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ABSTRACT

Perception based on 3D data in autonomous vehicles (AV) pursues
high accuracy at a high computational cost. It delays the down-
stream modules in an AV pipeline - planning, prediction, and con-
trol. This prolongs the AV’s time-to-decision and ultimately hurts
the vehicle’s maneuver and safety. Towards efficient perception,
our insight is that the perception module should attend to 3D pixels
that are more relevant to the downstream modules. Accordingly, we
propose incremental perception: each 3D frame is processed in pro-
gressive iterations; early iterations emit inexact perception results
to the downstream modules; later iterations incorporate feedback
from the downstream modules and accordingly refine a 3D frame’s
most relevant portions. Our early results show reduction in AV’s
time-to-decision and therefore safety improvement.
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1 INTRODUCTION

3D vision based on point clouds has core use cases in AVs [25]. A
key challenge is a tension between high computational cost and
the need for low time-to-decision. Point clouds are originated in
LiDAR and fed to a perception module; the perception results, e.g.
object bounding boxes and labels, are further fed to downstream
modules including prediction, planning, and control. The short
delay between data ingestion and control stimulus is crucial to a
vehicle’s maneuver. Prior work suggests that the delay should be
less than 100 ms for safety and passenger comfort [1, 7].

While much prior work focuses on 3D vision accuracy and effi-
ciency [3, 18, 23, 24, 27], the current perception still pays uniform
attention over an entire 3D point cloud, resulting in much resource
waste. For instance, planning shows different sensitivities to differ-
ent neighborhoods of a point cloud, requiring more accurate object
detection on the trajectory of the ego vehicle than on the sidewalk.
Furthermore, the sensitivities also vary across types of perception
errors, depending on the context. For instance, the planner may
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Figure 1: An overview of the AV pipeline and our proposed
addition (in black)

care more about low spatial errors for an obstacle in front of the ego
vehicle, than whether the obstacle is a sedan or a pickup truck. This
resembles how humans drive: to keep our attention on relevant
objects and their relevant details.

Motivated by this observation, we advocate for co-designing
AV’s perception and the downstream modules such as planning and
prediction. As shown in Figure 1, the idea is to add a feedback path
from the downstream to the perception and guide the perception
with the feedback. This enables two key optimizations: (1) early
exit: the perception eschews processing all 3D points in full; (2)
targeted processing: the perception chooses algorithmic building
blocks that best cater to the need of downstream modules. As a
result, the perception can reduce its processing delay and achieve
higher efficiency. To realize the idea, we propose a mechanism
called incremental perception, where the perception module pro-
cesses each point cloud frame in multiple iterations. The initial
iteration quickly produces inexact results, e.g., rough 3D bounding
boxes. Based on the inexact results and the associated confidence,
downstream modules either make decisions with low delays (e.g.,
change the maneuver class so that the ego vehicle can decelerate
early) or request the perception to refine the results with additional
iterations (e.g., to get more accurate coordinates of certain bounding
boxes). Essentially, the downstream steers the perception module’s
attention to the most relevant details of the 3D scene.

Incremental perception raises multiple challenges to the existing
AV stack, which we discuss as open questions. (1) The 3D vision
algorithms shall expose tradeoffs of specific error types; they should
support incremental computation with results reuse across itera-
tions. (2) The planning module should act on inexact perception
when it is appropriate and provide feedback to the perception for
refinement. (3) A vision job manager shall dynamically create and
configure predefined and on-demand vision jobs, and dispatch them
to respective point cloud frames. (4) The OS should schedule a job
graph with circular dependency.

This paper makes the following contributions:
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o We identify the lack of targeted attention as a major ineffi-
ciency in AV’s perception. In response, we advocate for guid-
ing the perception with feedback from downstream modules,
notably planning and prediction.

e We propose the mechanisms of incremental perception and
priority object vectors, which allow an AV system to act upon
perception results with low delays and refine perception on
demand.

e We identify open research questions in 3D vision algorithms,
planning, and AV job management.

2 BACKGROUND

An AV pipeline comprises major modules as shown in Figure 1. The
perception module captures input from multiple sensors: radars,
2D cameras, LiDAR, inertial measurement units (IMUs), and global
navigation satellite system (GNSS) receivers. The perception fuses
multi-modal sensor data to detect and track nearby objects. Con-
suming the perception results, the localization module identifies
the current position of ego vehicle with predefined HD maps; the
prediction module predicts the intentions and actions of nearby
objects. Based on the information, the planning module gener-
ates a navigation plan for the next several seconds. According to
the plan, the control module takes driving policies into account
and outputs control commands to the actuators. Often, the control
module sends a new command every tens of milliseconds. If there
is no update (e.g. the perception is busy processing a 3D frame),
the actuator will continue executing the most recent command.
Therefore, to timely respond to driving events, an AV system must
have low time-to-decision.

3 A CASE FOR INCREMENTAL PERCEPTION
3.1 The cost of 3D vision

3D perception is expensive. Real-time processing of point clouds
requires substantial computing resources. Popular object detection
algorithms such as PV-RCNN [18] are reported to take over 100 ms
per frame on a modern GPU such as Titan RTX; such a delay is
already over the ideal time-to-decision which is often tens of ms. In
real-world deployment, 3D perception is likely to take even longer.
(1) The GPU is likely to face energy and thermal constraints. (2)
The GPU is shared by multiple AV modules, e.g. prediction based
on deep learning. (3) Recent AV systems incorporate more LiDARs
per vehicle, e.g. 4-8 in recent products [13, 17], which amplify the
rate of 3D data. To process points clouds from these LiDARs in real
time, an AV would need multiple GPUs which can consume more
than one kilowatt. Although GPUs are getting faster over years,
their scaling rate can hardly catch up with the scaling of algorithm
complexity and LiDARs.

Accuracy is not the only goal Most existing research optimizes
AV modules in isolation. In particular, most 3D vision works focus
on accuracy or efficiency within the scope of a vision algorithm. The
perception accuracy, measured as mAP or IoU, is often evaluated
against pre-defined thresholds, e.g. IoU >= 0.7 for successful car
detection and IoU >= 0.5 for pedestrian detection. The metrics can
fail to capture the result relevance to AV driving [15].
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Accuracy (loU=0.7)
Pt % - Latency
Easy Medium Hard
100% 98.2 89.6 89.0 127ms
80% 96.5 89.43 88.1 115ms
75% 94.8 86.8 80.2 105ms
70% 90.4 79.7 77.7 101ms
60% 80.5 69.6 67.6 99ms
55% 71.2 60.7 57.6 98ms

Table 1: Performance comparison of 3D object detection
with partial processing of point clouds. Model: PointRCNN.
Dataset: KITTI. Object: cars. GPU: Titan XP
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Figure 2: Processing more 3D points increases object detec-
tion accuracy (right y-axis) while reducing safe distance (left
y-axis) due to longer processing delays. Object: cars. mAP:
IoU>=0.7. Vehicle speed 22m/s

For this reason, inexact yet timely object detection can be more
preferable than exact yet slow detection, as the former can lead
to safer vehicle maneuver [9]. For instance, for the planning mod-
ule to avoid colliding with an object that suddenly appears, low
spatial error matters while low classification error (is the object a
pedestrian or a biker?) matters less.

3.2 Benefits of incremental perception

Incremental perception executes a 3D vision pipeline in multiple
refinement iterations, where each iteration consumes a part of the
point cloud and/or executes a part of the vision pipeline. As a result,
the AV’s time-to-decision decreases; perception is more targeted
and thus enjoys higher efficiency.

Table 1 shows motivational evidence for incremental percep-
tion. It shows our experiment of applying partial processing in the
perception module based on PointRCNN [19]. During the training
phase, we only require the regression head to regress 3D bounding
box positions from the foreground points. We measure that pro-
cessing a 3D frame in full (16K points) will take 127 ms. We test
the model with sampling 100 percent, 80 percent, 75 percent, and
70 percent of points in separate runs. Our results show that partial
processing of point clouds offers a variety of trade-offs between
latency and accuracy. For instance, with 80% points, mAP for de-
tecting a car is 91.3 (across all test cases), and the average latency
per image is 115 ms; processing 75% and 70% of points reduced
latency to 105 and 101 milliseconds, respectively.
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Based on the experiment, Figure 2 further shows the impact on
driving. As the perception module processes a larger fraction of
3D points per frame, the object detection accuracy increases as
expected. On the other hand, however, the safe distance also in-
creases, meaning that the vehicle will travel a much longer distance
before it fully stops and avoids collision with the detected object. A
range of viable middleground exists: for instance, the perception
may process 70% — 100% of 3D points, giving the control module
early opportunities to start deceleration.

3.3 Need for downstream feedback

Not all objects or regions in a 3D frame have the same level of
significance to the downstream modules. This has already been
recognized by existing work and used to prioritize objects or regions
in a frame. However, prior work exploits only static and coarse-
grained knowledge, such as important object classes [12] or ground
segmentation [14]; it lacks crucial contexts of planning/prediction,
e.g., whether an obstacle is on the trajectory of an ego-vehicle, what
are the predicted trajectories of other vehicles, etc. As a result, prior
work often has hard-coded policies built in and loses flexibility.

3.4 Proposed mechanism

Our idea is to execute perceptional incrementally, with downstream
tasks guiding the “attention” of perception. As a preliminary design,
we introduce an adaptation module shown in black in Figure 1. The
module takes feedback from the downstream and creates a priority
object vector (POV). POV is continuously generated, reflecting how
likely the detected objects (which have inexact features) influence
the outcome of downstream modules. For example, vehicles travel-
ing on the road will have higher priorities in the POV than those
parked on the roadside. Similarly, pedestrians on a crosswalk will
have higher priorities than those on sidewalks. With POV, the sub-
sequent perception iterations tolerate errors on selective features
such as bounding box coordinates or object classes while dedicating
more resources to other features of objects of interest, e.g. vehicle
turn signals or human ages.
We next describe two use cases of incremental perception.

Use case 1: perception guided by motion planning In AV, re-
planning occurs frequently in order to take into account newly
detected objects and update the ego vehicle trajectories. The tra-
jectories will exhibit different sensitivities to the objects: as these
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Figure 4: Example execution of the proposed incremental
perception as compared to the existing one-shot perception,
showing that the former results in safer, more comfortable
maneuver. At time = 0, AV ingests a point cloud frame which
contains an obstacle.

objects have different motion models and uncertainty, their tra-
jectories may intersect with the ego trajectory in the future with
different probabilities. Objects with higher probabilities of inter-
action should be highlighted in the POV and thus receive higher
attention from the perception.

Use case 2: perception guided by risk estimation The sur-
rounding objects pose different levels of risks to the ego vehicle.
The risk is contributed by the motion patterns of nearby vehicles
or pedestrians; it also depends on the context including the road
condition, the traffic flow, and the lighting. The downstream mod-
ules can quantify the risk based on their knowledge and associate
estimated risks with detected objects or frame regions. Based on
the risk feedback, the perception may refine the bounding boxes
of high-risk objects in order to estimate their velocities more accu-
rately; it may also refine the class labels of objects in order to better
model their future motion. To do so, the perception may either
sample more 3D points from the neighborhoods of these objects,
or add extra processing stages for these objects.

Example execution Figure 4 showcases our proposed mechanism
compared to the existing one. With our incremental perception,
the AV perception detects an obstacle early on (despite of inaccu-
rate obstacle coordinates), which prompts the planning/control to
decelerate the vehicle (t=0.25s). Subsequent perception iterations
further refine the detection results, allowing replanning with more
accurate deceleration (t=0.4s and later) until full stop. Overall, incre-
mental perception reduces time-to-decision, allows early brake, and
results in smoother vehicle slowdown. By contrast, the one-shot,
non-incremental perception incurs a much longer delay in process-
ing one 3D frame. As a result, the planning becomes aware of the
obstacle much later in time (t=0.4s) and is left less time to react to
the object. The planning module has to exert a higher deceleration,
which is reflected as a steeper curve in Figure 4. Such maneuver
increases vehicle jerk and passenger discomfort; it may even result
in a collision if the obstacle’s initial distance is too close.

4 RESEARCH QUESTIONS

Our proposal raises multiple challenges to AV systems.



4.1 3D vision algorithms

Vision algorithms need the following new capabilities.

e Targeted tradeoffs. While accuracy/delay tradeoffs are well stud-
ied in 3D vision, we believe they should also allow control of types
of errors, such as bounding box errors or object categorization fail-
ures. It enables the perception to precisely adapt to the feedback
from the planning and control modules.

o Incremental by construction. As a point cloud frame is processed
in multiple iterations, it is beneficial for later iterations to reuse
results of earlier iterations and minimize re-computation across
iterations.

We next analyze how existing 3D vision algorithms can be trans-
formed to meet the above requirements. We study PV-RCNN [18], a
popular 3D object detector of point clouds. In a nutshell, PV-RCNN
detects objects in two steps: (1) it first voxelizes a raw point cloud,
encodes voxels with 3D sparse convolution layers, and generates
3D object proposals with object detection on a 2D bird view; (2)
it then refines the 3D proposals by summarizing voxel features as
vital points and aggregating keypoint to Rol grids.

We bake targeted trade-offs into the algorithm by tuning its hy-
perparameters based on their cognitive motivations. (1) To trade
off the classification accuracy, we vary the object detector in step
1 by adjusting the detector’s neural network depth and internal
feature dimensions. It does not affect the bounding box accuracy
in step 2 because it only affects PV-RCNN’s step 1. (2) To trade
off the bounding box accuracy, we vary PV-RCNN’s keypoint sam-
pling strategies in step 2, e.g., choosing between cheap random
sampling or expensive farthest point sampling and changing the
spatial density of the sampled keypoints. Doing so will not affect
object classification in step 1.

To make PV-RCNN incremental, we decompose it along two
dimensions.

e By algorithm steps. As soon as step 1 generates rough 3D box
proposals with classifications, the algorithm emits the results to the
downstream modules. For each proposal, the vision algorithm also
emits estimated confidence. Only for the 3D boxes on which the
downstream modules show interest (e.g., those intersecting with
the ego vehicle’s trajectory), the vision algorithm invokes step 2
to refine bounding boxes with proposal-specific features, which
requires more expensive keypoint feature extraction and Rol grid
pooling.

o By data sampling. As shown in Figure 2, the perception module
runs the first iteration with randomly sampled points, e.g., 50%
of a point cloud frame. On the sparse samples, the module runs
object detection and/or segmentation and reveals inexact results to
the planner, allowing it to start planning. As feedback, the planner
requests additional processing over key segments and priority ob-
jects, for which the perception runs extra passes over additional 3D
points sampled around the interesting segments or objects, creating
refined patches in the point cloud.

The two decompositions are not mutually exclusive and can be
integrated. It is worth noting that our current design does not
require changing the set of neural networks used in the original
PV-RCNN design. Furthermore, it may be possible to train a series
of nested neural networks [6] for data sampling decomposition:
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each neural network runs in one iteration on a down-sampled point
cloud version.

Overhead analysis The aforementioned decompositions may in-
troduce additional or redundant computation to the perception. The
key to reducing the overhead is computation reuse across iterations.
For the decomposition by algorithm steps, computation reuse can
be as trivial as caching results of prior steps; the overhead is there-
fore insignificant. For decomposition by data, computation reuse
is more challenging. Because the popular building blocks of 3D
vision algorithms, e.g., PointNet [3], have extensive nonlinear com-
putations interleaved with linear layers, partial results of nonlinear
computations cannot be trivially combined. Although recent works
on graph neural networks proposed to reorder linear/nonlinear
layers or even remove nonlinearity [22], their efficacy on 3D vision
is yet to be seen.

4.2 Planning with inexact perception

Today’s planning module assumes that the perception input is exact
and final. With incremental perception, the planning module should
work with inexact perception that is being refined and take into
account the uncertainty associated with perception.

The first challenge is how to ensure that the generated vehicle
maneuver is safe. To this end, we consider two planning strategies.
First, the planning can use the inexact perception to support a high-
level plan, e.g. maneuver class such as lane-keeping or changing.
It still generates low-level plans, e.g. trajectories, with the exact
perception results on the previous 3D frame. Second, the planner
computes multiple alternative plans (i.e., multimodal planning [21]),
assesses their risks, and starts executing one with sufficiently low
risk. For instance, the AV may switch from the current lane that
may have an obstacle to an adjacent lane that is certainly empty.
Meanwhile, the planning module submits a refinement request to
the perception module: R =< S, t, p >, where S can be an object ID;
t is the time budget for refining the perception, decided based on
the velocity of the ego vehicle and other objects; p is the dimension
of refinement, e.g., spatial error, classification, properties, etc. Upon
the refinement arrives, the planning may continue the current plan
or switch to an alternative one.

The second challenge is to ensure that the planning and control
have sufficient knowledge for guiding the upstream perception. The
knowledge can be conveyed in multiple ways. First, it comes from
the perception. For each detected object, the perception indicates an
estimated accuracy improvement a and time cost t. For instance, for
a bounding box of pedestrian it can specify a=0.2 (mAP) and =100
ms. Based on the possible replanning implication of the improved
accuracy (e.g. will the vehicle need a new maneuver class or just
adjust the trajectory?) and the ego vehicle’s state after the estimated
delay (100 ms), the planning module can decide whether to request
refinement. Second, the knowledge comes from developers, who
can specify pre-defined rules, e.g. pedestrians with small bounding
boxes should receive coordinate refinement with high priority, as
these bounding boxes may correspond to children. Third, the plan-
ner may learn such knowledge from historic driving traces through
training. As a result, the planner can predict what objects (based on
their partial, inexact features) are likely to have the highest impact
on the planning outcome.
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4.3 Vision job manager

A job manager creates vision jobs and configures them: dispatching
jobs to input data frames and setting job hyperparameters, e.g., the
depth of neural networks. In response to incremental perception,
the manager manages two types of jobs:

e Predefined: these periodic jobs are scheduled on new point clouds
with aggressive sampling. Their purpose is to maintain a rough,
continuous perception of the surrounding environment.

o On-demand: these jobs are created based on refinement requests
from downstream modules. The purpose is to increase perception
accuracy on certain dimensions.

Figure 5 shows an example decision to be made by the job man-
ager, given that the planner requests a perception update. (1) The
job manager may choose to create a vision job for refining objects
on a previous frame F; sampled at 1, which has been roughly
processed with sparse 3D point samples. By refining the partial
results, the vision job incurs a short delay (§1) before the planner
can replan. However, F; lags behind the physical world; the lag
introduces uncertainty in object location, which the planner must
take into account. (2) Alternatively, the manager may create a vision
job on a more recent frame Fy sampled at t;. Because F; is fresh
and unprocessed, the vision job incurs a longer delay 82; but the
detected objects will reflect a more updated physical world. The
result imposes less uncertainty on the planner.

4.4 Job scheduling

To schedule CPU, GPU, and IO jobs, existing schedulers for AV often
assume a DAG task graph, where jobs have no circular dependencies.
By doing so, it allows simple schedule policies such as earliest
deadline first in Autoware.

Our incremental decision raises new challenges: the job manager
will create jobs dynamically per the downstream feedback; the
outcome of some jobs may entail more jobs, resulting in circular
dependencies. To schedule jobs, a new scheduler may order all jobs
by two dimensions: frame timestamps and refinement levels. With
lightweight reinforcement learning, the scheduler can predict the
chances of a job spawning new jobs; it can then unroll the task
graph for the next scheduling horizon (often several seconds) and
allocate time to jobs accordingly.

5 RELATED WORKS

Deep Learning with 3D data: Qi et al. introduced PointNet, a
popular representation of 3D data [4]. It introduces a neural network
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model for point cloud data with multi-layer perception, pooling,
and fully connected layers. To extend PointNet, they incorporated
hierarchical feature learning into the network design where the
centroid points are used by random FPS in the aggregation steps [3].
Some works focused on reducing latency by rasterizing a point
cloud and converting points into a voxel grid [5]. Because of the
low resolution of the grid, multiple points are consolidated into a
single cell during the voxelization process, which loses information.
Point cloud sampling: There have been rich results on sampling
point clouds for analytics. Popular packages such as PCL imple-
ments standard sampling algorithms such as VoxelGrid filter and
Poisson sampling. For semantic segmentation, RandLA-Net [10]
downsamples large point clouds using cheap random sampling, and
makes up the possible accuracy loss with progress local feature
aggregation.
Algorithm-hardware co-optimization: Another line of related
work is to co-design AV pipelines with the underlying hardware.
To this end, Mesorasi [8] modifies the vision algorithm to realize
delayed-aggregation, a new technique for hiding long delays and
reducing redundancies. They further implement delay-aggregation
on neural accelerators. Tigris [23] speeds up KD trees, a key bottle-
neck in point cloud registration.
Co-design of AV modules: Related to our work, a small number of
works optimize across modules of an AV pipeline. Fang [7] proposes
to adapt motion planning algorithms to meet the target delays
allocated by the whole AV system, for which it builds on projects
ERDOS and Pylot [9]. Piazzoni et al. [16] models the perception’s
errors with regard to the AV’s decision-making, which motivates
our work. There has been efforts on unifying multiple AV modules
with one learnable neural network [2, 26]; while effectiveness is
shown, such approaches would have to forgo mature algorithms of
3D vision, planning, and control.
AV software/hardware stack: Liu et al. overviews the stack and
describes the top challenges [11]. Sung et al. addresses scheduling
inefficiency in the stack and shows that a modern stack can run on
a single Jetson AGX Xavier [20].

6 CONCLUSIONS

This paper identifies a key inefficiency in the modern AV pipeline:
the computation of perception is one-shot and does not take into
account the relevance of 3D points, scene regions, and objects. To
this end, we propose a feedback path from the planning and control
modules to the perception module, an approach dubbed incremental
perception. At run time, the perception module processes each 3D
frame in multiple iterations, of which early iterations emit fast,
inexact results and later iterations emit more accurate results for
selective 3D points and objects. In this process, the perception
continuously incorporates the feedback from planning and control,
therefore steering its attention to the most relevant scene details.
We present an initial design, show early evidence of the approach’s
benefit, and identify open questions. Incremental perception urges
a rethink of the AV software stack design.
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