App-Based Task Shortcuts for Virtual Assistants

Deniz Arsan
University of Illinois at Urbana-Champaign
Urbana, IL, USA
darsan2@illinois.edu

Aravind Sagar

UserTesting Inc.
San Francisco, CA, USA
asagar(@usertesting.com

ABSTRACT

Virtual assistants like Google Assistant and Siri often interface with
external apps when they cannot directly perform a task. Currently,
developers must manually expose the capabilities of their apps to
virtual assistants, using App Actions on Android or Shortcuts on
i0S. This paper presents SAVANT, a system that automatically gen-
erates task shortcuts for virtual assistants by mapping user tasks
to relevant Ul screens in apps. For a given natural language task
(e.g., “send money to Joe”), SAVANT leverages text and semantic
information contained within Uls to identify relevant screens, and
intent modeling to parse and map entities (e.g., “Joe”) to required
Ul inputs. Therefore, sAvANT allows virtual assistants to interface
with apps and handle new tasks without requiring any developer
effort. To evaluate SAVANT, we performed a user study to iden-
tify common tasks users perform with virtual assistants. We then
demonstrate that SAVANT can find relevant app screens for those
tasks and autocomplete the UI inputs.

CCS CONCEPTS

« Human-centered computing — Interactive systems and
tools.

KEYWORDS

Virtual assistants, mobile apps, interaction mining, task shortcuts

ACM Reference Format:

Deniz Arsan, Ali Zaidi, Aravind Sagar, and Ranjitha Kumar. 2021. App-Based
Task Shortcuts for Virtual Assistants. In The 34th Annual ACM Symposium
on User Interface Software and Technology (UIST "21), October 10-14, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3472749.3474808

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’21, October 10-14, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8635-7/21/10...$15.00
https://doi.org/10.1145/3472749.3474808

1089

Ali Zaidi
University of Illinois at Urbana-Champaign
Urbana, IL, USA
aliz2@illinois.edu

Ranjitha Kumar
University of Illinois at Urbana-Champaign
Urbana, IL, USA
ranjitha@illinois.edu

Ul Screens

Google

o .}

plan food
———
User Task Xi)

Launch App at
Relevant Screen

SAVANT

Figure 1: SAVANT automatically generates task shortcuts
for virtual assistants by mapping user tasks to relevant UI
screens in apps.

1 INTRODUCTION

Virtual assistants like Google Assistant, Siri, and Alexa automate a
variety of everyday tasks. While the set of tasks that virtual assis-
tants can perform is growing every year, it dwarfs in comparison
to the set that users can accomplish with existing mobile apps.

Therefore, virtual assistant platforms have started leveraging
apps to accomplish a wider set of tasks. Platform-specific mecha-
nisms such as Android App Actions [13] and Siri Shortcuts [21] allow
developers to programmatically expose the capabilities of installed
apps to virtual assistants, in effect augmenting an assistant’s skill
set. End users can also endow virtual assistants with new skills by
creating simple logic flows using platforms like IFTTT [31], Work-
flow [54], and Shortcuts [52]. All of these options, however, require
manual development effort.

This paper presents SAVANT!, a system that automatically gener-
ates task shortcuts for virtual assistants by mapping user tasks to
relevant Ul screens in apps (Figure 1). SAVANT then leverages these
shortcuts to launch apps at task-relevant screens. While users can
directly interact with savaNT through voice- and text-based input,
virtual assistants can also interface with the system to automatically
discover and launch UI states within installed apps, which can be
used to perform tasks that the assistants do not currently handle.

Given a natural language task description (e.g., “send money to
Joe”), sAvANT leverages text and semantic information contained
within Uls to identify relevant screens, and intent modeling to parse
and map entities (e.g., “Joe”) to required Ul inputs. A task often
specifies an action such as “send” or “shop,” and an object of that

IShortcuts in Apps for Virtual Assistant New Tasks

https://doi.org/10.1145/3472749.3474808
https://doi.org/10.1145/3472749.3474808
https://doi.org/10.1145/3472749.3474808
mailto:ranjitha@illinois.edu
mailto:aliz2@illinois.edu
mailto:permissions@acm.org
mailto:asagar@usertesting.com
mailto:darsan2@illinois.edu

UIST 21, October 10-14, 2021, Virtual Event, USA

action such as “money” or “clothing.” UI elements contained within
a screen such as icons and buttons often represent actions, while the
object of these actions can be inferred from surrounding text fields.
SAVANT combines icon, button, and text data from UI components
along with an app’s Google Play Store metadata to match tasks to
UI screens and produce task shortcuts.

A task shortcut contains a programmatic reference to an Android
app’s Ul screen (i.e., activity name), which SAVANT can leverage to
launch apps at task-relevant screens. Additionally, a task shortcut
contains a previously recorded interaction trace that captures a path
from an app’s home screen to the shortcut’s UI screen. If savaNT
is unable to directly launch a shortcut’s UI screen, it attempts to
navigate to the screen by replaying the interaction trace.

In essence, SAVANT is an unsupervised search system that finds
the best-matching app screen for a given task by leveraging a large
corpus of unlabeled interaction traces. SAVANT not only identifies
task-relevant apps, but also finds screens within apps that can serve
as a starting point for the task. In fact, SAVANT complements existing
programming-by-demonstration (PBD) systems by providing them
with starting points for task demonstrations they can generalize
from.

This paper demonstrates that savanT effectively identifies UI
screens that are relevant to user tasks. Through a 24-person study
and iterative coding, we identified 20 sets of common smartphone
tasks. We then bootstrapped savANT using the Rico dataset, com-
prising Ul screens and interaction traces from 9.3k Android applica-
tions [11]. We queried savaNT with representative tasks from each
of the 20 sets, and asked three participants to evaluate the top-3
results; SAVANT achieved 70.1% average precision.

2 BACKGROUND & MOTIVATION

Virtual assistants are capable of automatically performing several
everyday tasks with simple voice commands. Leading virtual as-
sistant technologies are now included with all new smartphones
— Google Assistant for Android and Siri for iOS — enabling many
task automation opportunities that leverage installed apps. How-
ever, virtual assistants are limited by the functionalities the app
developers make available for them. If app developers do not make
an extra effort to externally expose specific tasks in their apps, then
virtual assistants are left in the dark.

Even when developers extend these efforts, there are still limita-
tions for both Android and iOS platforms. In Android terminology,
an intent is a description of an operation to be performed [16];
therefore built-in intents are built-in operations that Google Assis-
tant can perform. Google Assistant only supports a limited number
of built-in intents that apps can interface with. While iOS app
developers can encode custom intents to interface with Siri, the
end-user still has to manually configure Siri to allow the per-app
automations.

Consider the PayPal app, which allows its users to send money to
other users. PayPal’s Android developers can use App Actions [13]
to notify Google Assistant that it can use PayPal whenever a user
wants to send money. To use an App Action, the developers need
to add a file (actions.xml) to their app which declares to Google
Assistant that PayPal is able to handle the built-in intent for “create
money transfer” [14]. Although the list of built-in intents is growing,

1090

Arsan et al.

it is not yet possible to enable Google Assistant to automatically
use apps for custom tasks.

To enable Siri to automatically send money through PayPal on
iOS, the process is similar. The iOS developers need to add an
Intent Definition File to their app that declares the tasks the
app supports (i.e., iOS intents). As opposed to Google Assistant,
Siri is compatible with custom intents on top of system intents.
Although iOS provides more flexibility, developers also need to
define a mechanism that donates the shortcut to Siri every time the
user sends money using PayPal [20]. Siri will start using the shortcut
automatically only after it is donated by the app. Developers can
also expose app capabilities to Siri via Suggested Shortcuts [22],
which requires end-user configuration for task automation.

In contrast with these approaches that require additional devel-
opment effort, SAVANT leverages the information within app Uls
to match screens with tasks and automatically generate shortcuts
that launch task-relevant screens within apps. SAVANT is motivated
by the observation that keywords in task descriptions are often
semantically related to UI components. Therefore, it leverages data
collected from interaction mining [12] — sequences of app screens
augmented with render-time properties (i.e., view hierarchies) —
to find semantically related UI screens for a given task description.
Developers do not have to manually instrument an app’s code to ex-
ternally expose its capabilities; SAVANT can automatically discover
an app’s capabilities based on a set of interactions traces recorded
for the app. For example, SAVANT can automatically identify the
Ul state in PayPal where a user can send money and generate a
shortcut for that task. Then, SAVANT can use the shortcut to auto-
matically navigate the virtual assistant (or the end user) to this Ul
screen.

3 RELATED WORK

SAVANT generates task shortcuts that allow external systems —
such as virtual assistants — to automatically navigate users to task-
relevant app screens. The shortcuts it generates depend on the
repository of interaction traces it searches over. For example, end-
users can configure SAVANT to search over interaction traces for
any app that is available on the Play Store, behaving more like an
app recommendation system. If a generated shortcut points to an
app that is not installed on the device, other tools can integrate
with sAVANT to download it from the app store and automatically
navigate users directly to the task-relevant screen. On the other
hand, end-users can limit SAVANT’s search to interaction traces
apps already installed on their devices. In this configuration, the
generated shortcuts behave similarly to deep links, enabling direct
navigation to a task-relevant Ul screen in an app. It is important to
note that in both of these scenarios, SAVANT does not aspire to be a
task automation system, nor does it replicate their functionality.

3.1 Virtual Assistants

Given the increasing popularity of virtual assistants [44], recent
work has focused on improving their user experience [10, 49] and
augmenting their capabilities [24, 58]. Virtual assistants can already
provide users more information about the content on a screen [28,
46]. Moreover, systems like JustSpeak enable virtual assistants to
access developer provided labels for Ul elements [58]. However,

App-Based Task Shortcuts for Virtual Assistants

none of these systems evaluate a screen with respect to the tasks
it can help users complete. SAVANT leverages semantic annotation
techniques [41] to match UI screens and their elements to user
tasks.

3.2 App and Feature Recommendation

Personalized app discovery systems can recommend new apps to
install based on usage patterns [56], context (e.g., location, time)
[32], and privacy preferences [40, 59]. Unlike savaNT, these sys-
tems do not directly link user tasks to apps. SAVANT semantically
analyzes Ul elements on app screens to provide task-specific app
recommendations.

Existing approaches predict and recommend installed apps to
launch based on spatiotemporal [4], sensory [51], and usage pat-
tern [53] data. These system enable users to quickly start relevant
apps; however, unlike SAVANT, these approaches lack mechanisms
to directly launch apps at task-relevant screens.

Translating natural language task descriptions to application
capabilities has also been explored through mapping user tasks to
application commands [1, 25], and providing conversation-relevant
shortcuts for messaging apps from external apps [7]. These systems
only match tasks to features of specific apps, whereas SAVANT is
able to work with any app provided previously recorded interaction
traces.

3.3 Mobile Deep Links

Deep linking conventionally refers to providing a uniform resource
identifier (URI) that grants direct access to a specific page within a
website rather than its home page. In the context of mobile applica-
tions, these URIs point to specific Ul screens within apps instead of
pages within websites. The importance of deep links in mobile apps
has been recognized recently, especially with the rise of novel inter-
action paradigms like virtual assistants. Virtual assistants rely on
third-party apps to fulfill many queries from the user, but currently,
the onus is on app developers to manually expose and provide deep
links to the actions supported by their apps.

The Android platform allows app developers to manually create
deep links for their apps using intent filters, which allow developers
to specify the URI and/or the MIME type of the data that their app
is able to handle [15]. This type of linking targets navigation to
different content inside apps. To enable a wider set of actions for
use with virtual assistants, Google introduced App Actions; how-
ever, developers have to manually add support for these predefined
actions [13].

Researchers have explored different approaches for helping
developers add deep links into their apps. Ma et al. proposed
RESTful-style app models to improve service discovery and content
search [43]; Azim et al. implemented uLink, a developer library
which allows generation of user-defined deep links through instru-
mentation [3]; and Ma et al. proposed Aladdin, an approach using
static and dynamic program analysis to generate deep link APIs for
apps which developers can choose to expose from their own apps
[42].

All of these existing methods still require developer effort to con-
nect virtual assistants to functionality within apps. SAVANT provides
automatic task shortcuts that enable navigation to a task-relevant

1091

UIST ’21, October 10-14, 2021, Virtual Event, USA

screen within an app. Although deep links can contain more infor-
mation than SAVANT’s task shortcuts to automate user actions, they
still impose a burden on the app developers as indicated by their
low adoption rate [29, 42]. SAVANT is a zero-integration alternative
for deep links.

3.4 Task Automation

Several approaches use programming-by-demonstration (PBD)
techniques to automate smartphone tasks. Systems such as
PUMICE [37], KITE [38], SUGILITE [36], and VASTA [50] are akin to
supervised learning: a user demonstrates a particular task in a par-
ticular app, and the system learns how to generalize the interaction
and replay it with different parameters.

In contrast, SAVANT is an unsupervised search system. Users are
not asked to demonstrate or label tasks: instead, the system runs
on a large, unlabeled corpus of interaction traces from many users.
SAVANT does not generalize or automate: it merely finds the best-
matching app screen for a given task. We believe task shortcuts will
integrate well with existing task automation tools, as they provide
means for automatically launching an app at a task-relevant screen
and potentially cut down considerable demonstration effort.

Recent research has explored opportunities to interface with task
automation systems. X-Droid uses task automation with existing
app components to build functional app prototypes [33]. PUMA
explores Ul automation techniques to aid large-scale dynamic anal-
ysis [27]. Humanoid leverages interaction traces for test input gen-
eration for automated UI testing [39]. As opposed to SAVANT, these
methods leverage task automation techniques to achieve their own
goals; existing task automation tools can interface with sAvANT to
improve their user experience.

3.5 Intent Modeling

Intent matching is the process by which words or expressions
are automatically parsed and mapped to specific desired tasks or
outcomes. For example, the expression “send money to Joe” could be
matched to an intent such as send money, and the entity associated
with that intent — “Joe” — can be extracted.

Prior task automation systems utilize intent matching to inter-
face with third-party applications [36, 37], or build conversational
bots [38]. In systems such as SUGILITE [36] and PUMICE [37], intent
matching works closely with the PBD component to recognize in-
tents and entities. In contrast, SAVANT leverages Dialogflow, which
requires only a few example phrases for each intent-entity pair to
train a robust agent [9], eliminating the need for a PBD component.
Moreover, SAVANT is able to maintain the flexibility of systems like
KITE [38] through Dialogflow’s “automated expansion” feature for
entities, which automatically recognizes new values for entities
based on pattern matching.

4 THE SAVANT SYSTEM

SAVANT maps user tasks to relevant app screens, and then launches
those apps directly at those screens. SAVANT’s screen search system
leverages data captured through interaction mining [12]. This data
comprise screen sequences — interaction traces — that capture each
screen’s visual (i.e., screenshots) and structural (i.e., view hierar-
chies) render-time properties. For each screen in the set of available

UIST 21, October 10-14, 2021, Virtual Event, USA

Extract Semantic Fields

[Liu et al. 18]
cons Text
€ Menu |

. Casper & Gambinis =1

(-]

= = =

Buttons

v

Arsan et al.

Retrieve Relevant Ul Screens

TFm

i
. @
+ 7'\

Android OS

|

. Casper & Gambinis
» x]

MENU

Interaction Data \

> 2

Play Store
Descriptions

icons, text, buttons,

—

activity, bounds, trace

SAVANT

H -]
Screen Representations L g e
Intent/Entity | - -
Extraction via :
Dialogflow E : &

"order food" =P L TS

User Task

Launch Relevant Slot-

filled App Screen
Google Assistant

Figure 2: SAVANT matches user tasks (e.g., “order food”) to app screen representations computed over semantically annotated
interaction data and app descriptions from the Google Play Store. SAVANT then directs the Android OS to launch the best-
matching app at the most task-relevant screen and populates the screen’s Ul elements with extracted entity values associated

with the task intent.

interaction traces, SAVANT computes a semantic representation,
which is used to find screens that best match a given user task and
ultimately generate a task shortcut. savaNT leverages the short-
cut to launch the most task-relevant app screen and populates the
screen’s Ul elements with extracted entity values associated with
the task intent. (Figure 2).

4.1 Generating a Task Shortcut

UI components contain semantic information which can be used
to match them to user tasks. In order to gain access to this in-
formation, sAvaNT utilizes user traces collected through interac-
tion mining which captures design and interaction data while an
Android app is being used [12]. These interaction traces comprise
screen sequences illustrating users’ journeys within an app. For
each screen, an interaction trace encodes its screenshot, underlying
structural composition and render-time properties (i.e., view hier-
archy), and the user interactions performed on the screen resulting
in transitions to other screens within the app (i.e., gestures).
Leveraging data contained within view hierarchies, SAVANT com-
putes screen representations that are used to find the best matching
screens for a given user task and generate task shortcuts (Figure 3).
These screen representations encode semantic information about
Ul elements such as icons (e.g., Avatar, Settings, Arrow Forward),
buttons (e.g., Send, Finish, Checkout), and the text fields. Following

1092

Liu et al’s approach, we compute semantic annotations over all Ul
elements on screen [41]. Semantic annotations for icons and but-
tons are likely to match the main action or the verb in a query (e.g.,
“send”). On the other hand, the object of a query (e.g., “money”) is
more likely to be present within text fields on a screen.

Some of the text within these components occasionally lead
to false matches with search queries. For example, nearly every
app mentions email in multiple locations, so a task query such
as “check email” matches many screens that are not from email
clients. We found that including Google Play app descriptions while
performing search helps mitigate this problem and provide better
matches. Therefore, screen representations also include Google Play
app descriptions, which have been processed to remove common
stop words.

Finally, SAVANT’s screen representations include programmatic
references that can be used to launch an app at a specific UI state.
In addition to encoding the structural composition and render-
time properties of a U, a view hierarchy contains the name of the
screen’s Android activity — essentially “an app component that
provides a screen with which users can interact in order to do
something” [17]. The activity name can be used to directly launch
the app at the corresponding screen. In case a screen cannot be
launched directly because it requires input parameters, SAVANT also
stores a pointer to the interaction trace leading up to the screen.

App-Based Task Shortcuts for Virtual Assistants

icons:
avatar [043,003,057,012]
settings [0.86,0.03,096,010]

Manage Balance

See Activity
texts:

Manage Balance [006,018,0.36,0.21]
Send Money [016,054,0.37,057)

SEND AND REQUEST

&

description:
send

Send Money Request Money

request

activity:
"com.paypal.android.p2pmobile
/com.paypal.android.p2pmobile
.home.activities.HomeActivity"

Order Ahead In Store Loyalty Cards

(@) (b)

Figure 3: Home screen for the PayPal app (a) and its com-
puted screen representation (b), which encodes semantic in-
formation — icons, texts, and app description fields — and
a programmatic reference for launching PayPal at this home
screen — the activity name.

Using an off-the-shelf cloud search service, savaNT matches task
queries to the semantic information contained within the screen rep-
resentations via keyword search. SAVANT preprocesses task queries
by performing basic stemming and removing common stop words
that do not add value to the description. We configured the search
with a set of synonyms for common actions found in mobile apps,
derived from UX concepts found in Liu et al. [41], so that task
queries about “chat” will also match screens containing “message”
and “comment”.

A sAvVANT search result contains a set of screen representations
with their corresponding relevance scores indicating how well the
screens matched the query. SAVANT aggregates these results by
app and assigns an overall score to each app equal to a weighted
sum of the individual screen scores. We boost apps with more
matching screens since these apps are more likely to be capable
of meeting the needs of the user. Finally, SAVANT returns the top
screen representation from the highest scoring app, which is called
a task shortcut.

4.2 Using a Task Shortcut

A task shortcut contains sufficient information to launch an app at
a task-relevant screen. To demonstrate how task shortcuts can be
used, we encapsulated SAVANT within a system-level Android app.
Android apps can restrict the activities that can be started externally
from other apps; but there is a special permission that is available
to system-level apps, START_ANY_ACTIVITY, which allow them to
bypass any restriction while starting an activity.

Android apps use intents—messaging objects to request an action
from another app component [16]—to launch new activities. When
an intent contains information on which component will handle the
action, it is considered to be an explicit intent; these are typically

1093

UIST ’21, October 10-14, 2021, Virtual Event, USA

val intent = Intent()

intent.component = componentName
intent.addFlags (FLAG_ACTIVITY_NEW_TASK)
context.startActivity(intent)

B W N =

Figure 4: Kotlin code required for creating an explicit intent
to launch a new activity. componentName contains the target
app and the activity. FLAG_ACTIVITY_NEW_TASK allows creat-
ing the activity as a new task on the same history stack;
when the back button is tapped, the user will be navigated
to the screen where this intent originated from.

used to launch new activities within the same app. When an intent
declares a general action, without containing information about
the component, it is considered to be an implicit intent; these are
typically used to delegate the action to another app chosen by the
user. Although implicit intents are suitable for launching other apps
to handle tasks, they still require users to choose the app they want
to use. As a result, SAVANT uses an explicit intent to start the activity
specified in the activity field of the task shortcut.

Using the example from Figure 3, the activity field within the
task shortcut points to an app (the part before the “/”) and an
activity within the app (the part after the “/”). Combined, these
two strings form a component name. SAVANT uses this component
name to create an explicit intent and sends it to the Android system,
essentially navigating the user to the matched screen (Figure 4).

Some activities require user input to be launched because they
require a specific internal state for those screens to be accessible.
In theory, these user inputs can be provided externally to activities
through various putExtra methods of intents. These methods allow
serializable data to be included alongside intents. Unfortunately
task shortcuts do not support this approach yet, since it requires
knowledge of how an activity is actually implemented. Instead,
when this happens, we use the trace field in the task shortcut and
replay the interactions leading up to the component.

The interaction trace data contains gestures: user actions per-
formed on a UI state resulting in transitions to other UI states
within the same app. Given that the interaction trace contains the
matched UI state, it must also contain the starting state and the
set of transitions that result in the matched UI state. Starting from
the initial state, if we follow these transitions by simulating the
gestures on the screen, we should end up in the matched UI state.

Since SAVANT is a system-level app, it can request the permission,
INJECT_EVENTS, which allows it to simulate gestures on the screen.
SAVANT currently supports simulating two types of gestures: touch
and swipe. By simulating the gestures, SAVANT replays the inter-
actions to reach the matched screen. Although these two gestures
cover most of the transitions between Ul states; sometimes other
gestures such as pinch-and-zoom might be required. SAVANT injects
the gestures as events on to the screen with static parameters from
the interaction trace and presents the step-by-step replay to users,
so that they are aware of the parameter choices that lead up to the
task-relevant screen. This approach requires updated interaction

UIST 21, October 10-14, 2021, Virtual Event, USA

User Utterance —————» ... —_— v D|alog
"book a flight
from Mew York City GOOGLE ASSISTANT AGENT
to Lendon®

t

Arsan et al.
Mapped
flow ——> intents and Entities ——>
Intent: Book Flight
Destination: Londan ACCESSBILITY

Origin: Mew York City SERVICE

Intent/Entity Templates

Training Phrases

EasyTravel

ONE WAY ROUND TRIF

and Sample Values {book a flight from Paris
bock a flight from [eriging o — eae M T'Dk":‘}- baak a flight
[destination] from Paris to Seattle, book S hew iy
‘e flight from Berlin to
origin: Paris, Berlin afg ’
destinatior: Tokyo, Seattle CHATITO Tokyo, book a flight from
Berlin to Seattle} W e

Model Training

Relevant Slot-filled
Application Screen

Figure 5: SAVANT’s Dialogflow agent matches user utterances to intents and entities; the extracted entities are used to autofill
the values of any corresponding Ul elements on task-relevant screens. The agent is trained on phrases generated by Chatito.

traces when the UI for an app changes. When replay fails, SAvANT
falls back to launching the app at its home screen.

The system-level app implementation of SAVANT supports voice-
and text-based inputs directly from the user. Although savanT’s
main goal is to interface with virtual assistants and help them with
tasks they do not know how to handle, end users can also directly
use SAVANT through the app.

4.3 Slot-filling and Intent Modeling

A given user task — “send money to Joe” — usually comprises an
intent—“send money”—and a set of associated entities, which in
this case is “Joe”. To make a task shortcut more useful, in addition to
automatically launching a task-relevant app screen, sAvANT should
autofill Ul screen elements with user inputs corresponding to the
entities of the user task’s intent. To accomplish this goal, which
is known as the slot-filling problem, we implement a Dialogflow
agent [9]. This agent’s purpose is to match user utterances to intents
and entities, which can then be mapped to Ul elements on the app
screen (Figure 5).

The Dialogflow agent simultaneously uses rule-based grammar
matching and ML matching methods to determine the most likely
intent for a given natural language phrase. An intent in Dialogflow
is defined as an “end-user’s intention for one conversation turn”.
In SAVANT’s’ use case, the conversation consists of a single task
phrase, from the user to the system, followed by sAVANT opening a
specific application at a relevant UI screen. For example, the trained
agent may match a user utterance to the “book flight” intent when
the user expresses the desire to book a flight. While intents are
analogous to verbs in sentences, entities are used to represent nouns
and adjectives within natural language phrases. Building upon the
“book flight” example, the agent may match part of the task phrase
to a “destination” entity if the utterance contains where the user
would like to fly to.

We predefined the agent’s intent and entity bank based on ap-
plication concepts extracted from previous work [41] and the for-
mative study identifying common smartphone tasks (Section 5.1).
This manual approach is actually extensible and efficient because

1094

the rules are defined globally across all apps and not on a per-app
basis. Automatically building out these intents and entities from UI
elements present in user traces would be challenging, due to the
lack of order among UI elements. The elements on a Ul screen are
more similar to a “bag of words” representation than to a natural
language utterance, and for intent and entity extraction, that kind
of representation would not be useful in training an agent. Extract-
ing intents like book flight from just analyzing the Ul screen of an
application like Expedia is difficult.

Based on the extracted UX concepts from Liu et al. [41] and the
formative user study, we encoded a robust and generalizable set of
intents and entities that forms the backbone of savanT’s Dialogflow
agent. Both of these sources of user tasks capture common intents
across Android applications: Add, Checkout, Forgot Password, and
Terms of Service. A subset of these concepts can be expressed as
Dialogflow intents. For example, Add can be expressed as an intent,
whereas Terms of Service cannot. This subset of concepts that are
also intents will have corresponding entities; for example, the Add
intent may refer to adding a song entity to a playlist entity.

Dialogflow agents are trained on example phrases and values
for each intent and entity, respectively. For example, for an intent
called greeting, an example training phrase might be “Hi, how are
you”. For an entity called restaurant, an example value might be
“Olive Garden”. To efficiently generate Dialogflow training phrases,
we leverage Chatito, a commonly used dataset generation Domain
Specific Language (DSL) [48]. Instead of manually writing out each
training phrase, we provide Chatito with template intent phrases
such as “book a flight from [origin] to [destination]”, and a list of
values for the entities (origin and destination) expressed within the
template. Chatito then generates all possible combinations of the
phrase with the different entity values filled in, significantly reduc-
ing manual effort. For a DSL comprising 25 intent templates and
20 entities, Chatito approximately generated 100 training phrases
for each intent. We uploaded the phrases generated by Chatito to
Dialogflow, and manually annotated the intent and entities in the
phrases using Dialogflow’s web interface to train the agent.

After finding the most task-relevant screen, SAVANT sends the
task phrase to the trained Dialogflow agent, which returns the

App-Based Task Shortcuts for Virtual Assistants

most likely intent and associated entities extracted from the user
utterance. The entities are then compared to UI elements on the
application screen, and the matching components’ values are set
to their corresponding entity values. Since the Android OS does
not allow regular applications to access the elements of third-party
applications, SAVANT uses accessibility services to access and edit
elements on screens.

4.4 Implementation

We use Python scripts to preprocess the interaction mining data
and compute semantic annotations. We utilize AWS CloudSearch
to perform the search and ranking of screen representations. We
implemented a Node.js API that handles task description stem-
ming, querying the data in AWS CloudSearch, generating the task
shortcuts, and aggregating them in apps. The system-level Android
application and the accessibility service used for slot-filling are
implemented in Kotlin.

5 EVALUATION

We conducted a user study to evaluate whether sAVANT’s seman-
tic search identified UI screens that are task-relevant. Although
there have been many studies focusing on smartphone usage at the
app level [5, 6, 8, 19, 34, 35, 55, 57], there are not many extensive
and publicly available studies investigating smartphone usage at
the task level. Therefore, we first conducted a formative study to
identify common user tasks performed on smartphones. We then
conducted a second study to evaluate SAVANT’s performance on the
representative task set identified by the formative study.

5.1 Identifying Common User Tasks

To the best of our knowledge, the most extensive study investigating
common tasks users perform on their smartphones is the motivating
study done for SUGILITE [36]. However, the results of this study is
not publicly available and the paper only provides eight user tasks.
Thus, we conducted a new 24-person formative study to identify
classes of commonly performed smartphone tasks.

We leveraged methodology similar to prior work [36, 37], and
asked each participant to list five tasks they would complete on a
smartphone. The participants were recruited by advertising through
a university web programming course mailing list. We compensated
each participant with a $10 Amazon gift card. Each session lasted
approximately 15 minutes.

Participants generated a total of 120 tasks. Users generally pro-
vided task descriptions that contained higher-level intents (e.g.,
“message friends”) rather than instance-level instructions (e.g., “tell
my roommate I'm running late”). SAVANT is meant to be used as an
intermediary between virtual assistants and apps to provide tasks
shortcuts. Virtual assistants already extract higher-level intents
from instance-level instructions; therefore SAVANT would mostly
need to handle higher-level intents.

We first grouped the 120 tasks with respect to the Google Play
Store categories they correspond to, forming initial task sets. In-
specting these initial groups, we further categorized tasks that are
very specific into their own distinct classes. For example, we split
“video chat” from its initial grouping with “Communication” tasks
since the remaining tasks were all for text-based communication.

1095

UIST ’21, October 10-14, 2021, Virtual Event, USA

TASK SET PRECISION (%)

message friends (5), text friends
(3), check email (2), communicate
with people (2), chat with friends,

55.6
group chat, message people,
messaging, respond to emails,
send messages, write email
listen to music (6), play music (3),
tch vid 2),b fe ,
watch videos (2), browse forums 88.9

listen to podcast, recipe videos,
watch movies

set an alarm (6), set a reminder
(2), set alarm (2), set alarms, 55.6
set reminder

send money (3), check bank

account (2), deposit a check, make

a payment, make payments, 100
mobile payments, paying people,

track spending

check weather (3), check the

weather (2), calculator, get sports

updates, identify a song, search 778
online, show tickets, take

measurements, what time is it

check calendar (2), view calendar
(2), add tasks, calendar, calendar

to do list, view calendar events, 667
create events, to do list
get directions (2), find directions,
navi.gute., nuvigcfting. toa 778
destination, navigation,
transit time
tullce notes (4), taking notes, 444
write down notes
take photos (2), scan a document,

. . 100
take a picture, take pictures
post a picture, post pictures, m
post updates ’
tfuck diet, track \-\.rctrkout, 6.7
view workout activity
order food (2), buy groceries 100
read books (2), view document 333
video chat (2) 66.7
find deals (2) 100
translate word, translate words 88.9
book a cab, make reservation 778
turn off lights 333
practice flashcards 100
play games 66.7

Figure 6: The 20 task sets identified through the formative
study along with SAVANT’s top-3 precision for each set. The
representative tasks for each set are in bold. The parenthen-
ticals indicate the task’s frequency in the study results.

UIST 21, October 10-14, 2021, Virtual Event, USA Arsan et al.

"message friends" “listen to music"

A fme

« Staed

Groups

Alarm clock

e 42 3

M- 5M

GO Weather Forecast
, & Widgets

e 45 ¥ 50M-100M

. Casper & Gambinis
«]

eny

Most seing

-t

E a6 Special 1m0

ﬁ:ig

¢ 39 ¥ s00k-1M

DW Contacts & Phone

J Free Video Call & Chat & Dialer

ﬂ 100K - 500K ﬂ 1M - 5M

“set an alarm”

Walmart

Good Morning Alarm
Clock

Y 44 3 M-sM

G’ Alarm Sounds &
Ringtones
"check weather”

d
asther
Crave
¢
METEOLIVE

Fels ke 61"

e

NDHENE 1S
OUR WEATRER FORECAST!

Q Weather Live Free

n Weather Crave

Y5 44 L 10M-50M Y 43 ¥ sM-10M

“order food"

each San Francisco
SearchResuts
Setings

O otnecrt

Belissima pizza g

< o a]

)
B satons
@ Videos

Phatns

Swespstkes

Dot s

Song Requests
NI

Wars T isten

Al Cock & Seep T

= Mo

Didn't see what's going on

Seings

CONTINUE.

J) Lyrics Mania - Music
Player

¥ 40 A4

Radio Disney

Y 41 3

Amazon Music

M- 5M £ 100M - 500M M- 5M

Fund Media

Videogram

o o

Western Union Money
Transfer

w44 b4

M- 5M

"get directions"

[}
)

€ RouteText

‘Gunnersbury to Abbey Road
Duration 1 h 6 min

Mode Quickest rou
Transfer time 10 mins

1285 PIRUPIO YUON

Gunnersbury

&

2
West Ham East Nevada Avenue

Drag thepins to salect
downioad srea Tk the Disict i Easiound)awards Upiste
for$5mn (2 sops) Sevice s evry 10 min

lorth 2nd Street

North 3rd Street

©)

Risttiors remotina:
St tarmatonl for 2 (1

Beckon East lowa Avenue
o). Servis s very 10 ke,

Abbey Road

Favorite statio for quick acce

%
. Moovit: #1 Transit App

ﬁ{ 43 2 10M - 50M

o

G
Boating HD
KA eostne
42 2 500K - 1M

Tube Map London
Underground

43 h4

1M - 5M

%

"“find deals"

Samsung, Canon T5i, Nike Shoes

— -

Quickly search all stores for deals

Surveys
Free Magazines

Free Digital Goods

Cheap Hotels & ‘E' Black Friday 2016 Ads,
Vacation Deals & Deals

sd Slickdeals: Coupons &
Shopping

45 4

" FoodHub - Order Food UberEATS: Faster
s Talabat: Food Delivery . Online @ Delivery

Yas % Ya % Yraz &

M- 5M K- 5K M-5M M-5M Y 46 L sook-1M Yy 38 8 100K - 500K

Figure 7: SAVANT’s screen matching results for representative tasks, in descending screen relevance order from left to right.
Elements matching the tasks are highlighted for additional clarity.

1096

App-Based Task Shortcuts for Virtual Assistants

We also merged together some task sets which were thematically
related (e.g., “Tools” and “Weather”). This process resulted in 20
unique sets of tasks. The most frequently occurring task in a set
became the representative task for that set. Ties were decided by
picking the task phrase that had the most common words with the
rest of the set (Figure 6).

5.2 Measuring Task Relevance Precision

We recruited three participants to evaluate the quality of shortcuts
suggested by savaNT. These participants were recruited from the
same mailing list as the formative study (Section 5.1) and were also
compensated with a $10 Amazon gift card.

We first bootstrapped savANT with the Rico dataset, comprising
semantic and textual data for 66k UI screens from 9.3k Android
apps [11, 41]. We computed the top-3 task shortcuts for each repre-
sentative task identified in the formative study. We chose to display
only the top-3 results since three was the maximum number of
shortcuts generated for some of the representative tasks. This is
also consistent with how virtual assistants behave when there are
multiple apps that can help with a given task.

For each task, we showed participants the top-3 results returned
by sAvaNT, and asked them to evaluate whether or not each screen
was task-relevant. We only explained that a relevant task shortcut
navigates users to a Ul screen that helps them complete the specified
task. Similar methodology was employed in prior research by Chen
et. al. where participants were asked to identify the “top-3 relevant
shortcuts for apps” from the context of a text message [7].

Task success rate is not a relevant metric for SAVANT, since it is
not a task automation system. We also do not measure recall mainly
because it would require exhaustive labeling over 66k Ul screens for
each task which is infeasible. Recall is also not particularly helpful
for the general use case: providing users with top-k task shortcuts
would be more than enough to help them accomplish their tasks,
which is the main purpose of SAVANT.

We computed top-3 precision for each of the 20 task sets (Fig-
ure 6). The average precision over all task sets was 70.1%. SAVANT
had 100% top-3 precision for five tasks: “send money”, “take photos”,
“order food”, “find deals” and “practice flashcards”. For 13 out of
the 20 task sets (65%), SAVANT provided at least two relevant task
shortcuts, and the average top-3 precision was greater than 66%
(Figure 7).

Still, sAvANT performed poorly for some task sets. For “take notes’
(44.4%), sAVANT returned shortcuts from domain-specific apps such
as myPill® Birth Control Reminder and Blue Letter Bible that allow
taking notes as side features. SAVANT also suggested a shortcut from
the FlightView Free Flight Tracker app since it treated the verb “take”
as a synonym for “flight”, “take off”. “Post a picture” produced the
worst results (11.1%) since SAVANT only found shortcuts that would
either allow users to make a “post” on a forum or take a “picture”.
Two of the results for “read books” (33.3%) were from Hotels.com
and SpiceJet apps, which highlight the limitation that sAVANT is
is currently unable to distinguish between verbs and nouns. The
only useful shortcut for this task was from the Free Books app.
Finally, for “turn off lights” (33.3%), SAVANT suggests shortcuts
from apps for configuring screen lighting for the night (Night Light
and Blue Light Filter) while the participants were expecting apps for

3

1097

UIST ’21, October 10-14, 2021, Virtual Event, USA

managing smart home devices. For this task, the only shortcut the
participants found relevant was from the Color Lights Flashing app.

6 DESIGN CONSIDERATIONS FOR
REAL-WORLD DEPLOYMENT

This paper presents a new approach to augmenting virtual assistant
capabilities that leverages a repository of previously recorded app
interaction traces. While bootstrapping savaNT with a public inter-
action data repository like Rico [11] was a convenient strategy to
demonstrate the viability of this approach, SAvANT would need to
address a few key challenges to function robustly in the real-world.
A real-world deployment would require strategies for maintaining
a repository of up-to-date app traces, addressing potential secu-
rity and privacy concerns, and expanding to platforms beyond the
Android ecosystem.

6.1 Sustainably Sourcing Traces

In the future, relying only on paid crowdworkers for sourcing high-
quality, up-to-date app traces does not scale. In addition to being a
costly solution, it would be challenging to determine which apps
to sample traces from beyond just the popular ones. Therefore, we
envision a future ecosystem where app interaction traces could
be sourced in two additional ways: having app developers provide
sample interaction traces and directly mining interactions from
user devices.

App developers could include sample interaction traces along
with their apps when they update it. While the first set of sample
traces would need to cover all of the UI screens within the app, the
subsequent traces would only need to refresh new and updated
Ul screens. Moreover, app developers can themselves source in-
teraction traces from crowdworkers or users, tasking them with
re-crawling potentially out-of-date flows. App developers would be
incentivized to contribute interaction traces to a service like SAVANT
so that their app would be automatically discovered, downloaded,
and ultimately used by virtual assistants when it is relevant to a
user’s task.

In the future, end users might also be incentivized to share their
own app interaction traces. An on-device interaction mining app
could record users’ interactions on their smartphone as they engage
with apps. Systems like sAvANT could leverage these interaction
traces to provide more personalized task shortcuts for apps that
users already have on their phones. When a new app is downloaded,
these system could bootstrap task shortcuts with traces from a
public interaction data repository until users generate their own
personal traces from engaging with the app. End users could opt
in to contribute their own personal interaction traces back to this
public interaction trace repository.

Combining interaction data from both public and personal trace
pools could significantly improve SAVANT’s user experience. If a user
already has a task-relevant app installed and personal interaction
traces recorded for this app, savANT would produce results that
are more familiar to its users. When a user does not have a task-
relevant app installed, SAVANT can use the public repository of
traces to suggest an app to bedownloaded and provide the shortcut

https://Hotels.com

UIST 21, October 10-14, 2021, Virtual Event, USA

for the task. If a user has the task-relevant app installed, but has not
used the app enough to generate personalized interaction traces,
SAVANT can leverage traces from the public repository to generate
the task shortcut.

6.2 Addressing Security and Privacy Concerns

Leveraging a system-level app for Ul automation poses some secu-
rity concerns. System-level apps can request special permissions
that are not available to normal apps, like installing other applica-
tions, being able to reboot the device, and setting the system time.
SAVANT uses two special permissions: one that allows it to externally
launch activities within other apps (START_ANY_ACTIVITY) and one
to simulate interaction gestures on the screen (INJECT_EVENTS).
Both permissions are only used with interaction data to automati-
cally navigate users to task-relevant Ul screens. This means, for a
security problem to occur, the trace SAVANT uses for a task shortcut
needs to contain malicious Ul screens and interactions. Google Play
Store already has measures to detect and prevent the installation of
apps that might contain such UI screens [18]. It is also unlikely for
SAVANT to match a UI screen from a malicious trace with a specific
user task.

In terms of privacy, as with any system that leverages user inter-
action data, SAVANT faces the risk of exposing personally identifiable
information (PII) of its users. Interaction mining techniques capture
design and interaction data while an app is being used; therefore,
interaction traces undoubtedly contain sensitive data. The future
SAVANT ecosystem will have to handle user PII in a way that encour-
ages the contribution of interaction traces while strictly protecting
user data.

The most basic solution to this problem is to create and provide
sock puppet accounts that trace contributors can use to explore
apps. During app development, similar accounts are already used to
perform quality assurance. App developers can use those accounts
to provide sample interaction traces along with their apps. Limited
versions of such accounts can also be provided for crowdworkers
for re-crawling out-of-date traces. This solution, however, does
not address the case for a potential on-device mining system that
records interactions from real users.

If SAVANT is to accommodate recording traces as they naturally
happen while users interact with apps on their smartphones, one
potential solution would be to process UI screens when they are
first recorded to automatically detect and remove PII. There are
existing systems that can automatically detect conventional PII like
social security numbers (SSN), email addresses, phone numbers,
etc. through dynamic [23] and static [2] program analysis, natural
language processing [45], and text analysis [26, 30]. Therefore,
using interaction data with app binaries would enable identifying
and removing components that contain conventional PII.

However, more recent regulations like GDPR, define personal
data as “any information which is related to an identified or identi-
fiable natural person” [47]. Further research is required to develop
user-centered privacy models that identify sensitive information
beyond what is conventionally considered PIIL In the future, on-
device mining systems could expose interfaces where end users can
redact sensitive information from their personal traces, especially
if they are being included in the global repository.

1098

Arsan et al.

6.3 Expanding to Other Platforms

While the general approach of leveraging previously recorded app
interaction traces to augment virtual assistant capabilities is plat-
form agnostic, SAVANT currently only interfaces with Android apps
and Google Assistant. We chose to develop SAVANT within the An-
droid ecosystem because it exposes the system-level capabilities
that were required: mining interaction traces, and programmatically
launching UI screens and performing interactions.

Although iOS allows for some types of gesture automation, it
still lacks a public interface for programmatically launching UI
states. While it might still be possible to implement SAVANT as a
system-level iOS application, it would require knowledge of mech-
anisms/APIs within iOS that are not public.

In the future, SAVANT could even interface with apps deployed
on smart devices like televisions, speakers, and other appliances.
Mining and programmatically interacting with non-touchscreen
Uls in such apps could extend this approach beyond smartphones.

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments and suggestions.
This work was supported in part by a research donation from
Google Faculty Research Award and NSF Grant IIS-1750563.

REFERENCES
I

Eytan Adar, Mira Dontcheva, and Gierad Laput. 2014. CommandSpace: modeling
the relationships between tasks, descriptions and features. In Proc. UIST. ACM,
167-176.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. ACM SIGPLAN Notices 49, 6 (2014), 259-269.

[3] Tanzirul Azim, Oriana Riva, and Suman Nath. 2016. uLink: Enabling user-defined
deep linking to app content. In Proc. MobiSys. ACM, 305-318.

[4] Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. 2015.
Predicting the next app that you are going to use. In Proc. WSDM. ACM, 285-294.

[5] Matthias Bohmer, Brent Hecht, Johannes Schéning, Antonio Kriiger, and Gernot
Bauer. 2011. Falling asleep with Angry Birds, Facebook and Kindle: a large scale
study on mobile application usage. In Proc. MobileHCI. ACM, 47-56.

[6] Juan Pablo Carrascal and Karen Church. 2015. An in-situ study of mobile app &
mobile search interactions. In Proc. CHL. ACM, 2739-2748.

[7] Fanglin Chen, Kewei Xia, Karan Dhabalia, and Jason I Hong. 2019. MessageOnTap:
A Suggestive Interface to Facilitate Messaging-related Tasks. In Proc. CHIL. ACM,
575.

[8] Karen Church, Denzil Ferreira, Nikola Banovic, and Kent Lyons. 2015. Under-
standing the challenges of mobile phone usage data. In Proc. MobileHCI. ACM,
504-514.

[9] Google Cloud. 2021. Dialogflow. https://cloud.google.com/dialogflow

[10] Benjamin R Cowan, Nadia Pantidi, David Coyle, Kellie Morrissey, Peter Clarke,
Sara Al-Shehri, David Earley, and Natasha Bandeira. 2017. What can i help you
with?: infrequent users’ experiences of intelligent personal assistants. In Proc.
MobileHCI. ACM, 43.

[11] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,

Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset

for building data-driven design applications. In Proc. UIST. ACM, 845-854.

Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction mining

mobile apps. In Proc. UIST. ACM, 767-776.

Android Developers. 2021. App Actions. https://developers.google.com/actions/

appactions

Android Developers. 2021. Built-in intents. https://developers.google.com/

actions/reference/built-in-intents/

[15] Android Developers. 2021. Handling Android App Links. https://developer.

android.com/training/app-links

Android Developers. 2021. Intents and Intent Filters. https://developer.android.

com/guide/components/intents-filters

Android Developers. 2021. Introduction to Activities. https://developer.android.

com/guide/components/activities/intro-activities

Google Developers. 2021. Play Protect. https://developers.google.com/android/

play-protect

[2

[12

[13

(14

[16

[17

(18

https://cloud.google.com/dialogflow
https://developers.google.com/actions/appactions
https://developers.google.com/actions/appactions
https://developers.google.com/actions/reference/built-in-intents/
https://developers.google.com/actions/reference/built-in-intents/
https://developer.android.com/training/app-links
https://developer.android.com/training/app-links
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect

App-Based Task Shortcuts for Virtual Assistants

[19]

[20]
[21]

[22

[23]

[24]

[25]

[26

[27]

[28]

[29]

[30]

[33]

[34]

[35]

[36

[37]

[38]

Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. 2011. Smartphone usage
in the wild: a large-scale analysis of applications and context. In Proc. ICMI. ACM,
353-360.

Apple Developer Documentation. 2021. Donating Shortcuts. https://developer.
apple.com/documentation/sirikit/donating_shortcuts

Apple Developer Documentation. 2021. Siri Shortcuts. https://developer.apple.
com/design/human-interface-guidelines/sirikit/overview/siri-shortcuts/

Apple Developer Documentation. 2021. Suggesting Shortcuts to Users.
https://developer.apple.com/documentation/sirikit/shortcut_management/
suggesting_shortcuts_to_users

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems 32, 2 (2014), 1-29.
Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, and Michael S
Bernstein. 2018. Iris: A conversational agent for complex tasks. In Proc. CHL
ACM, 473.

Adam Fourney, Richard Mann, and Michael Terry. 2011. Query-feature graphs:
bridging user vocabulary and system functionality. In Proc. UIST. ACM, 207-216.
Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking app behavior against app descriptions. In Proc. ICSE. 1025-1035.
Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: programmable Ul-automation for large-scale dynamic analysis of
mobile apps. In Proc. MobiSys. ACM, 204-217.

Google Assistant Help. 2019. Find info about what’s on your screen.
//support.google.com/assistant/answer/7393909

Ziniu Hu, Yun Ma, Qiaozhu Mei, and Jian Tang. 2017. Roaming across the castle
tunnels: An empirical study of inter-app navigation behaviors of Android users.
arXiv preprint arXiv:1706.08274 (2017).

Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
droid: Detecting stealthy behaviors in android applications by user interface and
program behavior contradiction. In Proc. ICSE. 1036-1046.

IFTTT. 2021. Every thing works better together - IFTTT. https://ifttt.com/
Alexandros Karatzoglou, Linas Baltrunas, Karen Church, and Matthias Béhmer.
2012. Climbing the app wall: enabling mobile app discovery through context-
aware recommendations. In Proc. CIKM. ACM, 2527-2530.

Donghwi Kim, Sooyoung Park, Jihoon Ko, Steven Y Ko, and Sung-Ju Lee. 2019.
X-Droid: A Quick and Easy Android Prototyping Framework with a Single-App
Illusion. In Proc. UIST. 95-108.

Uichin Lee, Joonwon Lee, Minsam Ko, Changhun Lee, Yuhwan Kim, Subin
Yang, Koji Yatani, Gahgene Gweon, Kyong-Mee Chung, and Junehwa Song. 2014.
Hooked on smartphones: an exploratory study on smartphone overuse among
college students. In Proc. CHI. ACM, 2327-2336.

Huoran Li, Xuan Lu, Xuanzhe Liu, Tao Xie, Kaigui Bian, Felix Xiaozhu Lin,
Qiaozhu Mei, and Feng Feng. 2015. Characterizing smartphone usage patterns
from millions of android users. In Proc. IMC. ACM, 459-472.

Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proc. CHL. ACM, 6038—
6049.

Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M Mitchell,
and Brad A Myers. 2019. PUMICE: A Multi-Modal Agent that Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proc. UIST.
577-589.

Toby Jia-Jun Li and Oriana Riva. 2018. KITE: Building conversational bots from
mobile apps. In Proc. MobiSys. ACM, 96-109.

https:

1099

[39

[40

[41

[42]

[44

[45

[46]

N
)

[51

[52

(53]
(54]

[55]

[56]

[57

[58

[59

UIST ’21, October 10-14, 2021, Virtual Event, USA

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
deep learning-based approach to automated black-box android app testing. In
Proc. ASE. IEEE, 1070-1073.

Bin Liu, Deguang Kong, Lei Cen, Neil Zhenqiang Gong, Hongxia Jin, and Hui
Xiong. 2015. Personalized mobile app recommendation: Reconciling app func-
tionality and user privacy preference. In Proc. WSDM. ACM, 315-324.

Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proc. UIST. ACM,
569-579.

Yun Ma, Ziniu Hu, Yunxin Liu, Tao Xie, and Xuanzhe Liu. 2018. Aladdin: Au-
tomating Release of Deep-Link APIs on Android. In Proc. WWW. International
World Wide Web Conferences Steering Committee, 1469-1478.

Yun Ma, Xuanzhe Liu, Meihua Yu, Yunxin Liu, Qiaozhu Mei, and Feng Feng. 2015.
Mash droid: An approach to mobile-oriented dynamic services discovery and
composition by in-app search. In Proc. ICWS. IEEE, 725-730.

Microsoft. 2019. 2019 Voice report: Consumer adoption of voice technology and
digital assistants. https://about.ads.microsoft.com/en-us/insights/2019-voice-
report

Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng
Wang. 2015. Uipicker: User-input privacy identification in mobile applications.
In Proc. {USENIX} Security Symposium. 993-1008.

Jordan Novett. 2019. Microsoft beats Google to the punch: Bing for Android
update does what Now on Tap will do. https://venturebeat.com/2015/08/20/
microsoft-beats-google-to-the-punch-bing-for-android-update-does-what-
now-on-tap-will-do/

European Parliament and Council of the European Union. 2018. General Data
Protection Regulation. https://eur-lex.europa.eu/eli/reg/2016/679/0j

Rodrigo Pimentel. 2021. Chatito. https://github.com/rodrigopivi/Chatito

Xin Rong, Adam Fourney, Robin N Brewer, Meredith Ringel Morris, and Paul N
Bennett. 2017. Managing uncertainty in time expressions for virtual assistants.
In Proc. CHI. ACM, 568-579.

Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb Phillips, Minfan
Zhang, Afsaneh Fazly, and Igbal Mohomed. 2020. VASTA: a vision and language-
assisted smartphone task automation system. In Proc. IUL 22-32.

Choonsung Shin, Jin-Hyuk Hong, and Anind K Dey. 2012. Understanding and
prediction of mobile application usage for smart phones. In Proc. Ubicomp. ACM,
173-182.

Apple Support. 2021. Use Siri Shortcuts.
HT209055

Chang Tan, Qi Liu, Enhong Chen, and Hui Xiong. 2012. Prediction for mobile
application usage patterns. In Nokia MDC Workshop, Vol. 12.

Workflow. 2021. Workflow - Powerful automation made simple. https://workflow.
is/

Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and
Shobha Venkataraman. 2011. Identifying diverse usage behaviors of smartphone
apps. In Proc. IMC. ACM, 329-344.

Bo Yan and Guanling Chen. 2011. AppJoy: personalized mobile application
discovery. In Proc. MobiSys. ACM, 113-126.

Sha Zhao, Julian Ramos, Jianrong Tao, Ziwen Jiang, Shijian Li, Zhaohui Wu, Gang
Pan, and Anind K Dey. 2016. Discovering different kinds of smartphone users
through their application usage behaviors. In Proc. UbiComp. ACM, 498-509.
Yu Zhong, TV Raman, Casey Burkhardt, Fadi Biadsy, and Jeffrey P Bigham. 2014.
JustSpeak: enabling universal voice control on Android. In Proc. W4A. 1-4.
Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. 2014. Mobile app recom-
mendations with security and privacy awareness. In Proc. KDD. ACM, 951-960.

https://support.apple.com/en-us/

https://developer.apple.com/documentation/sirikit/donating_shortcuts
https://developer.apple.com/documentation/sirikit/donating_shortcuts
https://developer.apple.com/design/human-interface-guidelines/sirikit/overview/siri-shortcuts/
https://developer.apple.com/design/human-interface-guidelines/sirikit/overview/siri-shortcuts/
https://developer.apple.com/documentation/sirikit/shortcut_management/suggesting_shortcuts_to_users
https://developer.apple.com/documentation/sirikit/shortcut_management/suggesting_shortcuts_to_users
https://support.google.com/assistant/answer/7393909
https://support.google.com/assistant/answer/7393909
https://ifttt.com/
https://about.ads.microsoft.com/en-us/insights/2019-voice-report
https://about.ads.microsoft.com/en-us/insights/2019-voice-report
https://venturebeat.com/2015/08/20/microsoft-beats-google-to-the-punch-bing-for-android-update-does-what-now-on-tap-will-do/
https://venturebeat.com/2015/08/20/microsoft-beats-google-to-the-punch-bing-for-android-update-does-what-now-on-tap-will-do/
https://venturebeat.com/2015/08/20/microsoft-beats-google-to-the-punch-bing-for-android-update-does-what-now-on-tap-will-do/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://github.com/rodrigopivi/Chatito
https://support.apple.com/en-us/HT209055
https://support.apple.com/en-us/HT209055
https://workflow.is/
https://workflow.is/

	Abstract
	1 Introduction
	2 BACKGROUND & MOTIVATION
	3 Related Work
	3.1 Virtual Assistants
	3.2 App and Feature Recommendation
	3.3 Mobile Deep Links
	3.4 Task Automation
	3.5 Intent Modeling

	4 THE SAVANT SYSTEM
	4.1 Generating a Task Shortcut
	4.2 Using a Task Shortcut
	4.3 Slot-filling and Intent Modeling
	4.4 Implementation

	5 Evaluation
	5.1 Identifying Common User Tasks
	5.2 Measuring Task Relevance Precision

	6 Design Considerations for Real-World Deployment
	6.1 Sustainably Sourcing Traces
	6.2 Addressing Security and Privacy Concerns
	6.3 Expanding to Other Platforms

	Acknowledgments
	References

