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Magnetic photocurrents in multifold Weyl fermions
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We examine the magneto-optical response of chiral multifold fermions. Specifically, we show that they are
ideal candidates for observing the helical magnetic effect (HME) previously predicted for simple Weyl fermions.
Unlike Weyl fermions, the HME is present in multifold fermions even in the simplest case where the low-energy
dispersion is linear and spherically symmetric. In this ideal case, we derive an analytical expression for the HME
and find it is proportional to the circular photogalvanic effect; for realistic parameters and accounting for the
geometry of the setup, the HME photocurrent could be roughly the same order of magnitude as the circular
photogalvanic effect observed in multifold fermions. Additional nonlinear and symmetry-breaking terms will
ruin the quantization but not hurt the observation of the HME.
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I. INTRODUCTION

Weyl fermions in condensed matter physics are gap-
less chiral quasiparticles with (pseudo)-spin coupled to their
momentum [1–7]. The chirality of fermions leads to inter-
esting physical consequences such as surface Fermi arcs [1],
the chiral anomaly [8–10], and the chiral magnetic effect
(CME) [11], which are accompanied by negative magnetore-
sistance [12–21].

The chirality of Weyl fermions also plays a role in their
optical response. For example, a helicity-dependent photocur-
rent due to partial Pauli blockade of tilted Weyl cones has been
predicted [22] and observed in TaAs [23]. Similar helicity-
dependent photocurrents have also been observed in response
to ultrafast near-infrared and optical pulses in TaAs [24,25].

In asymmetric Weyl materials, additional types of optical
response are possible. Asymmetric Weyl materials lack a sym-
metry that relates Weyl cones of opposite chiralities. Thus left-
and right-handed fermions can have different energies and
velocities and, consequently, interact differently with electro-
magnetic fields. For example, asymmetric Weyl materials are
predicted to exhibit a quantized circular photogalvanic effect
(CPGE), i.e., a photocurrent in the direction of circularly po-
larized light, when Weyl cones of one chirality are fully Pauli
blockaded [26]. The Pauli blockade is only possible when the
left- and right-handed cones are at different energies, which is
why this effect is specific to asymmetric Weyl materials.

In this article, we will study the helical magnetic effect
(HME), which predicts a photocurrent in the presence of a
magnetic field in a tilted, asymmetric Weyl material [27].
This effect can only occur in the absence of inversion and
any mirror reflection (which is possible only in asymmetric
Weyl materials) and in the absence of the product of inver-
sion and particle-hole symmetry (which is possible only if
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the Weyl cones are tilted). It is not enough to have a finite
chemical potential on untilted cones; the dispersion relation
itself must lack the product of inversion and particle-hole
symmetry. A transverse magnetic photocurrent has also been
predicted in symmetric Weyl materials with tilted cones such
as TaAs [28,29].

A challenge in observing the quantized CPGE or the HME
is the lack of asymmetric Weyl materials, which must also
have tilted Weyl cones to exhibit the HME. Asymmetric Weyl
materials necessarily have a chiral crystal structure [30,31]
or magnetic ordering [32] (although it is also possible to
engineer an asymmetric Weyl material by applying an external
field [33]) and these materials are relatively rare. However,
recently, asymmetric chiral multifold fermions have been
discovered in certain compounds with the B20 crystal struc-
ture [31,34–38]. Multifold fermions are generalizations of
Weyl and Dirac fermions that exhibit either a higher degen-
eracy or a different topology [39,40]. The chiral multifold
fermions are also asymmetric and thus exhibit a quantized
CPGE, which has been observed in experiment [37,41,42].
They have also been predicted to cause a quantized circular
dichroism [43]. But since the known multifold materials occur
at high-symmetry momenta where a tilt is forbidden by crystal
symmetry, naively they should not exhibit the HME.

The purpose of this article is to show that this naive ex-
pectation is incorrect; in fact, chiral multifold fermions are
an ideal platform to exhibit the HME. We show that chiral
multifold fermions exhibit the HME even in the idealized
limit where they have perfect spherical symmetry and a linear
dispersion, as long as the Fermi level is not exactly at the
degeneracy point. In this limit, the HME in multifold fermions
takes a particularly simple form and is related to the quantized
CPGE by a factor of the inverse of the number of Landau
levels involved in the photoexcited transitions. We plot the
HME for both spin-1 and spin-3/2 fermions to explicitly
demonstrate our results. Away from the idealized symmet-
ric and linear limit, the HME is present, but nonlinear and
symmetry-breaking terms ruin its quantization. We illustrate
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this for a double spin-1/2 fermion which splits into a spin-1
fermion and a trivial fermion by terms that break spherical
symmetry; this example is relevant to the multifold fermions
found in B20 compounds. We end with a discussion of the
relevance of these results to the experimentally characterized
compounds CoSi and RhSi.

II. HAMILTONIANS FOR CHIRAL FERMIONS

In this section, we review the Hamiltonian and Berry
curvature of chiral symmetric and tilted Weyl and multifold
fermions. In the simplest incarnation, a Weyl cone is described
by the continuum Hamiltonian

H = χv0�k · �σ , (1)

where the chirality χ is +1 for a right-handed cone and
−1 for a left-handed cone. This Hamiltonian yields a linear
dispersion E = ±v0k and a velocity �v = ±v0k̂, where ± cor-
responds to the upper/lower band. The chirality of the Weyl
cone in Eq. (1) can be also be defined as χ = sgn(�v · �s), where
�v is the velocity and �s is the (pseudo)-spin of the fermion.
This definition is valid for both bands of the Weyl cone: The
upper/lower bands have opposite chirality corresponding to
velocity aligned/antialigned with spin. An individual Weyl
cone has electrons of fixed chirality; thus an individual Weyl
cone lacks inversion symmetry (P), which flips momentum
but not spin. Instead, in a crystal with inversion symmetry,
the inversion symmetry operator will exchange Weyl cones of
opposite chirality.

Equation (1) has spherical symmetry, which is broken by
the lattice. More generally, a Weyl fermion can have tilt and
anisotropy and is described by the Hamiltonian:

H = vi
akiσa + vi

tσ0ki, (2)

where vi
a describes the untilted part of the Hamiltonian, which

might be anisotropic, and vi
t describes the tilt. The chirality is

χ = sgn(det vi
a).

Weyl points are quantized monopole charges of Berry cur-
vature. For a symmetric linear Weyl cone described by Eq. (1),
the Berry curvature is of the form �� = ±χ k̂/2k2, where ±
corresponds to the upper/lower band; more generally, the
Berry curvature will be anisotropic. Whether isotropic or not,
integrating the Berry curvature over a Fermi surface enclosing
a single linear Weyl fermion of the form of Eq. (1) or (2)
yields 2πC, where C = χ = ±1 is the Chern number of the
Fermi surface. By the Nielsen-Ninomiya theorem [44], the
total number of left- and right-handed cones in the Brillouin
zone must be equal so that the total Berry flux vanishes.

Although Weyl fermions do not require any crystal
symmetry, crystal symmetries can protect the following gen-
eralizations of Weyl fermions. Rotation symmetries protect
Weyl fermions with |C| > 1, which have quadratic or cubic
dispersions along certain directions [30,45,46].

Chiral multifold fermions, which are higher-spin gener-
alizations of Weyl fermions [39–41], can be protected by
symmetry in chiral nonsymmorphic crystals. A spin-J chiral
multifold fermion has 2J + 1 bands. The simplest (spherically
symmetric) Hamiltonian for such a fermion is

H = χv0kiS
i, (3)

where Si are the spin-J matrices. Spin-1 (threefold degener-
acy) and spin-3/2 (fourfold degeneracy) flavors are possible
in 3D crystals. In addition, double spin-1/2 (fourfold degener-
acy) and double spin-1 (sixfold degeneracy) fermions can also
be symmetry-protected. The Hamiltonian of a double spin-J
fermion is of the form

H = χτ0v0kiS
i, (4)

where the Kronecker product is implied and τ0 is the 2 × 2
identity matrix acting on some additional degree of freedom
outside of the spin-J multiplet; at least one crystal symmetry
must be off-diagonal in the basis of τ matrices for the multi-
fold fermion to be symmetry-protected.

Since the Hamiltonians in Eqs. (3) and (4) are spherically
symmetric, each band can be labeled by the projection of spin
along momentum, Sk . The Chern number of a Fermi surface in
a band with spin-projection Sk is 2Sk ; the integral of the Berry
curvature over that Fermi surface is 2π × 2Sk . As discussed
for Weyl fermions, the total Chern number in the Brillouin
zone must always be zero. Thus materials with multifold
fermions can have multifold fermions of both chiralities or a
multifold fermion of one chirality and the appropriate number
of simple Weyl fermions of the other chirality.

In the following, we focus on spin-1 and spin-3/2
fermions. The calculation of the HME for double spin-J
fermions is the same as single spin-J fermions with an ad-
ditional factor of two.

III. SYMMETRY AND MAGNETIC PHOTOCURRENT

As mentioned in Sec. I, the HME requires a tilted Weyl
cone. To describe the tilt, we need to introduce charge-
conjugation symmetry (C), which maps one electron to
another electron with opposite energy, momentum, and angu-
lar momentum, but with same velocity. Since removal of an
electron with velocity �v and angular momentum �s is equiv-
alent to the creation of a hole with velocity �v and angular
momentum −�s, charge-conjugation maps an electron to a hole
with opposite chirality. This is analogous to the situation in
high-energy physics, where the antiparticle of a left-handed
neutrino is a right-handed antineutrino.

A single untilted Weyl cone cannot have inversion sym-
metry [as discussed below Eq. (1)] or charge-conjugation
symmetry because these symmetries both flip chirality. But
a Weyl fermion whose low-energy bands are linear and whose
dispersion relations of electrons and holes are similar has ap-
proximate CP symmetry, which is broken by quadratic terms.
This is analogous to the situation in the Standard Model,
where the terms that break P and C are large, but the CP
violating terms are very small.

To reiterate, the energy, momentum, angular momentum,
and velocity of electrons transform under P, C, and CP sym-
metries as follows:

P : E → +E , �k → −�k, �s → +�s, �v → −�v
C : E → −E , �k → −�k, �s → −�s, �v → +�v

CP : E → −E , �k → +�k, �s → −�s, �v → −�v. (5)
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FIG. 1. Comparison of transitions in an untilted and a tilted Weyl
cone. In an untilted cone, the initial and final states are related by CP
and there is no HME. In the tilted cone, the initial and final states are
not related by CP, and it is possible to partially blockade the cone.
This allows the HME current to be nonzero.

The Hamiltonians of untilted simple Weyl cones [Eq. (1)] and
multifold fermions [Eqs. (3) and (4)] satisfy CP, while the
Hamiltonian of a tilted Weyl cone [Eq. (2)] does not.

In the quantized CPGE [26], circularly polarized light,
characterized by its angular momentum �J , produces a current
�j, related by:

�j = βl �J. (6)

Since the current is odd under both P and C, and the angular
momentum is even under both, the coefficient βl is also odd
under P and C but even under CP. This is also how a single
Weyl cone transforms under P and C. This is why the quan-
tized CPGE occurs when there is an imbalance of occupied
Weyl cones of each chirality.

In the HME, linearly polarized light is predicted to produce
a current in the presence of a magnetic field [27]:

�j = βmε2 �B, (7)

where �ε is the polarization vector. In general, the coefficient
βm is a rank-4 tensor. While current is odd under both P and
C, a magnetic field is even under P and odd under C. Thus the
coefficient βm is odd under P, even under C, and odd under
CP. Consequently, for a Weyl material to exhibit the HME, the
(approximate) CP symmetry must be broken by introducing a
factor that affects electrons and holes differently, such as a tilt,
nonlinear terms, or coupling to other bands. A nonzero Fermi
energy is not sufficient to exhibit the CME in an otherwise
CP-symmetric Weyl material because a transition produces
an electron and a hole that are related to each other by CP;
therefore this pair cannot contribute to a CP-odd coefficient.
Since a Pauli blockade is uniform for all directions (see Fig. 1)
for an untilted Weyl cone, it does not affect the symmetry
analysis.

In Ref. [27] a Pauli blockade on a tilted Weyl cone was
suggested to realize the HME. In a tilted cone, one side has
fast electrons and slow holes, and the other has slow electrons
and fast holes. A finite Fermi level will blockade one side of
the cone, allowing, for example, only transitions that create
fast electrons and slow holes, as shown in Fig. 1. This breaks
the CP symmetry connecting electrons and holes of opposite
chiralities and allows the HME.

In multifold fermions, because of the lack of tilt, there is
still an approximate CP symmetry, which can be seen from
Eq (3): Since k flips sign under P and S remains invariant,
the coefficient χv0 is odd under P. Since holes have opposite
energy, momentum, and angular momentum as electrons, χv0

FIG. 2. Pauli blockade in a spin-1 (left) and spin-3/2 (right) mul-
tifold fermion. Solid black arrows indicate allowed transitions from
occupied to empty bands, while dashed arrows indicate blockaded
transitions. The shaded blue region indicates the Fermi sea. The Pauli
blockaded multifold fermions exhibit the HME.

also flips sign under C and therefore is invariant under CP.
Thus following the analysis of Weyl fermions, one would
naively expect the HME to be absent for chiral multifold
fermions with approximate CP symmetry. However, we will
now show by explicit calculation that this is not the case, as
long as the Fermi level is not exactly at the band-crossing
point. Heuristically, the nonvanishing HME in the presence of
CP symmetry results because there is a unique type of Pauli
blockade possible for multifold fermions that is not possible
for spin-1/2 Weyl fermions, as shown in Fig. 2.

IV. HME IN MULTIFOLD FERMIONS

While multifold fermions described by Eqs (3) and (4)
have CP symmetry, transitions between bands with different
|Sk| break CP symmetry. For example, as shown in Fig. 2, if
the Fermi level is such that transitions between bands with
Sk = m and Sk = n �= ±m are allowed, while transitions to
bands with Sk = −m,−n are forbidden, then CP symmetry is
“maximally” broken compared with tilted simple Weyl cones.
Thus as long as the Fermi level is not at the charge neutrality
point of the multifold fermion, the HME will be present, even
though the low-energy theory has CP symmetry. This is very
different than the situation for Weyl fermions described in the
previous section, where the CP symmetry of the Weyl cone
must be explicitly broken to exhibit the HME, regardless of
the Fermi level.

We now calculate the magnitude of the HME for a mul-
tifold fermion. The effect of chiral Landau levels due to an
external magnetic field on the velocity of fermions and the
density of phase space can be modeled semiclassically by
chiral kinetic theory [12,47–50], which prescribes:

�v → �v + (�v · ��)e �B
1 + e �� · �B

d3k → (1 + e �� · �B)d3k, (8)

where the unperturbed velocity is �v = ∇k E , �� is the Berry
curvature and �B is the applied field.

If the system is in thermal equilibrium, there is no cur-
rent. The photocurrent occurs because fermions are excited
by photons and have different velocities in their final states
compared with initial states. The DC injection current (i.e.,
current due to optically induced transitions between states of
different velocity) in response to a continuous wave is then
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given by:

�j = e
cones∑ bands∑

i< j

τ

∫∫
d3�ki

(2π )3
(1 + e ��i · �B)d3�k j (1 + e �� j · �B)δ(�ki − �k j )δ(Ej − Ei − h̄ω)

×
[ �v j + (�v j · �� j )e �B

1 + e �� j · �B − �vi + (�vi · ��i )

1 + e ��i · �B e �B
]

( fi − f j )�i j, (9)

where τ is the relaxation time, fi, j is the Fermi distribution
function at energy Ei, j , and �i j is the transition rate from state
i to state j, given by Fermi’s golden rule:

� = 2π |〈ψi|V+ω|ψ j〉|2, (10)

where ψi, j are the initial and final states and V+ω is the pertur-
bation induced by light. For an ultrafast pulse shorter than the

relaxation time, �j = τ (...) in Eq. (9) is replaced by d �j
dt = (...).

In the absence of a magnetic field, circularly polarized light
will result in a nonzero photocurrent because its electric field
violates time reversal; this is exactly the CPGE. Since the
electric field of linearly polarized light is time-reversal sym-
metric, in a material which is also time-reversal symmetric,
this integral vanishes for linearly polarized light in the absence
of magnetic field. By definition, the HME is defined as the
photocurrent contingent on a magnetic field; thus we now
focus only on terms that depend on �B.

In a spherically symmetric multifold fermion, the energy,
velocity, and Berry curvature of the band with χSk = n (Chern
number 2nχ ) is:

E = nv0k

�v = nv0k̂

�� = nχ
k̂

k2
. (11)

Equation (9) then simplifies. The leading (linear order in �B)
term is given by:

�j = e
∑
cones

∑
m<n

τχ

∫
d3�k

(2π )3
δ((n − m)v0k − h̄ω)

×
[

n2v0

k2
e �B − m2v0

k2
e �B

]
( fm − fn)�mn, (12)

where � is the unperturbed transition rate. The transition rate
from lower to upper states for linearly polarized light with
�A = �A+ω exp(−iωt ) + �A−ω exp(iωt ) is

�mn = 2π |〈ψn|ev0 �A+ω · �S|ψm〉|2

= 2πe2v2
0A2

+ω sin2 θ
∣∣Sx

nm

∣∣2
, (13)

where θ is the angle between the electric field and the crystal
momentum and

Sx
nm = 1

2 (δm,n+1 + δn,m+1)
√

j( j + 1) − mn, (14)

which is obtained by expressing the elements of the spin
matrices in the first line of Eq. (13) in the basis of ψm,n, i.e.,
the eigenstates of the Hamiltonian in Eq. (3). The selection
rules defined by Sx

nm in Eq. (14) only allow transitions with
n − m = ±1.

Thus the photocurrent for each cone is

�j = χ
e3Iτ

6π h̄2ε0c

2e �Bv2
0

h̄ω2

∑
m,n

(n2 − m2)|Sx
nm|2( fm − fn), (15)

where I = 2ε0cA2
+ωω2 is the intensity of the light, and

the Fermi distribution function is fm = f (mω) = 1/[1 +
exp((mω − μ)/T )], because the δ function in Eq. (12) en-
forces the transition at k = ω/v0(n − m) = ω/v0.

Since the current is summed over all bands, the HME will
be nonzero if there are transitions between bands m to n, but
not between −m to −n. The factor (n2 − m2)|Sx

nm|2 is 1/2 for
a spin-1 fermion and 3/2 for a spin-3/2 fermion. However,
it is zero for a spin-1/2 Weyl cone because |n| = |m| = 1/2.
This explains why the HME vanishes for a symmetric, untilted
spin-1/2 Weyl fermion.

Note that the HME does not require � to have any spe-
cial form. This means it will be nonzero for any nonzero
�, including for linearly polarized or even unpolarized light.
For a spherically symmetric linear multifold fermion, the
photocurrent is always in the direction of the magnetic field
and is completely independent of the linear polarization of
light. In the general case, it can have transverse terms and a
polarization dependence.

The normalized photocurrent vs normalized frequency is
plotted in Fig. 3 at different temperatures for both a spin-1
cone and a spin-3/2 cone. For the spin-1 fermion, the HME is
suppressed at low frequencies by a complete Pauli blocade. At
frequencies above the chemical potential μ, transitions from
the middle band (which has no Berry curvature) to the upper
band are allowed, and there is an HME current, which drops
as the inverse square of frequency according to Eq. (15).

For the spin-3/2 fermion, there are fast bands with velocity
3v0/2 and slow bands with velocity v0/2. At frequencies
less than 2μ/3, all transitions are blockaded, and there is no
HME. Above this frequency, transitions are allowed because
the slower band remains filled, while the faster band is empty.
Above 2μ, transitions from the slow to fast band are again
suppressed because both bands are empty. Transitions from
the lower slow band to the upper slow band are allowed
at frequencies above 2μ, but they do not contribute to the
HME as these bands have opposite Berry curvature and hence
n2 = m2. For frequencies between 2/3μ and 2μ, the HME
current decreases as the inverse square of frequency according
to Eq. (15).

At finite temperature, the frequency cutoffs described
above become smoothed by the Fermi distribution function.

If the Fermi level is below the band degeneracy point, the
photocurrent behaves similarly up to a minus sign because the
charge carriers would be holes, not electrons.
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FIG. 3. Normalized HME photocurrent vs normalized frequency
for a spin-1 cone (top) and a spin-3/2 cone (bottom) for T/μ =
0.01, 0.05, 0.1, 0.2, and 0.5. The current is normalized in units of

j0 = e3Iτ
3π h̄2ε0c

eBv2
F

h̄μ2 where vF is the velocity of the fastest band. The
frequency is normalized in units of chemical potential μ. At T =
0, the current is zero until a critical frequency where the upper
band is unoccupied at the momentum required for the transition. In
the spin-3/2 case, there is also a second critical frequency where
the current drops to zero because both upper bands are unoccupied at
the momentum required for the transition.

The quantized CPGE can also be derived by integrating
Eq (9) for circularly polarized light (i.e., A+ω ∼ x̂ + iŷ); the
magnitude of the photocurrent is e3Iτ

6π h̄2ε0c
|Sx

nm|2. The multifold

HME has a relative factor of 2eBv2

h̄ω2 (n2 − m2) vs the quantized
CPGE. This means it is inversely proportional to the number
of Landau levels involved in the photoexcited transitions.

While the quantized CPGE does not require a magnetic
field and depends on the direction of the incident light and
its circular polarization, the multifold HME is roughly in-
dependent of the direction and polarization of the light; it is
(approximately) parallel or antiparallel to the external mag-
netic field.

V. NONLINEARITY AND TRANSITIONS FROM
MULTIFOLD FERMIONS TO OTHER BANDS

In a crystal, multifold fermions do not have full spherical
symmetry, only the symmetry of the little group at their crys-
tal momentum. Nonlinear terms will generically be present
and break spherical symmetry. Even in cubic crystals, spin-1,
spin-3/2, and double spin-1 fermions without time-reversal
symmetry can also have linear terms that break the approxi-

FIG. 4. The dispersion relation (top) and normalized photocur-
rent vs normalized frequency (bottom) for the double spin-1/2
fermion split into a spin-1 fermion and trivial band, described by
the Hamiltonian in Eq. (19). The photocurrent is normalized in

units of e3Iτ
3π h̄2ε0c

eBv2
F

h̄E2
0

, while the frequency is normalized in units of

E0 = �/4. The chemical potential is taken to be μ = 0. The polar-
ization is along the magnetic field. The normalized temperature is
T/E0 = 0.01, 0.05, 0.1, 0.2, and 0.5. At T = 0, the current is zero
for small frequencies. Above a critical frequency, the Pauli blockade
is lifted only for transitions from trivial to chiral bands, and there is
a current. Above a second critical frequency, the Pauli blockade is
also lifted for transitions from chiral to trivial bands, and the current
is approximately canceled, but is not exactly zero

mate spherical symmetry [39,41], such as

a
(
kxS3

x + kyS3
y + kzS

3
z

)
(16)

for spin-3/2 fermions,

aτ2(kx{Sy, Sz} + ky{Sz, Sx} + kz{Sx, Sy}) (17)

for double spin-1 fermions, and

a(kx{Sy, Sz} + ky{Sz, Sx} + kz{Sx, Sy}) (18)

for spin-1 fermions not at TRIMs or in crystals with broken
time reversal.

In addition, transitions to other bands outside the multifold
fermion are possible. All these effects will contribute to the
HME photocurrent, causing it to deviate from the idealized
form in Eq. (15). In these cases, the HME photocurrent can be
calculated from the general formula in Eq. (9).

To illustrate the effects of nonlinearity and transitions to
trivial bands, we consider a double spin-1/2 fermion de-
scribed by the Hamiltonian in Eq (4) plus a small perturbation
of the form

∑
τiσi that splits it into a spin-1 and a trivial

fermion, as shown in Figure 4. Thus this model is an ex-
ample of a spin-1 fermion with both nonlinear terms and
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FIG. 5. The chiral Landau levels and first five achiral Landau
levels for a spin-1 fermion (left) and a spin-3/2 fermion (right).

transitions to another band. This system can be described by a
Hamiltonian of the form,

H = v0i

⎛
⎜⎜⎜⎝

0 kx ky kz

−kx 0 kz −ky

−ky −kz 0 kx

−kz ky −kx 0

⎞
⎟⎟⎟⎠

+ �

4

⎛
⎜⎜⎜⎝

3 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (19)

We plot the dispersion relation and HME current vs fre-
quency for this system at different temperatures in Fig. 4.
We consider the Fermi level to be between the Weyl node
and the upper trivial band, i.e., between −E0 and 3E0 where
E0 = �/4. At low frequencies, all transitions are block-
aded, and there is no photocurrent. Above ω = μ − E0 +√

4E2
0 + (μ + E0)2, transitions from the lower trivial band

to the upper chiral band are not blockaded, while those
from the lower chiral band to the lower trivial band are
blockaded, which marks the onset of the photocurrent. The
system is similar to an isolated and symmetric spin-1 fermion
(Fig. 3) and there is a large photocurrent. Above ω = μ +
E0 +

√
4E2

0 + (μ + E0)2, transitions from the chiral bands to
the upper trvial band are also allowed, which contribute a term
with opposite sign to the photocurrent, which corresponds
to the sharp drop in photocurrent. However, the cancellation
is not exact because of nonlinearity. At higher frequencies,
the photocurrent is strongly suppressed because the system
resembles a untilted double spin-1/2 cone. The photocurrent
also has a very weak dependence on the polarization of light
due to the nonlinearity.

VI. MAGNETIC PHOTOCURRENTS FROM
LANDAU LEVELS

The factor of (n2 − m2) 2eBv2
0

ω2 that appears in Eq. (15) can
also be understood from the Landau level spectrum of a multi-
fold fermion. In a magnetic field, chiral fermions exhibit chiral
Landau levels, which propagate only in one direction. Each
band contributes a number of chiral Landau levels equal to its
Chern number. The Landau levels of a spin-1 fermion and a
spin-3/2 fermion are illustrated in Fig. 5. The chiral anomaly
can be interpreted as a consequence of these unpaired chiral
Landau levels.

The effects of the unpaired Landau levels in the semiclas-
sical calculation are captured by the deformation of phase
space in Eq. (8). When the temperature or inverse scattering
time is larger than the Landau splitting, we can ignore the
quantum oscillations and focus only on the deformation of
phase space [51]. Here we show that the same scaling can
be obtained for a spherically symmetric multifold fermion by
counting the density of states in each chiral Landau level.

When the fermions are in thermal equilibrium, the total
current vanishes because the Chern numbers of left- and right-
handed cones cancel. However, a net current is possible when
we disturb the distribution function by shining light.

Consider a spherically symmetric linear multifold fermion
in a magnetic field along the ẑ direction. A band with Sk =
n contributes 2n chiral modes, corresponding to its Chern
number. In the semiclassical limit, the velocity of each chiral
mode is nχv0 along the direction of the magnetic field, the
same as the speed of the unperturbed band [see Eq. (11)].
The density of states per area within each Landau level in
the x − y plane is eB/2π ; each Landau level corresponds
to an area of 2πeB in the kx − ky plane. The fermions that
participate in transitions excited by light of frequency ω are
located on a sphere in momentum space of radius k = ω/v.
The number of Landau levels involved in these transitions is
proportional to the cross-section πk2 of this sphere, so that
nLL = πk2/2πeB = ω2/2eBv2

0 . The total number of fermions
participating in transitions is proportional to the surface area
of the sphere 4πk2, while the number of fermions in each
chiral Landau level on the sphere (which have kx, ky ∼ 0,
because at fixed k2 they have maximal |kz| for their band
and therefore minimal kx, ky) is proportional to the area of
the Landau level projected onto the sphere, which for �k ∼
kẑ is the same as the area of the Landau level 2πeB. The
fraction of fermions belonging to each chiral Landau level
is 2πeB/4πk2 = eB/2k2 = eBv2

0/2ω2. Because of these un-
paired chiral modes, the average velocity along the magnetic
field of the fermions in that band participating in the transition
is

〈�vn〉 = 2n × nχv0 × e �Bv2
0

2ω2
= n2χ

e �Bv2
0

ω2
v0. (20)

If fermions are excited from a band with Sk = m to one with
Sk = n, the average change in velocity is

〈��v〉 = χ (n2 − m2)
e �Bv2

0

ω2
v0 (21)

along the magnetic field, which explains the scaling with n2 −
m2 and B in Eq. (15).

We now compare the HME and the CPGE. In the CPGE,
the magnitude of the change in velocity for each transition
is v0. The rate of transition for circularly polarized light,
from Eq. (10), is proportional to (1 + cos θ )2 where θ is the
angle between the momentum of the fermion and the angular
momentum of light; the change in velocity projected along the
angular momentum of light is v0 cos θ . Therefore the change
in velocity, averaged over the whole sphere, is

〈��v〉 =
∫

(1 + cos θ )2 cos θ 2π sin θdθ∫
(1 + cos θ )2 2π sin θdθ

v0 = 1

2
v0. (22)
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Therefore the ratio of average change in velocity per exci-

tation in the HME vs the CPGE is (n2 − m2) 2eBv2
0

ω2 , which
is precisely the ratio between the HME and the CPGE in

Eq. (15). The factor 2eBv2
0

ω2 = n−1
LL is the inverse number of Lan-

dau levels involved in the transitions. This scaling obtained by
counting the states in each chiral Landau level agrees with the
calculation using chiral kinetic theory in Sec. IV.

VII. MATERIAL REALIZATIONS: COBALT SILICIDE
AND RHODIUM SILICIDE

The HME photocurrent derived in Sec. IV should be
present in the known multifold fermion materials in the B20
family, such as RhSi, CoSi, and AlPt [31,34–38]. These mate-
rials are in space group P213 (SG 198) with chiral tetrahedral
symmetry. Ignoring spin-orbit coupling (SOC), they exhibit a
double spin-1 fermion, separated from a double trivial fermion
by a large energy, at � and a quadruple spin-1/2 fermion at
R. Thus the multifold fermions are maximally separated in
momentum space and not related to each other by even an
approximate symmetry. The HME photocurrent in this case
will come predominantly from the double spin-1 fermion at �,
since the spin-1/2 fermions at R do not contribute to the HME
because symmetry forbids them from having a tilt. For small
frequencies, the HME photocurrent from � will be approxi-
mately twice the contribution from a single spin-1 fermion,
derived in Sec. IV. At larger frequencies, the quadratic dis-
persion of the middle band (which is flat to linear order, as
shown in Fig. 2) will cause the photocurrent to deviate from
its idealized value; nonetheless, it should follow the general
trend of the photocurrent plotted in Fig. 3 (upper), where the
photocurrent is nearly zero until a finite onset frequency (nec-
essary to overcome the Pauli blockade) and then decreases.

SOC splits the bands at � into a spin-3/2 fermion and a
Weyl fermion and splits the bands at R into a double spin-1
fermion and two quadratic bands, essentially two copies of
the model described in Eq. (19). In general, SOC will cause
the HME photocurrent to deviate from its idealized form in
Eq. (15), and the general formula in Eq. (9) must be applied.
For mid-infrared light, the frequency is larger than the SOC,
but significantly smaller than the separation at �, and we can
approximate the HME current by considering only the double
spin-1 fermion at � and ignoring terms that break spherical
symmetry.

We now compare the magnitude of the HME photocurrent
to that of the CPGE, which has already been observed in
RhSi [37,52] and CoSi [42]. As discussed above, the HME
photocurrent will come predominantly from the double spin-1
fermion at �. In a material with a double spin-1 cone with
Fermi velocity 3 × 105 m/s, with the lower and middle bands
fully occupied but the upper band fully unoccupied, excited by
light of energy 100 meV, in a magnetic field of 5 T, along the
surface of the crystal, there would be ∼16 Landau levels at the
excitation energy. Ignoring the effect of the angle of incidence,
the photocurrent would be ∼0.06 times the CPGE contribu-
tion of the same cone. However, depending on the energy
of light and the chemical potential, the CPGE could cancel,

because the contributions to the CPGE from � and R enter
with opposite sign, while the HME photocurrent does not have
this putative cancellation because the spin-1/2 fermions at R
do not contribute.

Returning to the importance of the incident angle, the
CPGE is always parallel (or anti-parallel) to the angular mo-
mentum of light, so the observed CPGE, i.e., the component
along the surface of crystal, has a factor of the sine of the
angle of refraction. If the angle of refraction is 10◦, the CPGE
will have a factor of ∼0.16, and the HME current will be
∼0.4 times the CPGE current. Note that the HME current
would always be in the direction of the magnetic field and
roughly independent of the linear polarization (it is perfectly
independent if the bands are perfectly linear).

VIII. DISCUSSION

We have demonstrated that the HME can occur in multifold
Weyl fermions, as long as the Fermi level is not exactly at the
degeneracy point. Unlike simple Weyl fermions, in multifold
fermions this effect occurs even in the idealized limit, i.e., it
does not require tilt, deviations from linearity, or breaking of
spherical symmetry. We derived the HME photocurrent for an
ideal multifold fermion in Eq. (15), which is plotted in Fig. 3
for a spin-1 and spin-3/2 fermion. To demonstrate the effect
of perturbations beyond the ideal case, we also considered
a double spin-1/2 fermion split into a spin-1 fermion and a
trivial band; the resulting HME photocurrent in this system is
shown in Fig. 4.

The HME could be distinguished from other contributions
to the photocurrent, such as the CPGE by its dependence on
polarization and magnetic field. The HME would be linear
in magnetic field and roughly independent of the linear or
circular polarization of incident light.

For the same intensity of incident light, the HME is of the
order of the CPGE divided by the number of Landau levels at
the energy of the incident light. However, unlike the CPGE,
the HME will be observable even at normal incidence, and for
linearly polarized light, and not be suppressed by the sine of
the refracted angle.

We predict that the HME is observable in materials known
to exhibit multifold fermions such as RhSi, CoSi, and AlPt.
We estimate its magnitude will be within an order of mag-
nitude of the CPGE photocurrent depending on the chemical
potential, magnetic field, and incident angle of light.
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