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Classification of Dirac points with higher-order Fermi arcs
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Dirac semimetals lack a simple bulk-boundary correspondence. Recently, Dirac materials with fourfold rota-
tion symmetry have been shown to exhibit a higher-order bulk-hinge correspondence: they display “higher-order
Fermi arcs,” which are localized on hinges where two surfaces meet and connect the projections of the bulk Dirac
points. In this paper, we classify higher-order Fermi arcs for Dirac semimetals protected by a rotation symmetry
and the product of time-reversal and inversion. Such Dirac points can be either linear in all directions or linear
along the rotation axis and quadratic in other directions. By computing the filling anomaly for momentum-space
planes on either side of the Dirac point, we find that all linear Dirac points exhibit higher-order Fermi arcs
terminating at the projection of the Dirac point, while the Dirac points that are quadratic in two directions lack
such higher-order Fermi arcs. When higher-order Fermi arcs do exist, they obey either a Z2 (fourfold rotation
axis) or Z3 (three- or sixfold rotation axis) group structure. Finally, we build two models with sixfold symmetry
to illustrate the cases with and without higher-order Fermi arcs. We predict higher-order Fermi arcs in Na3Bi.

DOI: 10.1103/PhysRevB.104.245101

I. INTRODUCTION

Topological semimetals encompass a large family of
materials exhibiting band crossings near the Fermi level [1],
such as Weyl [2–9], Dirac [10–14], and multifold
fermions [15–17]. One of the novel features of Weyl and
other chiral semimetals is their bulk-edge correspondence in
the form of surface Fermi arcs [2]. The surface Fermi arcs
are a direct consequence of the nontrivial bulk topology of a
Weyl fermion, i.e., that it is a source of Berry curvature.

A similar bulk-edge correspondence does not exist for
Dirac semimetals because they are not a source of Berry cur-
vature [18–20]. However, recently, certain Dirac semimetals
have been shown to have a higher-order bulk-edge correspon-
dence, in the form of higher-order Fermi arcs (HOFAs) [21].
HOFAs are 1D mid-gap modes that are localized on the
“hinges” of a crystal where two surfaces meet [21–23]. The
HOFAs connect the projection of the bulk Dirac points in the
1D rod BZ (i.e., the BZ of a crystal finite in two dimensions
and infinite in the third), analogous to how surface Fermi arcs
connect the projection of bulk Weyl points on the surface BZ.
An example is shown in Figure 1. Ref. [21] proved that for
Dirac fermions in a crystal with a fourfold rotation symmetry,
HOFAs are required. Thus the HOFAs furnish a “bulk-hinge
correspondence” for these Dirac semimetals.

References [21,22] were limited to the case of fourfold
rotational symmetry and relied on the nontrivial quadrupole
index [24,25] specific to that case. However, Dirac cones
can also be protected by three- and sixfold rotations. In this
work, we derive a more general formulation of the bulk-hinge
correspondence that applies to any symmetry group, thus an-
swering the question: when do Dirac fermions have HOFAs?

Our strategy is to compute the filling anomaly [26,27]
for 2D symmetry-preserving momentum-space slices. A

nontrivial filling anomaly in an insulating plane requires the
existence of mid-gap states localized at corners where two
edges meet. Thus, when the filling anomalies of planes on
either side of the Dirac point are different, the plane on at
least one side of the Dirac point must have a nonzero filling
anomaly and accompanying corner states. The corner states
coming from adjacent planes together form the HOFA. Thus
the bulk-hinge correspondence that results from the change in
filling anomaly across the Dirac point is analogous to the bulk-
edge correspondence that results from the change in Chern
number across a Weyl point.

Our main result is that all linear Dirac points protected
by a three-, four-, or sixfold rotation symmetry, along with
the product of time-reversal and inversion symmetries, have
HOFAs that terminate at the projection of the Dirac point; we
use linear Dirac point to refer to a dispersion that is linear in all
three directions. A sixfold rotation symmetry can also protect
quadratic Dirac points, which are linear along the rotation axis
but quadratic in other directions; we find that the quadratic
Dirac points do not have HOFAs. These results are derived
in Sec. II. An additional consequence of our work is that
multifold fermions at time-reversal invariant momenta [15]
do not have HOFA that terminate at the projection of the bulk
gapless point because such HOFA would violate time-reversal
symmetry. Thus it remains to find a bulk-edge or bulk-hinge
correspondence for these fermions.

Our results serve as a topological classification: a Dirac
fermion can be classified by how the filling anomaly changes
across the Dirac point, which is summarized in Table II. We
now compare this classification to previous classifications of
Dirac points. In Ref. [28], Dirac points are classified by the
change in symmetry of the valence bands adjacent to the Dirac
point. This is similar to our approach, in that we both examine
the valence bands adjacent to the Dirac point. However, the
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FIG. 1. Schematic diagram showing HOFAs. (a) Hexagonal unit cell of space group P6/m. (b) Each plane with fixed kz �= 0, π is regarded
as an effective 2D system with the symmetry of the magnetic layer group p6/m′. After this dimensional reduction, interlayer hopping between
atoms separated by a unit cell is viewed as a kz-dependent onsite potential: t ′ = teikz + t†e−ikz . Other interlayer hopping terms are similarly
projected to in-plane hopping terms. (c) When the crystal is terminated in a C6-symmetric rod geometry, the 2D planes with nontrivial filling
anomaly contribute corner states to HOFAs of the 3D model. Red lines indicate HOFAs that could appear between two Dirac points (whose
projection onto the hinges is labeled by crosses).

classification in Ref. [28] is a classification in momentum
space, while our classification uses momentum space eigen-
values to determine the position of Wannier centers in real
space. As a result, the classifications differ in their definition
of the trivial phase: in Ref. [28], the trivial phase corresponds
to the absence of a Dirac point, while the trivial phase in our
classification is defined by the filling anomaly remaining con-
stant across a particular plane and, equivalently, no HOFAs
that terminate at the projection of the Dirac point.

In Ref. [29], Dirac points are classified by the change in the
2D topological invariant of each TRIM plane (i.e., the Z2 and
mirror Chern indices) when a Dirac point is between them. We
rederive and extend these results using topological quantum
chemistry [30–35] (Sec. III) and compare this classification to
ours in Table V (Sec. IV). Recently, a third classification was
introduced in Ref. [36], where Dirac points are classified by
their non-Abelian Berry flux. It remains an open question to
determine whether the physical observables of this classifica-
tion correspond to higher-order Fermi arcs.

Finally, we illustrate our results with several examples. In
Sec. V, we build two four band models protected by sixfold
rotation symmetry, with and without HOFAs. We discuss the
application to Na3Bi and predict the existence of higher-order
Fermi arcs.

II. HIGHER-ORDER FERMI ARCS VIA
THE FILLING ANOMALY

As explained in Sec. I, three dimensional Dirac semimet-
als do not have topologically protected surface Fermi
arcs [18,19], but can have 1D HOFAs on hinges, as illustrated
schematically in Fig. 1(c).

At the crux of our analysis of HOFAs is the filling
anomaly [26,27]. The filling anomaly η is defined for an
insulator on a symmetrically terminated lattice that is in an
atomic limit phase (i.e., admits localized symmetric Wannier
functions [30]). It is given by the difference between the ion
charge and the electron charge in the valence bands:

η = |number of ions| − |number of electrons|, (1)

in units of the electron charge |e|. The filling anomaly is only
defined modulo an integer given by the minimal number of

electrons that can be added or removed to the boundary of the
system while preserving crystal symmetry. For example, in a
finite 2D lattice with fourfold rotational symmetry, one can
always add (or remove) four electrons to the corners; thus,
the filling anomaly is defined mod 4. In the presence of time-
reversal symmetry, electrons must be added in pairs, and the
filling anomaly would be defined mod 8. The filling anomaly
also depends on the choice of lattice termination [37]. In
the presence of an nfold rotation symmetry, we will always
consider a lattice termination whose cross-section is a regular
n-gon.

When η in Eq. (1) is nonzero, it means that the finite-size
insulator cannot be both neutral and symmetric. This conflict
is resolved by the presence of mid-gap states. If the crystal
is bulk-insulating and has no polarization (surface charge),
then the mid-gap states must be localized at corners. Thus the
filling anomaly defines the corner charge [26]:

Qc = η

n
|e| (2)

for a crystal with an nfold rotation axis. Since we do not im-
pose particle-hole or chiral symmetry, the corner states are not
required to be at exactly zero energy; further, their energy can
be manipulated by a surface or corner potential. Nonetheless,
the filling anomaly is robust because it is defined modulo the
number of corner states and thus does not change when energy
of the corner states changes [21].

The filling anomaly in 2D can be a useful tool to under-
stand higher-order topological insulators [24,25,37–50], as
well as semimetals, in 3D. For example, a Z8 higher-order
topological insulator has a filling anomaly η = 4 mod 8 at
one of its two TRIM planes (kz = 0, π ), indicating in which
plane the helical hinge modes cross [37,38]. As discussed in
Sec. I, the filling anomaly also explains HOFAs. Specifically,
in a 3D semimetal, the 2D momentum-space planes with fixed
kz that do not contain the Dirac point are 2D insulators. If
the filling anomaly of a 2D plane is nonzero, then it will
have mid-gap corner states. Since the filling anomaly is ro-
bust to perturbations that do not close the gap, the filling
anomaly must remain constant when continuously varying kz.
The corner states from all such planes make up the HOFA.
In fourfold symmetric Dirac semimetals, it was shown that

245101-2



CLASSIFICATION OF DIRAC POINTS WITH HIGHER-ORDER … PHYSICAL REVIEW B 104, 245101 (2021)

the filling anomaly changes when kz moves across the Dirac
point [21,37]. Thus the HOFAs are terminated by the planes
containing the Dirac points.

In this work, we will generalize this logic to determine
when Dirac points have HOFAs in other space groups. Specif-
ically, HOFAs begin/end on a Dirac point exactly when
the filling anomaly of 2D momentum-space planes changes
across it. We will classify the Dirac points that have this
property. By doing so, we show that not all Dirac points have
HOFAs. We remark here that such a jump is only a sufficient
condition. If there is a nonzero filling anomaly on both sides
of the Dirac point, then there will also be HOFAs; however,
these HOFAs are not associated with the Dirac points and do
not terminate at them.

A. Symmetry of kz slices: magnetic layer groups

We consider Dirac points protected by the combination of
time reversal, T , with T 2 = −1, inversion, I, and an nfold ro-
tation symmetry, Cn, with n = 3, 4, and 6. We discuss these
and other symmetries that can protect Dirac points in more
detail in Appendix A. We are only interested in Dirac points
not at a TRIM, since the filling anomaly, η, will not change
across these Dirac points because η is invariant under time
reversal. Notice this implies HOFAs cannot terminate at the
projections of multifold fermions at TRIMs in time-reversal
symmetric systems. This does not contradict Ref. [51] where
the HOFAs do not terminate at the sixfold fermion.

We take the nfold rotation axis to be the ẑ direction.
Thus, to determine the presence/absence of HOFA, we will
compute the filling anomaly for 2D planes in the BZ with
fixed kz. The symmetry group of a 2D slice of the BZ is
described by a layer group. Generic slices (kz �= 0, π ) are
invariant under the product T I and Cn=3, 4, and 6. Since these
slices are not time-reversal invariant, they are described by the
magnetic layer groups, p3̄′, p4/m′, and p6/m′, respectively.
If the crystal has a mirror symmetry (in addition to T , I,
and Cn), the same analysis of the filling anomaly applies (see
Appendices A 1 and B). The corresponding magnetic layer
groups are: p4/m′mm, p3̄′m1, p3̄′1m, and p6/m′mm.

Our analysis also applies to Dirac cones protected by an
nfold screw symmetry along the z axis instead of an nfold
rotation symmetry because the little co-groups along the high-
symmetry lines in the case of screw symmetry are isomorphic
to the little co-groups in the case of rotation symmetry, and
therefore the irreducible representations (irreps) are identical
(up to a phase that results from the translation), as long as kz �=
π [52]. We discuss this point in more detail in Appendix A 2.

However, our analysis does not apply to nonsymmorphic
groups that protect a Dirac point at the boundary of the
BZ [10,15–17]. We discuss examples in Appendix A 4.

B. Filling anomaly of kz slices

The filling anomaly is defined for finite systems. However,
it is more efficient to compute the filling anomaly from bulk
invariants, which is accomplished via the bulk-corner corre-
spondence. Specifically, the filling anomaly can be determined
by the number of bulk Wannier functions centered at each
maximal Wyckoff position. Analogous to the well known

relations between the polarization, Wannier centers and Berry
phase in 1D [53–55], recently, the relation between the fill-
ing anomaly and Wannier centers in 2D has been derived in
generality [37,56,57]. It can be expressed succinctly as

η = aa − ea mod r (or 2r), (3)

where aa (ea) is the number of atoms (electron Wannier cen-
ters) at the Wyckoff position 1a. The Wyckoff positions of
the relevant magnetic layer groups (discussed in Sec. II A) are
reviewed in Appendix B.

The modulus r(2r) in Eq. (3) enters because the filling
anomaly is defined modulo the minimum number of electrons
that can be added to the finite system while preserving sym-
metry [as explained below the definition of η in Eq. (1)]. The
choice of r in Eq. (3) applies to a 2D system invariant under
the product T I , but not under T and I separately; the choice
of 2r in in Eq. (3) applies when both T and I are symmetries.
The value of r depends on the index of the rotation: if the
crystal has fourfold rotation symmetry, r = 4, while if it has
three- or sixfold rotation symmetry, r = 6. In Appendix C, we
derive the modulus r(2r) using group theory.

When zero-dimensional mid-gap states exist, their degen-
eracy must be equal to the modulus of the filling anomaly (r
or 2r) in order to preserve crystal symmetry. (The value of
η determines how many electrons are available to fill these r
or 2r states.) In the presence of Cn (n = 3, 4, and 6), T , and
I symmetries (i.e., at a TRIM plane), the degeneracy of the
corner states jumps from r to 2r. The additional states could
come from gapless surface states (if the TRIM plane has a
nontrivial Z2 strong 2D TI index or mirror Chern number, as
we discuss in Sec. III), bulk states, or from another set of hinge
states.

We now explain how to obtain the atomic positions and
electron Wannier centers that enter Eq. (3), which will be
applied to each kz slice. To obtain the atomic positions, each
atom in the unit cell is projected to the z = 0 plane. Interlayer
hopping terms then become kz-dependent in-plane hopping
terms in the 2D (fixed kz) Hamiltonian. In Fig. 1, we show an
example of this process in space group P6/m. In this example,
the unit cell compatible with the rod geometry is a hexagonal
unit cell, where the a3 lattice vector is in the z-direction and
is perpendicular to the other two lattice vectors. The effective
2D model at fixed kz �= 0, π [see Fig. 1(b)] has an effective 2D
lattice with layer group p6/m′. The kz-dependent onsite term
t ′ of the 2D model is determined by the interplane hopping t of
the 3D model. The localization of the electrons in the a1 − a2

plane can be determined by this 2D model. According to
Eq. (3), the localization center determines the filling anomaly,
which determines the presence/absence of HOFAs via the
corner charge formula in Eq. (2).

If the 3D crystal has different planes with atoms in different
positions, all atoms in all planes in the unit cell should be
projected to z = 0 to obtain the Wyckoff positions that enter
Eq. (3). Thus the atomic positions will be the same for each kz

slice (even though the atomic positions in different real-space
planes with fixed z may differ). An example with multiple
distinct planes in the unit cell is shown in Fig. 4 for space
group P63/m in Appendix A.
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TABLE I. Character tables of the spinful irreducible
corepresentations of magnetic point groups 4/m′, 6/m′,
and 3̄′.

4/m′ E C4

E 1
2

2
√

2

E 3
2

2 −√
2

6/m′ E C6 C3

E 1
2

2
√

3 1

E 3
2

2 0 −2

E 5
2

2 −√
3 1

3̄′ E C3

E 1
2

2 1

E 3
2

2 −2

C. Symmetry indicators for filling anomalies

The Wannier centers that enter Eq. (3) can be determined
from the Wannier functions. However, this process is compu-
tationally intensive and can often be simplified by symmetry
indicator formulas, where the filling anomaly is expressed in
terms of the number of times each irreducible corepresenta-
tion (co-irrep) appears at each high-symmetry point.

The symmetry indicator formula for the filling anomaly has
been derived for many 2D symmetry groups [26,27,37,57]. In
Ref. [37], we derived an algorithm to generate the symmetry
indicators by building on the theory of topological quantum
chemistry [30]. There, we found that the number of electrons
whose Wannier centers are at each Wyckoff position is deter-
mined by the Smith normal form of the so-called EBR matrix
(see Appendix D for details). This approach determines the
number of Wannier centers at each Wyckoff position only
up to some modulus, which indicates that the mapping from
symmetry co-irreps to Wannier centers is not one to one. We
will use our algorithm to compute the symmetry indicator
formulas for the magnetic layer groups of interest.

As discussed in Sec. II A, we are interested in three layer
groups: p4/m′, p3̄′, and p6/m′. We compute the symmetry
indicator formulas for each Wyckoff position in these groups
in Appendix D. The co-irreps are labeled by the subscript jz,
which determines the Cn eigenvalues of a particular co-irrep
by ξ = e±i2π jz/n (generalizing the notation of Altmann and
Herzig [58] to the co-irreps of magnetic point groups). We
now summarize the results.

(1) p4/m′. The symmetry indicators giving the number of
electrons with Wannier centers at Wyckoff positions 1a and
1b are

ea = N − 2
[
M 1

2

]
mod 4, (4)

eb = 2
[
M 1

2

]
mod 4, (5)

where N is the number of filled bands and [M 1
2
] is the dif-

ference in the number of times the co-irrep E 1
2

appears at
M = (π, π ) and at � = (0, 0) in the valence bands. (The little
co-group of both � and M is 4/m′; its co-irreps are listed in
Table I.) We find ec = 0 mod 4. Plugging Eq. (4) into Eq. (3)
yields the symmetry indicator formula for the filling anomaly:

η(4) = aa − N + 2
[
M 1

2

]
mod 4, (6)

where the superscript 4 indicates the fourfold rotation symme-
try.

(2) p6/m′. The symmetry indicators giving the number of
electrons with Wannier centers at Wyckoff positions 1a and
2b are

ea = N − 2
[
K 1

2

]
mod 6, (7)

eb = 2
[
K 1

2

]
mod 6, (8)

where N is the total number of filled bands and [K 1
2
] = #K 1

2
−

#� 1
2
− #� 5

2
, where #Pρ indicates the number of times the

irrep ρ appears at the high-symmetry point P in the valence
bands. The little co-group at K = (4π/3, 0) is 3̄′ and the little
co-group at � = (0, 0) is 6/m′. Their co-irreps are listed in
Table I.

Plugging Eq. (7) into Eq. (3) yields the symmetry indicator
formula for the filling anomaly:

η(6) = aa − N + 2
[
K 1

2

]
mod 6, (9)

where the superscript 6 indicates the sixfold rotation symme-
try.

(3) p3̄′. The symmetry indicators giving the number of
electrons with Wannier centers at Wyckoff positions 1a and
2b are

ea = N + 2
[
K 1

2

] + 2
[
K ′

1
2

]
mod 6, (10)

eb = −2
[
K 1

2

] − 2
[
K ′

1
2

]
mod 6, (11)

where N is the total number of filled bands, [K 1
2
] = #K 1

2
−

#� 1
2
, [K ′

1
2
] = #K ′

1
2
− #� 1

2
and #Pρ indicates the number of

times the irrep ρ appears at the high-symmetry point P in
the valence bands. The little co-groups at � = (0, 0), K =
(4π/3, 0), and K ′ = (−4π/3, 0) are all 3̄′. Their co-irreps are
listed in Table I.

Plugging Eq. (10) into Eq. (3) yields the symmetry indica-
tor formula for the filling anomaly:

η(3) = aa − N − 2
[
K 1

2

] − 2
[
K ′

1
2

]
mod 6, (12)

where the superscript 3 indicates the threefold rotation sym-
metry.

D. Classification of Dirac points

We classify each Dirac point by how the filling anomaly
of a 2D fixed-kz slice changes across the Dirac point. Specifi-
cally, if the Dirac point is at some kz = k0, then nearby planes
at k(−)

z = k0 − δkz and k(+)
z = k0 + δkz are insulating for small

δkz. A 2D insulating system with only Cn and T I symmetries
has no symmetry indicated stable topological phase, as we
compute in Appendix D by applying topological quantum
chemistry to the magnetic layer groups. As a result, the 2D
systems in the planes k(±)

x are either in an atomic limit or
fragile [59,60] phase. In an atomic limit phase, we could
compute the exponentially localized Wannier functions and
determine the number of Wannier centers at each Wyckoff
position. Below, we will describe how to compute the filling
anomaly from this data. Although the fragile phases lack
exponentially localized Wannier functions, we can deduce the
filling anomaly for the fragile phases from that of the atomic
limit phases because each fragile phase can be expressed as a
“subtraction” between two atomic limit phases.
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TABLE II. Classification of Dirac points based on �η. The first
column indicates the nfold rotation that protects the Dirac point
(along with IT symmetry that squares to −1). The second column
indicates the minimal layer group that determines the filling anomaly.
The third column gives the symmetry indicator formula for �η. The
fourth column gives the possible values of �η. When �η �= 0 there
must be a HOFA terminating on the Dirac point. When �η = 0, there
will not be a HOFA terminating at the Dirac point. This classification
is different than Ref. [28] because we adopt a different definition of
a trivial phase; in Ref. [28], the trivial phase is defined as the absence
of a Dirac point, while our classification defines a trivial Dirac point
as one at which no HOFAs terminate.

n Layer group Symmetry indicator �η Class.

4 p4/m′ �η = �(2[M 1
2
]) 2 mod 4 Z2

6 p6/m′ �η = �(2[K 1
2
]) 0, ±2 mod 6 Z3

3 p3̄ �η = −�(2[K 1
2
] + 2[K ′

1
2
]) ±2 mod 6 Z3

From the number of Wannier centers nw at each Wyckoff
position, we can determine the filling anomaly for each plane,
from which we define the change in filling anomaly:

�η = η(k(+)
z ) − η(k(−)

z ). (13)

We can express �η using symmetry indicators by applying
Eqs. (6), (9), and (12). The results, which we will derive
shortly, are summarized in the third and fourth columns in
Table II.

The classifications for n = 4, 6, and 3 are Z2, Z3, and Z3,
respectively. We interpret this group structure by assigning
each Dirac point a group element, or “charge,” based on the
change in filling anomaly between planes adjacent to the Dirac
point [Eq. (13)]. Two Dirac points can add in the sense that if
they are both within the range (k(+)

z , k(−)
z ), then the change

in filling anomaly defined by Eq. (13) will be the sum of
the charges of each Dirac point. If tuning some parameter
in the Hamiltonian creates a pair of crossings between the
conduction and valence bands, the Dirac points at the cross-
ings will have opposite co-irreps in their valence bands and
thus opposite �η; together their charges add to zero and these
Dirac points are inverses of each other. However, it may be
that the combined charge of two Dirac points is zero even if
they do not annihilate each other. Then, these Dirac points are
inverses according to the group structure, but if they are fine-
tuned to be at the same momentum, no HOFA will terminate
at that momentum. This is where our classification differs
from Ref. [28]: in that classification, two Dirac points can
only be inverses if they annihilate each other. In that sense,
the classification in Ref. [28] is in momentum space, where a
trivial Dirac point implies a band gap, and our classification
is in real space, where a trivial Dirac point is one on which a
HOFA does not terminate.

We now derive �η for each nfold rotation axis.

1. n = 4

We first list the space groups that have both inversion I
and C4 (or fourfold screw) symmetries according to their point

groups ( with space group numbers in parenthesis): 4/m (Nos.
83–88), 4/mmm (Nos. 123–142), m3̄ (Nos. 200–206), and
m3̄m (No. 221–230). If the rod geometry preserves I and C4

symmetries, p4/m′ is a subgroup of the layer group of each kz

slice of the rod. Therefore the filling anomaly of each kz slice
is determined by Eq. (6).

Dirac points occur when two two-dimensional co-irreps
cross, which can happen along the high-symmetry lines
(0, 0, kz ) or (π, π, kz ). These lines are denoted 	 or V , re-
spectively, in the space group P4/m, which we consider as
a representative space group without loss of generality. The
little co-group of both 	 and V is 4/m′, which has only two
two-dimensional co-irreps: E 1

2
and E 3

2
. These symmetry co-

irreps appear in the formula for the filling anomaly [Eq. (6)]
as 2[M 1

2
] = 2(#M 1

2
− #� 1

2
). Since a crossing between the two

co-irreps changes [M 1
2
] by ±1, it results in a change �η(4) =

±2. Since η(4) is a mod 4 quantity, �η(4) is also defined
mod 4. Therefore �η(4) = +2 is equivalent to �η(4) = −2.
We deduce that there is only one type of Dirac point, which
always has a HOFA. This analysis reproduces the result of
Ref. [21].

2. n = 6

We first list the space groups that have both inversion I
and C6 (or sixfold screw) symmetries according to their point
groups (with space group numbers in parenthesis): 6/m (Nos.
175 and 176) and 6/mmm (Nos. 191–194). If the rod geometry
preserves I and C6 symmetries, p6/m′ is a subgroup of the
layer group of each kz slice of the rod. Therefore the filling
anomaly of each kz slice is determined by Eq. (9).

A Dirac point occurs when two two-dimensional co-irreps
cross, which can happen along the high-symmetry lines
(0, 0, kz ) or (4π/3, 0, kz ), denoted by � or P, respectively,
in the space group P6/m, which we consider as a repre-
sentative. The little co-group at � is 6/m′, which has three
two-dimensional co-irreps: E 1

2
, E 3

2
, and E 5

2
; the little co-group

at P is 3̄′, which has two two-dimensional co-irreps at P: E 1
2

and E 3
2
. We now discuss how crossings between these irreps

change the filling anomaly of the 2D kz slices.
Crossings along �. According to Eq. (9), the symmetry

co-irreps appear in the filling anomaly as 2[K 1
2
] = 2(#K 1

2
−

#� 1
2
− #� 5

2
). Therefore the crossing between E 1

2
and E 5

2
does

not change the filling anomaly. The crossing between E 1
2

and
E 3

2
, and the crossing between E 3

2
and E 5

2
change the filling

anomaly by ±2.
Crossings along P. There are only crossings between E 1

2

and E 3
2
. The filling anomaly changes by ±2 according to

Eq. (9).
In conclusion, there are three types of Dirac points along

� that change the filling anomaly by �η(6) = −2, 0, or 2 and
there are two types of Dirac points along P that change the fill-
ing anomaly by �η(6) = ±2. HOFAs terminate at Dirac points
that have �η �= 0. Thus not all Dirac points have HOFAs,
in contrast to the case of fourfold rotation symmetry. As we
elaborate on in Sec. II D 4, the presence (absence) of HOFAs
corresponds to a linear (quadratic) Dirac point.
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3. n = 3

We first list the space groups that have both inversion I
and C3 symmetries according to their point groups (with space
group numbers in parenthesis): 3̄ (Nos. 147 and 148), 3̄m
(Nos. 162–167), m3̄ (Nos. 200–206), and m3̄m (Nos. 221–
230). If the rod geometry preserves I and C3 symmetries, p3̄′
is a subgroup of the layer group of each kz slice. (We always
refer to the C3 axis as the kz axis.) The filling anomaly of each
kz slice is defined mod 6 (see Sec. II B) and determined by
Eq. (12).

Dirac points exist when two two-dimensional co-
irreps cross along the high-symmetry lines (0, 0, kz ) and
(4π/3, 0, kz ), which are denoted by � and P in the repre-
sentative space group P3̄. (Notice this BZ is the same as
that of P6/m, but the little co-groups are different; for ex-
ample, the high-symmetry line (−4π/3, 0,−kz ) is mapped to
(4π/3, 0, kz ) under inversion symmetry.) The little co-group
of both � and P is 3̄′, which has two two-dimensional co-
irreps, E 1

2
and E 3

2
. A crossing between the two co-irreps along

either the high-symmetry line � and P changes the filling
anomaly by �η(3) = ±2 mod 6.

In conclusion, there are two types of Dirac points along �

and P that change the filling anomaly by �η(3) = ±2. Since
HOFAs terminate at Dirac points that have �η �= 0, all Dirac
points have HOFAs.

4. Summary of Dirac classification

In summary, we have classified Dirac points by how the
filling anomaly changes across the Dirac point. We have found
that for a fourfold rotation axis, there is only one type of
Dirac point, corresponding to �η(4) = 2 mod 4; for a six-
fold rotation axis, there are three types of Dirac points with
�η(6) = 0,±2 mod 6; and for a threefold rotation axis, there
are two types of Dirac points with �η(3) = ±2 mod 6. These
results are summarized in Table II.

Since Dirac points have HOFAs terminating on them if
and only if �η �= 0, we have now answered the question of
when Dirac points have HOFAs: for a Dirac point protected
by a three- or fourfold rotation, there is always a HOFA
terminating on it, while for a Dirac point protected by a
sixfold rotation, whether or not a HOFA terminates at it can
be determined by the symmetry indicator formula in Table II.

Our analysis is based on symmetry indicators, but we ob-
serve that the presence(absence) of a HOFA that terminates
at a Dirac point is exactly determined by whether the Dirac
point is linear(quadratic). Specifically, Dirac points protected
by three- and fourfold rotations are always linear, while the
Dirac point protected by sixfold symmetry and formed by
the crossing between the irreps E 1

2
and E 5

2
is linear in kz but

quadratic in kx,y [29]. (The other Dirac points protected by a
sixfold rotation are linear [29].) As we derived in Sec. II D 2,
this is the only type of Dirac point that does not have a
HOFA terminating on it. Thus we conclude that the linear
Dirac points along rotation axes have HOFAs that terminate
on them, while the quadratic Dirac points do not.

In a crystal with inversion symmetry, each Dirac point
with change in filling anomaly �η has an inversion partner
with −�η. The annihilation and creation of Dirac points is
compatible with the algebra of �η. In this sense, the Nielson-

Ninomia theorem [61,62] is satisfied and �η can be viewed
as the topological charge.

For Dirac semimetals with T I symmetry, but not T or I
separately, �η is still well defined for each Dirac point, and
the total topological charge must vanish, but the Dirac points
do not have inversion or time-reversed partners. When n = 3
or n = 4, there are only two irreps that can cross along the
high-symmetry lines: thus, due to the periodicity of the BZ,
Dirac points must come in pairs (even if there is no symmetry
that relates them.) However, when n = 6, there are three irreps
that can cross and Dirac points need not come in pairs. For
example, a band structure of three twofold degenerate bands
with co-irreps E 1

2
, E 3

2
, and E 5

2
can be arranged so that each

pair of co-irreps cross once near the Fermi level, creating
three Dirac points near the Fermi level while maintaining the
periodicity of the BZ.

III. TRIM PLANE TOPOLOGICAL INDICES AS A
CLASSIFICATION OF DIRAC POINTS

We now compare our classification of Dirac points by
the change in the filling anomaly to an earlier classification
by Yang and Nagaosa [29] where Dirac points are classi-
fied by the change in the topological index of TRIM planes
(specifically, the mirror Chern number, Cm, and time-reversal
protected Z2 invariant, ν).

The classification in Ref. [29] was accomplished by con-
structing k.p models of four band Hamiltonians along the
(0, 0, kz ) line. Here, we use the theory of topological quan-
tum chemistry to systematically reproduce their results, and
generalize to situations when Dirac points are along other
high-symmetry lines. Our results apply to any number of
occupied bands.

To this end, we apply the Smith normal form symmetry
indicator formula of the stable topological indices [63,64] to
the three minimal magnetic layer groups at TRIM planes,
which are generated by T (with T 2 = −1), I and Cn, where
n = 3, 4, and 6. The details are in Appendix D. Here we
summarize the results.

(1) p4/m1′. The little co-groups at � = (0, 0), X = (π, 0),
M = (π, π ) are 4/m1′, 2/m1′, 4/m1′ (in the magnetic point
group notation). The co-irreps of the little co-groups are listed
in Table III. There is one stable topological index, which is the
mirror Chern number:

C(4)
m = −[

M 1
2 g

] + [
M 3

2 g

] + 2
[
X 1

2 u

] − 2
[
M 1

2 u

]
mod 4,

(14)
where [X 1

2 u] = #X 1
2 u − #� 1

2 u − #� 3
2 u, [Mρ] = #Mρ − #�ρ .

The superscript 4 in the mirror Chern number C(4)
m indicates

the fourfold rotation axis. C(4)
m mod 2 is the 2D strong topo-

logical insulator index ν.
(2) p6/m1′. The little co-groups at � = (0, 0), M =

(π,−π/
√

3), K = (4π/3, 0) are 6/m1′, 2/m1′, 6̄1′. The co-
irreps of the little co-groups are listed in Table III. There is one
stable topological index, which is the mirror Chern number:

C(6)
m = 2

[
K 3

2

] + 4
[
K 1

2

] − 3
[
M 1

2 g

]
mod 6, (15)

where [K 1
2
] = #K 1

2
− #� 1

2 g − #� 5
2 u, [K 3

2
] = #K 3

2
− #� 3

2 g −
#� 3

2 u, and [M 1
2 g] = #M 1

2 g − #� 1
2 g − #� 3

2 g − #� 5
2 g. The
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TABLE III. Character tables of the spinful ir-
reducible corepresentations of the magnetic point
groups 4/m1′, 2/m1′, 6/m1′, 6̄1′, 3̄1′, 1̄1′, and
31′. These point groups are the little co-groups
of TRIMs of the magnetic layer groups p4/m1′,
p6/m1′ and p3̄1′ as we explain in the text.

4/m1′ E C4 C2 I
E 1

2 g 2
√

2 0 2

E 1
2 u 2

√
2 0 −2

E 3
2 g 2 −√

2 0 2

E 3
2 u 2 −√

2 0 −2

2/m1′ E C2 I
E 1

2 g 2 0 2

E 1
2 u 2 0 −2

6/m1′ E C6 C3 I
E 1

2 g 2
√

3 1 2

E 1
2 u 2

√
3 1 −2

E 3
2 g 2 0 −2 2

E 3
2 u 2 0 −2 −2

E 5
2 g 2 −√

3 1 2

E 5
2 u 2 −√

3 1 −2

6̄1′ E C3 C6I
E 1

2
2 1

√
3

E 3
2

2 −2 0

E 5
2

2 1 −√
3

3̄1′ E C3 I
E 1

2 g 2 1 2

E 1
2 u 2 1 −2

E 3
2 g 2 −2 2

E 3
2 u 2 −2 −2

1̄1′ E I
Eg 2 2
Eu 2 −2

31′ E C3

E 1
2

2 1

E 3
2

2 −2

superscript 6 in the mirror Chern number C(6)
m indicates the

sixfold rotation axis. C(6)
m mod 2 is the 2D strong TI index ν.

(3) p3̄1′. The little co-groups at � = (0, 0), M =
(π,−π/

√
3), K = (4π/3, 0) are 3̄1′, 1̄1′, 31′. The co-irreps

of the little co-groups are listed in Table III. There is one stable
topological index, which is the 2D strong topological insulator
index:

ν = [Mu] mod 2, (16)

where [Mu] = #Mu − #� 1
2 u − #� 3

2 u.
We now can classify the Dirac points by the change in

the stable topological index of TRIM planes, i.e., the dif-
ference �Cm or �ν between the kz = 0 and kz = π planes.
Specifically, the high-symmetry line where the Dirac point
lies contains one TRIM point in each TRIM plane. The corep-
resentations (co-reps) of the bands that cross at the Dirac
point are compatible with specific co-reps at each TRIM point.
By plugging the co-rep at each of the two TRIM points into
Eq. (14), (15), or (16), the difference �Cm or �ν is obtained.
The result is shown in Table IV.

This classification based on symmetry indicators is in the
spirit of Ref. [29], although goes beyond Ref. [29] by includ-
ing Dirac points along both high-symmetry lines. In particular,
the crossings along P in P6/m were not included in the earlier
literature. They are distinct from crossings along �, because
the little co-group at K and A is ¯61′, while the little co-group
at � and Z is 6/m1′.

The k.p analysis in Ref. [29] has one advantage over our
classification by topological quantum chemistry: it distin-
guishes �Cm = +2 and −2 in the C4 case, and �Cm = +3
and −3 in the C6 case. If one can determine all the parameters

TABLE IV. The classification of Dirac points with an nfold ro-
tation axis based on �Cm and �ν. When either is nonzero, there
must be gapless surface states on at least one of the TRIM planes.
These surface states do not necessitate the existence of Fermi arcs
that terminate at the Dirac points because they can form a closed
loop [18,19].

n Classification [29] Stable TCI index �index

4 Z4 �C (4)
m (14) ±1, ±2

6 Z6 �C (6)
m (15) ±1, ±2, ±3

3 Z2 �ν (16) 0, 1 mod 2

of the k.p model and the k.p model is a complete description
of the low energy physics, Cm can be determined completely.
In our approach, the Z-valued mirror Chern number can only
be partially determined (up to Zn) by symmetries.

The changes in topological indices �Cm and �ν can
also be viewed as topological charges associated with Dirac
points (albeit a different charge than the change in filling
anomaly). Since a Dirac point with �Cm or �ν must have
an inversion partner with −�Cm or −�ν, the generalized
Nielson-Ninomia theorem [61,62] is again satisfied.

As a final note on this classification, let us clarify that it
does not apply to Dirac cones protected by screw symmetries
because the irreps in the kz = π plane are different for a group
with a screw symmetry versus a group with a pure rotation
symmetry of the same order. Since the classification specif-
ically requires symmetry indices in the kz = π plane (unlike
our classification based on �η, which only requires symmetry
indices in planes adjacent to the Dirac point), it does not apply.

IV. RELATION BETWEEN THE FILLING ANOMALY AND
THE STABLE INDEX

A nonzero filling anomaly and a nonzero stable topolog-
ical index at a TRIM plane give rise to different physical
observables: the former gives rise to HOFAs, while the latter
implies gapless surface states at TRIM planes. In general, it is
not possible to determine the filling anomaly from the stable
topological index of the TRIM planes and vice versa because
the addition of occupied trivial bands with a nontrivial filling
anomaly changes the filling anomaly but leaves the stable
indices invariant.

Nonetheless, the change in the filling anomaly and the
change in the stable index are both constrained by symmetries.
The change in the filling anomaly can be determined by the
symmetry irreps at the high-symmetry lines, while the change
in the stable index can be determined by the symmetry irreps
at the TRIMs. Compatibility conditions relate these irreps, and
thus the change in the filling anomaly and the change in the
stable index are related.

We summarize the relations in Table V. Let us now ex-
plain the notation. Each Cn-preserving (n = 3, 4, and 6)
high-symmetry line connects two TRIMs. We denote the oc-
cupied co-irreps at the two TRIMs by the pair (Eα′ , Eβ ′ ),
where Eα′ appears at one TRIM point and Eβ ′ at the other.
The indices α′(β ′) each contain two values, j and ξ , where
j = 1

2 , 3
2 , and 5

2 indicates the rotation eigenvalue and ξ =
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TABLE V. Relations between �η and �Cm or �ν. The first column indicates the nfold rotation symmetry of the crystal. The second
column indicates the high-symmetry line where the Dirac point occurs. The third column gives possible irreps that can cross along that line
to form a Dirac point; the dispersion of that Dirac point is indicated in the fourth column, where linear indicates the Dirac point is linear in
all directions and quadratic indicates that it is linear along the axis of rotation and quadratic in other directions. The fifth column indicates the
change in the filling anomaly, �η, defined in Sec. II D. Each pair of co-irreps that define a Dirac point is compatible with several different
possible co-irreps at TRIMs, as indicated by the sixth column (the irrep notation is explained in Sec. IV). The last two columns indicate the
possible values of the change in the stable index between the TRIM planes, �Cm and �ν, which are derived in Sec. III. Tables I and III provide
the characters for irreps along high-symmetry lines and at TRIMs, respectively.

n k line co-irreps of Dirac point dispersion �η compatible co-irreps at TRIMs �Cm �ν mod 2

(E 1
2 g, E 3

2 g) or (E 1
2 u, E 3

2 u) 0

� (�A) (E 1
2
, E 3

2
) linear ±2 mod 6 (E 1

2 g, E 3
2 u) or (E 1

2 u, E 3
2 g) 1

3 (E 1
2 g, E 3

2 g) or (E 1
2 u, E 3

2 u) 0

P (KH ) (E 1
2
, E 3

2
) linear ±2 mod 6 (E 1

2 g, E 3
2 u) or (E 1

2 u, E 3
2 g) 1

(E 1
2 g, E 3

2 g) or (E 1
2 u, E 3

2 u) ± 2 0

	 (�Z ) (E 1
2
, E 3

2
) linear 2 mod 4 (E 1

2 g, E 3
2 u) or (E 1

2 u, E 3
2 g) ± 1 1

4 (E 1
2 g, E 3

2 g) or (E 1
2 u, E 3

2 u) ±2 0

V (MA) (E 1
2
, E 3

2
) linear 2 mod 4 (E 1

2 g, E 3
2 u) or (E 1

2 u, E 3
2 g) ±1 1

(E 1
2 g, E 3

2 g) or (E 1
2 u, E 3

2 u) ± 2 0

(E 1
2
, E 3

2
) linear ±2 mod 6 (E 1

2 g, E 3
2 u) or (E 1

2 u, E 3
2 g) ± 1 1

(E 5
2 g, E 3

2 g) or (E 5
2 u, E 3

2 u) ± 2 0

� (�A) (E 5
2
, E 3

2
) linear ±2 mod 6 (E 5

2 g, E 3
2 u) or (E 5

2 u, E 3
2 g) ± 1 1

(E 1
2 g, E 5

2 g) or (E 1
2 u, E 5

2 u) ± 2 0

6 (E 1
2
, E 5

2
) quadratic 0 mod 6 (E 1

2 g, E 5
2 u) or (E 1

2 u, E 5
2 g) ± 3 1

(E 1
2
, E 3

2
) ±2 0

P (KH ) (E 1
2
, E 3

2
) linear ±2 mod 6 (E 5

2
, E 3

2
) ±2 0

g, u (+1,−1) indicates the inversion eigenvalue. For each
Dirac point, we need only consider one co-irrep at each TRIM
because only one coirrrep is exchanged at the Dirac point. The
co-irreps at the two TRIM, (Eα′ , Eβ ′ ), uniquely determine the
co-irreps (Eα, Eβ ) at adjacent points on the high-symmetry
line, where α, β = 1

2 , 3
2 , and 5

2 indicate the rotation eigen-
values. The definition of these co-irreps are given by the
characters in Tables I and III. The Dirac point is exactly
the crossing between Eα and Eβ along the high-symmetry
line; thus these co-irreps determine the change in the fill-
ing anomaly �η, while the co-irreps (Eα′ , Eβ ′ ) determine
the change in the stable index �Cm or �ν. The mapping
(Eα′ , Eβ ′ ) �→ (Eα, Eβ ) is many to one, which means one
value of �η is compatible with multiple values of �Cm or
�ν, as shown by Table V. Table V serves to synthesize the
results of Secs. II D and III.

V. EXAMPLES

Reference [21] proved that Dirac points in crystals with
fourfold rotation symmetry always have HOFAs. In this sec-
tion, we give two examples of Dirac points with sixfold
rotation symmetry, with and without HOFAs. This provides an
explicit demonstration that not all Dirac points have HOFAs
and verifies the symmetry indicators for n = 6 in Table II.

Our models are in space group P6/mmm, which has a
hexagonal lattice shown in Fig. 2. In this space group, T I
symmetry forces the Hamiltonian to take the form of H =

ε0(k) + ∑5
j=1 c j (k)� j , where k = (kx, ky, kz ). We choose a

basis where the � matrices are

�i = τ3 ⊗ σi, i = 1, 2, 3;

�4 = τ2 ⊗ σ0, �5 = τ1 ⊗ σ0,

where σi and τi, i = 1, 2, and 3 are Pauli matrices repre-
senting the mixed spin and orbital degrees of freedom, σ0 is
identity matrix, and ⊗ is the tensor product. In this basis, the

FIG. 2. (a) The unit cell of P6/mmm. a3 is in the z direction and
is perpendicular to a1 and a2. (b) The cross section of a rod which
is C6 symmetric, finite in the a1 and a2 directions and infinite in a3

direction.
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Hamiltonians for both models take the form [11,65]

H = ε0(k) +

⎛
⎜⎝
M(k) A(k) B(k) 0
A∗(k) −M(k) 0 B(k)
B∗(k) 0 −M(k) −A(k)

0 B∗(k) −A∗(k) M(k)

⎞
⎟⎠.

(17)
The bulk spectrum is E = ε0(k) ±

√
M2 + |A|2 + |B|2. We

set ε0(k) = 0 for simplicity, which does not influence the
topology of the bands. The functions A(k) and B(k) differ
between the two models, but the function M(k), which de-
termines the position of Dirac points, is the same. We now
describe the two models explicitly.

A. Higher-order Fermi arcs in Na3Bi

Our first example is motivated by the known Dirac
semimetal Na3Bi [9,11,12], which we predict exhibits higher-
order Fermi arcs. We start in Sec. V A 1 by presenting a
simpler toy model on a hexagonal lattice. We use the sym-
metry indicator formula in Eq. (9) to determine the presence
of HOFAs in this model, and verify it with a numerical calcu-
lation. Then, in Sec. V A 2, we discuss the application of our
model to the real Na3Bi material.

1. Model

In this section, we construct a four-band tight-binding
model on a hexagonal lattice in space group P6/mmm. We
first introduce the basis and symmetry of the orbitals and
then derive a k · p Hamiltonian to third order. We construct
a tight-binding model by extending the k · p model to the
whole Brillouin zone. Finally, we use the symmetry indicator
formula in Eq. (6) to study the HOFAs and verify the formulas
by plotting the tight-binding spectrum on a rod geometry that
is finite in two dimensions.

The orbital notation follows Ref. [11]: |S+
1
2

, jz〉 denotes s-

orbitals with angular momentum quantum numbers (J, jz ) =
( 1

2 ,± 1
2 ) and inversion eigenvalue +1, while |P−

3
2

, jz〉 denotes

p orbitals with (J, jz ) = ( 3
2 , jz ), jz = ± 1

2 ,± 3
2 , and inversion

eigenvalue −1.
We work in the four-band basis: |P−

3
2

,+ 3
2 〉, |S+

1
2

,+ 1
2 〉,

|S+
1
2

,− 1
2 〉, |P−

3
2

,− 3
2 〉; these are the relevant orbitals in

Na3Bi [11]. In this basis, the symmetry generators of 6/mmm
(D6h), which is the little group at �, are

C6z =

⎛
⎜⎜⎝

−i 0 0 0
0 e−iπ/6 0 0
0 0 eiπ/6 0
0 0 0 i

⎞
⎟⎟⎠, (18)

C2x =

⎛
⎜⎝

0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠, (19)

I =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, (20)

and time-reversal symmetry is implemented by

T =

⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠K, (21)

where K represents the complex conjugation operator. In the
third order k · p approximation, the coefficients in Eq. (17) are

M(k) = m + M1k2
z + M2k+k−,

A(k) = Ak−(1 + A1k2
z + A2k+k−), B(k) = Bk2

−kz,

(22)

where k± = kx ± iky and all the parameters are real.
The Dirac point appears along the high-symmetry line

� = (0, 0, kz ), along which A, B = 0, and M changes sign
across the Dirac point. The co-irreps in the valence bands
that swap across the Dirac point are E 1

2
and E 3

2
. According to

Eq. (9), this crossing changes the filling anomaly by �η(6) =
±2 mod 6. The nonzero change �η(6) implies that HOFAs
terminate at the Dirac points.

We would like to extend this k.p Hamiltonian to a tight-
binding Hamiltonian to explicitly verify the presence of hinge
arcs. We now describe the tight-binding model. The hexago-
nal lattice vectors are a1 = (1, 0, 0), a2 = (− 1

2 ,
√

3
2 , 0), a3 =

(0, 0, 1). The tight-binding model is defined by the real-space
hopping terms:

Va1 = M̃2�3 + iÃ�1, Va1+a3 = B̃�5, Va3 = M̃1�3 (23)

and an onsite term m�3, where Vr indicates the hopping ma-
trix from an atom at r0 to an atom at r0 + r. Other hopping
terms are related to these terms by C6z and C2x symmetries.
Parameters with a tilde are real and are proportional to the
corresponding k.p parameters in Eq. (22).

The tight-binding Hamiltonian in momentum space takes
the form of Eq. (17), with coefficients:

M(k) = m + 2M̃1 cos kz + 4M̃2 cos
kx

2

× cos

√
3ky

2
+ 2M̃2 cos kx,

A(k) = −2Ã

(
sin

kx

2
cos

√
3ky

2

+ i
√

3 cos
kx

2
sin

√
3ky

2
+ sin kx

)
,

B(k) = 2B̃ sin kz

(
cos kx − cos

kx

2
cos

√
3ky

2

− i
√

3 sin
kx

2
sin

√
3ky

2

)
. (24)

Dirac points can exist along the two high-symmetry lines �

and P, where A(k) = B(k) = 0. The term M(k) determines
whether and where there is a Dirac point: if |m + 6M̃2| <

|2M̃1| there is a pair of Dirac points along �, while if
|m − 3M̃2| < |2M̃1|, there is a pair of Dirac points along P.
In the interest of connecting to Na3Bi, we choose M̃2 = −1,
m = 4, M̃1 = −2.5, so that there is exactly a pair of Dirac
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points along �, related by inversion symmetry. (Although in
Na3Bi, the Dirac points are much closer to �; here, we choose
parameters where the Dirac points are further from � so that
the HOFAs are clearly visible.) In Fig. 3(a), we plot the spec-
trum of this model in a rod geometry [the rod cross-section
is shown in Fig. 2(b)], which shows the existence of mid-gap
HOFAs terminating on the Dirac point. Figure 3(b) shows that
the filling anomaly at kz = π/4 (a representative kz-slice with
corner states) is 2 mod 6, in agreement with Eq. (9). The bulk
and surface band structures are plotted in Appendix E.

There are also surface cones projected onto kz = 0 in the
rod spectrum in Fig. 3(a). Such states are often seen in Dirac
semimetal systems with HOFAs in the presence of both T and
I symmetries because the degeneracy of mid-gap states is 6
at non-TRIM planes, but 12 at TRIMs. The gapless surface
states ensure the rod band structure is continuous where the
HOFAs pass through a TRIM plane.

2. Application to Na3Bi

In this section, we discuss the connection between the
model described in the previous section and the Dirac
material Na3Bi. Na3Bi is in the nonsymmorphic space
group P63/mmc, while our tight-binding model described by
Eq. (24) is in the symmorphic space group P6/mmm; the
sixfold rotation symmetry in the latter is replaced by a sixfold
screw symmetry in the former. Although the little co-groups

FIG. 3. (a) Rod spectrum of the tight-binding model described by
Eq. (24) (see Sec. V A for connection to Na3Bi.) There are HOFAs
between kz = 0 and kz = k0, the projection of the bulk Dirac point.
There are also gapless surface states projected to kz = 0. (b) Energy
of states at 0 < kz = π/4 < k0 for the same model. The dashed red
line indicates charge neutrality. The nontrivial filling anomaly is
indicated by the charge neutrality point residing in the middle of
six degenerate corner states. (c) Rod spectrum of the tight-binding
model described by Eq. (31). There are no HOFA. (d) Energy of
states at 0 < kz = π/4 < k0 for the second model. The dashed red
line indicates charge neutrality. The lack of filling anomaly is indi-
cated by the charge neutrality point residing in between two groups
of degenerate states. There are gapless surface states projecting to
kz = 0. For both models, the side length of the hexagon cross section
[see Fig. 2(b)] is 15. The parameters used to generate the plots are
listed in Appendix E.

of the high-symmetry points are different for the two space
groups, the co-irreps of the two groups are the same, up
to an overall phase factor, for momenta not in the kz = π

plane [64]. (In the kz = π plane, inversion does not commute
with the screw symmetry; this is not an issue for the other
planes because when kz = 0, inversion commutes with the
screw symmetry, and when 0 < kz < π , inversion does not
leave the plane invariant. For a general discussion of Dirac
points protected by screw symmetries, see Appendix A 2.)
Therefore, when kz �= π , our model in Eq. (24) in space group
P6/mmm applies also to space group P63/mmc. Since the
low-energy physics in Na3Bi occurs near �, this model also
describes the low-energy physics in Na3Bi and in fact the k.p
model in Eq. (22) is identical to that in Ref. [11].

From the perspective of topology, the HOFAs exist in kz

planes where the filling anomaly η is nonzero. Equation (9)
implies that η depends on the charge of atoms. Our four-
band Hamiltonians in Eqs. (22) and (24) have four orbitals
coming from a single atom in the unit cell, while, because
Na3Bi is in a nonsymmorphic space group, it necessarily has
multiple symmetry-related Na atoms in the unit cell [11]. Thus
our model does not map in real space to a Hamiltonian in
the nonsymmorphic space group. However, whether HOFAs
terminate at the Dirac points does not depend on η, but only
�η, i.e., the difference in η across the Dirac point, and �η

does not depend on the atomic positions, only on the co-reps
of the bands that cross to form the Dirac point. Thus, from
our model, we predict that Na3Bi has HOFAs that terminate
at the Dirac point, but we cannot predict whether they cross
the kz = 0 or kz = π plane.

The possible 2D stable topological indices at kz = 0 are
the same for both space groups (they both have a 2D strong
topological insulator index and a mirror Chern number). In
both cases, a band inversion at � that creates a pair of Dirac
points along the kz axis will change the 2D stable topological
index of the kz = 0 plane [29], which is captured by our Cm

(mirror Chern) index in Eq. (15). Since the low-energy physics
in Na3Bi is exactly due to such a band inversion, we expect the
2D topological indices in the kz = 0 plane to agree between
the two models.

We note that a nontrivial bulk invariant [36] has also been
computed for Na3Bi in Ref. [66], but the corner states were
not computed.

B. Absence of higher-order Fermi arc

We now describe a model of a Dirac semimetal with C6

symmetry which does not exhibit HOFAs. We work in the
four-band basis |D+

5
2

,+ 5
2 〉, |P−

3
2

,+ 1
2 〉, |P−

3
2

,− 1
2 〉, |D+

5
2

,− 5
2 〉,

where |D+
5
2

, jz〉 denotes d orbitals with (J, jz ) = ( 5
2 , jz ), jz =

± 1
2 ,± 3

2 ,± 5
2 . In this basis, the symmetry generators of space

group P6/mmm are

C6z =

⎛
⎜⎜⎝

e−i5π/6 0 0 0
0 e−iπ/6 0 0
0 0 eiπ/6 0
0 0 0 ei5π/6

⎞
⎟⎟⎠, (25)
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C2x =

⎛
⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎠, (26)

I =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠, (27)

and time-reversal symmetry is implemented by

T =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎠K, (28)

where K represents the complex conjugation operator. To third
order, the coefficients of the k.p Hamiltonian in Eq. (17) are

M(k) = m + M1k2
z + M2k+k−,

A(k) = Ak2
−kz,

B(k) = B1kx
(
k2

x − 3k2
y

) + iB2ky
(
k2

y − 3k2
x

)
, (29)

where k± = kx ± iky.
The Dirac point along � results from a crossing between

the co-irreps E 1
2

and E 5
2
. According to Eq. (9), this cross-

ing changes the filling anomaly by �η(6) = 0 mod 6, which
implies there is no HOFA that terminates at the Dirac point.
Thus there are two possibilities: (i) no HOFA for any kz; (ii)
HOFAs for every kz. To determine which possibility occurs,
we need a real-space embedding. To this end, we construct
a tight binding model to explicitly present an example of (i),
i.e., a Dirac point without HOFAs.

This k · p Hamiltonian can be extended (nonuniquely) to
the whole BZ by a tight-binding model with real-space hop-
ping terms:

Va1 = M̃2�3 + iB̃1�5, Va1+2a2 = iB̃2�4,

Va1+a3 = Ã�1, Va3 = M̃1�3 (30)

and the onsite term m�3. Other hopping terms are related to
these terms by C6z and C2x symmetries. Parameters with a
tilde are real and are proportional to the corresponding k.p
parameters in Eq. (29).

The tight-binding Hamiltonian in momentum space is of
the form of Eq. (17), with coefficients:

M(k) = m + 2M̃1 cos kz + 4M̃2 cos
kx

2
cos

√
3ky

2

+ 2M̃2 cos kx,

A(k) = 2Ã sin kz

(
cos kx − cos

kx

2
cos

√
3ky

2

− i
√

3 sin
kx

2
sin

√
3ky

2

)
,

B(k) = 4B̃1 sin
kx

2
cos

√
3ky

2
− 2B̃1 sin kx

− 4iB̃2 cos
3kx

2
sin

√
3ky

2
+ 2iB̃2 sin

√
3ky. (31)

Similar to the previous model, the term M(k) determines
whether and where there is a Dirac point: if |m + 6M̃2| <

|2M̃1| there is a pair of Dirac points along �, while if |m −
3M̃2| < |2M̃1|, there is a pair of Dirac points along P. We
consider M̃2 = −1, m = 4, M̃1 = −2.5, so that again there is
exactly a pair of Dirac points along �, related by inversion
symmetry. In Fig. 3(c), we plot the rod spectrum, which shows
the absence of HOFAs. Figure 3(d) shows that the filling
anomaly at kz = π/4 (a representative kz slice between the
Dirac point and kz = 0) is 0 mod 6, which is consistent with
the absence of HOFAs in Fig. 3(c).

In Appendix E, we describe more details about both mod-
els, including the parameters used to plot the band structures,
the bulk and surface BZs, the bulk and surface spectra, and the
band corepresentations, which verify the presence/absence of
HOFAs with symmetry indicators.

VI. DISCUSSION

Dirac fermions protected by inversion, time-reversal, and
fourfold rotation symmetry have been shown to exhibit HO-
FAs [21,22], which are mid-gap states localized at the corners
where two surfaces meet that connect the projection of the
bulk Dirac points. The HOFAs can be viewed as a topolog-
ical bulk-hinge correspondence for Dirac fermions. In this
manuscript, we derived conditions under which HOFAs exist
for any Dirac fermion protected by inversion, time-reversal,
and an nfold rotation symmetry, where n = 3, 4, and 6.
We further computed symmetry indicators to determine the
presence/absence of HOFAs, using an algorithm we intro-
duced in Ref. [37].

We found that all linear Dirac points exhibit HOFAs that
terminate on them. However, a sixfold rotation symmetry can
also protect a Dirac point that has a linear dispersion along the
rotation axis and a quadratic dispersion in the other directions;
this Dirac point does not exhibit HOFAs.

Our results define a topological charge for each Dirac
point based on the change in the filling anomaly, �η, of 2D
planes in momentum space on either side of the Dirac point.
We found that in the case of a fourfold rotation, �η(4) = 2
mod 4, corresponding to a single type of Dirac point; in the
case of a sixfold rotation, �η(6) = 0,±2 mod 6, correspond-
ing to three types of Dirac points; and finally in the case of a
threefold rotation, �η(3) = ±2 mod 6, corresponding to two
types of Dirac points.

We built explicit tight-binding models in the case of a
sixfold rotation symmetry to exemplify Dirac semimetals with
and without HOFAs.

Our formulas also apply to Dirac points protected by screw
symmetries if they are not on the boundary of the BZ. The
bulk-hinge correspondence of Dirac points at the BZ bound-
ary is a subject for future work.
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APPENDIX A: SYMMETRY OF DIRAC POINTS

In this Appendix, we discuss the symmetries that can
protect Dirac points. In Appendix A 1, we derive that only
rotation symmetries of order 3, 4, or 6 can protect Dirac
points. In Appendix A 2, we derive that screw symmetries of
the same order can also protect Dirac points; only two of these
are consistent with inversion symmetry. In Appendix A 3,
we derive the centrosymmetric space groups that contain the
rotation and screw symmetries that can protect Dirac points.
We briefly discuss other symmetries that can protect Dirac
points on the boundary of the BZ in Appendix A 4.

1. Dirac points stabilized by rotation symmetry

Dirac points not at a TRIM are protected by the com-
bination of T I symmetry and an nfold rotation. These
symmetries generate the groups 2/m′, 3̄′, 4/m′, and 6/m′ for
n = 2, 3, 4, and 6, which are the only rotations that occur in
crystals. We only consider the case with spin-orbit coupling,
where T I is an antiunitary symmetry that squares to −1
and commutes with all rotations; thus, it requires all bands
to be doubly degenerate. Since for n = 2, there is only one
two-dimensional co-irrep, a twofold rotation symmetry cannot
protect a Dirac point (because the Dirac point requires two
different co-irreps to cross). For n = 3 and 4, there are two
two-dimensional co-irreps and hence there are two choices
of crossings. For n = 6, there are three two-dimensional co-
irreps and, consequently, there are six choices of crossings.
We enumerate the co-irreps of 3̄′, 4/m′, and 6/m′ in Table I,
where the notation follows Ref. [58].

A Dirac material may also have additional mirror
symmetries. Mirror symmetries that leave the rotation axis
invariant enlarge its little co-group to one of the following
magnetic point groups: 3̄′m, 4/m′mm, or 6/m′mm. In each of
these groups, the number of two-dimensional co-irreps with
SOC is the same as the number without the additional mirror
symmetries [64]. Thus adding the mirror symmetry does
not change the types of Dirac crossings. We do not consider
mirror symmetries that invert the high-symmetry line because
they will not leave generic points along the high-symmetry
line invariant.

2. Screw symmetries

In this section, we show that screw symmetries can also
protect Dirac points.

In momentum space, a screw symmetry can be represented
as the product of a k-independent unitary matrix and a k-
dependent phase [67]. Specifically, a screw symmetry that
rotates by an angle 2π/n and translates by a fractionn p/n
of a lattice vector can be represented by the matrix C̃n,p =
e−ikz

p
n Un in momentum space, where n = 2, 3, 4, and 6; p

is an integer satisfying 1 � p � n − 1; and Un is a unitary
matrix where U n

n = −1 is equivalent to a 2π rotation. The
screw symmetry constrains the Hamiltonian by [68]

C̃n,pH (k)C̃−1
n,p = UnH (k)U −1

n = H (Rnk), (A1)

where Rn is the vector representation of the nfold rotation
symmetry. Notice the translation by p/n has dropped out of
this constraint. Thus, in momentum space, a screw symmetry
acts effectively as a rotation symmetry. It follows that screw
symmetries can protect a Dirac crossing if n = 3, 4, and 6.

If I symmetry is present, then the translation p must
satisfy 2p = n because the combined operation C̃−1

n,pIC̃n,pI :
(x, y, z) → (x, y, z − 2p/n) must give a lattice translation,
which implies −2p/n ∈ Z. Since 1 � p � n − 1, the only
solution is 2p = n. Therefore, with the combination of time-
reversal and inversion symmetry, only C̃4,2 and C̃6,3 can
protect Dirac points that are not at the TRIM points.

For these reasons, in 3D crystal systems with a screw
symmetry C̃n,p = e−ikz

p
n Un, the effective 2D system with fixed

kz �= π , is described by the unitary part Un. Therefore, when
kz �= π the filling anomaly formulas (6) and (9) also apply
to C̃4,2 and C̃6,3. An example is shown in Fig. 4. Here the
dimensional reduction of a 3D model with the space group
P63/m is an effective 2D model, described by the magnetic
layer group p6/m′. Then the rod geometry should preserve
sixfold rotation symmetry.

Such dimensional reduction can break down if there
are other symmetries whose commutation relation with the
screw symmetry C̃n,p is different from the commutation
relation with its rotational part Un. In the simplest case
where the only symmetries are the screw rotation, inversion,
and time-reversal symmetry, such break down appears at
high-symmetry points with kz = π because, as Refs. [28,32]
show, the screw symmetry anticommutes with inversion
symmetry at kz = π , while rotation symmetry commutes with
inversion symmetry at kz = π . This anticommutation relation
gives rise to the four- and higher dimensional co-irreps at the
boundary of BZ. Those Dirac points are beyond the scope
of this manuscript. We provide some known examples in
Appendix A 4 for completeness.

3. Space groups with Dirac points

We have shown that in the presence of T and I, where
(T I )2 = −1, Dirac points not at TRIM points are stabilized
by Cn, n = 3, 4, and 6, or C̃4,2 or C̃6,3. The space groups
containing these symmetries must have a point group contain-
ing I and Cn, n = 3, 4, and 6. There are in total eight point
groups (58 space groups) that have the required symmetries.
We list the point groups here (with corresponding space group
numbers in parenthesis): 4/m (Nos. 83–88), 4/mmm (Nos.
123–142), 3̄ (Nos. 147 and 148), 3̄m (Nos. 162–167), 6/m
(Nos. 175 and 176), 6/mmm (Nos. 191–194), m3̄ (Nos. 200–
206), and m3̄m (Nos. 221–230).

Notice that since a Dirac point requires only the combi-
nation T I , rather than T and I separately, there will also be
Dirac points in magnetic space groups that have T I symme-
try and one of the necessary rotation/screw symmetries. The
minimal magnetic space groups are subgroups of the space
groups we consider in the main text. Thus our classification of
Dirac points by the change in filling anomaly also applies to
those magnetic groups.

4. Dirac points on the BZ boundary

There are other Dirac points in nonsymmorphic space
groups that fall outside of our paradigm. These Dirac points
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FIG. 4. In this schematic diagram, we take space group P63/m (with T 2 = −1) as an example of a case with screw symmetry.
(a) Hexagonal unit cell of space group P63/m. (b) A fixed kz slice with kz �= 0, π forms an effective 2D system described by the magnetic
layer group p6/m′. The atoms project to z = 0 in the unit cell of this 2D system. The interlayer hopping term t ′ = t1eikz/2 + t2e−ikz/2 becomes
an in-plane hopping term. (c) Terminating the 2D models with boundaries that preserve C6 symmetry, yields the spectrum of the rod states for
the 3D model. Red lines indicate possible HOFAs that could appear between two Dirac points (whose projection onto the hinges is labeled by
crosses).

are all at the boundary of the BZ. The reason why the bound-
ary of the BZ is special is because in the interior of the
BZ, the representation of the little group is always the same
as the representation of a point group, which is a subgroup
of the factor group, but on the boundaries of the BZ, the
representations of the nonsymmorphic symmetry operations
will be the projective representations of the point group, which
differ from the ordinary representation at momenta that are
in the interior of the BZ [52]. We now briefly describe some
examples.

Screw symmetries (combined with T I symmetry) can pro-
tect a single Dirac point at a boundary TRIM, as we discussed
in Appendix A 2. These Dirac points are linear in kz, since
they are created by band folding [10]. The bands that cross to
form the Dirac point have different eigenvalues of the screw
symmetry.

Twofold screw symmetries can also protect Dirac points
that are not at TRIMs but are located at the boundary of the
BZ. One example is shown in Ref. [16]. Although Ref. [16]
is focusing on the double Dirac point at a boundary TRIM,
there are also Dirac points on a boundary high-symmetry line
protected by two nonsymmorphic symmetries in space group
P4/ncc (No. 130).

Glide symmetries can also protect Dirac points that are not
at TRIMs but are located at the boundary of the BZ [28].

There can also exist quadratic Dirac points at TRIMs, such
as in Fm3̄m. These also fall outside our paradigm. In space
group Fm3̄m, there can exist a single Dirac point at � in the
BZ. This Dirac point is quadratic in all directions. The four
bands forming the degeneracy comprise a single irrep of the
point group.

APPENDIX B: UNIT CELLS AND WYCKOFF POSITIONS

The projected 2D unit cells and the maximal Wyckoff
positions of the magnetic layer groups p4/m′, p6/m′, p3̄′ and
p4/m1′, p6/m1′, p3̄1′ are shown in Fig. 5. The general Wyck-
off positions are not shown because they do not contribute to
the filling anomaly or the stable topological index [30,37,63].
We now summarize the maximal Wyckoff positions and corre-
sponding site symmetry groups when one of these 2D groups

describes a momentum-space slice of a 3D rod, as depicted in
Fig. 1.

For p4/m′ [Fig. 5(a)], there are three maximal Wyckoff
positions: 1a, 1b, and 2c. The magnetic site symmetry group
of 1a and 1b is 4/m′; the magnetic site symmetry group of 2c
is 2/m′ (generated by C2 and T I).

For p6/m′ [Fig. 5(b)], there are three maximal Wyckoff
positions: 1a, 2b, and 3c. The magnetic site symmetry group
of 1a is 6/m′; The magnetic site symmetry group of 2b is 6̄′
(generated by C6T I); The magnetic site symmetry group of
3c is 2/m′.

For p3̄′ [Fig. 5(b)], there are three maximal Wyckoff po-
sitions: 1a, 2b, and 3c. The magnetic site symmetry group
of 1a is 3̄′; The magnetic site symmetry group of 2b is 3
(generated by C3); The magnetic site symmetry group of 3c
is 1̄′ (generated by T I).

For p4/m1′ [Fig. 5(a)], there are three maximal Wyckoff
positions: 1a, 1b, and 2c. The magnetic site symmetry group
of 1a and 1b is 4/m1′; the magnetic site symmetry group of
2c is 2/m1′ (generated by C2, I and T ).

For p6/m1′ [Fig. 5(b)], there are three maximal Wyckoff
positions: 1a, 2b, and 3c. The magnetic site symmetry group
of 1a is 6/m1′; The magnetic site symmetry group of 2b is 6̄1′
(generated by C6I and T ); The magnetic site symmetry group
of 3c is 2/m1′.

For p3̄1′ [Fig. 5(b)], there are three maximal Wyckoff
positions: 1a, 2b, and 3c. The magnetic site symmetry group
of 1a is 3̄1′; The magnetic site symmetry group of 2b is 31′
(generated by C3 and T ); The magnetic site symmetry group
of 3c is 1̄1′ (generated by I and T ).

FIG. 5. The projected 2D unit cell and Wyckoff positions of
(a) p4/m′ and p4/m1′ and (b) p3̄, p6/m′, p3̄1′, and p6/m1′.
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We have listed the minimal magnetic layer groups that
we consider in the main text. The character tables for site-
symmetry groups utilized are in Tables I and III.

Adding mirror symmetries may change the Wyckoff po-
sitions, but the symmetry indicators for the filling anomaly
[Eqs. (6), (9), and (12)] and the symmetry indices for the
stable topological phases [Eqs. (14)–(16)] that we derived
from the groups without mirror symmetries still apply. This is
because the minimal magnetic layer groups are subgroups of
the groups with mirror symmetries and, importantly, the irreps
of the minimal groups are the same as the irreps of the groups
with mirror symmetry [32]. Further, we can always project
the Wyckoff positions invariant under mirror symmetries to
Wyckoff positions in the groups without mirror symmetries.
After this projection, the symmetry indicator formulas are
valid.

APPENDIX C: DERIVATION OF MODULUS OF η

In this section, we use the representation theory of mag-
netic groups to derive the modulus, r, of the filling anomaly in
Eq. (3). Specifically, we prove that when the symmetry group
contains T I but not T or I separately, the modulus of η in
Eq. (3) is r, while when T and I symmetries are both present,
the modulus of η is 2r. If the crystal has fourfold rotation
symmetry, r = 4, while if it has three- or sixfold rotation
symmetry, r = 6.

We take the two-dimensional finite lattice to be a regular
polygon that preserves the rotation and inversion symmetries,
i.e., a square when n = 4 and a hexagon when n = 3 or 6. The
argument can be generalized to other symmetric lattices. We
denote the (magnetic) point group of the finite lattice by G and
then explain how G completely determines the modulus of the
filling anomaly.

The modulus of filling anomaly is the least number of
electrons that can be added to the boundary of the finite
crystal without breaking symmetry. To preserve symmetry,
the electrons must be added to a Wyckoff position of the
(magnetic) point group G. We define a Wyckoff position of a
point group to be a set of points whose site-symmetry groups
are conjugate; here the site-symmetry group of a particular site
is defined to be the subgroup of the point group that leaves
that site invariant. For the group Cn, the Wyckoff positions
of the point group include the 1a position at the rotation
center, whose site-symmetry group is G, and one nonmaximal
general position, whose site-symmetry group is the identity.
For the group Cnv , which has additional mirror planes, there
is an additional Wyckoff position in each mirror plane, whose
site-symmetry group is generated by the mirror symmetry (for
example, in C2v , there is a 2b position containing (x, 0) and
(−x, 0), invariant under my and a 2c position containing (0, y)
and (0,−y), invariant under mx.)

Since the modulus of the filling anomaly is the least num-
ber of electrons that can be added to the boundary of the
finite crystal while preserving symmetry, those electrons can
be added to any Wyckoff position except the 1a position
(because the 1a position is not at the boundary.) Let q be
the Wyckoff position of smallest multiplicity besides the 1a
position. Then the modulus of η is determined by the product
of the multiplicity of q and the dimension of the smallest

(co)irrep of the (magnetic) site-symmetry group of q. We now
describe how to find the dimension of this (co)irrep.

When T symmetry is present, the smallest co-irrep is
always two-dimensional as required by the Kramers degen-
eracy. The Wyckoff positions and representative coordinates
for p3̄′, p4/m′, and p6/m′ are 6b (x, y, z), 4b (x, y, 0), and
6b (x, y, 0), respectively. Therefore the modulus of filling
anomaly is 12, 8, and 12 respectively.

When T I symmetry is present, but not T , the Wyckoff
positions are the same as the T symmetric cases. Therefore
the choice of q is the same. But the smallest co-irrep is always
one-dimensional because there is not an antiunitary symmetry
that squares to −1 in the site-symmetry group. Specifically,
for p3̄′ there is no antiunitary symmetry that leaves q invari-
ant; for p4/m′ and p6/m′, C2T I is an antiunitary symmetry
that leaves q invariant, but it squares to +1. Thus, in this case,
for n = 3, 4, and 6 the modulus of filling anomaly is 6, 4,
and 6, respectively.

APPENDIX D: EBR ANALYSIS

The analysis of elementary band representations in this
work is based on the (magnetic) topological quantum chem-
istry theory established in Refs. [30,34,64]. For a pedagogical
review, we refer the readers to Ref. [63]. We now summarize
the essential points.

Let A be the integer “EBR matrix” of the symmetry group
under consideration: each column of A is labeled by an EBR
and each row a particular irrep of the little group of a particular
high-symmetry point. The entries in the matrix indicate the
number of times each momentum space irrep appears in the
EBR [63,69,70]. A group of topologically trivial bands can be
expressed as a linear combination of EBRs [30] with integer
coefficients ni. The irreps that appear at high-symmetry points
in the band structure satisfy

v = An, (D1)

where v j is the number of times the jth irrep appears in the
band structure.

Let the Smith normal form of A be given by

A = U −1DV −1, (D2)

where D is a diagonal positive integer matrix with diagonal
entries (d1, . . . , dM , 0, . . . 0), i.e., the first M entries are pos-
itive and the remaining entries are zero, and U,V are integer
matrices invertible over the integers. The stable topological
classification is given by

Zd1 × · · · × ZdM . (D3)

Notice that if dm = 1 for some 1 � m � M, then the mth
component of the classification is trivial (because Z1 has only
one element.) Therefore the classification is determined by
those dm > 1.

We now describe how to determine the topological index of
a group of bands whose symmetry co-reps at high-symmetry
points are given by v; we say that v has a nontrivial stable
index if no integer solution to Eq. (D1) exists and has a triv-
ial stable index otherwise. The mth component of the stable
topological index [Eq. (D3)] of the group of bands labeled by
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v is given by [63,69–72]

index = (Uv)m mod dm, (D4)

where 1 � m � M, and dm > 1. If the index of a given band
representation vanishes and the system is in the trivial phase

(i.e., in the atomic limit), then the valence bands admit a
Wannier representation. The number of Wannier functions
that have Wannier centers at the maximal Wyckoff position
w can be determined by the following formula as discussed in
Ref. [37]:

ew =
∑
i∈w

dim(ρi)[V DpUv]i mod gcd

{(∑
i∈w

dim(ρi )Vi j

)∣∣∣∣∣
j>M

}
. (D5)

The sum over i ∈ w means the sum over EBRs that are
induced from a representation ρi of the site symmetry
group of the Wyckoff position w. Dp is the pseudo-inverse
of D, which is a diagonal matrix with diagonal entries
(d−1

1 , . . . , d−1
M , 0, . . . , 0). gcd means the greatest common di-

visor. This formula also applies to the fragile phase where at
least one component of n is a negative integer [26,37].

In the following sections, we present the EBR matrix A
and Smith decomposition of the magnetic groups that we use
in the main text. The EBR matrices are derived from the
Bilbao Crystallographic Server [64]. Plugging the matrices
D, U , and V into Eq. (D4) and Eq. (D5), we determine the
symmetry indicator formulas for the stable topological indices
in Eqs. (14)–(16), and the filling anomalies in Eqs. (6), (9),
and (12).

1. p4/m′

The basis for band corepresentations (columns) and the
basis for coefficients of EBRs (rows) are

(
E�

1
2
, E�

3
2
, EX

1
2
, EM

1
2
, EM

3
2

)
(D6)

and

(
E1a

1
2

, E1a
3
2

, E1b
1
2

, E1b
3
2

, E2c
1
2

)
. (D7)

In these bases, the EBR matrix is

A =

⎛
⎜⎜⎜⎝

1 0 1 0 1
0 1 0 1 1
1 1 1 1 2
1 0 0 1 1
0 1 1 0 1

⎞
⎟⎟⎟⎠. (D8)

The Smith normal form matrices are

D =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠, (D9)

U =

⎛
⎜⎜⎜⎝

0 0 0 1 0
0 1 0 0 0
1 0 0 −1 0

−1 −1 1 0 0
−1 −1 0 1 1

⎞
⎟⎟⎟⎠, (D10)

V =

⎛
⎜⎜⎜⎝

1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠. (D11)

Since all the nonzero elements in the diagonal matrix
D [Eq. (D9)] are 1, there is no symmetry indicated stable
topological index per Eq. (D3). Plugging these matrices into
Eq. (D5), we get Eqs. (4) and (5) in Sec. II C.

2. p6/m′

The basis for band corepresentations (columns) and the
basis for coefficients of EBRs (rows) are(

E�
3
2
, E�

1
2
, EX

5
2
, EK

3
2
, EK

1
2

)
(D12)

and (
E1a

3
2

, E1a
1
2

, E1a
5
2

, E2b
3
2

, E2b
1
2

⊕ E2b
5
2

)
. (D13)

In these bases, the EBR matrix is

A =

⎛
⎜⎜⎜⎝

1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
1 0 0 0 1
0 1 1 1 1

⎞
⎟⎟⎟⎠. (D14)

The Smith normal form matrices are

D =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎞
⎟⎟⎟⎠, (D15)

U =

⎛
⎜⎜⎜⎝

0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 −1 0

−1 −1 −1 1 1

⎞
⎟⎟⎟⎠, (D16)

V =

⎛
⎜⎜⎜⎝

1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎠. (D17)

Since all the nonzero elements in the diagonal matrix D
[Eq. (D15)] are 1, there is no symmetry indicated stable
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topological index per Eq. (D3). Plugging these matrices into
Eq. (D5), we get Eqs. (7) and (8) in Sec. II C.

3. p3̄′

The basis for band corepresentations (columns) and the
basis for coefficients of EBRs (rows) are

(
E�

1
2
, E�

3
2
, EK

1
2
, EK

3
2
, EK ′

1
2

, EK ′
3
2

)
(D18)

and

(
E1a

1
2

, E1a
3
2

, 1E2b
1
2

, 2E2b
1
2

, E2b
3
2

)
. (D19)

In these bases, the EBR matrix is

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 1 0
0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
1 0 0 1 1
0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎠. (D20)

The Smith normal form matrices are

D =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (D21)

U =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 −1 1 0
0 1 0 0 0 0
1 0 0 0 −1 0
0 −1 0 1 0 0

−1 −1 1 1 0 0
−1 −1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠, (D22)

V =

⎛
⎜⎜⎜⎝

1 0 0 0 −2
0 1 0 0 −1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎠. (D23)

Since all the nonzero elements in the diagonal matrix D
[Eq. (D21)] are 1, there is no symmetry indicated stable
topological index per Eq. (D3). Plugging these matrices into
Eq. (D5), we get Eqs. (12) and (11) in Sec. II C.

4. p4/m1′

The basis for band corepresentations (columns) and the
basis for coefficients of EBRs (rows) are

(
E�

1
2 g, E�

1
2 u, E�

3
2 g, E�

3
2 u, EX

g , EX
u , EM

1
2 g, EM

1
2 u, EM

3
2 g, EM

3
2 u

)
(D24)

and

(
E1a

1
2 g, E1a

1
2 u, E1a

3
2 g, E1a

3
2 u, E1b

1
2 g, E1b

1
2 u, E1b

3
2 g, E1b

3
2 u, E2c

g , E2c
u

)
. (D25)

In these bases, the EBR matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
1 0 1 0 0 1 0 1 1 1
0 1 0 1 1 0 1 0 1 1
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D26)
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The Smith normal form matrices are

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D27)

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 −1 0 1 0 −1 0 0
1 1 1 0 0 0 −1 −1 −1 0
0 0 1 −1 0 1 0 −1 −1 0
1 0 −1 2 0 −2 −1 2 1 0

−1 −1 −1 −1 1 1 0 0 0 0
−1 −1 −1 −1 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D28)

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 −1 −1
0 1 0 0 0 0 −1 −2 −1 −1
0 0 1 0 0 0 −1 −1 −1 −1
0 0 0 1 0 0 0 0 −1 −1
0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 1 −1 −2 1 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 2 0 1
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D29)

The diagonal entry of 4 in the matrix D [Eq. (D27)] shows there is one symmetry indicated stable topological index per
Eq. (D4). Plugging these matrices into Eq. (D4), we get Eq. (14) in Sec. III. It is a mirror Chern number, determined by
symmetries mod 4.

5. p6/m1′

The basis for band corepresentations (columns) and the basis for coefficients of EBRs (rows) are(
E�

3
2 g, E�

3
2 u, E�

1
2 g, E�

1
2 u, E�

5
2 g

, E�
5
2 u

, EX
g , EX

u , EM
3
2
, EM

1
2
, EM

5
2

)
(D30)

and (
E1a

3
2 g, E1a

3
2 u, E1a

1
2 g, E1a

1
2 u, E1a

5
2 g

, E1a
5
2 u

, E2b
3
2

, E2b
1
2

, E2b
5
2

, E3c
g , E3c

u

)
. (D31)

In these bases, the EBR matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 1 0 0 1
1 0 1 0 1 0 1 1 1 1 2
0 1 0 1 0 1 1 1 1 2 1
1 1 0 0 0 0 0 1 1 1 1
0 0 1 0 0 1 1 0 1 1 1
0 0 0 1 1 0 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D32)
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The Smith normal form matrices are

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D33)

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1 0 0 0 −1 0
0 1 1 0 0 1 0 0 0 −1 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 1 0 0 −1 −1 0
1 −1 0 0 2 −2 −2 0 1 2 0
1 −2 −1 0 3 −4 −3 0 2 4 0

−1 −1 −1 −1 −1 −1 1 1 0 0 0
−1 −1 −1 −1 −1 −1 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D34)

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 −5 19 −1 −1
0 1 0 0 0 0 0 −4 16 −1 −1
0 0 1 0 0 0 0 −4 15 −1 −1
0 0 0 1 0 0 0 −2 8 −1 −1
0 0 0 0 1 0 0 −3 11 −1 −1
0 0 0 0 0 1 0 −3 12 −1 −1
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 2 −8 1 0
0 0 0 0 0 0 0 1 −4 1 0
0 0 0 0 0 0 0 2 −7 0 1
0 0 0 0 0 0 0 1 −4 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D35)

The diagonal entry 6 in the matrix D [Eq. (D33)] shows there is one symmetry indicated stable topological index per Eq. (D4).
Plugging these matrices into Eq. (D4), we get Eq. (15) in Sec. III. It is the mirror Chern number, determined by symmetries
mod 6.

6. p3̄1′

The basis for band corepresentations (columns) and the
basis for coefficients of EBRs (rows) are(

E�
1
2 g, E�

1
2 u, E�

3
2 g, E�

3
2 u, EX

g , EX
u , EM

1
2
, EM

3
2

)
(D36)

and (
E1a

1
2 g, E1a

1
2 u, E1a

3
2 g, E1a

3
2 u, E2b

1
2

, E2b
3
2

, E3c
g , E3c

u

)
. (D37)

In these bases, the EBR matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 2 0
0 1 0 0 1 0 0 2
0 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1
1 0 1 0 1 1 1 2
0 1 0 1 1 1 2 1
1 1 0 0 1 1 2 2
0 0 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D38)

The Smith normal form matrices are

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D39)

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 −1 1 0
−1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 −1 0
0 −1 0 −1 0 1 0 0

−1 −1 −1 −1 1 1 0 0
−1 −1 −1 −1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(D40)
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V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 −1 −2
0 1 0 0 0 0 −1 −2
0 0 1 0 0 −1 −1 −1
0 0 0 1 0 0 −1 −1
0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D41)

The diagonal entry 2 in the matrix D [Eq. (D39)] shows
there is one symmetry indicated stable topological index per
Eq. (D4). Plugging these matrices into Eq. (D4), we get
Eq. (16) in Sec. III. It is the mod 2 strong topological insulator
index.

APPENDIX E: BULK AND SURFACE BAND STRUCTURES
AND PARAMETER CHOICES FOR

TIGHT-BINDING MODELS

In this section, we present more information about the two
models that we presented in Sec. V.

For both models, the parameters are chosen to satisfy
|m + 6M̃2| < |2M̃1|, so that there is one Dirac point along the
high-symmetry line �(�A) (and a pair of Dirac points inside
the first BZ). The parameters for the first model as shown in
Sec. V A are M̃2 = −1, m = 4, M̃1 = −2.5, Ã = 1, B̃ = 5.

FIG. 6. Bulk and surface band structures for models of Dirac
points in P6/mmm. (a) The bulk BZ. (b) The surface BZ. This is
a side surface with the normal a1 = (1, 0, 0). The L and M points of
the bulk BZ are projected to R̄ and X̄ , respectively. (c) Bulk spectrum
of the first model Eq. (24). (d) Surface spectrum of the first model.
(e) Bulk spectrum of the second model. (f) Surface spectrum of the
second model Eq. (31).

TABLE VI. The symmetry corepresentations of the occupied
bands at HSPs in the first model. The last three columns are the
co-reps at the nearby momentum k = HSP ± δkz.

HSP E 1
2 g E 1

2 u E 3
2 g E 3

2 u E 5
2 g E 5

2 u E 1
2

E 3
2

E 5
2

� 1 1
A 1 1

HSP E 1
2

E 3
2

E 5
2

E 1
2

E 3
2

K 1 1
H 1 1

HSP E 1
2 g E 1

2 u E 1
2

M 1 1
L 1 1

The parameters for the second model as shown in Sec. V B are
M̃2 = −1, m = 4, M̃1 = −2.5, Ã = 5, B̃1 = 1, and B̃2 = 1.

The two models both preserve space group P6/mmm. The
unit cell of this space group is shown in Fig. 2(a). The bulk BZ
is shown in Fig. 6(a). The bulk spectrum for the two models
are shown in Figs. 6(c) and 6(e) respectively.

We terminate the 3D lattice in the a1 = (1, 0, 0) direction,
but keep the remaining directions infinite. The corresponding
surface BZ is shown in Fig. 2(b). The surface spectrum for
the two models are shown in Figs. 6(d) and 6(f) respectively.
These surface states impact the rod band structure because
they project into the rod spectrum when the crystal is ter-
minated in the a1 and a2 directions as Fig. 2(b) shows. The
computation of bulk and surface spectra are implemented with
PYTHON package PYTHTB [73].

The high-symmetry points (HSPs) that we are interested
in are � = (0, 0, 0), A = (0, 0, π ), K = (4π/3, 0, 0),
H = (4π/3, 0, π ), M = (π,−π/

√
3, 0), and L =

(π,−π/
√

3, π ). The corepresentations of the occupied
bands are the labeled by the symmetry corepresentations of
the little co-groups at those momenta. We can use Eq. (15)
to determine the stable index, which is the mirror Chern
number Cm, at the two TRIM planes. The high-symmetry
lines that can host Dirac points are � = �A and P = KH .
The corepresentations at the high-symmetry lines can be

TABLE VII. The symmetry corepresentations of the occupied
bands at HSPs in the second model. The last three columns are the
co-reps at the nearby momentum k = HSP ± δkz.

HSP E 1
2 g E 1

2 u E 3
2 g E 3

2 u E 5
2 g E 5

2 u E 1
2

E 3
2

E 5
2

� 1 1
A 1 1

HSP E 1
2

E 3
2

E 5
2

E 1
2

E 3
2

K 1 1
H 1 1

HSP E 1
2 g E 1

2 u E 1
2

M 1 1
L 1 1
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determined by compatibility condition with the symmetry
corepresentations at the HSP. We can use Eq. (9) to determine
the filling anomalies at the high-symmetry lines. Finally,
notice there is a Dirac point at one of the high-symmetry
lines for each model. The co-irreps of the crossing bands
can be seen from the Tables VI and VII, which show that
the occupied bands have different co-reps at � and A.
Therefore there must be a Dirac point at some momenta
±DP = (0, 0,±k0) on the high-symmetry line �.

The symmetry corepresentations of the occupied bands at
HSPs in the first model is shown in Table VI. From the sym-
metry indicators for the stable 2D topological index and the
filling anomaly, we conclude that: the stable index at kz = 0
plane is Cm = 1 mod 6 (ν = 1 mod 2) per Eq. (15); the
stable index at kz = π plane is Cm = 0 mod 6 per Eq. (15);
the filling anomaly between � − DP is η = 2 mod 6 per

Eq. (9); the filling anomaly between DP − A is η = 0 mod 6
per Eq. (9).

The symmetry corepresentations of the occupied bands at
HSPs in the second model is shown in Table VII. From the
symmetry indicators for the stable 2D topological index and
the filling anomaly, we conclude that: the stable index at kz =
0 plane is Cm = 3 mod 6 (ν = 1 mod 2) per Eq. (15); the
stable index at kz = π plane is Cm = 0 mod 6 per Eq. (15);
the filling anomaly between � − DP is η = 0 mod 6 per
Eq. (9); the filling anomaly between DP − A is also η = 0
mod 6 per Eq. (9).

The symmetry indicators we calculate here agree with
the numerical computation of the rod spectrum of the two
models as we plot in Fig. 3. The change in filling anomalies
and the change in stable topological indices also agree with
Table V.
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