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Keywords The interface electronic structure between rubrene and permalloy (NigoFezo) has been studied by ultraviolet
Permalloy photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). We find that the downward
Rubrene

energy level bending at the rubrene/NiFe heterostructure is caused by the interaction between rubrene and NiFe
at the interface. There is an interface dipole of 0.23 eV, pointing from NiFe to rubrene. Our researches deepen the
understanding of the fundamentals and laid a foundation for the design of high-performance rubrene-based

Photoemission spectroscopy
Electronic structure

organic spintronic devices.

Introduction

Organic semiconductors (OSC) with hyperfine interaction and weak
spin orbit coupling have been extensively pursued for many applications
such as organic photovoltaics (OPVs), organic light-emitting diodes
(OLEDs), and organic field effect transistors (OFETs) [1-8]. The research
of organic spintronic devices based on various organic materials like
Alqgs, PEDOT, Cgop was reported successively [9-12]. In 2002, Dediu
reported a magnetoresistance (MR) of nearly 30 % at room temperature
in first lateral spin valve by using sexithienyl molecule as the spacer and
Lag 7Sro.sMnO3 (LSMO) as the electrodes [13]. Xiong et al. prepared the
first vertical organic spin valve device based on Co/Alq3/LSMO struc-
ture in 2004, and got an MR of nearly 40 % at low temperature [14].
Cinchetti et al. found that the efficiency of spin injection at cobalt-CuPc
interface is 85-90 % [15]. Gobbi et al. obtained an MR of more than 5 %
at room temperature in Co/AlOy/Cgo/NiFe devices [16]. TVAG team
found an upper limit for the spin lifetime of carriers in PEDOT:PSS
nanoscale lateral devices, and its value is about 50 ns [17].

Rubrene has been applicated in OPVs, OLEDs and OFETs widely for
its stable molecular structure, low band gap and relatively high carriers
transfer rate [18-20]. Podzorov et al. found that the hole mobility is 20
cm?/Vs at room temperature in the organic thin-film transistor by using
rubrene single crystal [21]. Zhang et al reported an MR ratio of
approximately 6 % at room temperature in organic spin valves with a
Fe304/Al0/rubrene/Co stacking structure [22]. NiFe is often used as the
ferromagnetic electrode for organic spintronic devices due to its high
spin polarization and Curie temperature [23-27]. Sun team reported a
spin photovoltaic device with a NiFe/Cgo/Co structure, which can be
widely used in sensors and magnetic current converters [28]. Alqgahtani
et al. fabricated a planar organic spin valve with a PTCDI-Cy3/NiFe
structure, and they obtained an MR ratio of 0.35 % at room temperature
[29]. Liu et al. reported a longest spin diffusion length in NiFe/fullerene/
Pt device when the thickness of Cyq is 25 nm [30]. Li et al. fabricated a
device with a NiFe/rubrene/Pt structure and found that the spin diffu-
sion length is 132 nm and the spin relaxation time is 3.8 ms at room
temperature [31]. It is well known that the carriers will inevitably pass
through the interface between rubrene and metal electrode in rubrene-
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based devices. The performance and characteristics of rubrene-based
devices are usually significantly affected by the interface electronic
structure. Such as, Ding et al. found that interface dipoles are formed at
interfaces with Au, Ag, and Al due to charge transfer between rubrene
molecule and the metal substrates [32]. Therefore, it is of great signif-
icance to study the interface electronic structure at the rubrene/metal
interface, which is conducive to the preparation of spin related devices
[33,34].

In this paper, we report our investigations on the electronic structure
of rubrene/NiFe heterostructure interface using photoemission spec-
troscopy (PES). A 0.23 eV interface dipole was observed at the rubrene/
NiFe interface. We found that the interface interactions at the interface
between rubrene and NiFe can lead to the downward energy level
bending.

Experimental section

Sample Preparation: We performed the vapor deposition and
photoelectron spectroscopy (PES) in a ultrahigh vacuum system which
consisting of magnetron sputtering chamber, organic growth chamber,
spectrometer chamber with base pressure of 1 x 10" mbar, 2 x 10
mbar, 2 x 101° mbar, respectively, as described previously [35-37].
MgO (100) was annealed in oxygen atmosphere for 30 min at a tem-
perature of 450 C. NiFe film was deposited on MgO (100) substrate by
RF magnetron sputtering and its thickness is about 35 nm. As shown in
Fig. 1(b), rubrene were thermal evaporated at deposition rate of 1 A/min
and its thickness is 2, 4, 8, 16, 32 and 64 A respectively [38,39]. Quartz
Crystal Microbalance (QCM) was used to monitor the thickness of
rubrene film.

Photoelectron Spectroscopy: The spectrometer chamber is mainly
composed of a hemispherical energy analyzer, a microwave UV light
source (He I = 21.22 eV) and a monochromatic X-ray source (Al Ka =
1486.7 eV). The diameter of UV spot is about 1 mm [40]. The total
energy resolution test obtained by measuring the Fermi edge of a clean
polycrystalline Au at room temperature and a total instrumental energy
resolution of 70 meV is obtained. The secondary cut-off edge was ob-
tained under negative 5 V bias in UPS measurements. All measurements
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Fig. 1. (a) Molecular structure of rubrene. (b) Schematic diagram of the rubrene deposited on permalloy (NigoFezo) which was grown on MgO (100) substrate. (c)

XPS full spectra of NiFe substrate.
were taken at room temperature.

Results and discussion

In Fig. 1, the molecular structure and schematic diagram of the
evaporation of rubrene are presented. Rubrene is made up of tetracene
backbone and four phenyl groups, as shown in Fig. 1(a). The four phenyl
are rotated out of the plane of the tetracene backbone owing to steric
hindrance. For the intrinsic rubrene, the spectral features closer to the
valence band edge can be attributed to the contribution of the tetracene

backbone [41,42]. The remaining part of the spectrum at higher binding
energy are dominated by both the tetracene backbone and phenyl
groups [43]. Fig. 1(b) present the schematic representation of rubrene
deposited on NiFe/MgO(100) by thermal evaporation. Fig. 1(c) shows
the XPS full spectra of NiFe substrate. The sample displays only nickel
and iron, indicating that the surface of the NiFe film is clean.

Fig. 2 shows the UPS spectra of the stepwise deposition of rubrene on
NiFe substrate. In order to have a more intuitive and clear vision, we
normalized the intensity of the spectrum to the [0, 1] interval by the
Origin software. In Fig. 2(a), the work function (WF) is 5.03 eV before
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Fig. 2. Evolution of UPS spectra as a function of rubrene thickness. (a) Cut-off region, (b) HOMO region, (c) Magnified at binding energy between —0.4 eV to 2 eV.
(d) Evolutions of the HOMO-1 (green peak) and HOMO-2 (red peak) as the rubrene thickness increases. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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rubrene deposition. After the deposition of rubrene, the WF decreases to
4.66 eV at 4 A and the total shift is about 0.37 eV. Then the WF increases
to 4.72 eV at 8 A and decreases to 4.63 eV with further increasing of the
rubrene thickness, the total shift is about 0.09 eV. The WF decrease
quickly at lower rubrene coverage (from 0 to 4 A) can be attribute to
interface interaction at rubrene/NiFe interface, which lead to a
discontinuous change of WF as the rubrene thickness increases. Fig. 2(b)
and 2(c) presents the evolution of the HOMO region as the increasing of
rubrene thickness. The HOMO onsets are obtained by linear extrapola-
tion as previously illustrated [44-46]. In Fig. 2(b), two peaks at higher
binding energy region (2-5 eV), marked as HOMO-1 and HOMO-2
respectively, are dominated by both the tetracene backbone and
phenyl groups [43]. Shown in Fig. 2(c) are the magnification of HOMO
region lower than 2 eV, which is dominated by the contributions from
the tetracene backbone and plays an important role in its transport
properties [41,42]. The HOMO onset of 64 A rubrene is located at about
0.85 eV below the Fermi level. As shown in Fig. 2(d), the HOMO-1 and
HOMO-2 peaks are fitted with fixed width after a Shirley background
correction. As the increasing of rubrene thickness, the intensity of the
HOMO-2 peak (red peak) increases while the HOMO-1 peak (green
peak) decreases. The change of HOMO-1 and HOMO-2 peaks can be
attributed to the interfacial interaction at rubrene/NiFe interface, which
is consistent with previous reports in the literature [47].

To better understand the interfacial interaction between rubrene and
NiFe, the chemical characteristics were investigated by using XPS. The C
1s core level can be fitted by two peaks, as shown in Fig. 3(a). The peak
located at about 285.29 eV (C-C) can be assigned to the intrinsic peak of
rubrene and that located at about 285.47 eV (rubrene-NiFe) is usually
related to interfacial interaction [48]. It is find that the rubrene-NiFe
peak decreases as the increasing of rubrene thickness, indicated that
the interfacial interaction mainly exist in the rubrene/NiFe hetero-
junction interface. Fig. 3(b) show the change of Ni 2ps,» core level with
the increasing of rubrene thickness. We can see that the position of the
Ni 2p3/, from the NiFe substrate does not shift and no peak or shoulder is
detected at around 852.78 eV. It indicates that the NiFe substrate is not
affected appreciably by the rubrene film. In Fig. 3(c), the ratio of
rubrene-NiFe/C-C decreases dramatically at the initial rubrene
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deposition stage (<8 A) and decreases gradually with further increasing
the rubrene thickness, indicating the existence of interfacial interaction
at the rubrene/NiFe heterojunction interface.

The energy levels diagram at the rubrene/NiFe interface is shown in
Fig. 4. According to the previous test results, the energy band gap of
rubrene is 2.67 eV [32]. There is an interfacial dipole of 0.23 eV pointing
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Fig. 4. The energy levels diagram at the rubrene/NiFe interface.
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Fig. 3. Evolution of XPS spectra as a function of rubrene thickness. (a) C 1s, (b) Ni 2p3,, (¢) The ratio of rubrene-NiFe to C-C.



P. Yuan et al.

from NiFe to rubrene. The existence of interfacial interaction leads to the
downward energy level bending. As we all know, there are many reasons
for the formation of energy level bending, such as interface charge
transfer, charging phenomenon, interfacial chemical reaction and so on
[49-52]. It can be observed from Fig. 4 that the Fermi level of NiFe is
almost in the middle region between the HOMO and LUMO of rubrene. It
indicated that there is no interfacial charge transfer [53]. We can
exclude the charging phenomenon because the C 1s core level does not
shift as the rubrene thickness increases, as shown in Fig. 3(a). We also
found that the position of Ni 2p3/, keeps unchanged, indicates that no
interfacial chemical reaction has occurred at rubrene/NiFe interface.
Fig. 2(d) show that the interfacial interaction affects the intensity of the
two HOMO (HOMO-1, HOMO-2) peaks. The change of rubrene-NiFe/
C-C ratio further indicates that there is an interfacial interaction at the
rubrene/NiFe heterojunction interface.

Conclusions

In conclusion, the electronic structure of rubrene/NiFe interface had
been investigated by using UPS and XPS. We find that the interfacial
interaction between rubrene and NiFe leads to the downward energy
level bending. The interfacial dipole pointing from NiFe to rubrene is
0.23 eV. These observations provide important information to design
high-performance rubrene/NiFe-based organic spintronic devices.
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