributions of detectable events look much more similar, unlike the effective spin distributions, as discussed in the main text.

(a) Without SNR threshold. (b) With an SNR threshold of 10.
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distance measurements, the error due to weak lensing
dominates over the statistical error at high redshifts. We
use the (pessimistic) model of [ 78], which estimates that the
error due to lensing goes as

OD, lensing — 0.066

L= (142)70%
D,

0.25 } p 21

We include this error by convolving the measured LISA
posterior distribution with a Gaussian of width 6p, jensing-
The error due to weak lensing propagates into the deter-
mination of source-frame masses.

III. MASSIVE BLACK HOLES CATALOGUES

A. Semianalytic models

To describe the expected population of MBHBs detect-
able by LISA, we utilize the semianalytic galaxy for-
mation model of Ref. [61], with updates described in
Refs. [29,30,62-64]. Our model relies on dark matter halo
merger trees produced with an extended Press-Schechter
formalism [79], modified to reproduce the results of N-
body simulations [80]. Baryonic structures contained in the
halos are evolved along the branches and through the nodes
of these merger trees. These structures include: a diffuse
intergalactic medium with primordial metallicity, which
accretes onto the halos either by getting shock-heated to the
halo virial temperature (in large low-redshift systems) or
along cold flows (at high redshift and/or small systems)
[81-83]; a cold interstellar medium where star formation
takes place, and which we assume to be in the form of disks
and/or bulges; stellar disks and bulges; and nuclear com-
pact configurations, i.e., nuclear star clusters and MBHs.
The latter, which are obviously of crucial importance for
this work, are assumed to grow from high-redshift seeds
by accretion—thus shining as quasars and active galactic
nuclei (AGNs)—and coalescences. The model also
accounts for AGN feedback (i.e., the effect of AGN jets,
disk winds and radiation) and supernova feedback (i.e.,
supernova explosions). Both processes can affect the
evolution of baryonic structures, quenching star formation
(mainly in large and small systems, respectively), ejecting/
heating up nuclear gas, and also suppressing accretion onto
MBHSs. In order to minimize the uncertainties, the model is
calibrated to a number of observations at both galactic and
nuclear scales [30,61-64,84,85]. Nevertheless, as already
mentioned, the predictions for LISA are crucially depen-
dent on the assumptions made about two poorly understood
processes: the formation of the high-redshift seeds and the
“delays” with which MBHs come together and eventually
coalesce after a galaxy merger.

As our fiducial astrophysical scenario, we adopt model-
delayed of [29], of which we consider two variants, with
either LSs or HSs. In the LS model, MBHs grow from the
remnants of Pop III stars at z = 15 [86]. We seed large halos

collapsing from the 3.5 peaks of the primordial density
field, and to describe the Pop III stellar mass function we
use a log-normal distribution centered at 300 M, and with
rms of 0.2 dex (with an exclusion region between 140 and
260 My to account for pair instability supernova explo-
sions). The mass of the seed MBH is then assumed to be
~2/3 of the initial Pop III star mass, to account for the mass
loss during the supernova explosion. In the HS model,
MBHs form instead with masses already ~10° M, In more
detail, we use the model of Ref. [87], in which seeds form
from the collapse of proto-galactic disks as a result of bar
instabilities, at z 2 15 and in halos with spin parameter and
virial temperature below critical threshold values. The latter
are given by Eq. (4)—with Q. =2.5—and Eq. (5) of
Ref. [87], and we use Eq. (3) of the same work to set the
seed mass. As for the delays between galaxy/halo and BH
mergers, Ref. [29] accounts for the dynamical friction
between the dark matter halos (including the effect of tidal
disruption and evaporation); for the timescales associated
(on much smaller ~pc scales) to stellar hardening,' gas-
induced migration and interactions with additional MBHs
(brought in by later galaxy mergers); and finally for the
gravitational-wave driven evolution timescale at sub-pc
separations. The timescale associated to the binary’s
evolution at ~kpec separations is instead neglected in
Refs. [29,61], on the premise that it should be negligible
when compared to the other timescales involved. Recently,
however, large scale cosmological simulations have chal-
lenged this notion [49], i.e., they have found that evolution
timescales on those large separations can be significant.
This prompted Ref. [30] to include an additional timescale
in the semianalytic model of Refs. [29,61] to account for
the binary’s evolution at ~kpc separations. Moreover,
Ref. [30] also modified the supernova feedback model
of Refs. [29,61] to account for the possibility that super-
nova winds may quench not only star formation, but also
accretion onto MBHs in low-mass, high-redshift galaxies
[88]. We implement this effect by assuming that the growth
of the gas reservoir off which the MBH accretes is curtailed
in systems with escape velocity (from the bulge) lower than
270 km/s [88]. We refer to the model including these
additional ingredients (delays on scales of hundreds of pc
and SN feedback on BH accretion) as SN-delays, adopting
the same designation as in Refs. [30,31].

We use the semianalytic model to produce simulated
populations of MBHBEs, including information on their
masses, spins and redshift. It is worth noting that the
eccentricity of a binary and the degree of alignment of
the component spins depend on the mechanism that triggers
the merger. For instance, triple/quadruple interactions
between MBHs can lead to large eccentricities as a result

'As suggested by N-body simulations [51], the stellar hard-
ening timescales are computed from the density at the mass
influence radius of the binary, i.e., the radius at which the
enclosed stellar mass is twice the binary mass.
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of Kozai-Lidov resonances [89,90] and/or chaotic inter-
actions [91,92]. Binaries merging in a gas-rich environment
tend to have aligned spins, because of the Bardeen-
Petterson effect [93,94], i.e., the gravito-magnetic torques
exerted by the circumbinary disk. We also stress that the
evolution of the spin under accretion is described in our
model by neither coherent nor chaotic accretion, but by the
hybrid model of Ref. [62]. The latter incorporates Bardeen-
Petterson torques, is intermediate between chaotic and
coherent accretion, and reproduces the sample of spin
measurements from iron Ka lines.

These effects are included in our semianalytic model
(cf. in particular Refs. [29,61,62]), with the final remnant
mass and spin produced by the MBH merger computed via
fitting formulas reproducing the results of numerical-
relativity simulations [95,96]. However, the information
on spin alignment and eccentricity is not fully exploited in
the analysis performed for this paper. Indeed, because
PhenomHM covers only quasicircular binaries with com-
ponent spins aligned or antialigned with the orbital angular
momentum, we simply take the projection of spins along
the orbital angular momentum and neglect the eccentricity.
Nevertheless, the information on the spin alignment is
partially contained in the effective spin of the binary. To
complete the set of parameters 6 needed to describe LISA
events, we draw the sky location uniformly on the sphere,
the phase at coalescence and the polarization uniformly in
[0, 27], and the inclination angle cos  uniformly in [—1, 1].
We assume a time to coalescence of at most one year, and
we do not consider the part of the signal below 107> Hz.

B. Population properties

When running the simulations, we use only one of
the seeding prescriptions. However, the population of
MBHs in the Universe is unlikely to be described by
any of these “pure” models, but rather by a mixture of
models. Following [27], we introduce a mixing fraction «
between the LS and HS scenario and define the full
(unnormalized) MBHB population distribution to be
Npop(Bla) = aNpop (OILS) + (1 — a) N (O|HS). (3.1)
In the following, we will denote the normalized population
distribution by p,,(f|a) and the predicted rate by R., (in
yr~!), such that Ny, (0]ar) = Rey (@) ppop(6]a), with similar
definitions for the LS and HS models. The rate for a given
value of the mixing fraction is

Ras(@) = [ Moy (01a)d0 = Ry (LS) + (1 = ey ()
(3.2)

where Re,(LS) = [Npop(0la)dd is the rate for the LS
model, and similarly for HS.

TABLE I. Number of events per year N., and number of
detectable events per year with LISA with two different SNR
thresholds, Ry (10) and Ry (20). The LS scenario predicts more
events than the HS one, but many of them are not detectable by
LISA. Rates in the SN-delays models (bottom) are substantially
lower than in our fiducial model (top).

LS HS

Fiducial Re, (1) 2343 23.98
Re(10) (yr7) 53.01 23.89

Ra(20) (yr) 29.85 23.67

SN-delays R, (yr7h) 11.82 5.94
Rea(10) (yr7) 111 5.92

Ry (20) (yr™h) 0.29 5.73

For a given SNR threshold, we denote by Ry, (a, SNR)
the number of events (per year) above this threshold. In
Table I we provide the annual rates for the LS and HS
scenarios,” as well as the number of detectable events by
LISA assuming an SNR threshold of 10, which we use in
the remaining of the paper. For comparison, we also give
the results for an SNR threshold of 20. The LS scenario
predicts more merger events, but many of these have low
SNR and are not detectable by LISA. On the contrary,
almost all events in the HS scenario are detectable.

In Fig. 1 we show the normalized population distribution
for different values of « in a “corner plot” [97]. In the lower
panel we show only events that have an SNR above 10. We
use “transformed” parameters (e.g., log;o M., arcthy ) to
make the salient features of the distributions more evident.
As expected, the HS model predicts binaries with higher
masses than the LS model. When mixing between them, we
get a double-peaked distribution, whose relative weights
depend on the value of a. After imposing an SNR cut,
lighter events are suppressed, and the relative weights
change due to the fact that many LS events are not
detectable. The effect of the SNR cut can be clearly seen
in the redshift distribution: high-redshift events predicted in
the LS scenario are not detectable, and as a consequence the
LS and HS redshift distributions after the cut look much
more similar. On the contrary, the effective spin distribu-
tions are easier to distinguish after imposing the SNR cut.
This is because of the correlation between effective spin,
redshift and chirp mass, which can be seen in the upper
panel. The physical explanation is that the events that
survive the SNR cut in the LS scenario tend to be closer
and more massive (both because of the SNR threshold and
because the BHs had more time to grow via accretion
and mergers). Accretion also leads to larger spins for this
subset of the population. Moreover, the presence of gas
around binaries tends to align the spins through the

*Note that we use a different noise curve and SNR threshold
than [29,30], hence the difference in the rates of detectable events.
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FIG. 2. Normalized population distributions predicted by our fiducial model and the SN-delays model, both in the LS and HS
scenarios. We show the 68% and 90% confidence intervals. While the chirp mass distributions in the two models are quite similar, the

redshift and effective spin distributions are not.

Bardeen-Petterson effect, which in turn translates into
larger values of the effective spin.

In Fig. 2 we compare the normalized population dis-
tribution predicted by the SN-delays model to our fiducial
model, both in the LS and HS cases, without any SNR
threshold. Notice that the chirp mass distributions of the
fiducial and SN-delays models are reasonably similar, but
the redshift and effective spin ones are very different. The
glaring difference in redshift distributions is due to the
additional delays included in the SN-delays model, whereas
the one in spin distributions is due to supernova feedback,
which expels the gas surrounding the BHs in shallow
potential wells, resulting in binaries with more isotropic
spin orientations and smaller component spin magnitudes.

In Table I we also provide the rates predicted by the
SN-delays model. We see that the rates not only differ
substantially between the LS and HS scenarios, but also
between the fiducial and SN-delays model. A simple way to
provide robustness to this rate variation is to introduce
an additional parameter into the model, allowing both the
mixing fraction a and the total number of events over
the observation period N, to be hyperparameters that we
constrain using the observed events. Although we will
ultimately marginalize over the number of observations and

focus on the mixing parameter, this approach ensures that
our inference will be robust as long the model can match
the parameter distribution of events, even if the total
number of events varies significantly from the semianalytic
model predictions.

IV. HIERARCHICAL BAYESIAN ANALYSIS

Assuming that MBHB events are distributed following
the mixing prescription of Eq. (3.1), and introducing the
overall number of events as an additional parameter
characterizing the population, as described in the previous
section, the population distribution is described by two
hyperparameters, a and N,. By observing many events, we
will measure the distribution of MBHB parameters 6 (such
as masses, spins and redshifts), and from this we will be
able to infer the hyperparameters. Working in a Bayesian
framework, our goal is to estimate the posterior distribution
of the hyperparameters from a set of observed MBHB
events, d. To do so, we use a similar approach to the “top-
down” derivation of [98]. We assume that each MBHB
event is independently drawn from the population distri-
bution py,(6|a, N,,). Independence is a highly nontrivial
assumption for LISA, since the data stream will contain
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many signals at the same time, from sources of different
types, including extreme mass ratio inspirals, Galactic
binaries and MBHBs. However, given the expected event
rates for LISA sources (see Table I) and the long duration
of the LISA mission, these sources are unlikely to have sig-
nificant overlap with one another. As a result each source
will be sensitive to an independent set of components of the
instrumental noise. This means that it should be reasonable
to treat each MBHB observation as independent.

Under this assumption the probability that, in a certain
observation period, a total of N, events occur in the
Universe, with parameters @, and producing associated
strain data, d, in the detector, is given by

P(d’o’Nt

a,N,) = p(d

0, Nr)Ppop(ov N,

aN,). (4.1)

Assuming that the population of MBHBs is described by a
mixture between two independent populations, the second
term can be modeled as a Poisson distribution

p@,N|a,N,) « NYie=Na
N,

LT (@) Ppop(BlLS) + (1 = £(@)) Ppop (Bu[HS)].  (4.2)

k=1
where

B aR.,(LS)
B aRev(LS) + (] - a)ReV(HS)

f(a) (4.3)

is the expected fraction of events in the Universe that come
from the LS population.

Not all the N, events that occur are detectable. Whether
the k’th event is detectable is a property of the associated
data, d;, only. As shown in [98], assuming the events are
statistically independent, substituting Eq. (4.2) into
Eq. (4.1) and marginalizing over the unobserved data
yields the following joint likelihood for the detected events:

p(d,0,N|a,N,)
o exp{—N(f(@)E(LS) + (1 — f(a))E(HS)}

Nnbs
X Ny p(di10;)(f (@) ppop (6;|LS)
=1

=

+ (1= f(@)) Ppop (6:HS)), (4.4)

where N, is the number of above threshold events
observed and E(LS) = Ry (LS)/R.,(LS) is the fraction
of events in the LS population expected to be detectable,
which is given by

E(LS) = /d()ppop(9|LS)/ ddp(d|0)
d detectable

- / dOPpop (6ILS) pger (6), (4.5)

where the last equality defines pgy.(0), the probability of
detecting an event with parameters 6. The quantity ZE(HS)
is defined in an analogous way for the HS population.
n this work we use the SNR to quantify detectability and
assume that an event, d, is detectable if SNR[d] >
SNR preshold- Since we work in the zero-noise approxima-
tion, we evaluate this using the optimal SNR to determine
the detectability of each source. The selection function,
E(LS), is equal to the fraction of events in the population
that have SNR above the threshold.

The final form of the posterior distribution on a and N, is
obtained by marginalization over the parameters of the
individual events, 0, in Eq. (4.9) and using Bayes’ theorem.
After some rearrangement we obtain

_ p(dja,N,)p(a,N,)
p(a, Na|d) - p(d)
Nobs .
PN TP ko expl-, (o)
Nobs H\d; i
ALt

in which p(6;|d;) = p(d;|0;)pi(0;)/p(d;), pi(6;) denotes
the prior used to obtain some posterior samples in an initial
analysis of event-i, and we have introduced

E(a) = f(@)E(LS) + (1 - f(a))E(HS)  (4.7)

Ppop(9|a) = f(a)Ppop(9|LS) + (1 _f(a))ppop(9|HS)'
(4.8)

In an analysis of LISA data we would construct this
posterior on both hyperparameters. However, the parameter
of most interest is the mixing fraction @, and so we will
focus on this here. We proceed by marginalizing over the
rate parameter, N,. We first specify that the hyperprior is
separable, p(a,N,) = p(a)p(N,), and then assume a
scale-invariant prior on the rate, p(N,) o« 1/N,. The
scale-invariant 1/N, prior is natural when the order of
magnitude of the rate is uncertain, as is the case here. After
this marginalization we obtain
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p(d|a)p(a)
p(ald) =T a)
p(a) nbs p(d o 9 |d ppop(e |a)
p(d / @0 pi(0)E(@)
(4.9)

If N, posterior samples have been obtained for event i using
the reference prior p;(0;), these can be used to obtain a
Monte Carlo approximation to the integrals in the preced-
ing equation

Noh:

Ny ) 1% p(d)
pleld) = H[ 20,0, r(a)]”(“) FORE

(4.10)

where 6; ; is the parameter vector for the j’th sample for
source 1. The individual event and overall evidences, p(d;)
and p(d), are useful for model selection but merely enter as
a normalization constant when the interest is on parameter
estimation, as here. Therefore, we discard all evidence
terms from our analysis. For the prior on a, we take a flat
distribution in [0, 1].

We note that the quantity f(«) is directly interpretable as
the fraction of events in the Universe that are drawn from
the LS model, while the mixing fraction @, as we have
defined it, is not. However, these are related by the simple
transformation given in Eq. (4.3), and so the posterior for
f(a) can readily be derived from that for « and vice versa.

After inferring a posterior distribution on a, we can
construct the posterior predictive distribution (PPD) for the
parameters of future observed events

PPD(0|d) = /dappop(9|a)p(a|d). (4.11)

When performing simulations, comparing the PPD with the
population distribution used to generate the data provides a
guide to the quality of the inference.

V. ESTIMATING THE PROBABILITY
DENSITY FUNCTION

From Eq. (4.10), we can see that the hierarchical
Bayesian analysis requires being able to evaluate the
probability density function of the population distribu-
tion. However, semianalytic models only provide samples
from the population distribution, not the analytic proba-
bility density function. In this work, we use a kernel
density estimator (KDE) [99,100] to approximate the
population probability density function from the samples.
More specifically, we use the Gaussian KDE implementa-
tion of scipy [101]. In the Appendix A, we provide
additional details on how the KDE is computed.

The required accuracy on the estimation of the proba-
bility density function increases with the number of
observed events. The accuracy of the KDE is limited by
the number of simulation points at our disposal, in
particular for the HS variant of our fiducial astrophysical
model (~2500 points). This leads to a systematic error,
which dominates over statistical errors when increasing
the number of observed events, and leads to systematic
biases in the hierarchical Bayesian analysis. Similarly, from
Eq. (4.10) it can be seen that the error on In(p(a|d)) due to
a misevaluation of the selection function increases linearly
with the number of observed events. In our case, the
accuracy to which the selection function is computed
depends on the accuracy of the selection function for the
LS and HS models: cf. Eq. (4.7). In Appendix B, we show
that using too few points to compute these terms also leads
to systematic biases. To mitigate these issues, we make an
approximation: we take the probability density function
computed from the KDE to be the “true” probability
density function of our fiducial astrophysical model, and
use it to generate mock data. By doing this, the data
generation process is fully consistent with the probability
density function used in the hierarchical Bayesian analysis,
avoiding systematic biases. We compute the selection
function for the LS and HS variants of our fiducial astro-
physical model by generating many (~10°) events from the
KDE and computing the fraction of detectable events. We
then use Eq. (4.7) to evaluate the selection function for any
value of a. This approximation should be seen as the limit
where we have enough simulation points to build very
accurate KDEs and compute the selection function to high
precision. In Appendix C we compare the population
distribution of the LS and HS variants of the fiducial
astrophysical model computed from numerical simulations
to the one obtained from the KDEs, computed as described
in Appendix A. Note that, when building the KDE that will
serve as our fiducial astrophysical model, we use arcthy; ,
instead of arcthy, _ to make sure that the spins are in the
physically allowed range. The distributions are overall in
very good agreement, so we expect that our results should
not depend much on this approximation.

VI. RESULTS

We start by testing our pipeline in the limit where
the parameters of the source are perfectly measured by
LISA, and we perform two experiments. In the first one
(Sec. VI A) we generate mock observation sets using the
predictions of our fiducial astrophysical model, as com-
puted from the KDE, and use this same model in the
hierarchical Bayesian analysis. In the second experiment
(Sec. VI B) we use the SN-delays model to generate mock
observation sets, but still use our fiducial astrophysical
model in the hierarchical Bayesian analysis. The goal of
this second experiment is to test if we could still draw
meaningful conclusions if the population of MBHBs in the
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FIG. 3. Posterior distribution on « for observation sets with an increasing number of observed events, generated using different values

of the mixing fraction ay: oy = 0.2 (left), oy = 0.5 (middle) and ay, = 0.8 (right). The posteriors peak near the true value and become

narrower as we increase the number of events.

Universe were different from the one used in the data
analysis pipeline. In Sec. VIC we discuss the impact of
measurement errors in the analysis. In all cases we use an
SNR threshold of 10 to define detectability of a source.

A. Model-consistent inference

We start by investigating how the inference on a
improves with the number of observed events. Although
we do not use information on the rates in the inference, we
make sure that the number of events in the datasets is
realistic for a LISA mission duration of four to ten years,
given the predicted rates (see Table I). In Fig. 3, we plot the
log-posterior on a for observation sets with an increasing
number of observed events. In the left panel, the dataset
was generated with a mixing fraction o, = 0.2 between the
LS and HS variants of our fiducial astrophysical model, in
the middle panel with ay = 0.5, and in the right panel with
ap = 0.8. The posteriors peak near the true value and
become narrower as we increase the number of events. We
observe a sharp drop in the posterior close to the extremal
values. This is because as @ — 0 (@ — 1) the resulting
population is no longer compatible with the lightest
(heaviest) events. Moreover, due to our choice of mixing
prescription in Eq. (3.1) and to the higher event rate of the
LS variant, the population distribution varies faster for
small values of a, so the posterior is narrower for o ~ 0
than for ay ~ 1.

In order to have a more global view, we generate several
observation sets with an increasing number of events,
drawing the mixing fraction uniformly in [0, 1]. We
estimate the shift on a as the difference between the
maximum-posterior point a,,,, and the injection value
ag, and the error on the mixing fraction Aa as the
90% confidence interval centered around the median value.
In Fig. 4 we plot these quantities for two selected values of
the number of observed events. The color scale indicates
the value of the injected mixing fraction a for each
observation set. As expected, both tend to decrease as
we observe more events. Also, note that the points are

equally distributed on both sides of the o, = a line,
indicating that there is little systematic bias in our analysis,
as we would expect given that the models used to gen-
erate and analyze the data are consistent. We find that the
error on « tends to be smaller for injected values close to 0
or 1, with even smaller errors in the former case, in
agreement with our discussion on the shape of the posterior
above.

Next, we assess our ability to infer the population distri-
bution from an observed dataset, using the PPD defined in
Eq. (4.11). In order to make a quantitative comparison,
we compute the Kullback-Leibler (KL) divergence [102]
between them, defined as

P1(9)
Dxi, = ) pi(0) ln( > (6.1)
ZH: p2(9)
1.0
0.4
0.8
0.6
Qg
0.4
50 events 0.2
04 e 200 events
00 01 02 03 04 05 06 e
Ao

FIG. 4. Evolution of the shift and the error on a (90% con-
fidence interval) with the number of observed events. Evolution
of the shift and the error on a (90% confidence interval) with the
number of observed events. We consider two sets of observations,
with 50 events (crosses) and 200 events (dots). The color scale
indicates the value of ay. As expected, they tend to decrease as we
observe more events. The fact that the points are equally
distributed on both sides of the a,, = ay line indicates that
there is little systematic bias in our analysis.
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FIG. 5.

Kullback-Leibler divergence between the PPD and the population distribution for different observation sets generated with

different values of y. On the left (right) panel the observation sets contain 50 (200) observed events. The smaller the KL divergence, the
better our inference of the population distribution. Increasing the number of events tends to improve the inference, as expected. (a) 50

events. (b) 200 events.

with p; and p, the distributions we wish to compare. In
Fig. 5, we plot the KL divergence between the PPD and
the population distribution for datasets of 50 and 200
observed events, taking the population distribution as the
reference distribution (p;). Given the similarity between
the distributions (as indicated by the smallness of the KL
divergence), the results would not be significantly altered
had we chosen the PPD as the reference distribution. The
KL divergence tends to be smaller for larger datasets,
meaning that our inference on the population distribu-
tion improves. As a trend, the largest values of the KL
divergence correspond to ag~ 0. This is because the
population distribution varies faster for small a, so even
small (statistical) deviations in the estimation of the mixing
fraction lead to larger discrepancies between the PPD and
the population distribution for ¢y ~ 0. As an illustration, in
Fig. 6 we compare the PPD obtained from four simulated
LISA datasets of 100 observed events generated with
different values of «p to the corresponding population
distribution. Those realizations are chosen to span the range
of values of KL divergences. As can be seen in the upper-
left panel, even in the worst case (the largest value of the
KL divergence among the cases shown in Fig. 5) we can
reconstruct the population distribution reasonably well. The
other panels show the comparison between the PPD and the
population distribution for datasets of 100 events yielding
mid-range values of the KL divergence and for the dataset
yielding the smallest one. Overall, this pipeline allows us to
infer the population distribution accurately when the model
used to generate the data is the same as the one used in the
pipeline. We will now test the robustness of this pipeline by
using different models in the two stages.

B. Robustness

We mix the HS and LS variants of the SN-delays model
as described in Eq. (3.1), and generate datasets of 20
observed events for oy = 0, @y = 0.5 and ay = 1. We run

our pipeline on these observation sets, still using our
fiducial astrophysical model in the hierarchical
Bayesian analysis and compare the PPD to the population
distribution. The results are shown in Fig. 7. In each case,
we show both the intrinsic distribution and the detected
one (where detection is defined by imposing an SNR
threshold of 10). For a, = 0 (top panels), we can repro-
duce reasonably well the chirp mass distribution of the
detectable population, but we overestimate the fraction of
small-M, events in the intrinsic population. This is
because the HS variant of the SN-delays model has a tail
extending to lighter values than the HS variant of the
fiducial model, as can be seen on Fig. 2. Our pipeline
compensates for this by adding events from the LS variant,
and since only ~25% of LS events are detectable, the
fraction of light events in the intrinsic population is
overestimated. Similarly, for @y = 0.5 (middle panels)
the PPD agrees reasonably well with the population
distribution of the chirp mass for detectable events, but
this time the fraction of light events in the intrinsic
population is underestimated. This is due to the difference
in the fraction of detectable events between the LS variant
of our fiducial model and the SN-delays model (see
Table I). For a given number of detected light events,
the latter predicts twice as many light events in the
intrinsic population as our fiducial model. Finally, for
ap = 1 (bottom panels) even the chirp mass distribution of
detectable events is badly estimated. This is due to a tail of
heavy events predicted by the LS variant of the SN-delays
model, which causes our pipeline to estimate a to be
different from 1. In all three cases, due to the differences
in the fiducial and SN-delays population, redshift and spin
distributions are poorly reconstructed.

These results show that this pipeline would lead to
erroneous predictions if the population of MBHBs is too
different from the one predicted by our astrophysical
models. Note that in the LS SN-delays model we do not
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expect to observe 20 events even for a ten-year mission
duration, but this does not change our previous conclusion.

C. Including measurement errors

We now wish to consider two sources of error: weak
lensing and statistical errors due to detector noise. They are
accounted for with the following procedure. For each event
predicted by the model:

(1) we draw a new value of the luminosity distance from
a Gaussian distribution centered at the original value
with variance given by the lensing error of Eq. (2.1),
keeping the detector-frame mass constant;

from that new event, we draw a shifted event from a
multinormal Gaussian distribution with covariance
given by the Fisher information matrix at that point;
if this new event has SNR above the threshold, we
perform parameter estimation;

2)

3)
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(4) we broaden the posterior distribution of the lumi-
nosity distance (and therefore of the redshift
and the source frame mass) with the lensing error
of Eq. (2.1).

For step (3), we use the Fisher information matrix instead
of doing a full Bayesian analysis in order to speed up
computations. Some events from the LS variant have very
low SNR of order unity, and in those cases the Fisher
information matrix is poorly conditioned. For this reason,
events with such low SNRs might end up with large
enough SNRs to be detected after applying the Fisher
matrix shift of step (2). This is not physically realistic,
since the detector noise is unlikely to make such events
detectable, and therefore between steps (2) and (3) we
discard all events that have SNR below 5 before the shift.
In order to assess the impact of measurement errors, we
generate datasets of 500 events (before applying the
detectability criterion) for a, drawn randomly in [0, 1],
and consider three scenarios:

(i) there is no noise, i.e., none of the steps above are
applied;

(ii) there is only detector noise, i.e., only steps (2) and
(3) are applied;

(iii) there is both detector noise and lensing noise, i.e., all

four steps are applied.

Note that steps (1) and (2) modify the number of
detectable events, therefore we have to include these
effects in the computation of the selection function.
Moreover, increasing the number of observed events
tends to narrow the posterior distribution, so in order
to scale out this effect and allow for a fair comparison
between the three different scenarios, we define a
“rescaled” posterior distribution p(ald) = p(a|d)!/Nows.
In Fig. 8 we plot on the x-axis the error on a (obtained

0.4
. No noise
.
* Detector noise 0.8
B8 £ = Detector+lensing noise
B \ 0.6
I 2
Q0.2 - Qg
= 0.4
0.1 0.2
0.74 0.76 0.78 0.80 0.82
Aa
FIG. 8. Error on a and KL divergence between the rescaled

posterior distribution of a and the (flat) prior. As we include the
different sources of error, Aa tends to increase and Dy, tends to
decrease, reflecting a degradation in the measurement of . Note
that these are the errors and KL divergences for the rescaled
posterior, i.e., we artificially bring the number of detected events
to 1, as detailed in the main text.

from the rescaled posterior) and on the y-axis the KL
divergence between the rescaled posterior distribution of
a and the (flat) prior on a, for different datasets and in
the three scenarios. The color scale indicates the value of
ay. The larger the KL divergence, the more information
we gain from the dataset. As expected, including the
different sources of error tends to decrease the KL
divergence and increase Aa. The dotted lines going from
the top-left to bottom-right link simulations with the
same underlying populations, and show (slight) degrada-
tion in the measurement of a. Note that the KL
divergence is larger and the error smaller for oy~ 0
and also for ag ~ 1, in agreement with the discussion on
the shape of the posterior in the previous subsection.
Finally, we do not observe the appearance of systematic
biases when including measurement errors.

Although the determination of a gets slightly worse
when including the different sources of error, this barely
affects our inference of the population distribution of
MBHBSs, as can be seen in Fig. 9. There, we compare
for a representative case the population distribution to the
PPDs obtained in the no-noise and in the detector + lensing
noise scenarios, which look very similar.

Finally, we performed a last test: we generated datasets
including both sources of noise in steps (1) and (2), but
we did not include the effect of lensing in the hierarchical
analysis, i.e., step (4). Moreover, we used the selection
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FIG. 9. Population distribution and PPDs obtained in the no-
noise and detector + lensing noise scenarios for a representative
case. The dataset contains 500 events (before applying the
detectability criterion). Including measurement errors barely
affects our ability to infer the population distribution.

083027-13



ALEXANDRE TOUBIANA et al.

PHYS. REV. D 104, 083027 (2021)

function obtained when accounting only for the detector
noise. Our goal is to assess how our analysis would be
biased if we did not properly model the effect of lensing.
We observe a tendency to bias the measurement of «
toward higher values, but no real impact on the PPD.
This could be an artifact of our simplistic model, and
should be verified through further work.

VII. CONCLUSIONS

In this paper we discussed of the ability of LISA to
distinguish between different astrophysical models for the
formation and evolution of MBHs by inferring the
population of MBHBs. We introduced a mixing fraction
between astrophysical models to account for the pos-
sibility that the population of MBHBs in the Universe
cannot be described by one single model. More specifi-
cally, we mixed between two variants of the same model:
one that predicts that MBHs form from LSs and another
from HSs. We built a pipeline based on the hierarchical
Bayesian framework to measure the mixing fraction from
LISA observations, and infer the population of MBHs.
We have shown that this pipeline allows us to reconstruct
accurately the population of MBHBs if it is similar to the
one used in the pipeline, but not if the populations are
too different.

This problem could be mitigated by introducing more
flexibility in the population model, at the cost of having
greater uncertainty in the inferred population distribution.
One approach would potentially be to include additional
mixing fractions: one could in principle mix between as
many models as desired. However, given the large
uncertainty surrounding astrophysical models, we believe
a better alternative is to use a theory-agnostic approach.
We are currently working on a simplified astrophysical
model for the formation and evolution of MBHs where
the population of MBHBs depends on physically mean-
ingful hyperparameters controlling the initial mass dis-
tribution, the delay between dark matter halo mergers and
MBHB mergers, etcetera. We could then perform a
hierarchical Bayesian analysis to infer these hyperpara-
meters from LISA observations.

We have shown that measurement errors due to lensing
and detector noise will not significantly impact our ability
to infer the MBHB population. On the other hand,
mismodelling the effect of weak lensing could lead to
biases in our analysis. In our model, this bias has a
negligible impact on our inference of the population of
MBHBs, but this could be due to the simplicity of our
model and will have to be further verified for different

models. Finally, we commented on an important aspect:
analyses based on results from numerical simulations,
such as ours, require a large number of points in order to
properly evaluate the probability density function of the
theoretical model and the selection function, and thus
avoid systematic biases. We estimate that at least a few
tens of thousands of points are needed.

Concerning our astrophysical model, we mixed the
distributions a posteriori, i.e., with the results obtained
by running numerical simulations with LSs and HSs
independently. Therefore, our model cannot account for
mergers between BHs formed from LSs and HSs and how
they impact the population distribution. This could be
included by mixing the seeding prescriptions a priori,
when running the simulations. We could then use these
results to assess the validity of our a posteriori approach.
We leave this for future work.
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APPENDIX A: KERNEL DENSITY ESTIMATION

From a set of n; samples drawn from the distribution
Ppop(@la), the KDE approximates its probability density
function as

A 1
ppop(9|a) :n_ZKH(g_gi)’ (Al)
s =1
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FIG. 10. Comparison between different KDE approximations
to the population probability density function of log,(M..,),
using different values of the bandwidth. If the bandwidth is too
small the KDE is not smooth, and if it is too large we cannot
resolve the features of the distribution. For the case shown here, a
bandwidth of 0.08 is a good choice. This value was obtained by
minimizing the integrated squared error, as described in the
main text.

where K is the kernel function. We choose to work with
Gaussian KDEs, where, denoting by n, the dimensionality
of the parameter space,

Ky(y) = [det(H)J71 2™ 7. (A2)

1
(Zn.)nd/Z

In the Gaussian KDE implementation of scipy [101], H
is taken to be proportional to the identity matrix. The
proportionality constant is called the bandwidth of the
KDE, and is a very important parameter, since it defines
the smoothing scale of the approximation to the target
probability density function. In Fig. 10 we show the
approximations to the population probability density
function of log;y(M.,) that we obtain using different
values of the bandwidth (noted bw).

For too large values of the bandwidth, we cannot resolve
the features of the distribution, and for too small values,
the resulting probability density function is not smooth.
We deal with this issue by choosing the bandwidth that
minimizes the integrated squared error [ d6(pp.,(0]a) —
Ppop(6la))?. In practice, it is estimated by using a
Monte Carlo averaging, and the quantity we seek to
minimize is [103]

. 2
/deppop(9|a)2 _n_zppop.—i(9i|a)’ (A3)
S =1

where the sum runs over the n, samples drawn from
Ppop(@la) used to approximate the integral, and
Ppop—i(0la) is the KDE obtained using all n; samples
but the i"* one. The value of 0.08 used in Fig. 10 was
obtained with this method. We also apply it to compute
the bandwidth of the KDE for the LS and HS popula-
tion distributions.

APPENDIX B: SYSTEMATIC BIASES DUE
TO MISEVALUATION OF THE
SELECTION FUNCTION

The selection function used to obtain the results of
this paper was computed with Eq. (4.7). We generated
8 x 10° events for the LS and HS variants from the KDE
and computed the terms E(LS) and E(HS) individually.
In Fig. 11 we compare this selection function with one
obtained using only 2 x 10° points to compute each term.
There is a clear discrepancy between the two functions,
which reflects on the population inference as can be seen
in Fig. 12. There we compare the shift versus error on a
plots obtained using each of these selection functions.
Clearly, using too few points to compute the selection
function leads to systematic biases, as can be seen by the
fact that many more points are below the @, = @, line
than above. We do not expect to observe thousands of
MBHBs with LISA, but we have chosen this large
number of events to emphasize this effect. Even for
fewer events we could be biased due to misevaluation of
the selection function, and a large number of points from
numerical simulations will be needed to mitigate this
effect (see also [104]). Moreover, third generation
ground-based detectors are expected to detect thousands

Lo{ -
\ — 8 x 10” points
\ .
—— 2 x 10% points
0.8
3
o 0.6
0.4
0.2 :
0.0 02 04 06 038 10
«
FIG. 11. Comparison between the selection functions obtained

using different numbers of points.
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FIG. 12. Evolution of the bias and the error on a using
the selection function in blue in Fig. 11 (top) and the one
in orange (bottom). We can clearly observe a systematic
bias in the latter case due to misevaluation of the selec-
tion function. (a) We use 8 x 10° points to evaluate the
selection function of the LS and HS variants. (b) We use
2 x 103 points to evaluate the selection function of the LS and
HS variants.

of events, and will face this same problem. In our study,
this systematic bias becomes negligible when using
O(10°) points for each model.

APPENDIX C: COMPARISON BETWEEN KDE
AND THE POPULATION OBTAINED FROM
SIMULATIONS

In Fig. 13 we compare the population distribution
predicted from numerical simulations to the one obtained
from building a KDE on it.

logy(M..s)
—— Simulations HS
—— KDE HS
logy(2)
T . ;
= B .
o0 O .
2 % o
o o s arcth(x1)
=
=7
N
o
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© arcth(xa)
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85
ES S
A/:Q arcth(8n — 1)
@ =
| AP 2 .~
o% N : o
= "
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5 % Y 2 N
:
R X TR R P CX JE PP JER P
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FIG. 13. Comparison between the population distributions
obtained from numerical simulations and the KDE we build from
it. We purposefully did not smooth the corner plotin order to reflect
the real level of agreement between the two distributions. The top
and bottom panels refers to the LS and HS variants, respectively.
The “bumpy” histograms for the HS variant (in particular for the
spin) highlight that we do not have enough points to build an
accurate enough KDE for our purposes. However the two dis-
tributions are overall in good agreement, and therefore we expect
that the approximation of using the KDE as our “true” fiducial
astrophysical model should not sensibly affect our results.
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