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ABSTRACT 
Virtual assistants like Google Assistant and Siri often interface with 
external apps when they cannot directly perform a task. Currently, 
developers must manually expose the capabilities of their apps to 
virtual assistants, using App Actions on Android or Shortcuts on 
iOS. This paper presents savant, a system that automatically gen-
erates task shortcuts for virtual assistants by mapping user tasks 
to relevant UI screens in apps. For a given natural language task 
(e.g., “send money to Joe”), savant leverages text and semantic 
information contained within UIs to identify relevant screens, and 
intent modeling to parse and map entities (e.g., “Joe”) to required 
UI inputs. Therefore, savant allows virtual assistants to interface 
with apps and handle new tasks without requiring any developer 
efort. To evaluate savant, we performed a user study to iden-
tify common tasks users perform with virtual assistants. We then 
demonstrate that savant can fnd relevant app screens for those 
tasks and autocomplete the UI inputs. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools. 
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Figure 1: SAVANT automatically generates task shortcuts 
for virtual assistants by mapping user tasks to relevant UI 
screens in apps. 

1 INTRODUCTION 
Virtual assistants like Google Assistant, Siri, and Alexa automate a 
variety of everyday tasks. While the set of tasks that virtual assis-
tants can perform is growing every year, it dwarfs in comparison 
to the set that users can accomplish with existing mobile apps. 

Therefore, virtual assistant platforms have started leveraging 
apps to accomplish a wider set of tasks. Platform-specifc mecha-
nisms such as Android App Actions [13] and Siri Shortcuts [21] allow 
developers to programmatically expose the capabilities of installed 
apps to virtual assistants, in efect augmenting an assistant’s skill 
set. End users can also endow virtual assistants with new skills by 
creating simple logic fows using platforms like IFTTT [31], Work-
fow [54], and Shortcuts [52]. All of these options, however, require 
manual development efort. 

This paper presents savant1, a system that automatically gener-
ates task shortcuts for virtual assistants by mapping user tasks to 
relevant UI screens in apps (Figure 1). savant then leverages these 
shortcuts to launch apps at task-relevant screens. While users can 
directly interact with savant through voice- and text-based input, 
virtual assistants can also interface with the system to automatically 
discover and launch UI states within installed apps, which can be 
used to perform tasks that the assistants do not currently handle. 

Given a natural language task description (e.g., “send money to 
Joe”), savant leverages text and semantic information contained 
within UIs to identify relevant screens, and intent modeling to parse 
and map entities (e.g., “Joe”) to required UI inputs. A task often 
specifes an action such as “send” or “shop,” and an object of that 

1Shortcuts in Apps for Virtual Assistant New Tasks 
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action such as “money” or “clothing.” UI elements contained within 
a screen such as icons and buttons often represent actions, while the 
object of these actions can be inferred from surrounding text felds. 
savant combines icon, button, and text data from UI components 
along with an app’s Google Play Store metadata to match tasks to 
UI screens and produce task shortcuts. 

A task shortcut contains a programmatic reference to an Android 
app’s UI screen (i.e., activity name), which SAVANT can leverage to 
launch apps at task-relevant screens. Additionally, a task shortcut 
contains a previously recorded interaction trace that captures a path 
from an app’s home screen to the shortcut’s UI screen. If savant 
is unable to directly launch a shortcut’s UI screen, it attempts to 
navigate to the screen by replaying the interaction trace. 

In essence, savant is an unsupervised search system that fnds 
the best-matching app screen for a given task by leveraging a large 
corpus of unlabeled interaction traces. savant not only identifes 
task-relevant apps, but also fnds screens within apps that can serve 
as a starting point for the task. In fact, savant complements existing 
programming-by-demonstration (PBD) systems by providing them 
with starting points for task demonstrations they can generalize 
from. 

This paper demonstrates that savant efectively identifes UI 
screens that are relevant to user tasks. Through a 24-person study 
and iterative coding, we identifed 20 sets of common smartphone 
tasks. We then bootstrapped savant using the Rico dataset, com-
prising UI screens and interaction traces from 9.3k Android applica-
tions [11]. We queried savant with representative tasks from each 
of the 20 sets, and asked three participants to evaluate the top-3 
results; savant achieved 70.1% average precision. 

2 BACKGROUND & MOTIVATION 
Virtual assistants are capable of automatically performing several 
everyday tasks with simple voice commands. Leading virtual as-
sistant technologies are now included with all new smartphones 
— Google Assistant for Android and Siri for iOS — enabling many 
task automation opportunities that leverage installed apps. How-
ever, virtual assistants are limited by the functionalities the app 
developers make available for them. If app developers do not make 
an extra efort to externally expose specifc tasks in their apps, then 
virtual assistants are left in the dark. 

Even when developers extend these eforts, there are still limita-
tions for both Android and iOS platforms. In Android terminology, 
an intent is a description of an operation to be performed [16]; 
therefore built-in intents are built-in operations that Google Assis-
tant can perform. Google Assistant only supports a limited number 
of built-in intents that apps can interface with. While iOS app 
developers can encode custom intents to interface with Siri, the 
end-user still has to manually confgure Siri to allow the per-app 
automations. 

Consider the PayPal app, which allows its users to send money to 
other users. PayPal’s Android developers can use App Actions [13] 
to notify Google Assistant that it can use PayPal whenever a user 
wants to send money. To use an App Action, the developers need 
to add a fle (actions.xml) to their app which declares to Google 
Assistant that PayPal is able to handle the built-in intent for “create 
money transfer” [14]. Although the list of built-in intents is growing, 

it is not yet possible to enable Google Assistant to automatically 
use apps for custom tasks. 

To enable Siri to automatically send money through PayPal on 
iOS, the process is similar. The iOS developers need to add an 
Intent Definition File to their app that declares the tasks the 
app supports (i.e., iOS intents). As opposed to Google Assistant, 
Siri is compatible with custom intents on top of system intents. 
Although iOS provides more fexibility, developers also need to 
defne a mechanism that donates the shortcut to Siri every time the 
user sends money using PayPal [20]. Siri will start using the shortcut 
automatically only after it is donated by the app. Developers can 
also expose app capabilities to Siri via Suggested Shortcuts [22], 
which requires end-user confguration for task automation. 

In contrast with these approaches that require additional devel-
opment efort, savant leverages the information within app UIs 
to match screens with tasks and automatically generate shortcuts 
that launch task-relevant screens within apps. savant is motivated 
by the observation that keywords in task descriptions are often 
semantically related to UI components. Therefore, it leverages data 
collected from interaction mining [12] — sequences of app screens 
augmented with render-time properties (i.e., view hierarchies) — 
to fnd semantically related UI screens for a given task description. 
Developers do not have to manually instrument an app’s code to ex-
ternally expose its capabilities; savant can automatically discover 
an app’s capabilities based on a set of interactions traces recorded 
for the app. For example, savant can automatically identify the 
UI state in PayPal where a user can send money and generate a 
shortcut for that task. Then, savant can use the shortcut to auto-
matically navigate the virtual assistant (or the end user) to this UI 
screen. 

3 RELATED WORK 
savant generates task shortcuts that allow external systems — 
such as virtual assistants — to automatically navigate users to task-
relevant app screens. The shortcuts it generates depend on the 
repository of interaction traces it searches over. For example, end-
users can confgure savant to search over interaction traces for 
any app that is available on the Play Store, behaving more like an 
app recommendation system. If a generated shortcut points to an 
app that is not installed on the device, other tools can integrate 
with savant to download it from the app store and automatically 
navigate users directly to the task-relevant screen. On the other 
hand, end-users can limit savant’s search to interaction traces 
apps already installed on their devices. In this confguration, the 
generated shortcuts behave similarly to deep links, enabling direct 
navigation to a task-relevant UI screen in an app. It is important to 
note that in both of these scenarios, savant does not aspire to be a 
task automation system, nor does it replicate their functionality. 

3.1 Virtual Assistants 
Given the increasing popularity of virtual assistants [44], recent 
work has focused on improving their user experience [10, 49] and 
augmenting their capabilities [24, 58]. Virtual assistants can already 
provide users more information about the content on a screen [28, 
46]. Moreover, systems like JustSpeak enable virtual assistants to 
access developer provided labels for UI elements [58]. However, 
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none of these systems evaluate a screen with respect to the tasks 
it can help users complete. savant leverages semantic annotation 
techniques [41] to match UI screens and their elements to user 
tasks. 

3.2 App and Feature Recommendation 
Personalized app discovery systems can recommend new apps to 
install based on usage patterns [56], context (e.g., location, time) 
[32], and privacy preferences [40, 59]. Unlike savant, these sys-
tems do not directly link user tasks to apps. savant semantically 
analyzes UI elements on app screens to provide task-specifc app 
recommendations. 

Existing approaches predict and recommend installed apps to 
launch based on spatiotemporal [4], sensory [51], and usage pat-
tern [53] data. These system enable users to quickly start relevant 
apps; however, unlike savant, these approaches lack mechanisms 
to directly launch apps at task-relevant screens. 

Translating natural language task descriptions to application 
capabilities has also been explored through mapping user tasks to 
application commands [1, 25], and providing conversation-relevant 
shortcuts for messaging apps from external apps [7]. These systems 
only match tasks to features of specifc apps, whereas savant is 
able to work with any app provided previously recorded interaction 
traces. 

3.3 Mobile Deep Links 
Deep linking conventionally refers to providing a uniform resource 
identifer (URI) that grants direct access to a specifc page within a 
website rather than its home page. In the context of mobile applica-
tions, these URIs point to specifc UI screens within apps instead of 
pages within websites. The importance of deep links in mobile apps 
has been recognized recently, especially with the rise of novel inter-
action paradigms like virtual assistants. Virtual assistants rely on 
third-party apps to fulfll many queries from the user, but currently, 
the onus is on app developers to manually expose and provide deep 
links to the actions supported by their apps. 

The Android platform allows app developers to manually create 
deep links for their apps using intent flters, which allow developers 
to specify the URI and/or the MIME type of the data that their app 
is able to handle [15]. This type of linking targets navigation to 
diferent content inside apps. To enable a wider set of actions for 
use with virtual assistants, Google introduced App Actions; how-
ever, developers have to manually add support for these predefned 
actions [13]. 

Researchers have explored diferent approaches for helping 
developers add deep links into their apps. Ma et al. proposed 
RESTful-style app models to improve service discovery and content 
search [43]; Azim et al. implemented uLink, a developer library 
which allows generation of user-defned deep links through instru-
mentation [3]; and Ma et al. proposed Aladdin, an approach using 
static and dynamic program analysis to generate deep link APIs for 
apps which developers can choose to expose from their own apps 
[42]. 

All of these existing methods still require developer efort to con-
nect virtual assistants to functionality within apps. savant provides 
automatic task shortcuts that enable navigation to a task-relevant 

screen within an app. Although deep links can contain more infor-
mation than savant’s task shortcuts to automate user actions, they 
still impose a burden on the app developers as indicated by their 
low adoption rate [29, 42]. savant is a zero-integration alternative 
for deep links. 

3.4 Task Automation 
Several approaches use programming-by-demonstration (PBD) 
techniques to automate smartphone tasks. Systems such as 
PUMICE [37], KITE [38], SUGILITE [36], and VASTA [50] are akin to 
supervised learning: a user demonstrates a particular task in a par-
ticular app, and the system learns how to generalize the interaction 
and replay it with diferent parameters. 

In contrast, savant is an unsupervised search system. Users are 
not asked to demonstrate or label tasks: instead, the system runs 
on a large, unlabeled corpus of interaction traces from many users. 
savant does not generalize or automate: it merely fnds the best-
matching app screen for a given task. We believe task shortcuts will 
integrate well with existing task automation tools, as they provide 
means for automatically launching an app at a task-relevant screen 
and potentially cut down considerable demonstration efort. 

Recent research has explored opportunities to interface with task 
automation systems. X-Droid uses task automation with existing 
app components to build functional app prototypes [33]. PUMA 
explores UI automation techniques to aid large-scale dynamic anal-
ysis [27]. Humanoid leverages interaction traces for test input gen-
eration for automated UI testing [39]. As opposed to savant, these 
methods leverage task automation techniques to achieve their own 
goals; existing task automation tools can interface with savant to 
improve their user experience. 

3.5 Intent Modeling 
Intent matching is the process by which words or expressions 
are automatically parsed and mapped to specifc desired tasks or 
outcomes. For example, the expression “send money to Joe” could be 
matched to an intent such as send money, and the entity associated 
with that intent — “Joe” — can be extracted. 

Prior task automation systems utilize intent matching to inter-
face with third-party applications [36, 37], or build conversational 
bots [38]. In systems such as SUGILITE [36] and PUMICE [37], intent 
matching works closely with the PBD component to recognize in-
tents and entities. In contrast, savant leverages Dialogfow, which 
requires only a few example phrases for each intent-entity pair to 
train a robust agent [9], eliminating the need for a PBD component. 
Moreover, savant is able to maintain the fexibility of systems like 
KITE [38] through Dialogfow’s “automated expansion” feature for 
entities, which automatically recognizes new values for entities 
based on pattern matching. 

4 THE SAVANT SYSTEM 
savant maps user tasks to relevant app screens, and then launches 
those apps directly at those screens. savant’s screen search system 
leverages data captured through interaction mining [12]. This data 
comprise screen sequences — interaction traces — that capture each 
screen’s visual (i.e., screenshots) and structural (i.e., view hierar-
chies) render-time properties. For each screen in the set of available 
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Figure 2: SAVANT matches user tasks (e.g., “order food”) to app screen representations computed over semantically annotated 
interaction data and app descriptions from the Google Play Store. SAVANT then directs the Android OS to launch the best-
matching app at the most task-relevant screen and populates the screen’s UI elements with extracted entity values associated 
with the task intent. 

interaction traces, savant computes a semantic representation, 
which is used to fnd screens that best match a given user task and 
ultimately generate a task shortcut. savant leverages the short-
cut to launch the most task-relevant app screen and populates the 
screen’s UI elements with extracted entity values associated with 
the task intent. (Figure 2). 

4.1 Generating a Task Shortcut 
UI components contain semantic information which can be used 
to match them to user tasks. In order to gain access to this in-
formation, savant utilizes user traces collected through interac-
tion mining which captures design and interaction data while an 
Android app is being used [12]. These interaction traces comprise 
screen sequences illustrating users’ journeys within an app. For 
each screen, an interaction trace encodes its screenshot, underlying 
structural composition and render-time properties (i.e., view hier-
archy), and the user interactions performed on the screen resulting 
in transitions to other screens within the app (i.e., gestures). 

Leveraging data contained within view hierarchies, savant com-
putes screen representations that are used to fnd the best matching 
screens for a given user task and generate task shortcuts (Figure 3). 
These screen representations encode semantic information about 
UI elements such as icons (e.g., Avatar, Settings, Arrow Forward), 
buttons (e.g., Send, Finish, Checkout), and the text felds. Following 

Liu et al.’s approach, we compute semantic annotations over all UI 
elements on screen [41]. Semantic annotations for icons and but-
tons are likely to match the main action or the verb in a query (e.g., 
“send”). On the other hand, the object of a query (e.g., “money”) is 
more likely to be present within text felds on a screen. 

Some of the text within these components occasionally lead 
to false matches with search queries. For example, nearly every 
app mentions email in multiple locations, so a task query such 
as “check email” matches many screens that are not from email 
clients. We found that including Google Play app descriptions while 
performing search helps mitigate this problem and provide better 
matches. Therefore, screen representations also include Google Play 
app descriptions, which have been processed to remove common 
stop words. 

Finally, savant’s screen representations include programmatic 
references that can be used to launch an app at a specifc UI state. 
In addition to encoding the structural composition and render-
time properties of a UI, a view hierarchy contains the name of the 
screen’s Android activity — essentially “an app component that 
provides a screen with which users can interact in order to do 
something” [17]. The activity name can be used to directly launch 
the app at the corresponding screen. In case a screen cannot be 
launched directly because it requires input parameters, savant also 
stores a pointer to the interaction trace leading up to the screen. 
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(a) (b) 

Figure 3: Home screen for the PayPal app (a) and its com-
puted screen representation (b), which encodes semantic in-
formation — icons, texts, and app description felds — and 
a programmatic reference for launching PayPal at this home 
screen — the activity name. 

Using an of-the-shelf cloud search service, savant matches task 
queries to the semantic information contained within the screen rep-
resentations via keyword search. savant preprocesses task queries 
by performing basic stemming and removing common stop words 
that do not add value to the description. We confgured the search 
with a set of synonyms for common actions found in mobile apps, 
derived from UX concepts found in Liu et al. [41], so that task 
queries about “chat” will also match screens containing “message” 
and “comment”. 

A savant search result contains a set of screen representations 
with their corresponding relevance scores indicating how well the 
screens matched the query. savant aggregates these results by 
app and assigns an overall score to each app equal to a weighted 
sum of the individual screen scores. We boost apps with more 
matching screens since these apps are more likely to be capable 
of meeting the needs of the user. Finally, savant returns the top 
screen representation from the highest scoring app, which is called 
a task shortcut. 

4.2 Using a Task Shortcut 
A task shortcut contains sufcient information to launch an app at 
a task-relevant screen. To demonstrate how task shortcuts can be 
used, we encapsulated savant within a system-level Android app. 
Android apps can restrict the activities that can be started externally 
from other apps; but there is a special permission that is available 
to system-level apps, START_ANY_ACTIVITY, which allow them to 
bypass any restriction while starting an activity. 

Android apps use intents—messaging objects to request an action 
from another app component [16]—to launch new activities. When 
an intent contains information on which component will handle the 
action, it is considered to be an explicit intent; these are typically 

Figure 4: Kotlin code required for creating an explicit intent 
to launch a new activity. componentName contains the target 
app and the activity. FLAG_ACTIVITY_NEW_TASK allows creat-
ing the activity as a new task on the same history stack; 
when the back button is tapped, the user will be navigated 
to the screen where this intent originated from. 

used to launch new activities within the same app. When an intent 
declares a general action, without containing information about 
the component, it is considered to be an implicit intent; these are 
typically used to delegate the action to another app chosen by the 
user. Although implicit intents are suitable for launching other apps 
to handle tasks, they still require users to choose the app they want 
to use. As a result, savant uses an explicit intent to start the activity 
specifed in the activity feld of the task shortcut. 

Using the example from Figure 3, the activity feld within the 
task shortcut points to an app (the part before the “/”) and an 
activity within the app (the part after the “/”). Combined, these 
two strings form a component name. savant uses this component 
name to create an explicit intent and sends it to the Android system, 
essentially navigating the user to the matched screen (Figure 4). 

Some activities require user input to be launched because they 
require a specifc internal state for those screens to be accessible. 
In theory, these user inputs can be provided externally to activities 
through various putExtra methods of intents. These methods allow 
serializable data to be included alongside intents. Unfortunately 
task shortcuts do not support this approach yet, since it requires 
knowledge of how an activity is actually implemented. Instead, 
when this happens, we use the trace feld in the task shortcut and 
replay the interactions leading up to the component. 

The interaction trace data contains gestures: user actions per-
formed on a UI state resulting in transitions to other UI states 
within the same app. Given that the interaction trace contains the 
matched UI state, it must also contain the starting state and the 
set of transitions that result in the matched UI state. Starting from 
the initial state, if we follow these transitions by simulating the 
gestures on the screen, we should end up in the matched UI state. 

Since savant is a system-level app, it can request the permission, 
INJECT_EVENTS, which allows it to simulate gestures on the screen. 
savant currently supports simulating two types of gestures: touch 
and swipe. By simulating the gestures, savant replays the inter-
actions to reach the matched screen. Although these two gestures 
cover most of the transitions between UI states; sometimes other 
gestures such as pinch-and-zoom might be required. savant injects 
the gestures as events on to the screen with static parameters from 
the interaction trace and presents the step-by-step replay to users, 
so that they are aware of the parameter choices that lead up to the 
task-relevant screen. This approach requires updated interaction 
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Figure 5: SAVANT’s Dialogflow agent matches user utterances to intents and entities; the extracted entities are used to autofll 
the values of any corresponding UI elements on task-relevant screens. The agent is trained on phrases generated by Chatito. 

traces when the UI for an app changes. When replay fails, savant 
falls back to launching the app at its home screen. 

The system-level app implementation of savant supports voice-
and text-based inputs directly from the user. Although savant’s 
main goal is to interface with virtual assistants and help them with 
tasks they do not know how to handle, end users can also directly 
use savant through the app. 

4.3 Slot-flling and Intent Modeling 
A given user task — “send money to Joe” — usually comprises an 
intent—“send money”—and a set of associated entities, which in 
this case is “Joe”. To make a task shortcut more useful, in addition to 
automatically launching a task-relevant app screen, savant should 
autofll UI screen elements with user inputs corresponding to the 
entities of the user task’s intent. To accomplish this goal, which 
is known as the slot-flling problem, we implement a Dialogfow 
agent [9]. This agent’s purpose is to match user utterances to intents 
and entities, which can then be mapped to UI elements on the app 
screen (Figure 5). 

The Dialogfow agent simultaneously uses rule-based grammar 
matching and ML matching methods to determine the most likely 
intent for a given natural language phrase. An intent in Dialogfow 
is defned as an “end-user’s intention for one conversation turn”. 
In savant’s’ use case, the conversation consists of a single task 
phrase, from the user to the system, followed by savant opening a 
specifc application at a relevant UI screen. For example, the trained 
agent may match a user utterance to the “book fight” intent when 
the user expresses the desire to book a fight. While intents are 
analogous to verbs in sentences, entities are used to represent nouns 
and adjectives within natural language phrases. Building upon the 
“book fight” example, the agent may match part of the task phrase 
to a “destination” entity if the utterance contains where the user 
would like to fy to. 

We predefned the agent’s intent and entity bank based on ap-
plication concepts extracted from previous work [41] and the for-
mative study identifying common smartphone tasks (Section 5.1). 
This manual approach is actually extensible and efcient because 

the rules are defned globally across all apps and not on a per-app 
basis. Automatically building out these intents and entities from UI 
elements present in user traces would be challenging, due to the 
lack of order among UI elements. The elements on a UI screen are 
more similar to a “bag of words” representation than to a natural 
language utterance, and for intent and entity extraction, that kind 
of representation would not be useful in training an agent. Extract-
ing intents like book fight from just analyzing the UI screen of an 
application like Expedia is difcult. 

Based on the extracted UX concepts from Liu et al. [41] and the 
formative user study, we encoded a robust and generalizable set of 
intents and entities that forms the backbone of savant’s Dialogfow 
agent. Both of these sources of user tasks capture common intents 
across Android applications: Add, Checkout, Forgot Password, and 
Terms of Service. A subset of these concepts can be expressed as 
Dialogfow intents. For example, Add can be expressed as an intent, 
whereas Terms of Service cannot. This subset of concepts that are 
also intents will have corresponding entities; for example, the Add 
intent may refer to adding a song entity to a playlist entity. 

Dialogfow agents are trained on example phrases and values 
for each intent and entity, respectively. For example, for an intent 
called greeting, an example training phrase might be “Hi, how are 
you”. For an entity called restaurant, an example value might be 
“Olive Garden”. To efciently generate Dialogfow training phrases, 
we leverage Chatito, a commonly used dataset generation Domain 
Specifc Language (DSL) [48]. Instead of manually writing out each 
training phrase, we provide Chatito with template intent phrases 
such as “book a fight from [origin] to [destination]”, and a list of 
values for the entities (origin and destination) expressed within the 
template. Chatito then generates all possible combinations of the 
phrase with the diferent entity values flled in, signifcantly reduc-
ing manual efort. For a DSL comprising 25 intent templates and 
20 entities, Chatito approximately generated 100 training phrases 
for each intent. We uploaded the phrases generated by Chatito to 
Dialogfow, and manually annotated the intent and entities in the 
phrases using Dialogfow’s web interface to train the agent. 

After fnding the most task-relevant screen, savant sends the 
task phrase to the trained Dialogfow agent, which returns the 
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most likely intent and associated entities extracted from the user 
utterance. The entities are then compared to UI elements on the 
application screen, and the matching components’ values are set 
to their corresponding entity values. Since the Android OS does 
not allow regular applications to access the elements of third-party 
applications, savant uses accessibility services to access and edit 
elements on screens. 

4.4 Implementation 
We use Python scripts to preprocess the interaction mining data 
and compute semantic annotations. We utilize AWS CloudSearch 
to perform the search and ranking of screen representations. We 
implemented a Node.js API that handles task description stem-
ming, querying the data in AWS CloudSearch, generating the task 
shortcuts, and aggregating them in apps. The system-level Android 
application and the accessibility service used for slot-flling are 
implemented in Kotlin. 

5 EVALUATION 
We conducted a user study to evaluate whether savant’s seman-
tic search identifed UI screens that are task-relevant. Although 
there have been many studies focusing on smartphone usage at the 
app level [5, 6, 8, 19, 34, 35, 55, 57], there are not many extensive 
and publicly available studies investigating smartphone usage at 
the task level. Therefore, we frst conducted a formative study to 
identify common user tasks performed on smartphones. We then 
conducted a second study to evaluate savant’s performance on the 
representative task set identifed by the formative study. 

5.1 Identifying Common User Tasks 
To the best of our knowledge, the most extensive study investigating 
common tasks users perform on their smartphones is the motivating 
study done for SUGILITE [36]. However, the results of this study is 
not publicly available and the paper only provides eight user tasks. 
Thus, we conducted a new 24-person formative study to identify 
classes of commonly performed smartphone tasks. 

We leveraged methodology similar to prior work [36, 37], and 
asked each participant to list fve tasks they would complete on a 
smartphone. The participants were recruited by advertising through 
a university web programming course mailing list. We compensated 
each participant with a $10 Amazon gift card. Each session lasted 
approximately 15 minutes. 

Participants generated a total of 120 tasks. Users generally pro-
vided task descriptions that contained higher-level intents (e.g., 
“message friends”) rather than instance-level instructions (e.g., “tell 
my roommate I’m running late”). savant is meant to be used as an 
intermediary between virtual assistants and apps to provide tasks 
shortcuts. Virtual assistants already extract higher-level intents 
from instance-level instructions; therefore savant would mostly 
need to handle higher-level intents. 

We frst grouped the 120 tasks with respect to the Google Play 
Store categories they correspond to, forming initial task sets. In-
specting these initial groups, we further categorized tasks that are 
very specifc into their own distinct classes. For example, we split 
“video chat” from its initial grouping with “Communication” tasks 
since the remaining tasks were all for text-based communication. 

Figure 6: The 20 task sets identifed through the formative 
study along with SAVANT’s top-3 precision for each set. The 
representative tasks for each set are in bold. The parenthen-
ticals indicate the task’s frequency in the study results. 
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Figure 7: SAVANT’s screen matching results for representative tasks, in descending screen relevance order from left to right. 
Elements matching the tasks are highlighted for additional clarity. 
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We also merged together some task sets which were thematically 
related (e.g., “Tools” and “Weather”). This process resulted in 20 
unique sets of tasks. The most frequently occurring task in a set 
became the representative task for that set. Ties were decided by 
picking the task phrase that had the most common words with the 
rest of the set (Figure 6). 

5.2 Measuring Task Relevance Precision 
We recruited three participants to evaluate the quality of shortcuts 
suggested by savant. These participants were recruited from the 
same mailing list as the formative study (Section 5.1) and were also 
compensated with a $10 Amazon gift card. 

We frst bootstrapped savant with the Rico dataset, comprising 
semantic and textual data for 66k UI screens from 9.3k Android 
apps [11, 41]. We computed the top-3 task shortcuts for each repre-
sentative task identifed in the formative study. We chose to display 
only the top-3 results since three was the maximum number of 
shortcuts generated for some of the representative tasks. This is 
also consistent with how virtual assistants behave when there are 
multiple apps that can help with a given task. 

For each task, we showed participants the top-3 results returned 
by savant, and asked them to evaluate whether or not each screen 
was task-relevant. We only explained that a relevant task shortcut 
navigates users to a UI screen that helps them complete the specifed 
task. Similar methodology was employed in prior research by Chen 
et. al. where participants were asked to identify the “top-3 relevant 
shortcuts for apps” from the context of a text message [7]. 

Task success rate is not a relevant metric for savant, since it is 
not a task automation system. We also do not measure recall mainly 
because it would require exhaustive labeling over 66k UI screens for 
each task which is infeasible. Recall is also not particularly helpful 
for the general use case: providing users with top-k task shortcuts 
would be more than enough to help them accomplish their tasks, 
which is the main purpose of savant. 

We computed top-3 precision for each of the 20 task sets (Fig-
ure 6). The average precision over all task sets was 70.1%. savant 
had 100% top-3 precision for fve tasks: “send money”, “take photos”, 
“order food”, “fnd deals” and “practice fashcards”. For 13 out of 
the 20 task sets (65%), savant provided at least two relevant task 
shortcuts, and the average top-3 precision was greater than 66% 
(Figure 7). 

Still, savant performed poorly for some task sets. For “take notes” 
(44.4%), savant returned shortcuts from domain-specifc apps such 
as myPill® Birth Control Reminder and Blue Letter Bible that allow 
taking notes as side features. savant also suggested a shortcut from 
the FlightView Free Flight Tracker app since it treated the verb “take” 
as a synonym for “fight”, “take of”. “Post a picture” produced the 
worst results (11.1%) since savant only found shortcuts that would 
either allow users to make a “post” on a forum or take a “picture”. 
Two of the results for “read books” (33.3%) were from Hotels.com 
and SpiceJet apps, which highlight the limitation that savant is 
is currently unable to distinguish between verbs and nouns. The 
only useful shortcut for this task was from the Free Books app. 
Finally, for “turn of lights” (33.3%), savant suggests shortcuts 
from apps for confguring screen lighting for the night (Night Light 
and Blue Light Filter) while the participants were expecting apps for 

managing smart home devices. For this task, the only shortcut the 
participants found relevant was from the Color Lights Flashing app. 

6 DESIGN CONSIDERATIONS FOR 
REAL-WORLD DEPLOYMENT 

This paper presents a new approach to augmenting virtual assistant 
capabilities that leverages a repository of previously recorded app 
interaction traces. While bootstrapping savant with a public inter-
action data repository like Rico [11] was a convenient strategy to 
demonstrate the viability of this approach, savant would need to 
address a few key challenges to function robustly in the real-world. 
A real-world deployment would require strategies for maintaining 
a repository of up-to-date app traces, addressing potential secu-
rity and privacy concerns, and expanding to platforms beyond the 
Android ecosystem. 

6.1 Sustainably Sourcing Traces 
In the future, relying only on paid crowdworkers for sourcing high-
quality, up-to-date app traces does not scale. In addition to being a 
costly solution, it would be challenging to determine which apps 
to sample traces from beyond just the popular ones. Therefore, we 
envision a future ecosystem where app interaction traces could 
be sourced in two additional ways: having app developers provide 
sample interaction traces and directly mining interactions from 
user devices. 

App developers could include sample interaction traces along 
with their apps when they update it. While the frst set of sample 
traces would need to cover all of the UI screens within the app, the 
subsequent traces would only need to refresh new and updated 
UI screens. Moreover, app developers can themselves source in-
teraction traces from crowdworkers or users, tasking them with 
re-crawling potentially out-of-date fows. App developers would be 
incentivized to contribute interaction traces to a service like savant 
so that their app would be automatically discovered, downloaded, 
and ultimately used by virtual assistants when it is relevant to a 
user’s task. 

In the future, end users might also be incentivized to share their 
own app interaction traces. An on-device interaction mining app 
could record users’ interactions on their smartphone as they engage 
with apps. Systems like savant could leverage these interaction 
traces to provide more personalized task shortcuts for apps that 
users already have on their phones. When a new app is downloaded, 
these system could bootstrap task shortcuts with traces from a 
public interaction data repository until users generate their own 
personal traces from engaging with the app. End users could opt 
in to contribute their own personal interaction traces back to this 
public interaction trace repository. 

Combining interaction data from both public and personal trace 
pools could signifcantly improve savant’s user experience. If a user 
already has a task-relevant app installed and personal interaction 
traces recorded for this app, savant would produce results that 
are more familiar to its users. When a user does not have a task-
relevant app installed, savant can use the public repository of 
traces to suggest an app to bedownloaded and provide the shortcut 
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for the task. If a user has the task-relevant app installed, but has not 
used the app enough to generate personalized interaction traces, 
savant can leverage traces from the public repository to generate 
the task shortcut. 

6.2 Addressing Security and Privacy Concerns 
Leveraging a system-level app for UI automation poses some secu-
rity concerns. System-level apps can request special permissions 
that are not available to normal apps, like installing other applica-
tions, being able to reboot the device, and setting the system time. 
savant uses two special permissions: one that allows it to externally 
launch activities within other apps (START_ANY_ACTIVITY) and one 
to simulate interaction gestures on the screen (INJECT_EVENTS). 
Both permissions are only used with interaction data to automati-
cally navigate users to task-relevant UI screens. This means, for a 
security problem to occur, the trace savant uses for a task shortcut 
needs to contain malicious UI screens and interactions. Google Play 
Store already has measures to detect and prevent the installation of 
apps that might contain such UI screens [18]. It is also unlikely for 
savant to match a UI screen from a malicious trace with a specifc 
user task. 

In terms of privacy, as with any system that leverages user inter-
action data, savant faces the risk of exposing personally identifable 
information (PII) of its users. Interaction mining techniques capture 
design and interaction data while an app is being used; therefore, 
interaction traces undoubtedly contain sensitive data. The future 
savant ecosystem will have to handle user PII in a way that encour-
ages the contribution of interaction traces while strictly protecting 
user data. 

The most basic solution to this problem is to create and provide 
sock puppet accounts that trace contributors can use to explore 
apps. During app development, similar accounts are already used to 
perform quality assurance. App developers can use those accounts 
to provide sample interaction traces along with their apps. Limited 
versions of such accounts can also be provided for crowdworkers 
for re-crawling out-of-date traces. This solution, however, does 
not address the case for a potential on-device mining system that 
records interactions from real users. 

If savant is to accommodate recording traces as they naturally 
happen while users interact with apps on their smartphones, one 
potential solution would be to process UI screens when they are 
frst recorded to automatically detect and remove PII. There are 
existing systems that can automatically detect conventional PII like 
social security numbers (SSN), email addresses, phone numbers, 
etc. through dynamic [23] and static [2] program analysis, natural 
language processing [45], and text analysis [26, 30]. Therefore, 
using interaction data with app binaries would enable identifying 
and removing components that contain conventional PII. 

However, more recent regulations like GDPR, defne personal 
data as “any information which is related to an identifed or identi-
fable natural person” [47]. Further research is required to develop 
user-centered privacy models that identify sensitive information 
beyond what is conventionally considered PII. In the future, on-
device mining systems could expose interfaces where end users can 
redact sensitive information from their personal traces, especially 
if they are being included in the global repository. 

6.3 Expanding to Other Platforms 
While the general approach of leveraging previously recorded app 
interaction traces to augment virtual assistant capabilities is plat-
form agnostic, savant currently only interfaces with Android apps 
and Google Assistant. We chose to develop savant within the An-
droid ecosystem because it exposes the system-level capabilities 
that were required: mining interaction traces, and programmatically 
launching UI screens and performing interactions. 

Although iOS allows for some types of gesture automation, it 
still lacks a public interface for programmatically launching UI 
states. While it might still be possible to implement savant as a 
system-level iOS application, it would require knowledge of mech-
anisms/APIs within iOS that are not public. 

In the future, savant could even interface with apps deployed 
on smart devices like televisions, speakers, and other appliances. 
Mining and programmatically interacting with non-touchscreen 
UIs in such apps could extend this approach beyond smartphones. 
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