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Abstract—The problem of quickest dynamic anomaly detection
in anonymous heterogeneous sensor networks is studied. The
n heterogeneous sensors can be divided into K types with
different data generating distributions. At some unknown time,
an anomaly emerges in the network and changes the data
generating distribution of the sensors. The goal is to detect the
anomaly as quickly as possible, subject to false alarm constraints.
The anonymous setting is studied, where the fusion center does
not know which sensor that each sample comes from, and thus
does not know its exact distribution. Firstly, the static setting is
investigated where the sensor affected by the anomaly does not
change with time. A generalized mixture CuSum algorithm is
constructed and is further shown to be asymptotically optimal.
The problem is then extended to a dynamic setting where
the sensor affected by the anomaly changes with time. An
asymptotically optimal weighted mixture CuSum algorithm is
proposed. Numerical results are also provided to validate the
theoretical results.

I. INTRODUCTION

In quickest change detection problems (QCD) [1]–[3], a de-
cision maker collects samples sequentially. At some unknown
time, a change occurs in the data generating distribution. The
goal is to detect the change as quickly as possible subject to
false alarm constraints. The QCD problem in sensor networks
has been widely studied in the literature, e.g., [4]–[13]. In these
papers, the sensor that each sample comes from is known. One
CuSum algorithm can be implemented for each sensor, and be
further combined to design algorithms with certain optimality
guarantee. However, in many practical applications, sensors
may be anonymous [14], i.e., the fusion center does not know
which sensor that each sample comes from (see e.g., [15],
[16] for anonymous data collection approaches). For example,
in social settings [17], where human participants are involved,
privacy and anonymity are required to protect the participants.
In this paper, we investigate anonymous sensor networks. We
consider a general setting with K types of heterogeneous
sensors, and different types of sensors follow different data
generating distributions.

In this paper, we investigate the problem of quickest dy-
namic anomaly detection in anonymous heterogeneous net-
works, where one unknown sensor is affected and undergoes
a change in its data generating distribution after an anomaly
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emerges at some unknown time. The goal is to detect the
anomaly as quickly as possible subject to false alarm con-
straints. We first investigate the static setting, where the sensor
affected by the anomaly doesn’t change with time, and then
extend to the dynamic setting, where the sensor affected by the
anomaly changes with time. For static anomaly, we construct
a generalized mixture CuSum algorithm and prove that it is
second-order asymptotically optimal. For dynamic anomaly,
we construct a weighted mixture CuSum algorithm, and prove
that it is first-order asymptotically optimal.

In [14], the binary hypothesis testing problem with anony-
mous sensors was studied and an optimal mixture likelihood
ratio test (MLRT) was developed. In [18], the QCD problem
with anonymous sensors was investigated, where all the sen-
sors undergo a change in data generating distribution after
the change. However, an anomaly may not affect all nodes,
especially for large networks and in the distributed setting.
In this paper, we focus on the case where the anomaly only
affects one node. An anomaly may also be dynamic, and affect
different nodes at different times, e.g., a moving target in
surveillance system, spreading fake news in social network.
Existing studies of quickly detecting dynamic change mostly
focus on the non-anonymous setting, e.g., [12], [19], [20].
Our setting is similar to the one in [20] but in an anonymous
setting. Our major technical challenge is due to the increased
ambiguity of post-change distribution caused by anonymity.

Due to space limitation, we provide only part of the proofs,
and the full proof can be found in [21].

II. PROBLEM FORMULATION

Consider a network consisting of n heterogeneous sensors
that can be divided into K types. Each type k has nk sensors,
1 ≤ k ≤ K. The distributions of the observations from type
k sensors are pθ,k, θ ∈ {0, 1}. At some unknown time ν, an
anomaly emerges and changes the data generating distributions
of the affected sensor. If a node of type k is affected by the
anomaly, then its samples are generated by p1,k, otherwise, by
p0,k. The goal is to detect the anomaly as quickly as possible
subject to false alarm constraints. The centralized setting with
a fusion center is considered. The sensors are anonymous, i.e.,
the fusion center doesn’t know the type of sensors that each
observation comes from.
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Denote by Xn[t] = {X1[t], . . . , Xn[t]} the n collected
samples at time t ≥ 1, which are assumed to be independent.
We further assume that Xn[t1] is independent from Xn[t2] for
any t1 6= t2. Let Xn[t1, t2] = {Xn[t1], · · · , Xn[t2]} for any
t1 ≤ t2. Let K = {1, 2, · · · ,K}.

In this paper, we consider a dynamic anomaly, i.e., the
sensor affected by the anomaly changes with time. After an
anomaly emerges, one sensor of an unknown type is affected.
Denote by S[t] ∈ K ∪ {0} the type of the affected sensor at
time t. We set S[t] = 0 for t < ν, i.e., when there is no
anomaly in the network. Let S , {S[t]}∞t=1 be the trajectory
of the anomaly. Here S is unknown to the decision maker.

In order to distinguish among nodes being affected or
not and also among nodes of different types, we construct
2K groups, and each group is associated with a distinct
data generating distribution. Specifically, nodes in the first
K groups are not affected by the anomaly, and nodes in the
remaining K groups are affected by the anomaly. For nodes in
group k ∈ K, samples are generated by p0,k, and for nodes in
group K < k ≤ 2K, their samples are generated by p1,k−K .

Even if the unknown trajectory of the anomaly is given, the
distribution of Xn[t] can still not be fully specified due to the
anonymity. To characterize the distribution of Xn[t], we define
a labeling function σ

S[t]
t : {1, . . . , n} → {1, . . . ,K, S[t] +

K} that maps each sample Xi[t], 1 ≤ i ≤ n, to a group
k ∈ {1, 2, . . . ,K,K+S[t]}. Specifically, if σS[t]

t (i) = k, then
Xi[t] ∼ p0,k, for k ∈ K, and Xi[t] ∼ p1,k−K , for K < k ≤
2K. We note that σS[t]

t is unknown to the decision maker, and
changes with time due to the anonymity.

Before the anomaly emerges t < ν, there are nk sensors in
group k, ∀k ∈ K, and 0 sensors in group k, ∀K < k ≤ 2K.
Then, there are in total ( n

n1,...,nK) possible σS[t]
t ’s satisfying

|{i : σ
S[t]
t (i) = k}| = nk ∀k ∈ K. We denote the collection of

all such labelings by Sn,λ0
, where λ0 = {n1, . . . , nK}. After

the anomaly emerges, i.e., t ≥ ν, one sensor of type S[t] 6= 0
is affected. Then, the number of sensors in group S[t] and
S[t] + K are nS[t] − 1 and 1, respectively. Then, there are( n
n1,...,nS[t]−1,...,nK ,1

)
possible σS[t]

t ’s satisfying

|{i : σ
S[t]
t (i) = k}| =


nk, if k ∈ K\{S[t]},
nk − 1, if k = S[t],
1, if k = S[t] +K,
0, otherwise.

(1)

We then denote the collection of all such labelings by Sn,λS[t]
,

where λS[t] = {n1, . . . , nS[t] − 1, . . . , nK , 1}.
Before the anomaly emerges, i.e., t < ν, we have

P0,σ0
t
(Xn[t]) =

n∏
i=1

p0,σ0
t (i)(Xi[t]), (2)

for some unknown σ0
t ∈ Sn,λ0 . At time t ≥ ν, we have

P
S[t],σ

S[t]
t

(Xn[t]) =
∏

i:σ
S[t]
t (i)≤K

p
0,σ

S[t]
t (i)

(Xi[t])

×
∏

i:σ
S[t]
t (i)>K

p
1,σ

S[t]
t (i)−K(Xi[t]), (3)

for some unknown σS[t]
t ∈ Sn,λS[t]

.
Let ΩS = {σS[1]

1 , ..., σ
S[∞]
∞ } be the collection of group

labelings when the trajectory of the anomaly is S. Let PS,νΩS
denote the probability measure when the change point is at
ν and the samples are generated according to (2), (3) and
ΩS , and let ES,νΩS

denote the corresponding expectation. We
then extend Lorden’s criterion [22] and define the worst-case
average detection delay (WADD) and the worst-case average
running length (WARL) for any stopping time τ :

WADD(τ)

= sup
ν≥1

sup
S

sup
ΩS

esssupES,νΩS
[(τ − ν)+|Xn[1, ν − 1]], (4)

WARL(τ) = inf
Ω

E∞Ω [τ ], (5)

where Ω = ΩS with S[t] = 0,∀t ≥ 1. The goal is to design a
stopping rule that minimizes the WADD subject to a constraint
on the WARL:

inf
τ :WARL(τ)≥γ

WADD(τ), (6)

where γ > 0 is a pre-specified threshold.

III. A SIMPLE CASE: STATIC ANOMALY

We first consider a setting where the anomaly is static,
i.e., the sensor affected by the anomaly does not change
with time after the anomaly emerges. In this case, S[t] =
k, ∀t ≥ ν. Let Ωk = {σ0

1 , . . . , σ
0
ν−1, σ

k
ν , . . . , σ

k
∞} be

the corresponding group labellings. Then, WADD(τ) =
supν≥1 supk supΩk

esssupEk,νΩk
[(τ − ν)+|Xn[1, ν − 1]].

A. Universal Lower Bound on WADD

Let Ik denote the Kullback-Leibler (KL)
divergence between two mixture distributions P̃k =

1
|Sn,λk |

∑
σk∈Sn,λk

Pk,σk and P̃0 = 1
|Sn,λ0 |

∑
σ0∈Sn,λ0

P0,σ0 .
Let I∗ = min

1≤k≤K
Ik. We then have the following theorem.

Theorem 1. As γ →∞, we have that

inf
τ :WARL(τ)≥γ

WADD(τ) ≥ log γ

I∗
+O(1). (7)

Proof. Consider a simple QCD problem with samples in-
dependent and identically distributed (i.i.d.) according to a
pre-change distribution P̃0 and a post-change distribution P̃k,
respectively. For this pair of pre- and post-change distributions,
define the W̃ADDk and ÃRL for any stopping rule τ as
follows:

W̃ADDk(τ) = sup
ν≥1

ess sup Ẽνk[(τ − ν)+|X̃n[1, ν − 1]],

ÃRL(τ) = Ẽ∞[τ ], (8)

where Ẽνk denotes the expectation when the change is at ν,
the pre- and post-change distributions are P̃0 and P̃k, X̃n[t]
for 1 ≤ t ≤ ν − 1 are i.i.d. from P̃0, and Ẽ∞ denotes the
expectation when there is no change and samples are generated
according to P̃0.
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For any k ∈ K, consider another QCD problem with
samples distributed according to the pre-change distribution
P0,σ0

t
and the post-change distribution Pk,σkt , respectively.

For this pair of pre- and post-change distributions, define the
WADDk and WARL for any stopping rule τ as follows:

WADDk(τ) = sup
ν≥1

sup
Ωk

esssupEk,νΩk
[(τ − ν)+|Xn[1, ν − 1]],

WARL(τ) = inf
Ω

E∞Ω [τ ]. (9)

For any k ∈ K and any τ satisfying WARL(τ) ≥ γ,

WADD(τ) ≥ sup
ν≥1

sup
Ωk

esssupEk,νΩk
[(τ − ν)+|Xn[1, ν − 1]]

≥ sup
ν≥1

ess sup Ẽνk[(τ − ν)+|X̃n[1, ν − 1]]

= W̃ADDk(τ), (10)

where the second inequality is due to the fact that for any τ ,
WADDk(τ) ≥ W̃ADDk(τ), which was proved in (18) of [18].
It was also shown in (18) of [18] that for any τ , WARL(τ) ≤
ÃRL(τ). It then follows that

inf
τ :WARL(τ)≥γ

WADD(τ) ≥ inf
τ :ÃRL(τ)≥γ

W̃ADDk(τ)

≥ log γ

Ik
+O(1), as γ →∞, (11)

where the last inequality is due to the universal lower bound
on WADD for a simple QCD problem [23].
B. Generalized Mixture CuSum

Since k is unknown, we use its maximum likelihood esti-

mate. Let W [t] = max
1≤j≤t

max
k∈K

t∑
i=j

log P̃k(Xn[i])

P̃0(Xn[i])
. We then define

the generalized mixture CuSum stopping time as: TG = inf{t :
W [t] ≥ b}, where b > 0 is the threshold. To compute W [t]
efficiently, we can keep K CuSums in parallel and take their
maximum as W [t].

Theorem 2. Let b = log(Kγ), then WARL(TG) ≥ γ. As
γ → ∞, WADD(TG) ≤ log γ

I∗k
+ O(1). TG is second-order

asymptotically optimal.

Proof for upper bound on WADD. Consider the mixture
CuSum for problem in (9):

Tk = inf

{
t : max

1≤j≤t

t∑
i=j

log
P̃k(Xn[i])

P̃0(Xn[i])
≥ b
}
. (12)

It then follows that for any 1 ≤ k ≤ K,

WADDk(TG) = sup
ν≥1

sup
Ωk

esssupEk,νΩk
[(TG − ν)+|Xn[1, ν − 1]]

≤ sup
ν≥1

sup
Ωk

esssupEk,νΩk
[(Tk − ν)+|Xn[1, ν − 1]]

≤ log b

Ik
+O(1), (13)

where the last equality is because of the exact optimality of
the mixture CuSum algorithm (see Theorem 1 in [18]). Let
b = logKγ. We then have that

WADD(TG) = sup
k∈[1,K]

WADDk(TG)

≤ sup
k∈[1,K]

WADDk(Tk)

= sup
k∈[1,K]

logKγ

Ik
+O(1)

=
log γ

I∗k
+

logK

I∗k
+O(1), as γ →∞. (14)

IV. QUICKEST DYNAMIC ANOMALY DETECTION

A. Universal Lower Bound on WADD

Define the following weighted mixture distribution:
P̃β(Xn) =

∑K
k=1 βkP̃k(Xn), where 0 ≤ βk ≤ 1 and∑K

k=1 βk = 1. Denote by Iβ the KL divergence between P̃β
and P̃0. Let β∗ = arg minβ Iβ.

For the universal lower bound on WADD, we have the
following theorem.

Theorem 3. As γ →∞, we have that

inf
τ :WARL(τ)≥γ

WADD(τ) ≥ log γ

Iβ∗
(1 + o(1)). (15)

B. Weighted Mixture CuSum

Define the log of weighted mixture likelihood ratio using
β∗: `β∗(Xn) = log

P̃β∗ (Xn)

P̃0(Xn)
. The following property of β∗

plays an important role in the proof of asymptotic optimality.

Lemma 1. For any k ∈ K, EP̃k

[
log

P̃β∗ (Xn)

P̃0(Xn)

]
≥ Iβ∗ .

We then construct the following weighted mixture CuSum
algorithm:

Tβ∗(b) = inf
{
t : max

1≤j≤t+1

t∑
i=j

`β∗(X
n[i]) ≥ b

}
, (16)

for some positive threshold b.
The following theorem establishes the first-order asymptotic

optimality of Tβ∗ .

Theorem 4. Let b = log γ, then WARL(Tβ∗) ≥ b. Assume that
maxk∈K EP̃k

[
`β∗(Xn)2

]
< ∞. As γ → ∞, WADD(Tβ∗) ≤

log γ
Iβ∗ (1 + o(1)). Thus, Tβ∗ is asymptotically optimal up to the

first-order.

Proof. For any permutation π(Xn) = (Xπ(1), Xπ(2),
. . . , Xπ(n)), we have that `β∗(Xn) = `β∗(π(Xn)). For
any π, let σ̂k = σk ◦ π. Then Ek,σk [`β∗(π(Xn))] =
Ek,σk◦π[`β∗(Xn)] = Ek,σ̂k [`β∗(Xn)]. For any σ̂k ∈ Sn,λk ,
a π can always be found so that σk ◦ π = σ̂k. Thus, for any
σk, σ̂k ∈ Sn,λk , Ek,σ̂k [`β∗(Xn)] = Ek,σk [`β∗(Xn)].
Tβ∗ is the same for any group labellings of Xn[i] in Sn,λk .

Therefore, for any trajectory S, we have that

ES
σ
S[1]
1 ,...,σ

S[i]
i ,...,σ

S[∞]
∞

[Tβ∗ ] = ES
σ
S[1]
1 ,...,σ̂

S[i]
i ,...,σ

S[∞]
∞

[Tβ∗ ].
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Due to the fact that the test statistic max
1≤k≤t+1

t∑
i=k

`β∗(X
n
i )

has initial value 0 and remains non-negative, the delay is
largest when the change happens at ν = 0. Therefore, for
any S, we have that

WADDS(Tβ∗)

= sup
ν≥0

sup
ΩS

esssupES,νΩS

[
(Tβ∗ − ν)+ | Xn[1, ν − 1]

]
= sup

ΩS

ES,0ΩS
[Tβ∗ ]. (17)

For any T ≥ ν + 1, we have that

sup
{σS[1]

1 ,··· ,σS[T ]
T }

∈Sn,λS[1]
×,··· ,×Sn,λS[T ]

T∑
t=1

tPS,0
σ
S[1]
1 ,··· ,σS[T ]

T

(Tβ∗ = t)

=
T∑
t=1

t
1

| Sn,λS[1]
| × · · · × | Sn,λS[T ]

|

×
∑

{σS[1]
1 ,··· ,σS[T ]

T }
∈Sn,λS[1]

×,··· ,×Sn,λS[T ]

PS,0
σ
S[1]
1 ,··· ,σS[T ]

T

(Tβ∗ = t)

=

T∑
t=1

tP̃S1 (Tβ∗ = t). (18)

As T →∞, we have that

sup
ΩS

ES,0ΩS
[Tβ∗ ] = ẼS1 [Tβ∗ ] = W̃ADDS(Tβ∗). (19)

For any S, we have WADDS(Tβ∗) = W̃ADDS(Tβ∗). There-
fore, WADD(Tβ∗) = W̃ADD(Tβ∗) by taking sup over S on
both sides. It then follows that

WADD(Tβ∗) = W̃ADD(Tβ∗) = sup
S

ẼS1 [Tβ∗ ]. (20)

Let 0 < ε < Iβ∗ and nb = b
Iβ∗−ε . For any trajectory S, from

the sum-integral inequality, we have that

ẼS1
[Tβ∗

nb

]
=

∫ ∞
0

P̃S1
(Tβ∗

nb
> x

)
dx

≤
∞∑
t=1

P̃S1 (Tβ∗ > tnb) + 1. (21)

For any S, we have that

P̃S1 (Tβ∗ > tnb) = P̃S1
(

max
1≤k≤tnb

max
1≤i≤k

k∑
j=i

`β∗(Xn
j ) < b

)

≤ P̃S1
(

max
1≤i≤mnb

mnb∑
j=i

`β∗(Xn
j ) < b,∀m ∈ [t]

)

≤ P̃S1
( mnb∑
j=(m−1)nb+1

`β∗(Xn
j ) < b,∀m ∈ [t]

)

= P̃S1

( mnb∑
j=(m−1)nb+1

`β∗(Xn
j )

nb
< Iβ∗ − ε,∀m ∈ [t]

)

=

t∏
m=1

P̃S1

( mnb∑
j=(m−1)nb+1

`β∗(Xn
j )

nb
< Iβ∗ − ε

)
. (22)

It then follows that

sup
S

∞∑
t=1

P̃S1 (Tβ∗ > tnb)

≤ sup
S

∞∑
t=1

t∏
m=1

P̃S1

( mnb∑
j=(m−1)nb+1

`β∗(Xn
j )

nb
< Iβ∗ − ε

)
.

(23)

Then we will bound P̃S1
( mnb∑
j=(m−1)nb+1

`β∗ (Xnj )

nb
< Iβ∗ − ε

)
.

Let ISm = ẼS1
[ mnb∑
j=(m−1)nb+1

`β∗ (Xnj )

nb

]
. From 1, we have that

ISm = ẼS1

[ mnb∑
j=(m−1)nb+1

`β∗(X
n
j )

nb

]

=

mnb∑
j=(m−1)nb+1

EP̃S[j]

[
`β∗(X

n
j )

nb

]

=
1

nb

mnb∑
j=(m−1)nb+1

EP̃S[j]

[
`β∗(X

n
j )
]
≥ Iβ∗ . (24)

It then follows that for any S and m

P̃S1

( mnb∑
j=(m−1)nb+1

`β∗(Xn
j )

nb
< Iβ∗ − ε

)

≤ P̃S1

( mnb∑
j=(m−1)nb+1

`β∗(Xn
j )

nb
< ISm − ε

)

≤ P̃S1

(∣∣∣∣∣
mnb∑

j=(m−1)nb+1

`β∗(Xn
j )

nb
− ISm

∣∣∣∣∣ > ε

)
. (25)

Let σ2 = maxk∈K VarP̃k(`β∗(Xn)). Since
maxk∈K EP̃k

[
`β∗(Xn)2

]
<∞, by Chebychev’s inequality,

P̃S1

(∣∣∣∣∣
mnb∑

j=(m−1)nb+1

`β∗(Xn
j )

nb
− ISm

∣∣∣∣∣ > ε

)

≤ VarP̃S

( mnb∑
j=(m−1)nb+1

`β∗(Xn
j )

nb

)
1

ε2

=
1

ε2n2
b

mnb∑
j=(m−1)nb+1

VarP̃S[j]
(`β∗(Xn

j ))
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≤

mnb∑
j=(m−1)nb+1

σ2

n2
bε

2
=

σ2

nbε2
. (26)

Let δ = σ2

nbε2
. From (21) and (26), we have that

sup
S

ẼS1
[Tβ∗

nb

]
≤ 1 + sup

S

∞∑
t=1

P̃S1 (Tβ∗ > tnb)

≤ 1 +
∞∑
t=1

(
σ2

nbε2
)t = 1 +

∞∑
t=1

δt =
1

1− δ
. (27)

Therefore, we have

sup
S

ẼS1
[
Tβ∗

]
≤ b

(Iβ∗ − ε)(1− δ)
. (28)

(28) holds for all ε. As b→∞, δ → 0. It then follows that

WADD(Tβ∗) = sup
S

ẼS1
[
Tβ∗

]
≤ b

Iβ∗
(1 + o(1)). (29)

We then show the ARL lower bound. For any T ≥ 1, we have

inf
{σ0

1 ,...,σ
0
T }

∈Sn,λ0
⊗
T

T∑
t=1

tP∞σ0
1 ,...,σ

0
T

(Tβ∗ = t)

=

T∑
t=1

t
1

| Sn,λ0 |T
∑

{σ0
1 ,...,σ

0
T }

∈Sn,λ0
⊗
T

P∞σ0
1 ,...,σ

0
T

(Tβ∗ = t)

=
T∑
t=1

tP̃∞(Tβ∗ = t). (30)

As T →∞, we have that

WARL(Tβ∗) = ÃRL(Tβ∗). (31)

Tβ∗ is the CuSum algorithm for a simple QCD problem with
pre-change distribution P̃0 and post-change distribution P̃β∗ .
From the optimal property of CuSum algorithm in [22] and
[24], we have that when b = log γ,

WARL(Tβ∗) = ÃRL(Tβ∗) ≥ γ. (32)

Combining with Theorem 3, this shows that Tβ∗ is asymp-
totically optimal.

V. SIMULATION RESULTS

We set n = 2 and K = 2. For type I sensors, the pre-
and post-change distributions are B(10, 0.3) and B(10, 0.4),
respectively, where B denotes binomial distribution. For type
II sensors, the pre- and post-change distributions are B(10, 0.8)
and B(10, 0.6), respectively. Due to the difficulty of searching
over all possible trajectories computationally, we plot the ADD
and ARL for some randomly generated trajectories.

For the static setting, we compare our generalized mixture
CuSum algorithm with a Bayesian mixture CuSum algorithm

TB = inf{t : max
1≤j≤t

t∑
i=j

log
1
2 P̃1(Xn[i])+ 1

2 P̃2(Xn[i])

P̃0(Xn[i])
≥ b}. One

senor of type two is affected. In Fig. 1, we plot the ADD as
function of ARL. It can be seen that our generalized mixture

CuSum outperforms the Bayesian algorithm. Moreover, the
relationship between the ADD and log of the ARL is linear.

For dynamic anomaly detection, we first compare our op-
timal weighted mixture CuSum algorithm with an arbitrarily
weighted mixture CuSum, i.e., replace β∗ in (16) with some
arbitrarily β, e.g., β = ( 1

2 ,
1
2 ). In Fig. 2, we plot the ADD as

a function of ARL. It can be seen that our optimal weighted
mixture CuSum algorithm outperforms the Bayesian weighted
mixture CuSum algorithm.

We then compare the performance of our weighted mixture
CuSum algorithm under two different trajectories. In Fig. 3,
we plot the ADD as function of ARL. It can be seen that
for two different trajectories, our optimal weighted mixture
CuSum algorithm has approximately the same performance.

Fig. 1. Comparison of the Generalized Mixture CuSum Algorithm and A
Bayesian Mixture CuSum Algorithm: Static Anomaly.

Fig. 2. Comparison of the Optimal Weighted CuSum Algorithm and An
Arbitrarily Weighted One: Dynamic Anomaly.

Fig. 3. Comparison of the Optimal Weighted CuSum under Two Different
Trajectories.
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