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Quickest Change Detection in Anonymous
Heterogeneous Sensor Networks

Zhongchang Sun Shaofeng Zou Ruizhi Zhang Qunwei Li

Abstract—The problem of quickest change detection (QCD)
in anonymous heterogeneous sensor networks is studied. There
are n heterogeneous sensors and a fusion center. The sensors
are clustered into K groups, and different groups follow dif-
ferent data-generating distributions. At some unknown time, an
event occurs in the network and changes the data-generating
distribution of the sensors. The goal is to detect the change
as quickly as possible, subject to false alarm constraints. The
anonymous setting is studied, where at each time step, the fusion
center receives n unordered samples, and the fusion center does
not know which sensor each sample comes from, and thus does
not know its exact distribution. A simple optimality proof is
first derived for the mixture likelihood ratio test, which was
constructed and proved to be optimal for the non-sequential
anonymous setting in [2]. For the QCD problem, a mixture
CuSum algorithm is further constructed, and is further shown
to be optimal under Lorden’s criterion. For large networks, a
computationally efficient test is proposed and a novel theoretical
characterization of its false alarm rate is developed. Numerical
results are provided to validate the theoretical results.

Index Terms—Hypothesis testing, mixture CuSum, sequential
change detection, computationally efficient, optimal.

I. INTRODUCTION

IN quickest change detection (QCD) problem [3]–[9], a de-
cision maker collects samples sequentially from a stochas-

tic environment. At some unknown time, an event occurs and
causes a change in the data-generating distribution. The goal
of the decision maker is to detect the change as quickly as
possible subject to a constraint on the false alarm. The QCD
problem in sensor networks has been widely studied in the
literature [10]–[23]. In these studies, it is usually assumed that
the fusion center knows which sensor that each sample comes
from, and thus the statistical property of the sample is known.
However, in a wide range of modern practical applications,
the nodes are anonymous and heterogeneous. In this case,
only unordered and anonymous samples are available to the
fusion center, and the fusion center doesn’t know what data
generating distribution that each sample follows.

In this paper, we investigate the QCD problem using
anonymized samples. We consider a general scenario with
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heterogeneous sensors, where the sensors can be clustered into
K groups with different data generating distributions, and the
fusion center does not know which sensor each sample comes
from. At some unknown time, an event occurs in the network,
and changes the data-generating distribution of the nodes. The
goal is to detect the change as quickly as possible subject to
false alarm constraints using anonymized samples (see Fig. 1).

Fig. 1. QCD in anonymous heterogeneous sensor network. Sensors in
different groups have different distributions. At each time t, the fusion center
collects unordered samples X1[t], · · · , X7[t] from sensors S1, · · · , S7.

Statistical inference for anonymous and heterogeneous sen-
sor networks finds a wide range of practical applications. For
example, in large-scale Internet of things (IoT) networks [24]–
[27], devices are commonly small and low-cast sensing devices
powered by battery, and are usually deployed in a massive
scale. In such large-scale networks, the communication cost
of identifying individual sensors increases drastically as the
number of sensors grows [2], which is not affordable for
battery powered small IoT sensing devices that are expected to
survive for years without battery change. Moreover, sensors in
IoT networks are usually heterogeneous for various industrial
and consumer applications, e.g., pressure sensor, light sen-
sor, temperature sensor, humidity sensor, seismic sensor and
electrochemical sensor. The same type of sensors deployed
in different regions also exhibits heterogeneity in their data
generating distributions, e.g., electrochemical sensors that are
near to or far away from the air pollution source and climate
sensors on different sides of the same mountain. The second
example is crowdsourcing, which is an evolving distributed
problem-solving and business production model [28]–[30].
Crowdsourcing aims to collect data, ideas, micro-tasks from
a large and relatively open group of people. With human
participants, anonymity is necessarily needed to protect pri-
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vacy [31]–[38]. Based on their skill level and background,
e.g., education, country, and language, participants can be
divided into groups that are heterogeneous. QCD finds a wide
range of applications in these networks, e.g., environmental
change (air/water quality) monitoring, fake news detection
in social networks, pandemic outbreak detection and seismic
wave detection. In these applications, a change in the data-
generating distributions occurs due to an abrupt event which
is of interest to be detected quickly.

A. Related Works

The problem studied in this paper is closely related to the
problem of QCD under the multiple-channel setup [10]–[15],
[18]–[23], where samples are collected from multiple sensors
sequentially, and the goal is to detect a change in the data-
generating distribution of some unknown subset of the sensors
or all the sensors. These works assume that the sensors are
non-anonymous, i.e., it is known that which sensor that each
sample comes from. In the non-anonymous setting, algorithms
can be designed by combining the CuSum statistics each
calculated for one sensor. These algorithms inherit the nice
property of the CuSum algorithm [39] which can be updated
in an online and recursive fashion, and thus is computationally
efficient. It was shown in these studies that such a type of
algorithms are asymptotically optimal for various scenarios. In
this paper, we are interested in the anonymous setting, where at
each time step the fusion center receives n arbitrarily permuted
(unordered) observations, and the permutations at different
time steps may be different due to anonymity. Then, the fusion
center does not know which samples over time come from one
particular sensor. Therefore, existing approaches based on the
idea of combining local CuSum statistics are not applicable
any more since the fusion center is not able to compute one
CuSum statistic for each node.

In anonymous networks, the fusion center does not know
the exact distribution of each sample due to the uncertainty
caused by the anonymity [2]. The group label that assigns the
samples to different types of sensors is an unknown parameter
of the distribution. Therefore, the QCD problem in anonymous
networks can be viewed as a composite QCD problem with un-
known pre- and post-change distributions [40]–[46], The main
difference lies in that the unknown parameter in our problem is
changing with time, i.e., the group label may not be the same
at different time steps, and thus the samples are not identically
distributed in the pre- or post-change regime. As will be shown
in our numerical results, a generalized likelihood ratio based
test does not work well here. Furthermore, we do not assume
that the distributions belong to any parameterized family of
distributions, e.g., exponential family.

The problem of quickest detection of a moving anomaly was
studied in [47], [48], where an unknown sensor is affected
by an anomaly with an unknown trajectory that emerges in
the network at some unknown time. In [47], the statistical
behavior of the samples is modeled using a hidden Markov
model [49], and the trajectory is modeled as a deterministic
and unknown one in [48]. Our work is different from the one
in [47] since we do not put any assumption on the prior of

group label (trajectory of the anomaly in [47]). The study in
[48] is related to ours in that the samples can be equivalently
viewed as being collected from anonymous sensors since the
node affected by the anomaly is unknown.

The offline hypothesis testing problem in the anonymous
setting was investigated in [2], where one sample is collected
from each sensor. A mixture likelihood ratio test (MLRT) was
developed, and was further shown to be optimal under the
Neyman-Pearson setting. Here, we consider the QCD problem
under the anonymous setting with sequential samples and
time-varying group labels. We are interested in the tradeoff
between the false alarm rate and average detection delay,
which requires construction of sequential tests and more
involved optimality analysis.

In Table I, we summarize the difference between our paper
and other related works. We note that the fusion center may
be able to recover the group identity if it performs, e.g.,
hypothesis testing, and the error probability depends on the
distance between the distributions of different groups. With
unordered samples, perfect anonymity can only be guaranteed
if distributions among different groups are exactly the same.
Designing optimal mechanisms to achieve perfect anonymity
is not the focus of this paper, and might be of independent
interest. In this paper, we focus on the design of optimal
quickest detection algorithms for the scenario with unordered
samples.

B. Main Contributions

We first revisit the non-sequential hypothesis testing prob-
lem with anonymous heterogeneous sensors. We provide a
simple proof for the optimality of the MLRT [2]. The basic
idea is to construct a binary composite hypothesis testing
problem with uniform priors on all possible group labels, and
to show that the optimal test for the case with a uniform
Bayesian prior is also optimal under the minimax setting.

For the QCD problem in anonymous networks, we design a
mixture CuSum algorithm, and prove that the mixture CuSum
algorithm is exactly optimal under Lorden’s criterion [50]. To
show its exact optimality, we build a novel connection among
several simple QCD problems and the QCD problem under
the anonymous setting. The major challenge in our analysis
is due to that we are optimizing the worst-case performance
over all possible change-point, group labels and pre-change
observations.

The computational complexity of the mixture CuSum algo-
rithm at each time step increases almost exponentially in the
number of nodes, and thus is not efficient when the network is
large. We then propose a computationally efficient test based
on the asymptotic behavior of the mixture CuSum test statistic
when the network is large. The basic idea is to approximate
the mixture CuSum statistic by a convex optimization problem
with linear constraints, the computational complexity of which
is independent of the number of sensors. We provide a
comprehensive discussion of its performance. We also derive
a lower bound on its worst-case average run length to false
alarm, so that a threshold can be chosen analytically for false
alarm control in practice.
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Existing studies Our paper
[10]–[15], [18]–[23]: QCD problem in sensor networks, sensors are Sensors are anonymous, i.e., fusion center does not know

non-anonymous which sensor each sample comes from
[40]–[46]:Composite QCD problem with unknown pre- and Unknown parameters change with time, and generalized likelihood

post-change distributions ratio based test is not applicable
[47], [48]: quickest detection of moving anomaly Samples are unordered at each time step

[2]: offline binary hypothesis testing problem in anonymous networks Samples are sequentially collected
TABLE I

COMPARISON OF RELATED WORKS

We provide numerical results to demonstrate the perfor-
mance of our proposed algorithms. We compare our algorithms
with two other heuristic algorithms based on the Bayesian
approach and the generalized likelihood ratio approach, and
show that our mixture CuSum has the best performance, and
our computationally efficient test also performs better than
the other two tests. We also compare their computational
complexity, and show that our the computationally efficient
algorithm is much more efficient for large networks.

C. Paper Organization

In Section II, we present the problem formulation. In
Section III, we revisit the binary hypothesis testing problem in
the anonymous setting, and derive a simple optimality proof
for the MLRT. In Section IV, we develop the mixture CuSum
algorithm, and prove its exact optimality under Lorden’s cri-
terion. We further develop a computationally efficient test and
characterize its performance theoretically. In Section V, we
provide numerical results to validate our theoretical assertions.
In Section VI, we present some concluding remarks.

II. PROBLEM FORMULATION

Consider a network consisting of n sensors. The sensors
are heterogeneous and can be divided into K groups. Each
group k has nk sensors, 1 ≤ k ≤ K. The distributions
of the observations in group k are pθ,k, θ ∈ {0, 1}. Let
Pθ = [pθ,1 · · · pθ,K ]T . We assume that αTP0 ̸= αTP1. The
centralized setting is considered, where there is a fusion center.
The sensors are anonymous, i.e., the fusion center does not
know which group of sensors that each observation comes
from. The fusion center only knows the distributions pθ,k,
θ ∈ {0, 1} and the number of sensors nk in each group k.

A. Binary Composite Hypothesis Testing

We first revisit the binary hypothesis testing problem in [2].
The goal is to distinguish between the two hypotheses: H0 :
θ = 0 and H1 : θ = 1.

Denote by Xn = {X1, . . . , Xn} the n collected samples.
Denote by σ(i) ∈ {1, . . . ,K} the label of the group that Xi

comes from, i.e., Xi ∼ pθ,σ(i). Due to the anonymity, σ(i), i =
1, . . . , n, are unknown to the fusion center. There are ( n

n1,...,nK)
possible σ : {1, . . . , n} → {1, . . . ,K} satisfying |{i : σ(i) =
k}| = nk,∀k = 1, . . . ,K. We denote the collection of all such
labels by Sn,λ, where λ = {n1, . . . , nK}.

Given σ, the n collected samples are assumed to be indepen-
dent. The problem is a composite hypothesis testing problem,
where σ is the unknown parameter for both θ = 0 and 1:

Hθ : Xn ∼ Pθ,σ
∆
=

n∏︂
i=1

pθ,σ(i), for some σ ∈ Sn,λ. (1)

The worst-case type-I and type-II error probabilities for a
decision rule ϕ are defined as

PF (ϕ) ≜ max
σ∈Sn,λ

E0,σ[ϕ(X
n)], (2)

PM (ϕ) ≜ max
σ∈Sn,λ

E1,σ[1− ϕ(Xn)], (3)

where Eθ,σ denotes the expectation under Pθ,σ, for θ ∈ {0, 1}
and σ ∈ Sn,λ. The Neyman-Pearson setting is studied, where
the goal is to solve the following problem for any ζ ∈ [0, 1]:

inf
ϕ:PF (ϕ)≤ζ

PM (ϕ). (4)

B. Quickest Change Detection

In the QCD setting, anonymized samples are observed
sequentially. At some unknown time ν, an event occurs
in the network, and changes the data-generating distribu-
tions of the sensors. Specifically, denote the i-th sample
at time t by Xn

i [t] and all the observed samples at time
t by Xn[t]. Before the change, i.e., t < ν, Xn[t] ∼
P0,σt

, for some unknown σt ∈ Sn,λ. After the change, i.e.,
t ≥ ν, Xn[t] ∼ P1,σt

, for some unknown σt ∈ Sn,λ. We
note that σt may change with time, i.e., σt1 may not be the
same as σt2 , for t1 ̸= t2. We assume that for any t ≥ 0, given
σt, the samples in Xn[t] are independent. We further assume
that Xn[t1] is independent from Xn[t2] for any t1 ̸= t2.

The objective is to detect the change at time ν as quickly
as possible subject to false alarm constraints. In this paper,
we consider a deterministic unknown change point ν. We
define the worst-case average detection delay (WADD) under
Lorden’s criterion [50] and worst-case average run length
(WARL) for any stopping time τ as follows:

WADD(τ) ≜ sup
ν≥1

sup
Ω

ess supEν
Ω

[︁
(τ − ν)+|Xn[1, ν − 1]

]︁
,

WARL(τ) ≜ inf
Ω

E∞
Ω [τ ], (5)

where Ω = {σ1, σ2, ..., σ∞}, Eν
Ω denotes the expectation when

the change is at ν, and the observations at time t are labeled
according to σt, and Xn[1, ν− 1] = {Xn[1], . . . , Xn[ν− 1]}.

The goal is to design a stopping rule that minimizes the
WADD subject to a constraint on the WARL:

inf
τ :WARL(τ)≥γ

WADD(τ). (6)
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C. Notations

In this section, we list the notations used in this paper.
• n denotes the number of sensors, K denotes the number

of groups and nk denotes the number of sensor in group
k.

• α = [α1 · · ·αK ]T , where αk = limn→∞
nk

n denotes the
asymptotic fraction of sensors of group k.

• σ(i) ∈ {1, . . . ,K} denotes the label of the group that
Xi comes from, i.e., Xi ∼ pθ,σ(i), and Sn,λ denotes the
collection of all σ(i), where λ = {n1, . . . , nK}.

• H(α) denotes the entropy of α.
• ΠXn denotes the empirical distribution of samples Xn,

and T (ΠXn) denotes the type class of ΠXn .
• Pn denotes the set of types with denominator n.
• D(P

⃓⃓⃓⃓
Q) denotes the Kullback-Leibler (KL) divergence

between P and Q.
• f(x) ∼ g(x) as x → x0 if f(x) = g(x)(1 + o(1)) as
x→ x0.

III. MLRT AND A SIMPLE OPTIMALITY PROOF

For the binary composite hypothesis testing problem in Sec-
tion II-A, Chen and Huang constructed a mixture likelihood
ratio test (MLRT), and showed that the MLRT is optimal under
the Neyman-Pearson setting in (4) [2]. In this section, we first
briefly review the optimality proof in [2], and then we present
a simple version of the proof.

Define the mixture likelihood ratio ℓ(Xn) as follows:

ℓ(Xn) =

∑︁
σ∈Sn,λ

P1,σ(X
n)∑︁

σ∈Sn,λ
P0,σ(Xn)

. (7)

Then the MLRT was defined in [2] as

ϕ∗(Xn) =

⎧⎨⎩ 1, if ℓ(Xn) > η
β, if ℓ(Xn) = η
0, if ℓ(Xn) < η,

(8)

where β ∈ [0, 1], η is the threshold, and they are chosen to
meet the false alarm constraint.

Lemma 1. [2, Thm. 3.1] The MLRT ϕ∗ is optimal for (4).

The key idea of the proof in [2] is to reduce the original
composite hypothesis testing problem in Section II-A into a
simple one through the ordering map Π(Xn), and then apply
the Neyman-Pearson lemma. The ordering map Π(Xn) of
Xn is defined as Π(Xn) = (Xi1 , Xi2 , . . . , Xin), such that
Xi1 ≥ Xi2 ≥ . . . ≥ Xin . In the proof, due to the introduction
of the ordering map, a careful examination of the measurability
needs to be conducted. The proof in [2] can be summarized
by the following steps. 1) In the auxiliary space induced
by the ordering mapping, the induced probability measure is
independent of σ, and thus the corresponding problem in the
auxiliary space is a simple hypothesis testing problem. 2) In
the auxiliary space, applying the Neyman-Pearson lemma, the
optimal test is obtained. 3) Any symmetric test in the original
sample space is equivalent to a test in the auxiliary space in
terms of type-I and type-II error probabilities, where a test
ϕ is symmetric if ϕ(xn) = ϕ(π(xn)) for any xn and any
permutation π. 4) The optimal test in the auxiliary space is

the MLRT and is symmetric, which means that among all
symmetric tests, the MLRT is optimal. 5) For any test ψ, one
can always symmetrize it and construct a symmetric test ϕ,
which is as good as ψ. 6) Then, the MLRT is optimal among
all tests.

In the following, we present a simple proof for the optimal-
ity of the MLRT. Our proof does not need to use the ordering
map, and is much simpler.

Proof. We consider a Bayesian setting with a uniform prior
on σ under both hypotheses, and define the average type-I and
type-II error probabilities for any test ϕ:

˜︁PF (ϕ) ≜
1

| Sn,λ |
∑︂

σ∈Sn,λ

E0,σ[ϕ(X
n)], (9)

˜︁PM (ϕ) ≜
1

| Sn,λ |
∑︂

σ∈Sn,λ

E1,σ[1− ϕ(Xn)]. (10)

Then under the Bayesian setting, this problem reduces to the
following simple binary hypothesis testing problem:

H0 :
1

| Sn,λ |
∑︂

σ∈Sn,λ

P0,σ, (11)

H1 :
1

| Sn,λ |
∑︂

σ∈Sn,λ

P1,σ, (12)

for which the optimal test (the same as the MLRT) is the
likelihood ratio test between (11) and (12) [51].

It can be verified that for any permutation π(Xn) =
(Xπ(1), Xπ(2), . . . , Xπ(n)), ϕ∗(Xn) = ϕ∗(π(Xn)). For any
π, let σ′ = σ ◦ π, where “◦” denotes the composition of two
functions, i.e., f ◦ g(x) = f(g(x)). Then Eθ,σ[ϕ

∗(π(Xn))] =
Eθ,σ◦π[ϕ

∗(Xn)] = Eθ,σ′ [ϕ∗(Xn)]. For any σ′ ∈ Sn,λ, a π
can be found so that σ ◦ π = σ′. Thus, for any σ, σ′ ∈ Sn,λ

and θ = 0, 1,

Eθ,σ′ [ϕ∗(Xn)] = Eθ,σ[ϕ
∗(Xn)]. (13)

It then follows that

PF (ϕ
∗) = max

σ∈Sn,λ

E0,σ[ϕ
∗(Xn)] = E0,σ[ϕ

∗(Xn)]

=
1

| Sn,λ |
∑︂

σ∈Sn,λ

E0,σ[ϕ
∗(Xn)] = ˜︁PF (ϕ

∗). (14)

Similarly, it can be shown that PM (ϕ∗) = ˜︁PM (ϕ∗).
From (9) and (10), it follows that for any test ϕ,

˜︁PF (ϕ) ≤ PF (ϕ),˜︁PM (ϕ) ≤ PM (ϕ). (15)

Since ϕ∗ is optimal for the problem of minimizing ˜︁PM (ϕ)
subject to ˜︁PF (ϕ) ≤ ϵ, then ϕ∗ is also optimal for problem of
minimizing PM (ϕ) subject to PF (ϕ) ≤ ϵ.
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IV. MIXTURE CUSUM ALGORITHM AND A
COMPUTATIONALLY EFFICIENT TEST

A. Mixture CuSum Algorithm

Motivated by the fact that the MLRT is optimal for the
binary composite hypothesis testing problem, we construct the
following mixture CuSum algorithm:

τ∗(b) = inf
{︂
t : max

1≤j≤t

t∑︂
i=j

log ℓ(Xn[i]) ≥ b
}︂
. (16)

Let W [t] = max
1≤j≤t

∑︁t
i=j log ℓ(X

n[i]). The test statistic W [t]

has the following recursion:

W [t+ 1] = (W [t])+ + log ℓ(Xn[t+ 1]),W0 = 0. (17)

The following theorem shows that the mixture CuSum algo-
rithm is exactly optimal under Lorden’s criterion [50] in (6).

Theorem 1. Consider the QCD problem in Section II-B, the
mixture CuSum algorithm in (16) is exactly optimal under
Lorden’s criterion in (6).

Proof Sketch. Consider a simple QCD problem with samples
independent and identically distributed (i.i.d.) according to
the pre-change distribution ˜︁P0 = 1

|Sn,λ|
∑︁

σ∈Sn,λ
P0,σ and

the post-change distribution ˜︁P1 = 1
|Sn,λ|

∑︁
σ∈Sn,λ

P1,σ , re-
spectively. For this pair of pre- and post-change distributions,
define the ˜︂WADD and ˜︃ARL for any stopping rule τ as follows:

˜︂WADD(τ) = sup
ν≥1

ess sup ˜︁Eν [(τ − ν)+|˜︁Xn[1, ν − 1]],

˜︃ARL(τ) = ˜︁E∞[τ ], (18)

where ˜︁Eν denotes the expectation when the change is at ν,
the pre- and post-change distributions are ˜︁P0 and ˜︁P1, and˜︁Xn[t], 1 ≤ t ≤ ν−1, are i.i.d. from ˜︁P0. For this new problem,
the goal is to solve

inf
τ :˜︃ARL(τ)≥γ

˜︂WADD(τ) (19)

for some prescribed γ > 0.
It was shown that the CuSum algorithm is exactly optimal

for the problem in (19) under Lorden’s criterion in [52].
Therefore, τ∗ in (16) is exactly optimal for the QCD problem
defined by pre- and post-change distributions ˜︁P0 and ˜︁P1.

Following similar ideas as ones in Section III, we can show
that for any stopping time τ ,

˜︂WADD(τ) ≤ WADD(τ) and ˜︃ARL(τ) ≥ WARL(τ). (20)

We will then show that τ∗ achieves the equality in (20),
which will complete the proof. Due to the fact that τ∗ is
symmetric, i.e., it is invariant to any permutation of Xn[j],
∀j = 1, 2, . . .. For any Ω and Ω′, it follows that

ess supEν
Ω[(τ

∗ − ν)+|Xn[1, ν − 1]]

= ess supEν
Ω′ [(τ∗ − ν)+|Xn[1, ν − 1]],

E∞
Ω [τ∗] = E∞

Ω′ [τ∗]. (21)

To establish (20) and the optimality of τ∗, the proof is more
involved than the binary hypothesis testing case in Sec. III due
to the esssup and the conditional expectation.

The missing details of the proof can be found in Appendix
A and Appendix B. The asymptotic optimality under Pollak’s
formulation [53] can also be derived similarly, and is ignored
in this paper however due to space limitation.

The mixture likelihood ratio ℓ(Xn[i]) needs to compute the
average of the likelihood over all possible σ ∈ Sn,λ. Note that
the size of Sn,λ is

(︁
n

n1,··· ,nK

)︁
. From the exponential bounds on

the size of a type class [54], we have that 2
nH

(︁
[
n1
n

···nK
n

]

)︁
(n+1)|X| ≤(︁

n
n1,··· ,nK

)︁
≤ 2nH

(︁
[
n1
n ···nK

n ]
)︁
, where H

(︁
[n1

n · · · nK

n ]
)︁

denotes
the entropy of [n1

n · · · nK

n ]. As n → ∞, we have that
limn→∞H

(︁
[n1

n · · · nK

n ]
)︁
= H(α). Therefore, the computa-

tional complexity of mixture CuSum increases almost expo-
nentially with n, which limits its practical applications in large
networks. This motivates the need for computationally efficient
tests for large networks. There are a wide range of applications
in which the number of nodes is very large, e.g., IoT networks
with thousands of sensors, smart grids with a large number of
PMUs, crowdsourcing, and wireless sensor networks.

B. A Computationally Efficient Algorithm

In this section, we focus on discrete distributions, that is, the
cardinality of X is finite, where X denotes the alphabet of the
distributions pθ,k,∀θ ∈ {0, 1}, k ∈ {1, 2, · · · ,K}. We note
that our mixture CuSum algorithm and its exact optimality
result apply to general distributions, which are not necessarily
discrete. Denote by PX the set of all distributions supported
on X . We propose a computationally efficient algorithm and
then derive a lower bound on its WARL so that a threshold
can be chosen analytically for false alarm control.

We first introduce some useful results that motivate the
design of our algorithm. Let ΠXn denote the empirical distri-
bution of samples Xn, and let T (ΠXn) denote the type class
of ΠXn . Then, it can be shown that 1∑︁

σ∈Sn,λ
P1,σ(X

n)∑︁
σ∈Sn,λ

P0,σ(Xn)
=

P1,σ

(︁
T (ΠXn)

)︁
P0,σ

(︁
T (ΠXn)

)︁ . (22)

The right hand side of equation in (22) is a function of the
empirical distribution ΠXn . Let Pn denote the set of types
with denominator n. For n ≥ 1, let Qn ∈ Pn be a sequence
of distributions and limn→∞Qn = Q. The computation of
the mixture likelihood ratio in (22) can be approximated by
an optimization problem when n is large using the fact 2 that

lim
n→∞

1

n
logPθ,σ

(︁
T (Qn)

)︁
= − inf

U=(U1,...,UK)∈(PX )K

αTU=Q

K∑︂
k=1

αkD(Uk||pθ,k). (23)

The right hand side of (23) is a convex optimization problem
with linear constraints, which can be solved efficiently using
standard optimization tools [55], [56]. Its computational com-
plexity is independent of the number of sensors. Therefore, for
large n, the mixture over σ in (22) can be approximated by

1See Lemma 4.1 in [2] for the proof.
2See Lemma 5.2 in [2] for the proof.
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solving a convex optimization problem whose computational
complexity is independent of the network size n.

Let P = [P1 · · ·PK ]T , where Pk ∈ PX , for 1 ≤ k ≤ K.
For any Q ∈ PX , define the following function of Q:

fP (α, Q) = inf
(U1,...,UK)∈(PX )K

αTU=Q

K∑︂
k=1

αkD(Uk||Pk). (24)

Intuitively, an algorithm for the problem in Section II
can be constructed by approximating the log of the mixture
likelihood ratio at time t in the mixture CuSum algorithm us-
ing n

(︁
fP0

(α,ΠXn[t])− fP1
(α,ΠXn[t])

)︁
. However, the lower

bound on the WARL for this algorithm is difficult to derive
due to the “inf” in the test statistic. We construct a novel test
that can be updated recursively, and for which a lower bound
on WARL can be theoretically derived. Moreover, as will be
numerically demonstrated, this test has a WADD-WARL trade-
off that is close to the optimal mixture CuSum, while also
being computationally efficient.

Let ν̂t denote the change point estimate at time t. Denote
by t̂ ≜ t − v̂t + 1. We then design our detection statistic to
approximate W [t] in (16):ˆ︂W [t] = t̂n

[︁
fP0

(α,ΠXn[ν̂t,t])− fP1
(α,ΠXn[ν̂t,t])

]︁
. (25)

Instead of using a maximum likelihood approach to estimate ν̂t
as in (16), which is not computationally efficient here, since
ν̂t also appears in Xn[ν̂t, t], we design a recursive way of
updating ν̂t. Let ν̂0 = 0. If ˆ︂W [t] ≤ 0, ν̂t+1 = t + 1, and ifˆ︂W [t] > 0, ν̂t+1 = ν̂t. Then, ΠXn[ν̂t,t] can also be updated
recursively: if ˆ︂W [t] ≤ 0, ΠXn[ν̂t+1,t+1] = ΠXn[t+1], and ifˆ︂W [t] > 0, ΠXn[ν̂t+1,t+1] =

t̂ΠXn[ν̂t,t]
+ΠXn[t+1]ˆ︁t+1

.

We next provide a heuristic explanation of how ˆ︂W [t]
evolves in the pre- and post-change regimes. According to
the Glivenko–Cantelli theorem [57], before the change point
ν, as n → ∞, ΠXn[ν̂t,t] converges to αTP0 almost surely.
It can be easily seen that fP (α, Q) ≥ 0 for any α,P and
Q. The equality holds if and only if αTP = Q. This implies
that fP0(α,α

TP0) − fP1(α,α
TP0) < 0. Therefore, before

the change point ν, for large n, ˆ︂W [t] has a negative drift.
Similarly, after the change point ν, for large n, ˆ︂W [t] has
a positive drift of fP0

(α,αTP1), and evolves towards ∞.
This motivates us to construct the following computationally
efficient test:

τe = inf
{︂
t ≥ 1 : ˆ︂W [t] ≥ b

}︂
. (26)

The computation cost of τe mainly lies in the update of
the empirical distribution and the optimization step. The com-
putational complexity of updating the empirical distribution
increases linearly with n, and the computational complexity
of the optimization step is independent of n. Therefore,
the computationally efficient test is more efficient than the
optimal mixture CuSum algorithm when n is large. Table
II summarizes the computational complexity of the mixture
CuSum algorithm and the computationally efficient algorithm.

In the following theorem, we present a lower bound on the
WARL for our computationally efficient test in (26).

Mixture CuSum Efficient algorithm
Complexity O(2nH(α)) O(n)

TABLE II
COMPUTATIONAL COMPLEXITY: MIXTURE CUSUM V.S.

COMPUTATIONALLY EFFICIENT ALGORITHM.

Theorem 2. Define Γ ≜
{︁
µ ∈ PX : fP0(α, µ) > fP1(α, µ)

}︁
.

Let

h = inf
(U1,...,UK)∈(PX )K

αTU∈Γ

K∑︂
k=1

nkD(Uk||P0,k). (27)

Then h > 0 and for any Ω,

E∞
Ω

[︁
τe(b)

]︁
≥ eb(︁

b
h + 1

)︁(︁∏︁
k |P b

hnk
|
)︁ . (28)

In the following, we provide a proof sketch, and the full
proof can be found in Appendix C.

Proof Sketch. Let Y = inf{t ≥ 1 : ˆ︂W [t] ≤ 0} be the first
regeneration time. For any Ω and m ≥ 1, from Sanov’s
theorem [54], we can show that

P∞
Ω (Y > m) ≤

(︃∏︂
k

|Pmnk
|
)︃
e−mh. (29)

Define regeneration times Y0 = 0 and for r ≥ 0,
Yr+1 = inf

{︁
t > Yr : ˆ︂W [t] ≤ 0

}︁
. Let R = inf{r : Yr ≤

∞ and ˆ︂W [t] ≥ b for some Yr < t ≤ Yr+1} denote the index
of the first cycle in which ˆ︂W [t] crosses b. Note that according
to the recursive update rule of ν̂t and ˆ︂W [t], the test statistics in
cycle r+1 are independent of the samples in cycles 1, · · · , r.
For any Ω, we have that

E∞
Ω [τe(b)] ≥ E∞

Ω [R] =

∞∑︂
r=0

P∞
Ω (R ≥ r). (30)

For any Ω and m ≥ 1, we have that

P∞
Ω (τe(b) < Y ) ≤ P∞

Ω (τe(b) < m) + P∞
Ω (Y > m). (31)

Consider the first term in (31) P∞
Ω (τe(b) < m), by applying

Sanov’s theorem [54], we have that for any Ω,

P∞
Ω

(︁
τe(b) < m

)︁
≤ m

(︄∏︂
k

|Pmnk
|

)︄
e−b. (32)

Let m = b
h . Combing (29) and (32), it follows that

P∞
Ω (τe(b) < Y ) ≤

(︂ b
h
+ 1
)︂(︃∏︂

k

|P b
hnk

|
)︃
e−b. (33)

From (33) and the independence among the cycles [58], we
have that

P∞
Ω (R ≥ r) ≥

(︄
1−

(︂ b
h
+ 1
)︂(︃∏︂

k

|P b
hnk

|
)︃
e−b

)︄r

, (34)

Therefore, from (30) and (34), for any Ω,

E∞
Ω [τe(b)] ≥

eb(︂
b
h + 1

)︂(︂∏︁
k |P b

hnk
|
)︂ . (35)
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This completes the proof.

To guarantee that infΩ E∞
Ω

[︁
τe(b)

]︁
≥ γ, it suffices to choose

b such that eb(︁
b
h+1
)︁(︁∏︁

k |P b
h

nk
|
)︁ = γ and b ∼ log γ.

Note that an upper bound on the WADD for τe is difficult
to obtain. To understand the detection delay of the proposed
computationally efficient test, we then study the case when the
change occurs at ν = 1. We have the following result.

Proposition 1. Consider the case with ν = 1. Then, as t →
∞,

n
[︁
fP0

(α,ΠXn[1,t])− fP1
(α,ΠXn[1,t])

]︁
→ nfP0

(α,αTP1),

almost surely.

Proof. According to the Glivenko–Cantelli theorem [57], as
t → ∞, under the post-change distribution, the empirical
distribution ΠXn[1,t] convergences to αTP1 almost surely.
Due to the fact that fP1(α,α

TP1) = 0, we have that
1
t (t−1+1)n

[︁
fP0(α,ΠXn[1,t])−fP1(α,ΠXn[1,t])

]︁
converges

to nfP0
(α,αTP1) almost surely.

Intuitively, Proposition 1 implies that if the change is at ν =
1 and regeneration does not happen, then the detection delay
of the computationally efficient algorithm increases linearly
with the threshold b at the rate of 1/(nfP0(α,α

TP1)).
We then present the following universal lower bound on the

WADD, and show that the slope is also 1/(nfP0
(α,αTP1))

when n is large.

Proposition 2. For large γ, we have that

inf
τ :WARL≥γ

WADD(τ) ∼ log γ

D
(︂˜︁P1

⃓⃓⃓⃓˜︁P0

)︂ (1 + o(1)). (36)

Moreover, as n→ ∞,

lim
n→∞

1

n
D
(︂˜︁P1

⃓⃓⃓⃓˜︁P0

)︂
= fP0(α,α

TP1). (37)

Proof Sketch. It was shown in Section IV-A that the mix-
ture CuSum τ∗ is exactly optimal for the QCD prob-
lem in Section II-B. Then, as γ → ∞, we have that
infτ :WARL≥γ WADD(τ) = WADD(τ∗). Further note that for
the mixture CuSum τ∗, τ∗ achieves the equality in (20). Then,
we have that ˜︂WADD(τ∗) = WADD(τ∗). Since τ∗ is optimal
for the simple QCD problem in (19), from Theorem 4 in [41],
as γ → ∞, it follows that

WADD(τ∗) = ˜︂WADD(τ∗) ∼ log γ

D
(︂˜︁P1

⃓⃓⃓⃓˜︁P0

)︂ (1 + o(1)). (38)

The proof of (37) can be found in Appendix D.

By combining Propositions 1 and 2, it can be seen that
the tradeoff between the WADD and WARL for our compu-
tationally efficient test is close to the optimal one when n is
large. This demonstrates the advantage of our test that for large
networks, it has a similar statistical efficiency comparing to
the optimal test, and has a significantly reduced computational
complexity.

V. SIMULATION RESULTS

A. Mixture CuSum Algorithm

We first show an example evolution path of the mixture
CuSum algorithm. Set n = 2 and K = 2, i.e., one sensor in
each group. For group 1, the pre- and post-change distributions
are N (0, 1) and N (0.5, 1), respectively. For group two, the
pre- and post-change distribution are N (2, 1) and N (1.5, 1),
respectively. In Fig. 2, we set the change point to be 500 and
b = 5. We plot one sample evolution path of the mixture
CuSum algorithm. It can be seen that before the change point,
the test statistic fluctuates around zero, and after the change
point, it starts to increase with a positive drift.

We then compare our optimal mixture CuSum test with
two other heuristic algorithms based on the Bayesian approach
and the generalized likelihood ratio approach to tackling the
unknown group assignments. For the Bayesian approach, we
pretend that each sample comes from group k with probability
nk/n, for k = 1, . . . ,K, independently, so that on average the
k-th group has nk sensors, although we actually have exact
nk sensors in each group k. We then compute the following
likelihood ratio:

lb(x
n[t]) =

∏︁n
i=1

(︂∑︁K
k=1

nk

n p1,k(xi[t])
)︂

∏︁n
i=1

(︂∑︁K
k=1

nk

n p0,k(xi[t])
)︂ . (39)

The generalized likelihood ratio for the sample xn[t] is

lg(x
n[t]) =

supσ∈Sn,λ
P1,σ(x

n[t])

supσ∈Sn,λ
P0,σ(xn[t])

. (40)

We then design CuSum-type tests using (39) and (40), which
are referred to as Bayesian and Generalized CuSums. The
test statistics of these three algorithms are all symmetric,
and therefore for different Ω, the average detection delay and
average run length are the same.

In Fig. 3, we plot the WADD as a function of the WARL.
It can be seen that our mixture CuSum algorithm outperforms
the other two algorithms. Moreover, the relationship between
the WADD and log of the WARL is linear. The slope of these
three curves should be the reciprocal of the expectation of
the corresponding likelihood ratio under P1,σ for some σ ∈
Sn,λ. Due to the fact that the distributions are continuous, our
computationally efficient test is not applicable here.

B. Computationally Efficient Algorithm

For the computationally efficient algorithm, we first con-
sider a simple example with n = 2, K = 2, n1 = 1 and
n2 = 1. The pre- and post-change distributions for group 1 are
binomial distribution B(10, 0.5) and B(10, 0.3), respectively,
and for group 2 are B(10, 0.5) and B(10, 0.7), respectively.
We plot a sample evolution path of the efficient algorithm in
Fig. 4. Similar to the mixture CuSum, before the change point,
the test statistic fluctuates around zero, and after the change
point, it starts to increase with a positive drift.

We then compare the performance of our efficient algorithm
with the optimal mixture CuSum algorithm, the Bayesian
CuSum algorithm and the Generalized CuSum algorithm, and
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Fig. 2. Evolution path of the Mixture CuSum. Fig. 3. Comparison of the Bayesian CuSum algo-
rithm, the Generalized CuSum algorithm and the
Mixture CuSum algorithm: n = 2,K = 2

Fig. 4. Evolution path of the computationally
efficient algorithm: n = 2,K = 2.

Fig. 5. Comparison of the Bayesian CuSum al-
gorithm, the Generalized CuSum algorithm, the
Mixture CuSum algorithm and the computationally
efficient algorithm: n = 2,K = 2.

Fig. 6. Comparison of the Bayesian CuSum al-
gorithm, the Generalized CuSum algorithm, the
Mixture CuSum algorithm and the computationally
efficient algorithm: n = 8,K = 2.

Fig. 7. Comparison of the Bayesian CuSum algo-
rithm, the Mixture CuSum algorithm and the com-
putationally efficient algorithm: n = 20,K = 2.

Fig. 8. Comparison of the Bayesian CuSum algo-
rithm, the Mixture CuSum algorithm and the com-
putationally efficient algorithm: n = 10,K = 4.

Fig. 9. Comparison of the Bayesian CuSum algo-
rithm, the Mixture CuSum algorithm and the com-
putationally efficient algorithm: n = 18,K = 4.

Fig. 10. Comparison of the Bayesian CuSum algo-
rithm and the computationally efficient algorithm:
n = 100,K = 4.

repeat the experiment for n = 8, n1 = 4, n2 = 4 and n = 20,
n1 = 10, n2 = 10 with the same distributions.

For the three cases with n = 2, n = 8 and n = 20, we
plot the WADD as a function of the WARL in Figs. 5, Fig. 6
and Fig. 7. It can be seen that mixture CuSum outperforms
the other three tests, and our computationally efficient test has
a better performance than the intuitive Bayesian CuSum and
Generalized CuSum. For the case with n = 20, n1 = 10, n2 =
10, the performance of the Generalized CuSum algorithm is
much worse than the other three algorithms, therefore is not
included in Fig. 7. More importantly, comparing Fig. 5, Fig. 6
and Fig. 7, we can see that as n increases, the slope of the
WADD-WARL tradeoff curve of the efficient algorithm gets

closer to the one of the optimal mixture CuSum algorithm.
This conforms to the design of our computationally efficient
test which aims to approximate the optimal mixture CuSum
when n is large, and our theoretical discussion in Propositions
1 and 2.

We then consider the case with K = 4. The pre- and post-
change distributions for group 1 are B(10, 0.5) and B(10, 0.3),
respectively, for group 2 are B(10, 0.5) and B(10, 0.7), respec-
tively, for group 3 are B(10, 0.5) and B(10, 0.25), respectively,
for group 4 are B(10, 0.5) and B(10, 0.75), respectively. In
Fig. 8, we plot the WADD as a function of the WARL
with n = 10, n1 = n2 = n3 = 2 and n4 = 4. In
Fig. 9, we plot the WADD as a function of the WARL with
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n = 18, n1 = n2 = n3 = 3 and n4 = 9. From Fig. 8 and
Fig. 9, it can be seen that the mixture CuSum has the best
performance, and our computationally efficient algorithm out-
performs other heuristic algorithms, and is close to the optimal
mixture CuSum algorithm. We also compare the performance
of Bayesian CuSum algorithm and the efficient algorithm
when n = 100 and K = 4. We note that for the case n = 100,
the computational complexity is too high for the mixture
CuSum algorithm to be simulated. We set n1 = n2 = n3 = 20
and n4 = 40, and the pre- and post-change distributions for
group 1 are B(10, 0.5) and B(10, 0.4), respectively, for group
2 are B(10, 0.5) and B(10, 0.45), respectively, for group 3
are B(10, 0.5) and B(10, 0.35), respectively, for group 4 are
B(10, 0.5) and B(10, 0.6), respectively. From Fig. 10, it can be
seen that the performance of our efficient algorithm is better
than the Bayesian CuSum algorithm.

In Fig. 11, we show the computational efficiency of our
proposed algorithms. Specifically, we compare the running
time of computing one step update of our computationally
efficient algorithm and the optimal mixture CuSum algorithm
(on Intel Core i5-8265U CPU). From Fig. 5, one can see that as
n increases, the running time of the mixture CuSum increases
exponentially, while the running time of our computationally
efficient test stays almost the same.

Fig. 11. Comparison of the computational complexity between the Mixture
CuSum algorithm and the computationally efficient algorithm.

VI. CONCLUSION

In this paper, we studied the statistical inference problem in
anonymous heterogeneous sensor networks. We first revisited
the non-sequential setting studied in [2], and provided a simple
optimality proof for the MLRT. We then extended our ap-
proach to the problem of QCD with anonymous heterogeneous
sensors, and constructed a mixture CuSum algorithm. We
showed that the mixture CuSum algorithm is optimal under
Lorden’s criterion [50]. We note that asymptotic optimality
results can also be obtained under Pollak’s criterion [53].
Although being optimal, our mixture CuSum algorithm is
computationally expensive when the number of sensors is
large. We then proposed a computationally efficient algorithm

with a novel recursive update rule of the change point esti-
mate and the test statistic. We further developed its WARL
lower bound for practical false alarm control. Our numerical
results showed that the mixture CuSum algorithm has the
best performance and the computationally efficient algorithm
also outperforms other heuristic algorithms. Moreover, when
the number of sensor is large, the computationally efficient
algorithm is much more efficient than the optimal mixture
CuSum algorithm. Our results provide useful tools and insights
to investigate various kinds of statistical inference problems in
anonymous networks.

One possible extension is to the case where the samples
in different time steps are not independent [41]. It is also
of interest to investigate when samples are quantized and
sensors can only receive binary codewords [59]. In this case,
such quantizing measurement should be incorporated into the
design of mixture CuSum algorithm. Moreover, in this paper,
it is assumed that after the change all the sensors change
their data-generating distributions simultaneously. Therefore,
another possible future direction is to consider the case where
only an unknown subset of sensors are affected by the change.
Moreover, the change may also be dynamic and propagate fol-
lowing some unknown pattern. In many practical applications,
the data-generating distributions may not be available before-
hand, and data-driven approaches in anonymous heterogeneous
networks need to be developed.

APPENDIX A
PROOF OF (20)

We construct a new sequence of random variables
{ ˆ︁Xn[t]}∞t=1. Before the change point, ˆ︁Xn[t] are i.i.d. accord-
ing to the mixture distribution ˜︁P0 = 1

|Sn,λ|
∑︁

σ∈Sn,λ
P0,σ .

After the change point, ˆ︁Xn[t] follows the distribution P1,σt

for some σt ∈ Sn,λ. Specifically,

ˆ︁Xn[t] ∼
{︃ ˜︁P0, if t < ν

P1,σt
, if t ≥ ν.

(41)

For any stopping time τ , define the worst-case average
detection delay for the model in (41) as follows:

ˆ︂WADD(τ)

= sup
ν≥1

sup
σν ,...,σ∞

ess sup ˆ︁Eν
σν ,...,σ∞

[(τ − ν)+|ˆ︁Xn[1, ν − 1]],

where ˆ︁Eν
σν ,...,σ∞

denotes the expectation when the data is
distributed according to (41). To prove that WADD(τ) ≥
˜︂WADD(τ), we will first show that WADD(τ) = ˆ︂WADD(τ),

and then show that ˆ︂WADD(τ) ≥ ˜︂WADD(τ).
Step 1. Denote by M the collection of all {σ1, ..., σν−1},

and µ is an element in M. Denote by N the collection of all
{σν , ..., σ∞}, and ω is an element in N . Thus, Ω = {µ, ω}.
Then, the WADD can be written as

WADD(τ)

= sup
ν≥1

sup
Ω

ess supEν
Ω[(τ − ν)+|Xn[1, ν − 1]]

= sup
ν≥1

sup
ω∈N

sup
µ∈M

ess supEν
ω[(τ − ν)+|Xn[1, ν − 1]], (42)
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where Eν
ω denotes the expectation when change point is

ν, and after the change point, the data follows distribution∏︁∞
t=ν P1,σt . We note that ˆ︁Xn[t] and Xn[t], for t ≥ ν, have

the same distribution P1,σt
. Therefore, the difference between

WADD and ˆ︂WADD lies in that they take esssup with respect
to different distributions, i.e., the distributions of Xn[1, ν− 1]
and ˆ︁Xn[1, ν − 1] are different. Let fω(Xn[1, ν − 1]) denote
Eν
ω[(τ − ν)+|Xn[1, ν − 1]]. Then, WADD and ˆ︂WADD can be

written as

WADD(τ) = sup
ν≥1

sup
ω∈N

sup
µ∈M

ess sup fω(Xn[1, ν − 1]),

ˆ︂WADD(τ) = sup
ν≥1

sup
ω∈N

ess sup fω(ˆ︁Xn[1, ν − 1]). (43)

It then suffices to show that supµ∈M ess sup fω(Xn[1, ν −
1]) = ess sup fω(ˆ︁Xn[1, ν − 1]).

For any ω ∈ N and µ ∈ M, let bω,µ =
ess sup fω(Xn[1, ν − 1]) = inf{b : Pµ(fω(X

n[1, ν − 1]) >
b) = 0}, where Pµ denotes the probability measure when the
data is generated according to P0,σ1

, ...,P0,σν−1
before change

point ν.
Let b∗ω = ess sup fω(ˆ︁Xn[1, ν − 1]). It can be shown that

b∗ω = inf

{︃
b :

∫︂
xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

× d

ν−1∏︂
t=1

˜︁P0(x
n(t)) = 0

}︃
= inf

{︃
b :

∫︂
xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

× d

ν−1∏︂
t=1

1

| Sn,λ |
∑︂

σt∈Sn,λ

P0,σt(x
n(t)) = 0

}︃
= inf

{︃
b :

∫︂
xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

× d
1

| M |
∑︂
µ∈M

Pµ(xn[1, ν − 1]) = 0

}︃
= inf

{︃
b :

1

| M |
∑︂
µ∈M

Pµ(fω(X
n[1, ν − 1]) > b) = 0

}︃
.

It then follows that for any µ ∈ M,

Pµ(fω(X
n[1, ν − 1]) > b∗ω) = 0. (44)

Therefore, for any µ ∈ M, we have that bω,µ ≤ b∗ω . Then

sup
µ∈M

bω,µ ≤ b∗ω. (45)

Conversely, let supµ∈M bω,µ = b′. For any µ ∈
M, we have Pµ(fω(X

n[1, ν − 1]) > b′) = 0. Then,
1

|M|
∑︁

µ∈M Pµ(fω(X
n[1, ν − 1]) > b′) = 0. This further

implies that

b∗ω ≤ b′ = sup
µ∈M

bω,µ. (46)

Combining (45) and (46), we have that supµ∈M bω,µ = b∗ω,
and thus supµ∈M ess sup fω(Xn[1, ν − 1]) =

ess sup fω(ˆ︁Xn[1, ν − 1]). This implies that

WADD(τ) = ˆ︂WADD(τ). (47)

Step 2. The next step is to show that
ˆ︂WADD(τ) ≥ ˜︂WADD(τ). We will first

show that supω∈N ess sup fω(ˆ︁Xn[1, ν − 1]) ≥
ess sup supω∈N fω(ˆ︁Xn[1, ν − 1]). Denote by ˜︁Pν the
probability measure when the change is at ν, the pre-
and post-change distributions are ˜︁P0 and ˜︁P1, respectively.
Let b̂ = supω∈N ess sup fω(ˆ︁Xn[1, ν − 1]). For any ω ∈ N ,
we have that ˜︁Pν(fω(ˆ︁Xn[1, ν − 1]) ≥ b̂) = 0. Since N is
countable, it then follows that

˜︁Pν
(︂
sup
ω∈N

fω(ˆ︁Xn[1, ν − 1]) ≥ b̂
)︂

≤ ˜︁Pν
(︂
∪ω∈N

{︁
fω(ˆ︁Xn[1, ν − 1]) > b̂

}︁)︂
≤
∑︂
ω∈N

˜︁Pν
(︂
fω(ˆ︁Xn[1, ν − 1]) > b̂

)︂
= 0. (48)

Therefore,

b̂ = sup
ω∈N

ess sup fω(ˆ︁Xn[1, ν − 1])

≥ ess sup sup
ω∈N

fω(ˆ︁Xn[1, ν − 1]). (49)

Before the change point ν, ˆ︁Xn[t] and ˜︁Xn[t] follow the same
distribution. For any T ≥ ν + 1, we have that

sup
{σν ,...,σT }

∈Sn,λ

⨂︁
(T−ν+1)

T∑︂
t=ν+1

(t− ν)Pσν ,...,σT
(τ = t|ˆ︁Xn[1, ν − 1])

≥
T∑︂

t=ν+1

(t− ν)
1

| Sn,λ |(T−ν+1)

×
∑︂

{σν ,...,σT }
∈Sn,λ

⨂︁
(T−ν+1)

Pσν ,...,σT
(τ = t|ˆ︁Xn[1, ν − 1])

=

T∑︂
t=ν+1

(t− ν)˜︁Pν(τ = t|˜︁Xn[1, ν − 1]). (50)

As T → ∞, we have that

ˆ︁Eν
ω[(τ − ν)|ˆ︁Xn[1, ν − 1]] ≥ ˜︁Eν [(τ − ν)|˜︁Xn[1, ν − 1]], (51)

where Pσν ,...,σT
denotes the probability measure when the

observations from time ν to time T are generated according
to Pσν , ...,PσT

.
From (49) and (51), we have that

ˆ︂WADD(τ)

= sup
ω∈N

ess sup fω(ˆ︁Xn[1, ν − 1])

≥ ess sup ˜︁Eν [(τ − ν)+|˜︁Xn[1, ν − 1]]

= ˜︂WADD(τ). (52)

Combining (47) and (52), it follows that WADD(τ) =
ˆ︂WADD(τ) ≥ ˜︂WADD(τ). Similarly, it can be shown that

WARL(τ) ≤ ˜︃ARL(τ). This concludes the proof.
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APPENDIX B
τ∗ ACHIEVES EQUALITY IN (20)

We will show that the mixture CuSum algorithm achieves
the equality in (20), i.e.,

ˆ︂WADD(τ∗) = ˜︂WADD(τ∗). (53)

For any {σν , ..., σi, ..., σ∞}, consider another element in
N , {σν , ..., σ′

i, ...σ∞}. Due to the fact that τ∗ is symmetric,
it follows that for any i ≥ ν, and any σi, σ′

i ∈ Sn,λ,

ess sup ˆ︁Eν
σν ,...,σi,...,σ∞

[(τ∗ − ν)+|ˆ︁Xn[1, ν − 1]]

= ess sup ˆ︁Eν
σν ,...,σ′

i,...,σ∞
[(τ∗ − ν)+|ˆ︁Xn[1, ν − 1]]. (54)

Therefore, ˆ︂WADD(τ∗) doesn’t depend on ω, which further
implies that

sup
ω∈N

ess sup ˆ︁Eν
ω[(τ

∗ − ν)+|ˆ︁Xn[1, ν − 1]]

= ess sup ˆ︁Eν
ω[(τ

∗ − ν)+|ˆ︁Xn[1, ν − 1]]. (55)

For any T ≥ ν + 1, we have that

sup
{σν ,...,σT }

∈Sn,λ

⨂︁
(T−ν+1)

T∑︂
t=ν+1

(t− ν)Pσν ,...,σT
(τ∗ = t|ˆ︁Xn[1, ν − 1])

=

T∑︂
t=ν+1

(t− ν)
1

| Sn,λ |(T−ν+1)

×
∑︂

{σν ,...,σT }
∈Sn,λ

⨂︁
(T−ν+1)

Pσν ,...,σT
(τ∗ = t|ˆ︁Xn[1, ν − 1])

=

T∑︂
t=ν+1

(t− ν)˜︁Pν(τ∗ = t|˜︁Xn[1, ν − 1]). (56)

As T → ∞, we have thatˆ︁Eν
ω[(τ

∗ − ν)+|ˆ︁Xn[1, ν − 1]] = ˜︁Eν [(τ∗ − ν)+|˜︁Xn[1, ν − 1]].
(57)

From (55) and (57), it follows that

ˆ︂WADD(τ∗)

= sup
ν≥1

sup
ω∈N

ess sup ˆ︁Eν
ω[(τ

∗ − ν)+|ˆ︁Xn[1, ν − 1]]

= sup
ν≥1

ess sup ˆ︁Eν
ω[(τ

∗ − ν)+|˜︁Xn[1, ν − 1]]

= sup
ν≥1

ess sup ˜︁Eν [(τ∗ − ν)+|˜︁Xn[1, ν − 1]]

= ˜︂WADD(τ∗). (58)

Similarly, it can be shown that ˜︃ARL(τ∗) = WARL(τ∗).

APPENDIX C
PROOF OF THEOREM 2

Let Y = inf{t ≥ 1 : ˆ︂W [t] ≤ 0} be the first regeneration
time. For any Ω and m ≥ 1, we have that

P∞
Ω (Y > m) = P∞

Ω

(︁ˆ︂W [t] > 0,∀t ∈ [1,m]
)︁

≤ P∞
Ω

(︂
nm
[︁
fP0

(α,ΠXn[1,m])− fP1
(α,ΠXn[1,m])

]︁
> 0
)︂
.

Let Γ ≜ {µ ∈ PX |fP0
(α, µ) > fP1

(α, µ)}. We have that

P∞
Ω

(︂
nm
[︁
fP0

(α,ΠXn[1,m])− fP1
(α,ΠXn[1,m])

]︁
> 0
)︂

= P∞
Ω

{︁
ΠXn[1,m] ∈ Γ

}︁
=

∑︂
(U1,...,UK)∈Pmn1

×...×PmnK

αTU∈Γ

K∏︂
k=1

p
⨂︁

mnk

0,k

(︁
Tmnk

(Uk)
)︁

≤
∑︂

(U1,...,UK)∈Pmn1
×...×PmnK

αTU∈Γ

e−
∑︁K

k=1 mnkD(Uk||p0,k)

≤
(︃∏︂

k

|Pmnk
|
)︃

· exp

(︄
− inf
(U1,...,UK)∈Pmn1

×...×PmnK

αTU∈Γ

K∑︂
k=1

mnkD(Uk||p0,k)

)︄

≤
(︃∏︂

k

|Pmnk
|
)︃
e−hm, (59)

where the last step is due to the fact that Pmnk
⊆ PX , ∀1 ≤

k ≤ K. Note that fP (α, Q) ≥ 0 for any Q and the equality
holds if and only if αTP = Q almost everywhere. We then
have that αTP0 /∈ Γ and h > 0. Therefore, for any Ω and
m ≥ 1,

P∞
Ω (Y > m) ≤

(︃∏︂
k

|Pmnk
|
)︃
e−mh. (60)

Define regeneration times Y0 = 0 and for r ≥ 0,
Yr+1 = inf

{︁
t > Yr : ˆ︂W [t] ≤ 0

}︁
. Let R = inf{r : Yr ≤

∞ and ˆ︂W [t] ≥ b for some Yr < t ≤ Yr+1} denote the index
of the first cycle in which ˆ︂W [t] crosses b. Note that according
to the recursive update rule of ν̂t and ˆ︂W [t], the test statistics in
cycle r+1 are independent of the samples in cycles 1, · · · , r.
For any Ω, we have that

E∞
Ω [τe(b)] ≥ E∞

Ω [R] =

∞∑︂
r=0

P∞
Ω (R ≥ r). (61)

For any Ω and m ≥ 1, we have that

P∞
Ω (τe(b) < Y )

= P∞
Ω (τe(b) < Y, Y ≤ m) + P∞

Ω (τe(b) < Y, Y > m)

≤ P∞
Ω (τe(b) < m) + P∞

Ω (Y > m). (62)

Consider the first term in (62) P∞
Ω (τe(b) < m):

P∞
Ω

(︁
τe(b) < m

)︁
= P∞

Ω

(︂
max

1≤t<m

ˆ︂W [t] ≥ b
)︂

≤
∑︂

1≤t<m

P∞
Ω

(︂ˆ︂W [t] ≥ b
)︂

=
∑︂

1≤t<m

P∞
Ω

(︂
nt̂
[︁
fP0

(α,ΠXn[ν̂t,t])− fP1
(α,ΠXn[ν̂t,t])

]︁
≥ b
)︂
.

Define Γb,t ≜
{︂
µ ∈ PX

⃓⃓
nt̂
[︁
fP0

(α, µ)−fP1
(α, µ)

]︁
≥ b
}︂

. For

all µ ∈ Γb,t, we have that nt̂fP0
(α, µ) ≥ b+nt̂fP1

(α, µ) ≥ b,
where the last inequality is due to the facts that t̂ ≥ 0 and
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fP1
(α, µ) ≥ 0. For any Ω and 1 ≤ t < m, following the

same idea as the one in (59), we have that

P∞
Ω

(︂
nt̂
[︁
fP0

(α,ΠXn[ν̂t,t])− fP1
(α,ΠXn[ν̂t,t])

]︁
> b
)︂

= P∞
Ω

{︂
ΠXn[ν̂t,t] ∈ Γb,t

}︂
≤
(︃∏︂

k

|Pt̂nk
|
)︃

· exp

(︄
− inf
(U1,...,UK)∈(PX )K

αTU∈Γb,t

K∑︂
k=1

nk t̂D(Uk||p0,k)

)︄

≤
(︃∏︂

k

|Pmnk
|
)︃
e−b. (63)

We then have that for any Ω,

P∞
Ω

(︁
τe(b) < m

)︁
≤ m

(︄∏︂
k

|Pmnk
|

)︄
e−b. (64)

Let m = b
h . Combing (60) and (63), we have that

P∞
Ω (τe(b) < Y ) ≤

(︂ b
h
+ 1
)︂(︃∏︂

k

|P b
hnk

|
)︃
e−b. (65)

It then follows that

P∞
Ω (R ≥ r) = P∞

Ω

(︂ˆ︂W [t] < b,∀t ≤ Yr

)︂
= P∞

Ω

(︂ˆ︂W [t] < b,∀Ym−1 ≤ t ≤ Ym,∀1 ≤ m ≤ r
)︂

=

r∏︂
m=1

P∞
Ω

(︂ˆ︂W [t] < b,∀Ym−1 ≤ t ≤ Ym

)︂
≥

(︄
1−

(︂ b
h
+ 1
)︂(︃∏︂

k

|P b
hnk

|
)︃
e−b

)︄r

, (66)

where the second equality is due to (65) and the independence
among the cycles [58]. Therefore, for any Ω,

E∞
Ω [τe(b)] ≥

∞∑︂
r=0

(︄
1−

(︂ b
h
+ 1
)︂(︃∏︂

k

|P b
hnk

|
)︃
e−b

)︄r

=
eb(︂

b
h + 1

)︂(︂∏︁
k |P b

hnk
|
)︂ . (67)

This completes the proof.

APPENDIX D
PROOF OF (37)

From (22), we have that for any σ ∈ Sn,λ,

log
˜︁P1(X

n)˜︁P0(Xn)
= log

P1,σ

(︁
T (ΠXn)

)︁
P0,σ

(︁
T (ΠXn)

)︁ . (68)

Let B(αTPθ, ϵ) =
{︁
µ ∈ PX : sup

x∈X

⃓⃓
µ(x) − αTPθ(x)

⃓⃓
≤ ϵ
}︁

denote the ball centered at αTPθ with radius ϵ > 0. According
to the Glivenko–Cantelli theorem [57], we then have that for
any σ ∈ Sn,λ and ϵ > 0,

lim
n→∞

Pθ,σ

{︂
sup
x∈X

⃓⃓
ΠXn(x)−αTPθ(x)

⃓⃓
> ϵ
}︂
= 0. (69)

It then follows that for any σ ∈ Sn,λ and ϵ > 0,

lim
n→∞

Pθ,σ

{︂
ΠXn /∈ B(αTPθ, ϵ)

}︂
= lim

n→∞
Pθ,σ

{︂
sup
x∈X

⃓⃓
ΠXn(x)−αTPθ(x)

⃓⃓
> ϵ
}︂
= 0. (70)

It was shown in Lemma 5.3 in [2] that fPθ
(α, P ) is a

continuous function of P for any θ ∈ {0, 1}. Therefore,
fP0

(α, P ) − fP1
(α, P ) is a continuous function of P . Then

we have that for any ϵ > 0, there exists an η(ϵ) > 0 such that
∀P ∈ B(αTP1, ϵ),

fP0
(α,αTP1)− η(ϵ) < fP0

(α, P )− fP1
(α, P )

< fP0(α,α
TP1) + η(ϵ), (71)

where η(ϵ) → 0 as ϵ→ 0. We then have that

lim
n→∞

1

n
D
(︂˜︁P1

⃓⃓⃓⃓˜︁P0

)︂
= lim

n→∞

1

n
E˜︁P1

[︂
logP1,σ

(︁
T (ΠXn)

)︁
− logP0,σ

(︁
T (ΠXn)

)︁]︂
(a)

≤ lim
n→∞

1

n
E˜︁P1

[︄
log

(︃∏︂
k

|Pnk
|
)︃
− log

(︃ K∏︂
k=1

1

(nk + 1)|X |

)︃

− inf
(U1,...,UK)∈Pn1

×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1

×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p0,k)

]︄

= lim
n→∞

1

n
˜︁P1

(︁
ΠXn ∈ B(αTP1, ϵ)

)︁
E˜︁P1

[︄
log

(︃∏︂
k

|Pnk
|
)︃

− inf
(U1,...,UK)∈Pn1×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p0,k)

− log

(︃ K∏︂
k=1

1

(nk + 1)|X |

)︃⃓⃓⃓⃓
⃓ΠXn ∈ B(αTP1, ϵ)

]︄

+ lim
n→∞

1

n
˜︁P1

(︁
ΠXn /∈ B(αTP1, ϵ)

)︁
E˜︁P1

[︄
log

(︃∏︂
k

|Pnk
|
)︃

− inf
(U1,...,UK)∈Pn1×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1

×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p0,k)

− log

(︃ K∏︂
k=1

1

(nk + 1)|X |

)︃⃓⃓⃓⃓
⃓ΠXn /∈ B(αTP1, ϵ)

]︄
(b)
= lim

n→∞

1

n
˜︁P1

(︁
ΠXn ∈ B(αTP1, ϵ)

)︁
E˜︁P1

[︄
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− inf
(U1,...,UK)∈Pn1

×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1

×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p0,k)

⃓⃓⃓⃓
⃓ΠXn ∈ B(αTP1, ϵ)

]︄

+ lim
n→∞

1

n
˜︁P1

(︁
ΠXn ∈ B(αTP1, ϵ)

)︁(︃
log
(︂∏︂

k

|Pnk
|
)︂

− log
(︂ K∏︂

k=1

1

(nk + 1)|X |

)︂)︃
(c)

≤ fP0(α,α
TP1) + η(ϵ), (72)

where the inequality (a) is due to the bound of the prob-
ability of type classes [54]: 1

(nk+1)|X| 2
−nkD(Uk||pθ,k) ≤

p
⨂︁

nk

θ;k

(︁
Tnk

(Uk)
)︁

≤ 2−nkD(Uk||pθ,k), the equality (b) is
due to the fact that limn→∞ ˜︁P1

(︁
ΠXn /∈ B(αTP1, ϵ)

)︁
=

0 and the inequality (c) is due to (71) and the fact

that limn→∞
1
n
˜︁P1

(︁
ΠXn ∈ B(αTP1, ϵ)

)︁(︃
log
(︂∏︁

k |Pnk
|
)︂
−

log
(︂∏︁K

k=1
1

(nk+1)|X|

)︂)︃
= 0.

For the lower bound, following the same idea as in (72),
we have that

lim
n→∞

1

n
D
(︂˜︁P1

⃓⃓⃓⃓˜︁P0

)︂
≥ lim

n→∞

1

n
E˜︁P1

[︄
log

(︃ K∏︂
k=1

1

(nk + 1)|X |

)︃
− log

(︃∏︂
k

|Pnk
|
)︃

− inf
(U1,...,UK)∈Pn1

×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p1,k)

+ inf
(U1,...,UK)∈Pn1×...×PnK

αTU=ΠXn

K∑︂
k=1

nkD(Uk||p0,k)

]︄

≥ fP0
(α,αTP1)− η(ϵ). (73)

By (72) and (73), we have that

lim
n→∞

1

n
D
(︂˜︁P1

⃓⃓⃓⃓˜︁P0

)︂
= fP0(α,α

TP1). (74)
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