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The self-energies of the full set of flavor SU(3) octet and decuplet baryons are computed within a
relativistic chiral effective theory framework. The leading nonanalytic chiral behavior is derived for the
octet and decuplet masses, and a finite-range regularization consistent with Lorentz and gauge invariance is
applied to account for the finite size of the baryons. Using a four-dimensional dipole form factor, the
relative importance of various meson-baryon loop contributions to the self-energies is studied numerically
as a function of the dipole range parameter and meson mass, and a comparison is made between the
relativistic results and earlier approximations within the heavy baryon limit.
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I. INTRODUCTION

Understanding the structure and interactions of atomic
nuclei and their constituents from the fundamental theory
of quantum chromodynamics (QCD) poses one of the
greatest challenges of modern subatomic physics. In the
nearly 50 years since the formulation of QCD, significant
progress has been made in describing the high-energy
behavior of hadronic cross sections in terms of quark and
gluon degrees of freedom, using the tools of perturbation
theory to expand around the small value of the QCD
coupling at short distances. In the low-energy realm,
however, where the coupling becomes large and these
tools are no longer applicable, other methods must be
sought to provide approximate solutions.

The most common approach for describing low-energy
hadron structure has been the use of effective field theories,
in which “effective” hadronic degrees of freedom are
typically used, constrained by the known symmetries of
QCD which any such approximate theory must respect.
Along with Lorentz invariance and electromagnetic gauge
invariance, one of the most crucial symmetries for under-
standing the dynamics of hadrons and nuclei at low
energies is chiral symmetry. In particular, the spontaneous
breaking of chiral symmetry leads to the appearance of
nearly massless pseudoscalar Goldstone bosons, which are
identified in nature with pions and kaons. Here effective
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chiral theories have been constructed, in which the pseu-
doscalar mesons play a fundamental role, and calculations
can be performed based on expansions of observables in
powers of (low) momenta or the pion mass relative to the
nucleon mass.

The applications of chiral symmetry and its breaking for
hadron and nuclear structure are too numerous to list (see,
e.g., Refs. [1-3] for overviews). One of the important areas
where this has received attention in recent years is in the first
principles calculation of hadron properties, such as masses,
in lattice QCD [4-7]. Considerable progress has been made
in pushing lattice calculations closer to the physical region, in
terms of the lattice spacing, lattice volume, and quark mass.
Some simulations are now routinely performed at the
physical quark mass, m5™" ~ m2 ~ (140 MeV )2, although
extrapolations to the continuum and infinite volume limits
still need to be applied.

The role of meson loops in the analysis of lattice data on
hadron masses has been stressed by many authors. In
particular, the behavior of baryon masses near the chiral
limit, m, — 0, is known to deviate strongly from the linear
Myyryon ~ m, dependence expected at large m, values.
Expanding the masses in terms of powers of m,, the
low-m, behavior is characterized by model-independent
nonanalytic terms that involve odd powers of m, or
logarithms of m, [8]. Such behavior can only arise from
pseudoscalar meson loops, and must be present in any
effective treatment of QCD near the chiral limit [9].

Although the physics implications of the chiral loops are
relatively clear [10], in the literature various methods have
been used to implement them in practical calculations. In
particular, while the long-range structure and dynamics of
baryons is characterized by model-independent features of
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pion loops, the short-range structure depends on non-
perturbative dynamics and details of how the ultraviolet
behavior of loops is regularized. Historically, a popular
approach has utilized the framework of chiral perturbation
theory [11-15], with dimensional regularization to regu-
larize divergences and parametrize the short-distance phys-
ics via counter terms. Other approaches have emphasized
the importance of taking the finite size of baryons into
account, regularizing the ultraviolet behavior via form
factors or finite-range regulators [16]. The latter have been
argued to lead to better convergence of the chiral expan-
sion, through a resummation of nominally higher-order
terms as relativistic corrections to the leading nonanalytic
(LNA) terms [3].

Regardless of the specific approach to the regularization,
most of the early efforts have relied on the heavy baryon or
nonrelativistic approximations [3,17,18], focusing pri-
marily on the properties of the nucleon, often emphasizing
the important role played by the A resonance [19]. More
recently, manifestly covariant formulations of chiral effec-
tive theory have been developed, partly in an effort to
further improve the convergence properties of the heavy-
baryon approaches [15].

Extensions to baryons other than the nucleon have been
made in a number of studies, both in the context of the heavy
baryon expansion with finite-range regularization [20-22],
as well as in covariant calculations with dimensional regu-
larization [23-25]. Most recently, relativistic loop correc-
tions to masses arising from octet and decuplet intermediate
states were computed using a Gaussian form factor [26],
however, only nucleon external states were considered.

In other recent applications, careful treatment of chiral
loops has been stressed in connection with the meson—baryon
splitting functions needed for the calculation of parton
distribution functions [27-33], and in particular the key role
played by light-front zero-mode contributions [34-38].
Elsewhere, the effects of relativistic chiral corrections on
electromagnetic form factors [39,40] and transverse momen-
tum distributions [41] have recently been studied. Con-
siderable interest has also been devoted to the application
of chiral loops to scalar matrix elements and o-terms
[15,20,22,42] for the nucleon and other baryons, as well
as for more exotic hadrons such as the H-dibaryon [21].

In this paper we build upon the previous work on chiral
loops to compute the self-energies for the complete set of
SU(3) octet and decuplet baryon intermediate and external
states, using a fully relativistic chiral effective theory
framework with a four-dimensional finite-range regulator.
We begin the discussion in Sec. II with a brief review of the
basics of the chiral effective theory, and the definitions of
the baryon octet and decuplet self-energies. In Sec. III we
present the results for the self-energies using a four-
dimensional dipole regulator, for each of the octet-octet,
octet-decuplet, decuplet-octet and decuplet-decuplet tran-
sitions, and compare these with some nonrelativistic

approximations. The LNA behavior of the self-energies
is derived in Sec. IV, along with the decay widths for
channels in which the initial baryon mass is larger than the
intermediate baryon mass plus the meson mass. A numeri-
cal comparison of the self-energies as a function of the
regulator mass and the pion mass is presented in Sec. V for
all octet and decuplet baryons, along with a direct assess-
ment of the role of relativistic effects. Finally, in Sec. VI we
summarize our findings and outline future applications of
the results obtained. We then summarize our coupling
constants, integral relations and example of decay rate
derivation in Appendixes A, B and C, respectively.

II. FOUNDATIONS

In this section we briefly summarize the basic elements
of the chiral SU(3) effective theory, and introduce the
formal definitions of the octet and decuplet baryon self-
energies associated with the fluctuations into meson-
baryon intermediate states.

A. Chiral SU(3) effective theory

The effective chiral SU(3);, x SU(3); Lagrangian
describing the interactions of octet (B) and decuplet (T,)

baryons with psuedoscalar mesons (¢) can be written at
leading order as [18,43-45]

2
L= %Tr[DﬂU(D" U] + Te[B(iD) — M)B]
+ (T, (D,  Myy™)(T,
D _ - F_
= TtlBy'ys{u,. B}] — = Tr[By*ys[u,. B]]
[T, e () (B + M)

T T, ity ) (T, (0

where Mp and My are the octet and decuplet baryon
masses, and “H.c.” indicates the Hermitian conjugate. The
coefficients of the various terms in £ are the pseudoscalar
decay constant, f, =93 MeV, the meson-octet baryon
coupling constants, D and F, and the meson-octet-decuplet
and meson-decuplet coupling constants, C and H, respec-
tively. The tensors in Eq. (1) are defined as y** = 1 [y*, "],
and y* = 1 {y" y*} in terms of the Dirac y matrices, and
€ is the antisymmetric tensor in flavor space.

The flavor SU(3) baryon octet fields BY/ are comprised of
the nucleon N (= p, n), A, =0 and Z~° hyperon fields,
and can be represented in the matrix form,

1 50 1 +
55=0 + A > p
- 1 v0 1
=— =0 _ 2
= = _\/EA
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The baryon decuplet fields are parametrized in terms of the spin-3/2 Rarita-Schwinger field, and represented by the tensor
(T,)"*, which includes the A-isobar, *, & and the triply-strange Q™ fields,

++ LA+ 1 oyt I A+ 1L AO 1 50 1 gt 1 50 1 =0
A NG A N z 7 A 7 A NG z 7 z NG z B2
L A+ L AO 1 0 L AO - 1 g— 1 50 1 oys— 1 e
T,=< | HA" HAY 0 || HAY AT x| EE0 Joxe SE (3)
Loys+ L yx0 1 =40 Loyx0 1 y— 1 o 1m0 L -
7 > 7 > Vel 7 > 7 b Vel Nl Vel Q

Note, however, that the tensor (Tﬂ)ifk contains spurious spin-1/2 components, which must be removed by projecting onto
spin 3/2. This amounts to the replacement on the meson-decuplet-decuplet interaction term,

2

The mesonic operator U is defined in terms of the matrix of
pseudoscalar fields ¢,

U=u? with u=exp (i\/;)f(/)’ (5)

where the meson field ¢ includes the isotriplet 7, isospin-
1/2 K and isosinglet # mesons,

H o= i ” H o= y
= T e (D)7 =i (T, ey, (T, ) @

|
The covariant derivatives D, of the octet and decuplet fields
in Eq. (1) are defined as

D,BY = 0,BY + [, B]V —i(2°))BY,  (10)

Dﬂ(Tu)ijk = 8/4(Tv)ijk + (Fw Tv)ijk - i</10>v/9<Ty)ijk’

(11)
L0 + +

= + = /2 K
V2 Vo'l where 112 denotes an external singlet vector field, A° is the
b= T - \/%ﬂo + N K° (6)  unit matrix, and (...) indicates a trace in flavor space. The
o 3 second term on the right hand side in Eq. (11) denotes

K- K —YZy o
V3 the combination

The first three terms in the Lagrangian in Eq. (1)
represent the meson, octet baryon and decuplet baryon
free-field Lagrangians, while the terms proportional to the
couplings D, F, C, and ‘H involve interactions between
fields. In particular, for the octet-decuplet transition, the
tensor @ is defined as

o (2D 0

where Z is the decuplet off-shell parameter that gives the
relative strength of the two terms in Eq. (7). Note that
observables, such as masses and cross sections, do not
depend on the choice of Z, but specific choices of Z may
simplify the calculations. In this analysis we follow the
conventional choice and set Z :% [45].

The psuedoscalar mesons couple to the baryon fields via
the vector and axial vector combinations defined by

| i :
ro=> (8, + ud,ut) - 5 (u"2%u 4+ u2®u*)vs,  (8)

u, = i(u'Ou —udu’) + (u' 2% — ul®u*)v?,  (9)

where v is an external vector field, 1 (¢ =1, ...,8) are
the SU(3) Gell-Mann matrices, and u is defined in Eq. (5).

(T, T,) 7 = (T,)5(T,) 5% + (T,)](T,) ™ + (T,)5(T,) ",
(12)

Finally, the covariant derivative on the psuedoscalar meson
fields is given by

D,U = d,U + (iUX* — i2*U) v’ (13)

Using Egs. (2)-(13), one can expand the chiral Lagrangian
(1) to leading order in the baryon and meson fields and
derive the self-energies of the SU(3) octet and decuplet
baryons, as we discuss in the following.

B. Baryon self-energies

In this section we introduce the self-energies of the
SU(3) octet and decuplet baryons arising from pseudosca-
lar meson loops, as illustrated in Fig. 1, focusing first on
octet external states and then on decuplet external states.
The self-energy operators are constructed using the
Feynman rules corresponding to the diagrams in Fig. 1.
The formal derivation of the meson and baryon propagators
and vertices from the chiral effective Lagrangian can be
found in the literature—see, e.g., Ref. [45].
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FIG. 1. Pseudoscalar meson ¢ loop contributions to the self-
energies of octet baryons B and decuplet baryons T from loops
involving intermediate octet baryons B’ and decuplet baryons 7".

1. Octet external states

The contribution to the self-energy of an octet baryon B
(with four-momentum p) from the process involving the
emission of virtual meson ¢ (four-momentum k) with an
octet baryon B’ (four-momentum p — k) in the intermediate
state is defined by taking the on-shell matrix elements of

the B — B¢ transition operator EB_)B/[/,,

1 _ -~
Zppgp = EZ”B(P’ $)Zp-ppup(P.s)
N

= aM, Tr[(ﬁ+MB)§B—>B’(/JL (14)

where the sum is taken over the spins s of the external octet
baryon state, and the Dirac spinor ug(p, s) is normalized
such that ag(p, s)ug(p,s’) = 8,y. From the terms in the
Lagrangian in Eq. (1) involving the couplings D and F,
the self-energy operator for the octet-octet transition is
given by

< VT / 'k, i(P-f+Mp)
Z B — —
B—B'¢ l< f4, ) (27[)44(}’5 Dy YskD(/)

(15)

where Cpp,, is the BB'¢ coupling constant. In Eq. (15) we
define the shorthand notation for the denominators of the
propagators, indicating the on-mass-shell pole positions of
the intermediate meson and octet baryon, as

D(/,:kz—mé—{—ie, (16)
Dy = (p — k) = M3, + ie, (17)

with m, and M p the masses of the meson and intermediate
state octet baryon. The coupling constants Cpp, depend
on the couplings D and F, and for specific transitions
B — B'¢p are given in Appendix A.

Similarly, for an octet baryon dressed by a meson loop
with a decuplet baryon 7’ in the intermediate state, the
contribution to the self-energy is given by the matrix

element of the B — T'¢ transition operator 23_)7/4,,

| — ~
Tporp = EZ”B(P, s)Zp_1pup(P.S)
N

Tr[(7 + MB)EB—J’(/)]'

T AMy, (18)

Again, from the terms in the Lagrangian (1) involving the
coupling C, one derives the transition operator

- (Corp\? [ d*k -
Spory = Ok,
B-T¢ ( fa ) /<2n>4

(F =K+ Mp)Au(p—k)
Dy

i
@k, . (19)
D,

—i
X

where the BT'¢ coupling constant Cpzv,, depends on the
coefficient C, and is given in Appendix A. Similarly to
Eq. (17), we define the propagator factor indicating the on-
mass-shell pole position for an intermediate decuplet
baryon as

Dy = (p—k)* — M2, + ie. (20)
Setting the off-shell parameter Z = % in the octet-decuplet

transition operator ©*, the spin-3/2 energy projector A%
can be written as

1 YaPp = YpPa 2Pal
Aaﬁ(p) = YGap _g}/aYﬁ - gMTrﬂ 2 31‘0{42ﬂ.
TI

(21)

Note that choices of Z other than Z = % would introduce
additional Z dependence into the projector A,

2. Decuplet external states

Extending the discussion to decuplet external states, 7,
the contribution to the self-energy from intermediate states
with octet baryons, B, is defined in terms of the Rarita-
Schwinger spin-3/2 spinor-tensor u/ (p. s),

| -
ZT—>B’¢ = 2 Z”Z(P’ S)Z/;y_,B’qs”Z(p? s)
s

1 SUY
= _MTr[(ﬂ_F MT)Abu(p)zl;_)B/,/J' (22)

The spinor-tensor u, (p, s) is normalized such that

_ 4 PuPv
Sk p.5) = =5 (0= %), @3)

s

and the energy projector A, is given in Eq. (21). Similarly
to Eq. (19), the T — B'¢ self-energy operator is given by
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~ Cres\2 [ d*k - i(f— K+ My

y}isqu:i( TM) / 4@”“&,1(% £+ Mp)
fo (27) Dy

X@V‘/}kﬂL,

b, (24)

where Crp, is the TB'¢p coupling, given for specific
transitions in Appendix A.

Finally, for the decuplet—decuplet transition 7 — T'¢,
the self-energy contribution can be written as

g _
ZT—>T’¢ = Z Zu};(p’ S)Z’;":T/qgu[(p, S)
s

1 SHY
= —%Tr[(ﬂ + MT)Auﬂ(p)zl;'aT’qﬁ]’ (25)

where the relevant self-energy operator is given by

-~ Crrip\2 d*k
Zl;v_mqs = i( = ¢> / Z et
fo (27)

(ﬂ - k + MT’>A0/1(p - k) ewpd
Dy

yﬂka

i

D, ’
(26)

—i
X

Vs k/)

with Crp the corresponding 77"¢ coupling, and €% the
Levi-Civita tensor.

The calculation of the baryon self-energies is in principle
straightforward, but simple power counting shows that the
integrals over the loop momentum k in the self-energy
operators in Eqgs. (15), (19), (24), and (26) are divergent,
and therefore need to be regularized. In the next section we
discuss the computation of the self-energies using finite-
range regularization.

III. SELF-ENERGIES WITH FINITE-RANGE
REGULARIZATION

As outlined in Sec. I, various regularization prescriptions
have been discussed in the literature in calculations of
baryon self-energies. An important consistency require-
ment is that the regularization procedure preserves the
Lorentz and gauge symmetry of the fundamental QCD
theory. This is satisfied by the commonly used dimensional
regularization; however, for applications to particles with
finite size, finite-range regularization has been argued to
have some advantages regarding the convergence proper-
ties of the integrals [10,16].

Finite-range schemes such as Pauli-Villars regularization
satisfy all of the symmetry requirements, and are a special
case of four-dimensional form factors applied to the
integrands of pointlike results. Lorentz invariance restricts
form factors to be functions of the meson virtuality k> and
baryon virtuality (p — k)2 Following earlier work [29,46—
48], in the present analysis we apply a four-dimensional

form factor that is a function of k> only. In particular, we
employ a four-dimensional dipole shape function F(k, A)
with a regulator mass A,

F(k,A) = ([;—i)z, (27)

where A® = A% —mJ, and we define, in analogy with
Eq. (16),

Dy =k — A2+ ie. (28)

The form (27) respects the necessary symmetries of the
calculation, and suppresses the divergences in the self-
energy integrals.

In the calculations, it will also be convenient to use light-
front coordinates, in which a four-vector v* = (v, v™,v)
is written in terms of the “longitudinal” v* = vy £ v,
components and the transverse component v} = v + v3.
For convenience we define the light-front momentum
fraction of the initial state baryon carried by the meson
¢ by y=k*/p*, with a corresponding momentum fraction
y=1l—-y=(p"—k")/p" carried by the intermediate
state baryon. Also, without loss of generality, we choose
a frame in which p, = 0.

In the following, we discuss the evaluation of the self-
energies in detail. We pay particular attention to ensuring
that the four-dimensional integrations correctly take into
account the end-point contributions [32], which are asso-
ciated with 6-function terms in the variable y and can affect
the model-independent leading nonanalytic behavior (see
Sec. IVA). We describe in detail how this is achieved by
reducing the integrands to forms where the momentum
dependence is contained mostly in the propagator factors
with minimal momentum dependence in the numerators.

A. Octet — octet transitions

We begin with the simplest case of the contribution to the
self-energy of an octet baryon B from intermediate states
with an octet baryon B’ and meson ¢. Substituting the
dipole form factor F(k,A) in Eq. (27) into Eq. (15) and
taking the spin trace, the self-energy can be written as

Sy — —if BB} ] /d4k ATy
B=B¢ fo ) 2Mg ) 2z)* \D3

> [ZMBHBB/kz + 2p N k(kz - 2p * k)]

DyD, . (29)

where we introduce the shorthand notation
Mgy = Mp + Mp, (30)
App=Mp — Mg, (31)
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for a generic baryon B= B or T (for decuplet states,
see below). Rearranging the propagators in Eqgs. (16) and
(17), we can make the substitutions in the numerator of
Eq. (29),

k2—>D¢+m(2/, or D, + A?,

1
p'k—>§(D¢—D3'+M%—M§,+m5)). (32)

With these replacements, the k-dependent terms in the
numerator can then be reduced to

SRR 0y T (L P
B=B¢ — f¢ 2My ) 27)* |  DyDpD}
+ M%B’ 2p-k—MppApp (33)
DB/Dj‘\ D¢Dj‘\

Note that the first two terms in the brackets of Eq. (33) have
poles in different half-planes, so that using Cauchy’s
integral formula one can choose a contour in either the
upper or lower half-plane to perform the k™ integration
analytically. As shown in Appendix B, taking the pole in
the baryon propagator allows one to evaluate the first two
terms in Eq. (33).

For the third term in the brackets of Eq. (33), the first part
involving (p - k) in the numerator is odd in the pion
momentum k, and since the four-dimensional Lorentz
invariant regulator (27) does not introduce any additional
dependence on p - k, this will integrate to zero. For the
second part of the term involving constants and propagators
the integral vanishes when k™ # 0, since here both the D,
and D, poles lie on the same half-plane. When k™ = 0,
however, the integral is divergent and the integration must
be handled more carefully. This is also outlined in
Appendix B. Putting all the terms in (Bl), (B2) and
|

% 1

ZN—>Nlr - =

(87f)> MA3 (4M? — A?)3/?

x {A\/4M2 — A? {sz\“ <m,2,(A2

(B4) together, the k™ integrated expression for the octet-
octet self-energy can be written as

/ A M /
Spony = B” BB / dy / di2
(47zf »)° 2Mp
y |:y4(m§5 ABB
DB¢B’DBAB' DéAB’
AB/B/ ZS :|
+= dz———0(y)|. 34
Mpgp Jo (k2¢+9)4 ) (34)

where the factors Dpyp and Dppp are the ¢ and A
propagators, respectively, taken at the Dp = 0 pole and
are defined in Eq. (B3), and Q is defined in Eq. (BS5).

The dy and dk? integrations in (34) can be performed
analytically, although the resulting expressions are rather
long and not particularly illuminating, so they will not be
listed here. However, the special case of My = Mp is
interesting since it corresponds to the well known Nz self-
energy of the nucleon. Taking B =B =N, ¢ =, and
Mp = M to be the mass of the nucleon in Eq. (34), the Nz
loop contribution to the nucleon self-energy is given by the
simplified expression,

2 M22
ASM/ / g UL M2y

* DNﬂNDNAN
(35)

2
CNNIZ

87I2f2

EN Nz = —

For a proton external state, summing over the various
intermediate nucleon charge states (p, n) and using Table II
of Appendix A, we have for the NNz coupling constant
Cine = Cipﬂo +C - =3(D+F)*=3g; Evaluating
the integrals in Eq. (35) explicitly, one then obtains the
final analytic result for the Nz contribution to the proton
self-energy,

— 10M?) + 2A%(A2 - M2)>

2
+3AZm2(4M? — A2)? <mg log %

M2 2
+2m ) AM? — m2 [tan M an! Mr ] )}
VAM? — m? M? —m2
+6(2AMH(A? = 2M?) — N2mi (A% — 6M?)(A* — 4AN>M? + 6M*)
+ 2AMPm2Z(A* — 10A’M? + 18M*) — 4MOm?)
2 _ 2
x {tan‘1 A Z2M A } } (36)
AVAM? — A? VaM? — A?
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‘We have confirmed that this result coincides with Ref. [35]
after accounting for the differences in pseudoscalar and
pseudovector couplings. The expression in Eq. (34) gen-
eralizes that result to the case where the initial and
intermediate baryons have different mass, Agp # 0.

The final result for the N — Nz self-energy (36) can also
serve as a reference point for comparing with heavy-baryon
chiral expansions. By expanding in powers of 1/M and
considering only the leading term, which corresponds to
taking the heavy-baryon limit M — oo in Eq. (36), we
obtain the simple result,

_ 393\ (A - mﬂ')4(A2 + 4Am7z + mzzz) (37)

ZHB
5127203

N—Nrn

If the differences in form factors are taken into account,
Eq. (37) agrees with the N — Nz heavy-baryon result
found by Young et al. [3]. In particular, one can easily
verify from Eq. (37) that the coefficient of the O(m3}) LNA

|

. (Cerp\?2 1 / d*k
ST ¢ = —1
BT fy ) 12MzM%, | (2z)*

A_> 8(MpMp — p - k) (MAK2 — (p - k)2)
D}

term is the familiar result from chiral perturbation theory
[8,18], =kNA, = —(343)/(32xf2)m3 (see Sec. IVA).

A further important observation about the relativistic
calculation is that, although the 5(y) term in Eq. (34) does
not contribute for the special case of Mz = Mp, it is in
practice vital to keep terms proportional to 5(y) to ensure
self-consistency of the calculation. Such terms would arise,
for example, if one were to use a pseudoscalar interaction
instead of a pseudovector coupling in the calculation of the
N — Nr self-energy [35] (or indeed for any B — B'¢
transition). As discussed in Ref. [36], in that case the light-
front zero-modes (k™ = 0) play a crucial role in determin-
ing the correct LNA behavior in the chiral limit.

B. Octet — decuplet transitions

For the contribution to the octet baryon self-energy from
intermediate states with decuplet baryons 7”, using the
same dipole form factor (27) in the self-energy operator in
Eq. (19) and taking the trace as in Eq. (18), we obtain

. 38

From the definitions of the propagators in Eqs. (16), (17), and (20), one can reduce the numerator in (38) via the

replacements given in Eq. (32) and

1
p-k—>5(D(,,—DT/+M§—M§,+m§S). (39)

The self-energy (38) can then be written in reduced form as
= my) (Mg —mj)?

5 (Cery\> AP / d*k [(A7,
ST = 1
B=T9 fo ) 12MgM3, | (27)* D4Dy DY

+ 4(p-k)* =My (2p -k — MypApp) = 2(Mpy — MpAgpg — p - k)m?,; + mgﬁ
DD}
Ap- K + (M, — MMy — m3)? = SM3M2, + 2p - K (M, — m3)

_ : (40)
Dy D}

where k' = k — p, and we define Mg and A/ in analogy with Egs. (30)—(31). Compared with the octet—octet self-energy
case, Eq. (40) contains two new types of terms, namely, ones proportional to (p - k') and to (p - k)?. The former can be
reduced and written in the form

4(p-k’)2:(M%;—i—MZT—Az)2 3M% + M3 —2p -k — A?
DD Dy DY D}
2(A> — M3 — M3 1 1
+ ( 33 T) 5 —_—, (41)
DpD3, DpD3 D3

using Egs. (32) and (39). Each of these terms are straightforward to evaluate in the d*k integration and are discussed in
Appendix B.

The term proportional to (p - k)? in Eq. (40) cannot be reduced further and must be evaluated directly. Following similar
steps as those in the Appendix B for the derivation of Eq. (B4), we rewrite this term as
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2+ 2MEkT kT + (pmkt)?

(pk)
PR / dk* d?k /d /dk— , 42
/ D, D%, L), 4 k+k——k2 —Q+ ie) (42)

where Q is as in Eq. (B5), and consider each term in the numerator separately. The term proportional to (p*k~)? can be
written as

1 3 +k— 2
/dk%ﬂkl/ dz/dk— £ (pz S <
0 Kk — K —Q + ie)

_ (%)2 / dk*dk, / i < ai+)2<a%>2[2” log(kzlj_ Q)é(k*)} (43)

The next step must be handled with care. Note that the partial k™ derivative is applied only to the & function, giving

o .. 1
k) = =

o —5(k*). (44)

Since the & function is even in k", 8(k*) = 6(—k"), integration of this term over all k* will vanish. Higher derivatives
applied in Eq. (44) will not modify the null result, so the integral proportional to (p*k~)? in (42) is zero.
For the term proportional to k™ k=, following similar steps one can derive

1 Zktk 27%i f
dk*+dk / d /dk— - /dk+dk2/ dz— " s(k*). 45
/ Ll (kK'k -k —Q+iey 3 S ap o) (45)

Finally, for the (p~k")? term, which has no k= dependence, after the k= integration the integral will be proportional to
k*8(k™), which again for reasons of symmetry will vanish. The term proportional to k™ is therefore the only part of Eq. (42)
that gives a nonzero contribution, given by Eq. (45). The complete k™ integrated expression for the decuplet intermediate
state contribution to the octet baryon self-energy is given by

Chrg A 1 fe [0 = Afy) (mf — My )
Zporg = 2 T Y TE dy dk; DD
( ”fq‘)) BV JO 0 BpT' Y gt
53
Df ((Mg, + M7, = N)? 4 (Myp — MMy — m3)? — 5M%M%,>
BAT'
29 s o (3K2 + 6M3% + 2M2, 4+ A?)
— i (M + M3, =A%) = 5— = 6 T A ()
BAT' BAT' 1
! d L %MQ k2 Q) =M. A
+ 0 Z(ki+9>4 3 B( J_+ ) BT =T'B

Note that in Eq. (46) terms proportional to p - k and p - K/
have been omitted, since these are odd in k and &/,
respectively, and hence vanish after integration. The fully
integrated expression for the octet — decuplet self-energy
is quite lengthy, but can be easily obtained by evaluating
the y, k3, and z integrals in Eq. (46).

A similar chiral effective theory calculation of the N —
Ar contribution to the proton self-energy was performed in
Ref. [35], although with some important differences com-
pared to our result in Eq. (46), which affect the resulting
LNA behavior. These differences can be traced back to the

|
treatment of the light-front zero-modes and the handling
of the light-front energy k™ integration in Eq. (40). In
particular, Eq. (13) of Ref. [35] is the result of taking the
pole in which the intermediate A is on its mass shell in the
light-front energy k™ integration. However, the absence of
terms proportional to 5(y) in Eq. (13) of Ref. [35] suggests
that the light-front zero-mode (k* = 0) contribution has not
been included.

In order to ensure that the integration captures the
k™ = 0 contribution, we first reduce the numerator of
Eq. (38) using Eq. (39) to decompose the total amplitude
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into terms proportional to 1/(D,D,), 1/D, and 1/D,,
along with the overall factor 1/D% from the regulating
function F(k, A). Each individual denominator term is then
computed separately, as shown in Egs. (40)—(46).

While it is certainly legitimate to take the D, = 0 pole in
the upper k= half-plane for terms such as 1/(D, D, D?}) that
also have poles in the lower k™ half-plane, it would not be
correct to take D =0 pole for the terms such as
1/(D,D?) that have poles only in the lower k= half-plane.
One could mistakenly do this, for instance, by directly
taking the D, = 0 pole in Eq. (38) before reducing the
momentum dependence in the numerator. As shown in
Egs. (42)—(45), terms with poles only in the lower £~ half-
plane are survived by the light-front zero-mode (k™ = 0)
contributions, resulting in the terms proportional to §(y) in
Eq. (46). Without correctly capturing the k™ = 0 contri-
bution, the result in Eq. (13) of [35] yields an LNA term of
the form m2log m2, in addition to the standard m? log m?2
behavior. In contrast, our LNA results, discussed more fully
in Sec. IVA below, include the light-front zero-mode
(k™ = 0) contribution, and Eq. (58) for Agp > m, repro-
duces the standard expression ~m2/A,ylogm?2 for the
LNA behavior of the N — Az transition [17] (see also
Eq. (2.17) of Ref. [42]).

In the same vein as the light-front zero-mode &(y)
contribution, we also note the appearance of §(7) terms

|

point _ CNAn / /
N=8m = (4nf,)? 12MM2
k2
log 1 +m |:

k2 —
— IOgT (MNA_MMA

k2
_<1_1 gi
u

The same result can also be obtained using the manifestly
covariant dimensional regularization method. The result
(48) can also be contrasted with the pointlike limit of
Eq. (13) in Ref. [35] by setting the form factor “F,(—1)”
there to unity, where t = (k3 + y(M3 — M?) + y*M?)/3.
The terms in Eq. (13) of [35] with higher powers of ¢ are
obtained by taking the D, = 0 pole in the k™ integration;
however, as illustrated above, one should not take the
D, = 0 pole for terms proportional to the sole denominator
1/D, or 1/D,. These terms are survived by the light-front
zero-mode (kT = 0) and endpoint (k™ = p™) contribu-
tions, leading to the 5(y) and &(¥) terms, respectively, in

>2M2(k2 + M> )] 5@)}.

from the light-front endpoint singularity in the pointlike
limit, F(k, A) = 1 with A — oco. Taking the D, = 0 pole
for the terms proportional to the denominator 1/D, alone
would in this case lead to incorrect results. Just as terms
with poles only in the lower k= half-plane are survived by
the zero-mode (k™ = 0) contribution, so too the terms
proportional to 1/D, with the pole only in the upper k=~
half-plane are survived by the endpoint (k* = p™) con-
tribution, leading to the terms proportional to §(y). The
appearance of these terms can be traced back to the
y(=D /D% . terms with the sole denominator D,y for
2 < n <4in Eq. (46). As shown by Salamu et al. [29], one
can identify these terms in the A — oo limit with terms
proportional to &(¥),

AS§? Q. —4yy3A8
Y gim [ ar AL
D3,/ Ao Q= Jo (yt—yyMB+yQA) Ao

- logg—ﬁ( ) = <1 —log )5()/) (47)
where Q, = k3 +A? and Qp = k3 + M?
A-independent constant, and u is defined such that
log(Qp /u?) = log(Q7/) + 1. Taking the A — oo limit
of Eq. (46) for the N — Az transition, the self-energy for
the pointlike case is then given by

dk> {

2, with Q a

AZAN)(mJZT - Mzzm)z

DNJ‘L'A

M3\ Apy —2mz (M3, — MAxy) + mfz] 5(y)

m2)? 5M2M2>

(48)

|
Eq. (48). In particular, the 5(y) contribution is crucial for
obtaining the correct LNA behavior ~(m%/A,y)logm?2
[17,42], as mentioned above. We will discuss the LNA
coefficients in more detail in Sec. [V A below.

C. Decuplet — octet transitions

The derivation of the T — B’¢ loop contribution to the
self-energy of the decuplet baryon 7 follows closely that of
the octet — decuplet transitions in Sec. III B. Starting from
the expression in Eq. (22), and applying the dipole
regulator of Eq. (27), we find
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p k) (M7k* —
DDy

1

in the numerator factors, Eq. (49) can be reduced to the form

(p)(MBT’ - (/))2

Crpy\2 A d*k [(Agy
ZT—>B’(/7 =1 f,b

24M3. ) (27)* D,Dy Dy
4(p - k)> = M7y (2p -k = MrgApr) = 2(Mpy — MpApy — p - k)mg + mj
D,D}
4(1’ : k/)z (MZTBI MMy — m/,) 5M2M2 +2p- k/( TB ~ mi)

- . 51
DB/DA ( )

Note that the decuplet-octet self-energy is almost identical to the octet-decuplet self-energy of Eq. (40), with the external
decuplet baryon mass and the internal octet baryon mass switched.

We can follow closely the steps and expressions in the previous Sec. III B, with the substitutions Mg - My, My — Mp,
and D — Dp. Using the integral relations in Eqs. (B1), (B2) and (B7) in Appendix B, together with the identities (41), and
(45), we arrive at the k™ integrated expression for the decuplet-octet self-energy,

CTB/ 2 A%}T’)( my M%B’)z
ZT—>B/¢ — 2 2 dy dk
(47Zf¢ 24MTM " DB¢T,DBAT/
y?
"D ((M2 + M3, — A?)? + (M3 — MyMy — m3)? — SMiM3, )
252 (3k% + 6M% +2M>, + A?)
— 55— (M7 + M =A%) = e c sz TOE 5(y)
BAT' BAT' (k1 +A%)
b 2 .,
dzﬁ gMT(kL + Q) — M} Mgy
+2(M3yp — MypApp)mg, — m(/)) 5(y)} , (52)

where again terms involving p -k and p -k’ have been
dropped as discussed in Sec. III B.

Note that for the T — B'¢) transitions, the negative
baryon mass difference —Apy = M — Mp can be larger
than the meson mass, mgy. In particular, the specific
transitions A - Nz, 2" - Az, 2* - 2z, and 2" — Ex
are all kinematically allowed in the physical region. In this
case the corresponding self-energies will develop imagi-
nary parts, which are related to the decay rates I'7_p/,.
Similar to the optical theorem relating the total cross
section with the imaginary part of forward scattering
amplitudes, the decay rate I'" for the physical transition
is related to the imaginary part of the corresponding

|
self-energy, I' = —23mZX. In Sec. IVB we discuss the
basic features of this relation and the general results for the
various transitions, and in Appendix C illustrate the
derivation with the explicit example of the decay of a
spin-1/2 excited state to a nucleon and pion, N' — Nz.

D. Decuplet — decuplet transitions

To complete this section, we present the results for the
contribution to the self-energy of decuplet baryons from
loops involving decuplet baryons and mesons. Using the
definition given in Eq. (25), and applying the dipole form
factor we get
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i(Crre)? 1 d*k (A*\* 8
Lrorgp = 3172 “\D ) D.D.
f¢ 72M M (271') D/\ D¢DTI

X 2M2.,.(p - k)* 4+ 2M (A3, = 3Mpp MMy + M3,)(p - k)?
+ M%.(9M3, — 2M2%.,,)p - kk2 + M3Myp (2M3, 4 3Mp (Apr — M7)) K. (53)

The rearranged propagators are then used to reduce the momentum dependence from the numerator factors, as in the other
self-energy calculations above. Namely, making the substitution

1
we arrive at the expression
o(Crrs A8 d*k
-1 = 36M3 M2, | (2n)
f(f) T ( ”)

M.,
) L),ﬁD—TTTDA' (W) - Afg) [(A% — m}, + MyMyp)? + 9M2TM§,D
"HA

MZ
+ DT/D4

(20 K105 = 83+ 2002y 4 (0 = 83, + 10033~ 4(p - )

1

- 5.5 <4M§T,(p.k) +2p- k[ 2 m2 = My, + 6M My (A2, —MTMT/)}
A

+ My {Mrr/mf/, +2mg (MyM7, — M3, — 2M3)

+Apr <(A%’T +MyMy)? +9M%M%’>])]' (35)

All the different types of terms in Eq. (55) have already been discussed in previous sections. Using the results in Appendix B
and making the substitution Mz — M in Eq. (45) to obtain the relation

27
/d“k D,/,D4 = l/dk*/dkz/ dz— 2 9)3 5(kT), (56)
we finally arrive at the k= integrated result for the decuplet-decuplet self-energy,
o NSM?
TT¢ TT 2
Xrorg = dk;
=1 ™ 24af,)> MIM?, / /

y
X {— (( — AL (AGy = my + MMy )* + 9M§M§,]>
DT¢T’DTAT'

=3
D4y ((M%+M2,—A2)2 (m3 — AZ,,)? +10M2M2>

TAT
2y y (3K% + 6M% +2M2, + A?)

- (M3 + M2, — A?) — o L . sz Tl 5(y)
T/\T’ TAT (k1 +A%)

1 Z3 3
- A dzm [2M§(k2 +Q) - - {2m¢(MTM2, —2M3 - M3,)

+ myMpr + Ay <(A%,T + MMp)? + 9M%M%> } } 5(y)}, (57)

where, as before, we have dropped the p - k and p - k' terms which vanish after integration.
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Having derived the full set of results for the self-energies
of octet and decuplet baryons, we will proceed to system-
atically study their effects numerically. Before doing so,
however, we first make a brief aside to discuss the
calculation of some of their analytic properties and
applications.

IV. ANALYTIC PROPERTIES OF SELF-ENERGIES

In this section we discuss several important analytic
properties of the self-energies derived in Sec. III, namely,
their LNA behavior in the chiral limit and the decay widths
for their various decay channels.

A. Leading nonanalytic behavior

Expanding the baryon self-energies in a series about
the chiral limit, m, — 0, it is well known that coefficients
of certain terms in the series are model independent. In
particular, while the coefficients of terms that are analytic in

details of short-distance, model-dependent physics, the
coefficients of the nonanalytic terms are determined by
the long-distance properties of meson loops and are there-
fore model independent. The LNA terms in particular can
serve as an important check of consistency of any calcu-
lation of a hadronic observable with the chiral properties
of QCD.

Generally, the LNA results for the self-energies are
common for both SU(3) octet and decuplet baryons,
depending only on differences between the baryon masses.
For simplicity we therefore adopt the notation 3 and B’ to
indicate external and internal baryon states, respectively,
with B, B = B’ or T'. To derive the LNA behaviors of
the self-energies Xz_,53, we write the internal baryon mass
as My = Agp+ Mg, and expand the self-energies in

powers of 1/Mp and m,. Defining Rpp = /A%?’B - mé
and Rgp=/mj— Agy, the nonanalytic terms in the

i : LNA
the pseudoscalar meson mass squared (m?, ~ my, according expansion of the self-energy, denoted by ZBB’W are found
to the Gell-Mann—Oakes—Renner relation [49]) depend on to be

|
Cort. 2 2 2 _ 73 Dpyy
e |Apis(3mf = 203) log m3, — 2Ry (7 = 2arctan 322) |, Ags < my,
LNA _
28/84) B CIE};& 2 2 2 3 App=Ryp (58)
e [AB/B@m(p — 282, ) log m3, + 2R, 5 log AWRBBJ , Ags > my,
where the coefficients Cj;)y* are given in Table I in terms of SINA _ 3 5 60
the coupling constants Cpp,, Which themselves are given NNz — “ 350 2 Mz, (60)

in Tables II and III of Appendix A in terms of the couplings
defined in the Lagrangian (1).

Considering the two scenarios in (58), for the Agz < my,
case the mass difference Agpg approaches zero first in
the chiral limit, which then leads to the resulting LNA
expression

ZLNA _ 2CIE§IE’A 3 A 59
BBy — - ﬂfi m¢’ BR < m¢ ( )

This displays the characteristic Nm; behavior which has

been known, and for the B'¢p = NNr case agrees with the
well-known result [8,18],

TABLEIL  Coefficients Ciy"* of the LNA terms in the expansion
of the self-energies for the various octet (B, B’) and decuplet
baryon (7, T') initial (B = B, T) and intermediate (B’ = B', T")
states around m,, = 0. The BB'¢ coupling constants are given in
Tables II and III of Appendix A for specific hadronic states.

LNA /! ’
Cip B T
10 1 2
B 16 CBB’¢ 24 CBT’¢
1 5 2
r % Crwy 1 Ciry

where g, = D + F is the axial vector charge.
For the Agp > m, case, expanding the terms in powers
of the meson mass gives the result,

LNA C%Igﬁ 2 3 2
288’45 == 2—‘]02 (3m¢AB/B — 2AB’B) IOg m¢
T
3m2AB/5 3m4
2( A3, — ¢ ¢ 1 2
i ( . 2 " 8Agg) 2T
3CINA m?
B9 log my, Agp > my. (61)

For the phenomenologically relevant case of B =N,
B' = A, from Tables I and II the coupling is given by
CiA = (1/24)C3,a, = (1/24)C%, and using the SU(6)
relation C = (6/5)g,, we have the familiar behavior

’ 3¢5 32 3m}

ILNA _ C: omy m2 = 24
" T 16722258y

VAT T 307 2 Ay

log m,,
(62)

which is next-to-leading nonanalytic for the nucleon mass.
We have verified that for the general case our expressions
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(58) agree with the results derived in Ref. [15] using
dimensional regularization, where the NAz coupling &,
defined there is given by h, = v/2C.

As noted previously in Sec. III B, it is crucial to capture
the light-front zero-mode (k* = 0) contribution in order to
obtain the correct m2 log m, LNA behavior for the N — Ax
transition in Eq. (62). The result given by Eq. (13) of
Ref. [35] omits the 5(y) terms of Eq. (46) and finds an LNA
behavior of the form m2logm2. Such a term is in fact
canceled exactly by the light-front zero-mode (k* = 0)
contribution. Furthermore, for the pointlike limit (F, = 1)
in Eq. (13) of [35], one should also recover the 5(y) term
from the light-front endpoint (k< = p™*) contribution, as
discussed in Sec. III B. The result in Ref. [35] should
therefore be corrected by taking into account the light-front
zero-mode (kt =0) as well as the light-front endpoint
(k™ = p™) contributions.

B. Decay rates

For a general transition B — B'¢p in which the decay
channel is open, the baryon decay rate can be computed
from the imaginary part of the self-energy, I'zgy =
—23mZpg_p4. As discussed in Appendix C, imaginary
contributions to the self-energy are generated from
1/(D4DgD3}) type terms, where the propagators of both
the internal meson (D) and baryon (Dg) co-exist, so that
the k™ and k, integration of 1/(D,DgD?}) produces the
logarithmic term,

/1 dylog(-D), (63)

0
where D = yyMy — yM3, — ym3. No such negative loga-
rithm term can arise from terms in the self-energy propor-
tional to 1/(DyD}) or 1/(DgD3}) alone. To find the
imaginary part of the self-energy, one can look for only
the contribution from the region of y integration where the
condition D > 0 is satisfied, namely, yiy < ¥ < Ymax With

/(B3 = 103) (W — m3) + M3, = M3, + i
Ymin = 2M%

(64)

and

\/(A%,B — m3) (Mg — m3) + M} — M3, + i}
Ymax = ZMZB .

(65)

In this region, one can isolate the log(—1) = iz term in
Eq. (C5) and evaluate the y integration,

2 2\ (712 2
\/ (AL — m3) (M — m3)
My

/ ™ dylog(=1) = ix . (66)

Ymin

The condition for the existence of the nonvanishing ImX
coincides with the kinematic constraint —Apgg > my
allowing the physical decay process B — B'¢p. The imagi-
nary terms of the self-energy will therefore be the coef-
ficients of the 1/(D;DyD}\) term multiplied by the result
in Eq. (66), together with a factor z%i/A® from the k= and
k| integrations.

Applying these relations to the specific B — B'¢ chan-
nels, for B = octet B or decuplet T baryon, we have

Cpy M2 _
_ ¢ BB A2 2N\3/2(W72  _ 002)1/2
Cppy = (A%, —my)Y > (My, —m3)' /= (67)
¢ 16;rf§5 M3 BB ¢ BB ¢
Cry 1
_ _BT'd 2 2N3/2(W2 _ 02)5/2

Tpry = (A2, —m35)* (M7, —m3)

2nfiMyM;, B B e

(68)

C:L}B’rﬁ 1 2 2\3/2 (772
(AB’T - m¢)* (MTB

Ty = — ,— 2\5/2 69
TE = 192mf3 M5 )= (69)

Ciry M
__IT'¢ T'T 2 o 2N\3/2(2 _ 02)\1/2
Ty = (A7 —m3) (M7 —m3)
P88 MMz, T T e
X [(A}y — mg + MyMy)* + OMEM7, ). (70)

Comparing these expressions with experimental decay
rates, one can then determine the numerical values of
the coupling constants, as done in Ref. [15] for the A — Nz
transition. As discussed in Sec. III C, for decuplet to octet
baryon transitions the negative baryon mass difference
—Ap7r = My — Mp can be larger than the meson mass,
my, even without considering baryon excited states, and
physically the transitions A - Nz, ¥* - An, £* — Zr,
and 2% — Ex are all kinematically allowed.

In the next section we study the baryon self-energies
numerically, including their dependence on the pion mass.
For the open decay channels this reveals the rather
distinctive curvature as one cross the kinematic thresholds
arising from the development of a nonvanishing imaginary
part of the self-energy.

V. NUMERICAL RESULTS

Having derived the full set of analytical results for the
octet and decuplet self-energies, in this section we perform
a comprehensive numerical study of the sizes and magni-
tudes of the various intermediate state contributions, both
as a function of the dipole regulator mass, A, and of the
pion mass squared, m2. At the end of the section we also
compare the relativistic calculation of the proton self-
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FIG. 2. Contributions to the self-energies of octet baryons from various meson-baryon intermediate states as a function of the dipole
regulator mass parameter A, for the proton p, A, =*, and Z° hyperons.

energy with results of the heavy baryon approximation, for
a common choice of regulator.

A. Octet baryon self-energies

For the self-energies of the octet baryons, we can
analytically evaluate the k%, y and z integrals in
Egs. (34) and (46) for the octet and decuplet intermediate
state contributions, respectively. For the numerical calcu-
lation, we use for the SU(3) couplings D = 0.85 and
F = 0.41, matching Ref. [30], so that the axial vector
charge g4, = D 4+ F = 1.26, and we use the SU(6) value for
the meson-octet-decuplet coupling C = (6/5)g,, which
reproduces the LNA behavior of the N — Az transition.
Other values for the couplings have been used in the
literature, such as the quark model result F/D = 2/3, and
the Skyrme model prediction F/D =5/9 [50-52]. The
effects of different values are not uniform across all self-
energies, since different transitions have different depend-
encies on D and F, but they do not alter our overall
conclusions. The relations for the various meson-baryon
coupling constants Cgp, and Cgyy in terms of D, F, and C
are given in Appendix A.

The results for the proton, A, = and E° hyperon self-
energies are shown in Fig. 2 as a function of the dipole
regulator, A, over a typical range 0.8 S A S 1.2 GeV, at
physical values of the meson and baryon masses.
Naturally, the magnitude of each of the self-energies
increases with increasing A, and the general tendency

is for the magnitude to decrease with increasing mass of
the external baryon. As an overall trend, the contributions
from intermediate states with higher masses have a
somewhat stronger variation with A, and the heavier
external baryons receive significant contributions from
a larger number of intermediate states. Furthermore, the K
loop contributions become more significant for external
baryons with larger strangeness, and, along with # loops,
play a slightly increasing role than the z loop contribu-
tions for larger regulator masses.

As far as specific external states, for the proton self-
energy, ,, the Nx intermediate states make the greatest
overall contribution, followed by the Az state. Con-
tributions involving kaons and hyperons are generally
much smaller than those from nonstrange states, but
become relatively more significant with increasing cutoff
mass, and those involving the 7 meson are negligible.

For the A hyperon external state, the most significant
contribution to the self-energy is from the Xz intermediate
state, which is a factor ~2 smaller in magnitude than the
most significant (Nz) contribution to the proton self-
energy. Contributions from NK and X*7 intermediate states
are ~2-3 smaller for the given range of regulator masses,
with kaon loops generally playing a greater role than for the
proton.

For the X", the contributions from the X7z and An
intermediate state configurations are similar, but about a
factor 2 smaller than the largest (X) contribution to the A
hyperon for a regulator mass ~1 GeV. The ZK contribution
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Contributions to the self-energies of octet baryons from various meson-baryon intermediate states as a function of the pion

mass squared, m,z,, for the proton p, A, =¥, and =0 hyperons. For transitions involving K and 7 loops, the meson masses are written as

functions of m2 using Eq. (71).

is next largest, and in fact becomes comparable to the
pionic contributions for masses = 1.2 GeV, although at
such values the one-loop approximation becomes more
questionable. The remaining contributions from the other
intermediates states are mostly negligible.

In contrast to the other hyperons, for the Z° baryon the
2K loop makes the dominant contribution to the self-
energy, which is much larger in magnitude than from any of
the other states, with the exception perhaps of the Zx state.
Interestingly, the largest self-energy contribution to the Z°
baryon is not the diagonal (Ex) case, but the off-diagonal
2K channel.

It is also instructive to examine the dependence of
the baryon self-energies on the pion mass squared, m2,
which we illustrate in Fig. 3 for a fixed value of the
regulator mass A = 1 GeV. While nature provides us with
only one physical value for m,, the m, dependence can in
principle be studied within lattice QCD, where any chosen
value of the quark mass can be dialed and the simulation
performed also at an unphysical pion mass. The calculated
mass dependence can then be compared with that expected
from the QCD chiral analysis, or the latter can be utilized to
extrapolate the lattice data from unphysically large masses
to the physical ones. In the numerical analysis of the pion
mass dependence, for states involving K and # mesons we
use the relations [53]

, 44 +m,2,
My = —F5Mm -,
a2

162 ml

where my is the strange quark mass and 4 is a fitting para-
meter. Fitting the PACS-CS lattice QCD data for the baryon
masses [4], we find this parameter to be 1 = 0.00748 GeV?
and use my; = 0.0674 GeV to reproduce the experimental
kaon mass at the physical value of the pion mass.

At low values of the pion mass, the baryon masses can be
expanded in a power series in m2, with terms ~cq +
coym2 + - - - that are analytic in m2, as well as terms that are
nonanalytic. The latter can only arise from pseudoscalar
loops, so it is therefore instructive to examine deviations of
the self-energies from linearity at small m2. The results in
Fig. 3 clearly indicate nonlinearity in the self-energies for
m2 <0.2-0.3 GeV? for all the octet baryons, as observed
in existing lattice simulations [4], with greatest nonlinearity
apparent for the proton and least for the Z°. For large values
of m2 the various meson—baryon contributions to the self-
energies rapidly decrease, and in the limit m; — oo these
vanish. Closer inspection of the mass dependence of the
individual intermediate states indicates that the contribu-
tions from K and 7 loops decrease in magnitude more
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FIG. 4. Contributions to the self-energies of decuplet baryons from various meson-baryon intermediate states as a function of the
dipole regulator mass parameter A, for the A™ isobar, Z**, Z*0 and Q- hyperons.

slowly than the pion loop contributions, which can be
understood from the pion mass dependence of m% and m%
in Eq. (71).

B. Decuplet baryon self-energies

For the self-energies of the decuplet baryons, as for
the octet case, we evaluate the k%, y and z integrals in
Egs. (53) and (57) analytically and study the decuplet
self-energies numerically as a function of the regulator
mass parameter and pion mass squared. In the numerical
calculations we use the same value for the meson-octet-
decuplet coupling as above, C = (6/5)g,, and for the
meson-decuplet-decuplet coupling use the SU(6) result
H = (9/5)g,. The relations for the various meson-baryon
coupling constants Cyp and Cry, are given in Table III of
Appendix A.

The behavior observed for the decuplet baryon self-
energies is qualitatively similar to that for the octet baryons,
but with some unique features. The dependence on the
regulator mass is displayed in Fig. 4, where again the
magnitudes of the self-energies are seen to increase with A.
The largest contributions generally arise from intermediate
states involving decuplet baryons, and contributions from
intermediate states with kaons increase at a somewhat faster
rate than their pion counterparts.

For the A™" external state, the diagonal A — Arx tran-
sition dominates over all other contributions over the entire

range of A considered. The Nz intermediate state gives the
second largest contribution, while those involving K and 5
loops are relatively insignificant. For larger A values the
magnitude of the £*K contribution increases at a faster rate,
and eventually exceeds the Nz. However, as mentioned
previously, the behavior at large regulator masses is
questionable because of the increasing importance of
higher order terms that are not included in this analysis.

The diagonal *z contribution to the 2** self-energy is
also significantly larger than other terms, although a
number of other states, such as the AK, E*K, Ax, and
Xz, make non-negligible contributions. At smaller values
of A <1 GeV the contributions from the (octet baryon) Az
and Xz states are actually larger than those from the
(decuplet baryon) AK and E*K, however, at larger values
of A 2 1 GeV the latter increase rapidly and become more
prominent.

The E* baryon self-energy displays an interesting
feature in that the largest two contributions, namely, from
the =Z*7 and X*K intermediate states, switch their order at
A =09 GeV, with the latter becoming much larger at
higher values of A. For lower A values, the Ex state also
makes an important contribution, but its relative impact
decreases with increasing A. This feature, as evident also
for the ** self-energies, illustrates the general trend of the
contributions involving decuplet baryons playing a more
prominent role than those involving octet baryons at larger
A. This is of course expected from the fact that decuplet
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baryon propagators involve higher powers of the loop
momentum, which are less suppressed for larger values
of A.

Finally, for the triply strange € baryon there are only
three intermediate states that preserve strangeness which
can contribute to the self-energy, namely, two involving
decuplet baryons, E*K and Q, and one involving the octet
EK. The E*K gives the largest contribution, followed by
the diagonal Qn, while the octet contribution EK has the
smallest magnitude.

In a similar manner to the octet self-energies, it is also
instructive to examine the variation of the decuplet baryon
self-energies with respect to the pion mass squared.
Choosing again the nominal value A =1 GeV for the
finite range regulator mass, we illustrate the octet baryon
and decuplet baryon intermediate state contributions to the
decuplet self-energies in Fig. 5, using the relations in
Eq. (71) to express the K and # masses in terms of the pion
mass. Generally similar behavior is observed for the
decuplet baryon self-energies to that for the octet self-
energies when varying m,, albeit with one rather striking
difference. For mass differences between the external and
internal baryons (M; — Mz = —Agr) greater than the
meson mass, the self-energies acquire an imaginary part,
as discussed above in Secs. III C and IV B. This results in
noticeable kinks in the self-energies when m, = —Agy,
below which the decay channels become open.

For the A — Nz self-energy, for example, the branch
point is clearly seen at m, ~ 0.293 GeV, corresponding to
the difference between the nucleon and A masses. For the
>** baryon, branch points are observed for the Az channel
at m, =0.267 GeV and for the Xz channel at
m, = 0.19 GeV. For the Z*° baryon the Zz intermediate
state has a clearly visible branch point at m, = 0.213 GeV,
while the Q~ has no branch points when varying with
respect to the pion mass.

Note also that since these results show the variation with
respect to m2 and the K and 5 masses are written using
Eq. (71), there are no observable branch points for any
intermediate states involving kaons or # mesons. This can
be understood from Eq. (71) by noting that at m, = 0 the K

mass is given by mg = \/(44/f2)m, = 0.482 GeV and
the 7 mass by m, = \/(164/3f%)m, = 0.557 GeV, which
are larger than the largest baryon mass differ-
ence, —Ayy = My« — M = 0.444 GeV.

C. Analysis

Putting all these results together, in Fig. 6 we show a
comparison of the total self-energies for all the octet and
decuplet baryons versus the regulator mass parameter and
versus the pion mass squared, as in Figs. 2-5. The general
trend is for the magnitude of the self-energies to become
larger the lighter the baryon is. For the same value of the
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FIG. 6. Total self-energies for octet (left) and decuplet (right) baryons as functions of A (top) and m2 (bottom).

regulator mass, the decuplet baryon masses are slightly
larger than the corresponding octet baryon masses, for the
same value of the strangeness. For example, the A baryon
self-energy is & — 0.4 GeV at A = 1 GeV, compared with
the nucleon’s =~ — 0.2 GeV, while the E* baryon self-
energy of & — 0.2 GeV is about twice as large in magnitude
as the E self-energy at the same value of the regulator mass.

In the comparison of the total decuplet self-energies with
varying m2, the kinks at low m, values are clearly
noticeable, and correspond to the points where the decay
channels open and the self-energies develop an imaginary
part. For larger m,, values, each of the four octet and each of
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N \\
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FIG. 7.

the four decuplet state self-energies cross over as one
approaches the SU(3) symmetric limit, where m, ~ m, 4.

It should be noted that closer inspection of the intersect
region does reveal some slight SU(3) symmetry breaking in
our case, which arises from differences between the various
baryon masses used in the propagators and spin trace
factors in the expressions for the self-energies. If one were
to use the same external mass and mass difference for all
possible transitions, SU(3) symmetry would be exact and

all lines would intersect at the same point, as observed in
Refs. [21,22] for example.
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Comparison of Nz (red lines) and Az (blue lines) intermediate state contributions to the proton self-energy, %, versus the

regulator mass parameter A and versus m2, for our full relativistic calculation (solid lines) and the heavy baryon approximation

(dashed lines).
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We also stress that if all possible transitions were not
considered for each octet and decuplet baryon, the inter-
sections of the various curves in Fig. 6 would not occur.
This further emphasizes the importance of a comprehensive
approach including all octet and decuplet baryon inter-
mediate state contributions to the self-energies.

Finally, before concluding our discussion it is instructive
to compare the results of our relativistic calculations with
those obtained in the heavy baryon limit, which has been
used in many previous calculations. For illustration, we
focus on the proton external state, and consider the
contributions from the Nz and Az intermediate states.
The integrated expressions for the N — Nz case for the full
relativistic and approximated heavy baryon results are
given in Eqs. (36) and (37), respectively. In Fig. 7, we
show the Nz and Az intermediate state contributions to the
proton self-energy, both as a function of the regulator mass
parameter A and versus m2, for the relativistic and heavy
baryon calculations.

The heavy baryon results for the Nz contribution are
~50% larger in magnitude for the same value of the
regulator A ~ 1 GeV, with the difference remaining rela-
tively stable for varying A and m2. This can be understood
by considering the 1/M expansion of the relativistic
expression in Eq. (36). While Eq. (37) is the leading order
term in the heavy baryon approximation, the next to lead-
ing order correction in the expansion is positive and
~+0.15 GeV in the chiral limit. This amounts to
~40% of the magnitude of the leading term, which is
~ —0.35 GeV for the same regulator mass, and accounts
for most of the difference between the relativistic and heavy
baryon results. The relativistic effects for the Az contri-
bution are even more sizeable, with a reduction of the self-
energy correction of ~2/3 from the heavy baryon result in
the chiral limit. These results suggest that relativistic effects
in the baryon mass expansion can play a significant role in
the self-energies. In this respect, it will be interesting to
investigate whether the sizable cancellations in the chiral
logarithmic corrections to the baryon axial vector currents
between the intermediate octet and decuplet states observed
in the nonrelativistic heavy baryon approach [54] arise also
in the relativistic approach.

VI. CONCLUSIONS

In this paper we have, for the first time, evaluated the
self-energies of all baryons in the octet and decuplet
representations of flavor SU(3) within a relativistic chiral
effective theory, and using a four-dimensional finite-
range regulator with a dipole shape. The use of the four-
dimensional regulator ensures that the calculation preserves
the necessary Lorentz, gauge and chiral symmetries of
the fundamental QCD theory. Furthermore, we derive the
leading nonanalytic behavior of all the self-energies in the
chiral limit, which provides an important consistency check
for phenomenological model calculations [55].

We studied the dependence of the baryon self-energies
numerically as a function of the regulator mass, A, and
identified the most important channels for each baryon
external state. To allow for comparisons with lattice QCD
data we also considered the dependence of the self-energies
on the pion mass, illustrating the characteristic nonlinear
behavior with m2 near the chiral limit.

At larger pion masses, the SU(3) symmetry point, where
all self-energies are equal, is identified, with small sym-
metry-breaking corrections arising from the use of physical
baryon masses in the self-energy equations. This illustrates
the importance of accounting for all SU(3) octet and
decuplet baryons in the intermediate states, without which
the symmetry point would not be observed. Comparison
with the nonrelativistic or heavy baryon approximation for
the Nz and Az contributions to the proton mass suggests
that relativistic effects are significant, and reduce the
magnitude of the (negative) correction by some 40%-—
50% compared with the heavy baryon result.

A natural future extension of our results will be to
explore the applications of the self-energies to baryon
masses and o-terms. In chiral effective theory, baryon
masses can be expanded in powers of the quark mass,
including contributions from the self-energies computed
here. Parameters of terms in the expansion that are
analytical in the quark mass can be determined from
fitting to lattice QCD data on baryon masses, but once
these are determined the baryon masses can be used to
derive o-terms using the Feynman-Hellmann theorem,
opg = myOMp/Om,. A detailed analysis of the o-terms
will be presented elsewhere [56].

Further applications involve coupling the meson—baryon
system to external currents, such as photons, to study the
effects of meson loops on electromagnetic elastic and
transition form factors. Moreover, coupling the meson—
baryon states to nonlocal currents can provide information
about the physical origin of the flavor asymmetries in
parton distribution functions for the external octet and
decuplet [57,58] states, as well as about sea quark con-
tributions to generalized parton distributions.
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APPENDIX A: COUPLING CONSTANTS

In this Appendix, we summarize for convenience the full
set of coupling constants for octet and decuplet baryon
transitions to meson-baryon intermediate states, in terms
of the couplings defined in the Lagrangian in Eq. (1).
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TABLE II.

Coupling constants Cgp, and Cpyy for transitions from octet external states B to intermediate states

with octet (B") and (T") decuplet baryons, respectively, and a pseudoscalar meson ¢, in terms of the couplings D, F
and C defined in Eq. (1).

External state B

A >t =0
(B'¢) (pﬂ.O) (D;LF) (pK™) _ (D\}L%F) (pl_(o) <D\;§F> (201'(0) (D;F)
(nzh) (D\‘/FEF) (nK) _ (D\‘/F%F) (EKT) (D\‘/%F> (ZFK) (D\}%F)
(Z+KO) (D\;EF> (Et77) %D (2+ﬂ0) F (EOEO) (D;F)
(Z0K) (D;F) (079) % D (=07z+) F (E-7) (D\;EF)
Ak -0 (7)) D =) Vel 2ypy 220
(pm O @K -2 (Arh gD (AK%) -0
(E-K+ _ (D\;]%F)
(An) 7D
(T'¢) (Attzo) J%c &) ic (A++_K—) - %c (z*ﬂ_(—) —%C
Atz -o¢C (Z7") ic (ATK%)  -C @K -5C
(A7) —-C (z0x°) ic @*a’)  5C E%)  -55C
* 0 1 =0 0 _1 *0 1 k— 1
K TEC EKY) 5C &0zt mC E*x") \/EC
@kY)  -5C @K icC ETKY) € E%)  -iC
) ic QKYH ¢
TABLE III.  Coupling constants Cyp and Crpy for transitions from decuplet external states 7' to intermediate

states with octet (B’) and (T”) decuplet baryons, respectively, and a pseudoscalar meson ¢, in terms of the couplings
C and 'H defined in Eq. (1).

External state T’

A+ 2*+ E*O Q-
(B'9) (pn°) %€ (pK®) %€ (Z*K7) %€ EK)  —5C
(na*)  —C (B°KT) %€ @K —C (E-K%) 5C
@K% —%C O I L & C
(ZOK*) %c =07t) ﬁc Exh) — %c
) 3¢ E%) 1Y
(Az™) -1ic (AK?) -1c
(T') (At*z7) %H (ATTK7) %H E=zh) ﬁH (BKY) ﬁH
(At 70) tH (A1KO) ﬁH (E9070) tH (BYKT) %H
A7ty 2N E°kT)  LH =) -5H @mn  —-LH
@t M (= 20) Ly K 2H
@K =R E7+)  iH (ZOK%) IH
=K IH QK  LH

For transitions from octet baryon external states, the APPENDIX B: INTEGRAL RELATIONS

coupling constants 1, and 1, are given in . . . .
pung Chig Cory g There are several useful integral relations involving

propagators that occur in different expressions for self-
energies that we summarize for convenience here. The
common integrals seen in the self-energy equations (33),

Table II, while for decuplet baryon external states
the coupling constants Cy7/, and Crp, are given in
Table III.
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(40), (51), and (55) generally contain some combination of
the baryon propagator Dy, meson propagator D, and the
A propagator from the form factor D,, where B’ is under-
stood to represent either an octet (B’) or decuplet (77)
baryon. Terms containing both Dz and D or D, have poles
in different half-planes, so that using Cauchy’s integral
formula one can choose a contour in either the upper or
lower half-plane to perform the k™ integration analytically.
Taking the pole in the baryon propagator, one can show that

1 =4
/d4k74 = in /dydkLyi, (B1)
D4Dp Dy DB¢BrDB,AB,
and
1 —3
/d4k T = —in /dydk2 , (B2)
DB/DA DBAB/
where
DB¢B/ = ki — M%y)_) + M%/y + mfp)_),
Dppnp = k1 — Mzyy + My + A%y (B3)

are the ¢p and A propagators, respectively, taken at the D =
0 pole.

Terms with only D, and D, have poles on the same
half-plane and the integral vanishes when k™ # 0. When
k™ = 0, however, the integral is divergent and must be
handled more carefully. Using the Feynman parametriza-
tion, one can rewrite this term as

1 L/o\ 1
d*k = [ d*%— =5 ) —
/ D,D / 3!<8A2> D,D,
—/d“ki i ’ i /1 dz
B 31\0A%) \0Q) Jy (K> -Q+ie)’

(B4)

where

Q=7zA*+

(1 =z)my. (BS)

Using the relation [59]

/dk‘;
K —Q+ e

one can then reduce the integration in Eq. (B4) to yield

1 I 7
d*k = —i 2/dk+dk2/ dz————6(kT).
/ D0, " Ly et
(B7)

+Q

= 2milog <k )5(k+), (B6)

Since the techniques and steps are the same, one can also
generalize these results for all powers of D}, where n > 1.
In this case by performing the k™ integrations one obtains
the relations

1 _5\n
/ P S — / dyae — " (Bga)
DyDp D} Dy Dz
1 S\n—1
/ dh—— = ir? / dyae 2 (B8b)
DD’ DL

/dk*dki/ldz(z_zié(lﬁ),
0 (kJ_ Jr.Q)"

1
/d4k = in?
D¢DA

(B8c)

1 R | X
/d4kD7\_ m2/dk Wi 5 Ao
(B8d)

APPENDIX C: EXAMPLE OF DECAY
RATE DERIVATION

To demonstrate the relation between the decay rate and
the imaginary part of the self-energy, we give here an
explicit derivation for the decay rate of a spin-1/2 nucleon
resonance to a nucleon and a pion, N’ — Nz. (A specific
example of such a decay could be the Roper N(1440)
resonance.) The invariant amplitude for this decay process
is given by

. - ga s

IM= M(pN’SN)Fy Patu(pyr sy, (C1)
where u(py, sy) and u(py,sy) are the spinors of the
initial resonance and the nucleon, respectively, p, = py —
pn is the pion momentum, and 7 represents the isospin
matrices. Computing the spin average of the amplitude
squared |M|?, we get

9
<|M| > 4;2 sz\lN’(Az/N_mzzz)7

where the mass difference between the resonance N’ and
the nucleon N is larger than the pion mass, Ay y =
M’ — M > m,, which ensures that (|M]?) > 0. Since the
decay rate is given by the phase space integration,

1 1
— | &
2M/ (2 / pN / pﬂ'

(€2)

x 8 (pyr = pv = P2)(IM[?)
1
— —16EM/3 \/(M/Z + M2 _ m72r)2 _ 4M/2M2<|M|2>,
(C3)
using Eq. (C2) we arrive at
Bg2 M2,
= Ginp a B m2)) (O, —m2)(A2, —m).
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To relate the decay rate with the imaginary part of the
self-energy, we consider the self-energy of the octet —
octet transition given by Eq. (33), since the state N’ has spin
1/2. Here we note that the imaginary contribution to the
self-energy arises from the 1/(D,DgD}) type term.
Specifically, the k= and k, integration of 1/(DyDg D3 )
produces the logarithmic term,

/1 dylog(-D),

0

(C5)

where D = yyMp — yMy, — ymj. It should be noted that
terms in the self-energies proportional to just 1/ (D¢Dj‘\) or
1/(DgD%) cannot give imaginary contributions because
the k= and k; integration produce no such negative
logarithm term. This feature of each term with respect to
the imaginary contribution is independent of the regulari-
zation method used for the loop calculation, and depends
only on whether the mass difference App between the
initial and intermediate baryons is larger or smaller than the
mass of the intermediate meson m. To see the character-
istic of each term in Eq. (33) more transparently, we take
the pointlike limit A - oo of Eq. (33) with Mg = M’,
Mp = M and my = m,, and obtain

> =

3% /d4p,, M (A = 2)
8f2M' ) (2n)* DyD,
M2, MyyAy

+ NN_|_ NN NN:|’

DN DJI.'

(Co)

where the p - k/D,, term is odd under k <> —k and vanishes
after integration. (Note also the sign flip —Agg = Agg =
Ay for the last term with respect to the corresponding last
term in Eq. (33) due to the notation correspondence.) As the
numerators in Eq. (C6) are now constants, for convenience
we can use dimensional regularization to compute each of
the terms individually. It is easy to verify that neither the
1/Dy term nor the 1/D, term can yield an imaginary part
of X, while the 1/(DyD,) term provides the characteristic
nonvanishing SmX when Ay > m,. In fact, from the
dimensional regularization with D = 4 — 2¢ dimensions,
we can write

/ dps 1 _ ap (4P 1
oD, " ] @n)PD,
im2 [1 m2
:W{g“rl—}/—logﬁ—FO(G) s (C7)

where the factor y*~? is introduced to keep the dimension
of the integral the same as in four dimensions. Similarly,
shifting the integration variable from p, to py = px' — Py»
we have

/ d'ps 1 _ o / dopy 1.
(2%)" Dy (%) Dy
iM?* [1 M?
=——|-+1—-y—-log—+ 0O , (C8
. = CIC)

while the 1/(DyD,) term provides

dp, 1, [dp, 1
/(272:)4DND71_” /(27Z)DDND71
i

1622

- [ avioe(Ze) 4000, (0

where D, = yyM"> — yM? — ym2 corresponds to D in
Eq. (C5) with the replacements Mg — M', My — M and
my — m,. This confirms that neither the 1/Dy term nor
the 1/D, term can yield an imaginary part of X, with
the imaginary part coming from the 1/(DyD,) term for the
region of y integration in Eq. (C9) where D, > 0. The
condition for D, > 0 is given by yin <V < Ymax, Where

{1
——y—logx
€

—¢ (M2, — m2)(A2, — m2) + M — M? + m?

Ymin = M2
(C10)
and
V Oy = m2) (B = mi2) + M = M +
Ymax = M2 .

(C11)

The imaginary part of X therefore arises from the region of
the y integration for the log(—1) = iz term in Eq. (C9),

V OB = m2) (83, = m2)

/ymax dylog(-1) =in

- M/2
(C12)
This contribution amounts to
39% Mzzwv’ 2 2
SmX = 128f§5 M/3 (mﬂ - AN’N)

X \/ (M7

Comparing this result with the decay rate given by Eq. (C4)
confirms the relation

—mz) (Y —mz). (C13)

I = —23mX. (C14)
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