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Destabilizing the Fundamental Mode of Black Holes: The Elephant and the Flea
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Recent work applying the notion of pseudospectrum to gravitational physics showed that the
quasinormal mode spectrum of black holes is unstable, with the possible exception of the longest-lived
(fundamental) mode. The fundamental mode dominates the expected signal in gravitational wave
astronomy, and there is no reason why it should have privileged status. We compute the quasinormal
mode spectrum of two model problems where the Schwarzschild potential is perturbed by a small “bump”
consisting of either a Poschl-Teller potential or a Gaussian, and we show that the fundamental mode is
destabilized under generic perturbations. We present phase diagrams and study a simple double-barrier toy
problem to clarify the conditions under which the spectral instability occurs.
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Introduction.—The advent of gravitational-wave (GW)
astronomy [1,2] and of very long baseline interferometry
[3,4] opened exciting new windows to the invisible
Universe. Black holes (BHs) play a unique role in the
endeavor to test our understanding of general relativity
(GR) and in the search for new physics [5—-11].

According to the singularity theorems [12,13], classical
GR must fail in BH interiors. Quantum mechanics in BH
spacetimes also leads to puzzling consequences, such as the
information paradox [14-16]. It is tempting to conjecture
that a theory of quantum gravity will resolve these issues,
but the scale and nature of quantum gravity corrections to
BH spacetimes is unknown. Uniqueness results in vacuum
GR imply that BHs are the simplest macroscopic objects in
the Universe [17], and BHs do not “polarize” in binary
systems [18-23]. The simplicity of BHs (whether isolated
or in binaries) implies that they are ideal laboratories to
probe the limitations of GR, as long as environmental
effects or astrophysical uncertainties can be ignored. In this
Letter we ask an important question: is it really possible to
ignore environmental effects?

One of the tools to test the Kerr geometry is BH
spectroscopy [24-26], now a thriving field [27-34]. If a
compact binary merger leads to the formation of a rotating
BH, as predicted in GR, the spacetime should asymptote to
the Kerr metric through a relaxation process during which it
can be described as a perturbation of the Kerr metric. The
late-time GW signal (the “ringdown”) is a superposition of
damped exponentials with complex frequencies known as
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the quasinormal modes (QNMs), which can be computed
within perturbation theory as poles of the associated
Green’s function [35-37]. The residues corresponding to
these poles in the complex frequency plane dictate the
amplitude of the response. To model a ringdown signal
using Kerr QNM frequencies in vacuum, we should take
into account the surrounding matter (even if it can be
considered as a small perturbation). This is the main
motivation of our work.

The behavior of the Green’s function in the entire
complex plane can be investigated using the mathematical
notion of “pseudospectrum” [38-42]. Through the pseu-
dospectrum we can understand whether the QNM spectrum
itself is stable under perturbations [43—45]. Recent work on
the pseudospectrum showed that all Schwarzschild QNMs
exhibit spectral instability, with the possible exception of
the longest-lived (fundamental) mode [39]. The fundamen-
tal QNM is expected to dominate the GW response of BHs,
and its spectral stability is crucial for BH spectroscopy with
GW observations [40].

In this Letter, we consider generic, small perturbations of
the effective potential dictating the dynamics of GWs
around Schwarzschild BHs consisting of tiny bumps,
which may be produced, e.g., by matter in the local
BH environment [46], and we show that they inevitably
lead to large shifts in the frequency and damping time
of the fundamental mode. The spectral instability of the
fundamental mode has important implications for BH
spectroscopy: while the overtone instability pointed out
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in Refs. [39,40] may not be easy to observe in the near
future, the fundamental mode is already within the LIGO-
Virgo detection range.

We will work in geometrical units (G = ¢ = 1).

The Regge-Wheeler equation.—Gravitational fluctuations
in the background of a nonrotating BH with mass M can be
reduced to the study of a radial gauge-independent master
function W. In Fourier space W obeys an ordinary differ-
ential equation [47,48]

g
=t [? = V¥ =0, (1)
where the tortoise coordinate r, is defined in terms of the
areal coordinate r via dr/dr, =1 —1/r, w is the Fourier
variable, and we set the Schwarzschild radius 2M = 1. The
angular coordinates were separated via an expansion in
tensor spherical harmonics with angular number
¢ =2,3.... Without loss of generality we focus on odd-
type gravitational perturbations, described by the Regge-
Wheeler potential

G o

Since GW emission is predominantly quadrupolar, we
focus on the £ =2 mode and write V=V,. QNM
frequencies are defined as the complex eigenvalues @ of
Eq. (1) such that perturbations are purely ingoing at the
event horizon and outgoing at spatial infinity [36,37].

Instability of the fundamental mode.—Consider now a
small perturbation to the effective potential (induced, e.g.,
by matter in the BH exterior [46]) of the form

Ve=V+ €Vbumpv (3)

with € < 1 and Vi, a generic bump located at r, = a,
such that Vi, goes to zero as r, — oo at least as fast as
V. Such a bump could be introduced by matter surrounding
the BH (see [49] or Supplemental Material [50] for explicit
examples). We are interested in the complex QNM
frequencies o) = a),(f,g + i(uEfI) of the perturbed potential
V.. When the perturbation is added, the original funda-
mental mode m(()o) migrates continuously in the complex
plane along a curve which, in general, depends on ¢ and on
the parameters characterizing Vipp.

Note that w((f) is not necessarily the fundamental mode
of the perturbed potential V., which is defined as the
QNM with the smallest |w;|. We define w to be the
fundamental mode of the perturbed potential V. and we
set m©) = a)(()e)—i.e., we drop the subscript 0 from the
QNM frequencies that correspond to a continuous defor-

mation of the original fundamental mode »®) = a)(()o).
We observe that one can destabilize the fundamental
QNM in two different ways, as illustrated in Fig. 1:
(i) Destabilization via migration of the fundamental
mode.—By measuring the variation Aw©) = (¢ — ©(© in
a continuous deformation of the original fundamental QNM
frequency, for large enough a we find regimes in which
0'©) = @, but|Aw©) /w(®)| > e.Inthis case the fundamental
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FIG. 1.

Migration of # = 2 QNM:s as a function of the bump position a for a Péschl-Teller perturbation with € = 107°, Left: individual

modes migrate along the black lines. The mode ') (bold line) reduces to the Schwarzschild fundamental mode when e — 0, and the
arrows indicate the direction of migration as a increases. Modes with the same value of a have the same color, and are connected with
dotted lines. Top right: close-up view around the unperturbed fundamental QNM w(?). Bottom right: real and imaginary parts of the
migration distance Aw©) of the perturbed fundamental QNM. We use units such that 2M = 1.
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QNM is destabilized because it migrates over distances in the
complex plane which are much larger than the scale of the
perturbation e. (ii) Discontinuous overtaking of the funda-
mental mode.—In the regime |Aw'©)/w®)|> e, QNMs
which initially had large |w;| can “overtake” @) to become
the new fundamental mode . Each overtaking causes a
discontinuous jump in wp which is orders of magnitude
larger than e.

Poschl-Teller and Gaussian bumps.—We demonstrate
these phenomena by modeling the perturbation Vi, either
by the Poschl-Teller potential

Vpr(r, — a) = sech?(r, — a), (4)

or by a Gaussian peak with varying width o:

Ve(r. —a) = exp <M) (5)

20

We use the shooting method to solve for the QNMs by
integrating Eq. (1) numerically from the boundaries to the
center, and searching for the values of w that give a
matching solution (see, e.g., [52]). We have performed
convergence tests and cross-checked our results against
alternative numerical methods [53,54].

Figure 1 shows the modes for the Poschl-Teller bump as
we increase a for a fixed value of ¢ = 107, In the left panel
we highlight in bold the curve traced by a continuous
perturbation of the original fundamental mode. The top-
right panel shows a close-up view into the trajectory near
% for moderate a, and the bottom-right panel shows the
real and imaginary parts of the perturbed QNM frequency
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as functions of a. The perturbed QNM moves over regions
such that |[Aw©/w®|> ¢ for sufficient large a: the
bottom-right panel shows that |Aw(¢)| grows exponentially
from ~1076 to ~1072 in the regime 10 < a < 33. This is the
“migration instability” of item (i) above.

The exponential growth with a is related to the expo-
nentially increasing nature of the eigenfunction ¥ ~ e/®’:
at large r,, the response of the eigenfunction to a pertur-
bative bump increases exponentially. In the mathematical
literature, a similar exponential behavior is expected
for small disturbances of symmetric multiwell potentials
[55-58]. To the best of our knowledge, there are no
analogous theorems for potentials of relevance to BH
physics.

For a ~ 30, the arrows show that new modes move fast
toward the bottom left of Fig. 1. Eventually, some of these
modes overtake (©): this is the (discontinuous) overtaking
instability described in item (ii) above. For bumps at large
enough distance a, the fundamental QNM can be desta-
bilized by perturbations with € <« 1.

The top-left panel of Fig. 2 shows the discontinuous
overtaking instability of the fundamental mode in more
detail. For a Poschl-Teller bump located at small values of
a, the fundamental mode is still @ = »©). Around a ~ 33,
a new mode coming from the right overtakes (¢ and
becomes the new fundamental mode @, so that the real part
of w has a discontinuity. After three consecutive over-
takings with Awg ~ O(1072), @ jumps one more time to
wg < 0.2, with Awg ~O(107"), and the fundamental
QNM is completely destabilized.

The bottom-left panel of Fig. 2 shows @y as a function
of a. We can identify three different regimes: a first regime
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FIG. 2. Top left: migration of the fundamental mode w in the complex plane when a is increased, for a Poschl-Teller bump with
e = 107%. Discontinuous jumps in w are shown with dotted lines. Bottom left: variation of the real part of w in the top left panel as a
function of a. Top right: “phase diagram” of ¢ vs a for a Poschl-Teller bump. Bottom right: “phase diagram” of ¢ vs a for a Gaussian

bump with different values of e.
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where the fundamental mode is quasistable, a regime where
multiple overtakings occur, and a third regime where the
fundamental QNM is completely destabilized. In the latter
regime, the separation between the real parts of two
consecutive modes is given to a very good approximation
by ®, 11 g — w, g = 7/a: this is the expected characteristic
behavior of modes trapped between two potential barriers
located at distance a from each other (see, e.g., [9,40,46])
and it can lead to multiple ringdown wave trains or
“echoes” [59].

We have repeated the analysis for Poschl-Teller pertur-
bations with different amplitudes €. The top-right panel of
Fig. 2 is a “phase diagram” in the (a,¢) plane showing
where spectral instabilities are possible. The overtaking
instability occurs as soon as we get into the gray area, while
the top-right region corresponds to complete destabiliza-
tion. The bottom-left panel of Fig. 2 is a cross section of
this diagram, corresponding to the horizontal long-dashed
line at € = 107°. The trend is clear and consistent with the
previous discussion: as a increases, the values of € needed
to destabilize the spectrum decrease exponentially, as they
should if the instability is indeed related to the exponen-
tially increasing response of the wave function to the bump
for large values of a.

In the bottom-right panel of Fig. 2 we show a similar
“phase diagram” for Gaussian perturbations with different
values of the amplitude ¢ and width &. For clarity, in this
case we show only the phase diagram boundaries corre-
sponding to complete destabilization. A broader bump (i.e.,
a bump with larger values of o) is more effective at
destabilizing the fundamental mode. This is not simply
due to the fact that we are fixing € and increasing o, thus
producing a “stronger” perturbation of the original poten-
tial. We have repeated the analysis normalizing the
Gaussian bump by 1/+/2706, and we obtain qualitatively
similar results (see the dotted line in the bottom-right
panel). The fact that the QNM instability occurs for smaller
a when the bump is wider is not an artifact of the larger area
under the curve. As we show in Supplemental Material
[50], the qualitative features of this study are confirmed by
the analysis of a simple toy model consisting of a double
rectangular barrier (cf. [46]).

Conclusions.—We have studied two model problems in
which the potential describing gravitational perturbations of
a Schwarzschild BH is perturbed by either a Poschl-Teller or
a Gaussian bump of amplitude € located at distance ~a from
the light ring. We have demonstrated that the fundamental
mode of the Schwarzschild potential can be destabilized in
two ways: either because it migrates continuously by an
amount |A®©)/@®| > e when the perturbing bump is
located at large enough a (“migration instability”), or
because of the appearance of a new family of “trapped
modes” in between the two potential barriers that can
overtake the original fundamental mode (“overtaking insta-
bility”). We have shown through “instability phase

diagrams” that the value of ¢ needed to destabilize the
spectrum decreases exponentially as a increases, and that
broad bumps are more likely to destabilize the fundamental
mode. The analysis is therefore consistent with the con-
clusions of Ref. [39]: short length-scale (ultraviolet) per-
turbations do not destabilize the fundamental QNM, but
large-scale (infrared) perturbations might.

How does spin affect the instability, and does the
instability play a role in gravitational turbulence for
near-extremal Kerr BHs [60]? What are the implications
of our results for modeling the ringdown of BHs sur-
rounded by matter or other forms of “hair”? Is this
instability a threat to the BH spectroscopy program in
GW astronomy [40], and can it circumvent the failure of
determinism in GR [54,61]? More fundamentally, do
infrared and/or ultraviolet corrections to general relativity
affect at a fundamental level the meaning of the QNM
spectrum and BH stability? These are important questions
that must be addressed through numerical simulations and
further theoretical work (see Ref. [62] for first steps in this
direction).
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