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Abstract—In this paper we explore the problem of series arc
fault detection and localization on dc microgrids. Through a
statistical model of the microgrid obtained by nodal equation,
the injection currents are modeled as a random vector whose
distribution depends on the nodal voltages and the admittance
matrix. A series arc fault causes a change in the admittance
matrix, which further leads to a change in the data generating
distribution of injection currents. The goal is to detect and
localize faults on different lines in a timely fashion subject to false
alarm constraints. The model is formulated as a quickest change
detection problem, and the classical Cumulative Sum algorithm
(CUSUM) is employed. The proposed framework is tested on a
dc microgrid with active (constant power) loads. Furthermore,
a case considering fault detection in the presence of an internal
node is presented. Finally, we present an experimental result on
a four node dc microgrid to verify the practical application of
our approach.

Index Terms—DC microgrid, Series arc fault detection and
localization, Quickest change detection, CUSUM, Kron reduction

I. INTRODUCTION

DC microgrids have seen a significant rise in deployment
over the last decades. From solar, wind, hydro based power
sources for electric utility, applications in Electric Vehicles
(EVs), electric ships, More Electric Aircrafts (MEAs), to
prospective applications in inter-planetary travel, etc. In con-
sonance with the rise in dc microgrid’s popularity and its
advantages over the ac microgrid like efficiency, cost, and size,
it is essential to find solutions for its drawbacks such as the
Series Arc Faults (SAFs).

In recent years, different approaches have been proposed
for SAF detection and localization. In [1], [2], SAF detection
and localization was performed on a distribution node using
Recursive Least Squares (RLS), Kalman Filter (KF) and
gradient descent parameter estimation methods. SAF detection
and localization was then analyzed on a dc microgrid by
using KF as a parameter estimation algorithm in [3]. In the
presence of limited number of sensors, a dual state and pa-
rameter estimation method which incorporates RLS and KF is
presented in [4]. Machine learning based techniques studying
the arc characteristics by collecting data, were presented in
[5], [6]. A relative comparison of current variability in terms of
frequency spectrum and time series is proposed in [7] for SAF
detection. A time-domain technique based on the mathematical
morphology called the decomposed open–close alternating
sequence (DOCAS) is shown in [8] for SAF detection and
localization. In [9], support vector machine optimized by

particle swarm optimization (PSO-SVM) is designed to detect
the arc fault.

In this paper, we propose to solve the SAF detection and
localization on a dc microgrid [10]–[12] using the approach
of Quickest Change Detection (QCD). In QCD problems, a
stochastic system can be observed sequentially in time [13]–
[15]. After a change occurs in the data generating distribution,
the goal is to detect the change as quickly as possible subject to
false alarm constraints. The approach of QCD has been applied
for various fault and outage detection problems, including
line outages and/or short circuit fault detection in ac systems
[16], [17], line to line fault detection in circuits containing
Photovoltaics (PVs) [18], and power system’s outage detection
in [19], [20]. These references model their networks using
a generalized ac power flow. Application of modified-online
CUSUM algorithm for quickest detection of false data injec-
tion attacks in microgrids is presented in [21]. The generalized
CUSUM algorithm is employed for quickest detection of
cyber-attacks in [22]. The adaptive CUSUM algorithm for
defending false data injection attacks in smart grid networks is
proposed in [23]. In [24], a novel backup protection algorithm
based on QCD is proposed to offer fast and robust backup
protection functionality for the primary relay.

In this paper, we analyze a dc microgrid as a static system
using nodal analysis. We then formulate the SAF detection and
localization as a QCD problem and investigate over two case
studies: 1) generator and load at every node and 2) presence
of internal node (s) in a dc microgrid. Our main contributions
include: SAF detection and localization on a dc microgrid
by using the CUSUM algorithm [25], and fault detection
in a dc microgrid with internal nodes using Kron reduction.
This paper is structured as follows: In section 2, a statistical
model for the dc microgrid is developed. In section 3, the
QCD based fault detection method is presented. Sections 4
and 5 present simulation and experimental results respectively.
Finally, conclusion and future work are presented in section
6. The following notation is used in this paper: given a set X ,
its cardinality is denoted by |X |.

II. DC MICROGRID

A classic dc microgrid is a power distribution system
consisting of renewable source generators, Constant Power
Loads (CPLs), Resistive Loads (RLs), energy storage devices,
etc. A dc microgrid’s topology can be defined as an undirected
graph represented by G = (V, E), where V is the set of
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nodes/buses and E ⊂ V × V is the set of edges/lines. The
total number of nodes in G is N = |V| and each line/edge in
the dc network is defined as (m,n) ∈ E , where m,n ∈ V .

The nodal equation for a dc network at a sampling instant
k ∈ Z≥0 is given by

I[k] = Y V [k], (1)

where I ∈ RN denotes the current injection at each node
i ∈ V , V ∈ RN denotes the nodal voltages, and admittance
matrix is denoted by Y ∈ RN×N . Considering the difference
along consecutive samples of I[k] and V [k], we define

∆I[k] = I[k]− I[k − 1],
∆V [k] = V [k]− V [k − 1].

(2)

The nodal equation (1) then becomes:

∆I[k] = Y∆V [k]. (3)

In the above equation, ∆V [k] is defined to be independent and
identically distributed Gaussian random variable which can be
denoted by:

∆V [k] ∼ N (0, Υ). (4)

Consequently, we define ∆I[k] as

∆I[k] ∼ N (0, Σ0), (5)

where Σ0 = YΥY T is the covariance matrix. The pre-fault
probability distribution function (pdf) of the current difference
∆I[k] is denoted by f0.

III. SERIES ARC FAULT

A SAF can be defined as a power discharge in series with
the circuit. It is a consequence of wear and tear or line
breakage. On transfer of charge through an air gap in series,
energy is dissipated in the form of heat and light (fire) which
can cause major damage to a system and might also lead to
fatalities in EVs, MEAs, electric ships, etc. Fig. 1 depicts
a SAF on a line (m,n) where r(m,n) is the pre-fault line
resistance, and r(m,n)SAF is the arc resistance. When a SAF
is triggered the total line resistance of the line (m,n) becomes

r(m,n)γ = r(m,n) + r(m,n)SAF . (6)

We then define the new line conductance as

y(m,n)γ =
1

r(m,n) + r(m,n)SAF
. (7)

Assuming that there is a fault at line (m,n), we define the
matrix Y(m,n) such that all y(m,n) are replaced with y(m,n)γ ,
where y(m,n) is the pre-fault line admittance. The nodal
characteristics during a fault at this line can be represented
by

∆I[k] = Y(m,n)∆V [k]. (8)

While the covariance of ∆V [k] remains Υ, the covariance of
∆I[k] changes to

∆I[k] ∼ N (0, Σ(m,n)), (9)

Fig. 1. Series arc fault model considered on line (m,n).

where the new covariance is given by

Σ(m,n) = Y(m,n)ΥY
T
(m,n). (10)

IV. QUICKEST CHANGE DETECTION

In this section we present the CUSUM algorithm and the
Kron reduction based internal node elimination.

A. Current sensors at all nodes

The objective of the CUSUM algorithm is to minimize the
detection delay when the distribution of I[k] changes from f0
to f(m,n) subject to false alarm constraints. This problem can
be formulated as [26]:

min
τ

sup
γ>0

Eγ [τ − γ | τ ≥ γ]

subject to E∞ [τ ] ≥ β.
(11)

where τ is defined as the stopping time, and the change point
at which an event occurs is given by γ. The expectation of an
event to occur at time γ is given by Eγ , the expectation when
there is no fault is given by E∞ and β is the desired mean
time to false alarm.

The CUSUM detection statistic for a SAF on line (m,n) is
updated as follows:

W(m,n)[k + 1] =

(
W(m,n)[k] + log

f(m,n) (∆I[k + 1])

f0 (∆I[k + 1])

)+

,

(12)

where f0 and f(m,n) define the pre and post-fault pdfs of the dc
microgrid when there is a SAF on line (m,n). The algorithm
is initiated with W(m,n)[0] = 0 and (·)+ = max{0, ·}. Finally,
a fault is said declared whenever the detection statistics
W(m,n)[k] on any line (m,n) exceeds a pre-specified threshold
Atd, and the stopping time is defined as follows:

τ = inf
k≥0

{
k :
∣∣ max
(m,n)∈E

W(m,n)[k] ≥ Atd
}
, (13)

where the threshold Atd can be computed as in [13], [16] to
meet the false alarm constraints:

Atd = log (|E|β) . (14)

To further localize the SAF, the line whose detection statistic
exceeds the threshold at the stopping time is then claimed to
have a SAF:

arg max
(m,n)∈E

W(m,n)[τ ] (15)
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(a) Case 1 simulation results.

(b) Case 2 simulation results.

Fig. 2. Dc microgrid model for the two cases.

B. Internal Node Elimination

In this section we present an alternative formulation by Kron
reduction approach to detect a SAF when there are internal
nodes present in the dc microgrid.

Let α ⊆ V be the set of nodes such that a generator and/or
load is connected to each element and β ⊂ V be the internal
nodes with no generator or load connection. The set of nodes is
then decomposed as V = α∪β. We can then rewrite equation
(3) as

(
∆Iα
0β

)
=

(
Yα,α Yα,β
Yβ,α Yβ,β

)(
∆Vα
∆Vβ

)
, (16)

where ∆Iα is current injection measurement and ∆Vα is the
nodal voltage measurement at the nodes in α. Similarly, ∆Vβ
is the nodal voltage measurement at β and 0β is a column
vector of zeros (internal nodes). Therefore,

0β = Yβ,α∆Vα + Yβ,β∆Vβ . (17)

We can solve for ∆Vβ :

∆Vβ = − [Yβ,β ]
−1
Yβ,α∆Vα. (18)

Substituting ∆Vβ on (16) we obtain

∆Iα = Yα,α∆Vα − Yα,β
(

[Yβ,β ]
−1
Yβ,α∆Vα

)

=⇒ ∆Iα =

(
Yα,α − Yα,β [Yβ,β ]

−1
Yβ,α

)
∆Vα. (19)

The above equation is of the form,

∆Iα = Ỹ∆Vα. (20)

(a) Case 1: Node voltages (top) and current injections (bottom) for
system without internal nodes.

(b) Case 2: Node voltages (top) and current injections (bottom) for
network with one internal node.

Fig. 3. Nodal voltages and injection currents for simulation results.

where Ỹ is the fault free admittance matrix. It can be shown
that the reduced matrix Ỹ is a Laplacian of the sub-graph
defined by the nodes α [27].

We can now similarly define a new reduced admittance
matrix Ỹ(m,n) associated with a SAF at each line (m,n) ∈ E .
Similarly, the post fault pdf f(m,n) of the current injections
will be derived using the respective reduce admittance matrix
and the QCD based CUSUM algorithm for SAF detection and
localization can be applied.

V. SIMULATION RESULTS

In this section, we present two case studies using the 5 node
dc microgrid shown in Fig. 2. The nodal voltages and injection
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(a) Fault detection on line (4,5).

(b) Mean time to false alarm vs average detection delay .

Fig. 4. Case 1: Current sensors at all nodes.

currents are presented in Fig. 3. In case 1, we present a CPL
based model using closed loop control buck converters and in
case 2, the same model is tested with Kron reduction approach
when the injection current is zero at a node 5 (internal node).
The simulation results were obtained by MATLAB and the
sample time was set at 10 µs. The dc microgrid’s parameters
used for both the cases are tabulated in Table I. Both the case
studies have their respective SAFs triggered at t = 1 s.

TABLE I. DC microgrid simulation parameters.

Line Length Inductance Resistance

(miles) (mH) (mΩ)

(1, 2) 0.01 0.016 12

(1, 3) 0.02 0.032 24

(2, 4) 0.022 0.0352 26.4

(3, 5) 0.008 0.0128 9.6

(4,5) 0.007 0.0112 8.4

(a) Fault detection on line (4,5).

(b) Mean time to false alarm vs average detection delay .

Fig. 5. Case 2: Current sensor absent at node 5 (Internal node).

A. Case 1

In this case, the microgrid shown in Fig. 2a is used. Two
generators are connected at nodes 1 and 2. The CPL loads are
connected at nodes 3, 4, and 5. Nodal voltages and injection
currents of the microgrid are presented in Fig. 3a. The SAF
on line (4, 5) was triggered at time t = 1 s. Fig. 4a shows
SAF detection and localization on line (4, 5). When W(4,5)[k],
denoted by the green line, crosses a certain threshold the fault
on line (4, 5) is detected and localized. The mean time to
false alarm vs the detection delay plot is presented in Fig. 4b
which helps us understand that line (1, 3) has the maximum
average detection delay, while line (1, 2) has minimum average
detection delay given the same mean time to false alarm.

B. Case 2

The microgrid shown in Fig. 2b which includes two gener-
ators each at nodes 1 and 2 and two loads at nodes 3 and 4
was simulated. In this case, we consider node 5 as an internal
node and its current and voltage sensor is not taken into
consideration. Fig. 3b presents nodal voltages and injection
currents of the microgrid. As can be seen in Fig. 5a, the SAF
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(a) Microgrid layout.

(b) Hardware components of the dc microgrid test-bed.

Fig. 6. Dc microgrid setup for experimental results.

was triggered at time t = 1 s on line (4, 5). Due to the lack of
measurements from the internal node (also the node connected
to the faulted line), we do not see any disturbance in Fig. 3b
when the fault occurs. The fault on line (4, 5) is said to be
successfully detected and localized when W(4,5)[k] crosses a
fixed threshold. The mean time to false alarm vs the detection
delay plot in Fig. 5b shows that after removing the load at node
5, line (1, 2) has maximum average detection delay while line
(4, 5) has minimum average detection delay given the same
mean time to false alarm.

VI. EXPERIMENTAL RESULTS

The 4 node microgrid shown in Fig. 6 is used for experi-
mental results. The microgrid includes Magna Power 20 kW
as a generator at node 1 and two closed loop controlled buck
converters as CPLs at nodes 3 and 4. The dc bus voltage
was measured at 270 V while the current input by the loads
at nodes 3 and 4 were set to 15 A and 10 A respectively.
The voltage and current plots of the dc microgrid test-bed are
presented in Fig. 7a. The SAF was triggered on line (2, 3)
at time t = 2.34 s. Fig. 7b presents the plot of W(m,n)[k]
through which we can conclude that the fault is successfully
detected and localized on line (2, 3) once it crosses a certain
fixed threshold Atd.

VII. CONCLUSION AND FUTURE WORK

In this paper we present a QCD based algorithm for SAF
detection on a dc microgrid with and without internal nodes.
The SAF detection and localization was tested on a 5 node dc
microgrid over two cases: a microgrid with either a generator
or a load at each node and a microgrid with an internal node.
The QCD based algorithm was further tested on a 4 node dc
microgrid test-bed, where an internal node was established.
Through the simulation and experimental results, it can be
seen that the QCD based algorithm is a viable approach for
SAF detection and localization.

(a) Nodal voltages and nodal currents.

(b) Fault detection on line (2, 3).

Fig. 7. Experimental results - SAF triggered at t = 2.34 s on line
(2, 3).

In the future, sensor placement techniques will be explored
for a dc microgrid to enhance the line observability for the
CUSUM algorithm when there is a shortage of sensors being
deployed on a microgrid.
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