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Abstract
A finite strain shear modified Gurson–Tvergaard–Needleman (GTN) model
based on multiplicative elastoplasticity, together with its implementation
details, is presented. This GTN model which can simulate the loss of
load-carrying capacity of porous metals through nucleation, growth, shear-
ing, and coalescence of voids is incorporated in an optimization frame-
work for designing structures with optimal plastic energy dissipation capac-
ity while satisfying prescribed constraints on material usage and damage. An
adjoint method-based analytical path-dependent sensitivity analysis is pre-
sented that can be used with gradient-based optimization algorithms. Using
the proposed topology optimization formulations, the optimized designs exhibit
well-constrained fracture at the design displacements. Ultimate performance
analyses of the optimized designs demonstrate that the fracture-resistant designs
can have higher ductility, ultimate strength as well as improved energy dissi-
pation, as compared to the designs guided by von Mises plasticity where no
fracture mechanisms are modeled. Moreover, due to finite deformations, a frac-
ture can initiate at multiple locations and critical fracture locations can change
during the loading process. In addition, different failure modes are revealed from
different optimized designs under large deformations.
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1 INTRODUCTION

Design of efficient structures toward prescribed objectives, such as optimal energy dissipation, stiffness, etc., with
well-controlled damage or fracture behavior is an important task in many engineering applications. In many cases,
due to the complex physics of material damage and the presence of multiple conflicting design constraints, traditional
experimental and/or empirical design approaches are not suitable for this task. With the development of advanced com-
putational and design optimization methods, however, this design goal can be now accomplished and requires a careful
formulation of the inverse design problem that involves modeling of the underlying damage mechanisms. Among the
three main categories of structural optimization—that is, sizing, shape, and topology—the topology optimization con-
siders both the connectivity of structural features as well as the size and shape of the features, and thus offers greater
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flexibility and design freedom. Topology optimization has also undergone significant advancements following the pio-
neering work by Bendsøe and Kikuchi,1 for instance, see References 2 and 3 for an overview of this area. In a density-based
topology optimization approach, which is the focus of this study, a structure is parameterized by discretized density field
via finite elements, which is then optimized toward minimizing a prescribed objective function while satisfying a set of
predefined constraints. For instance, to prevent material failure due to yielding or brittle fracture, studies have considered
stress-based topology optimization,4,5 where linear elastic material behavior is assumed with a failure criterion based on
von Mises4,5 and Drucker–Prager models,6 among others. Although promising, this design approach is confined to elastic
material behavior, and therefore, cannot account for inelastic processes in ductile materials, such as elastoplastic energy
dissipation and ductile damage accumulation.

Consideration of inelastic material response in topology optimization toward the development of fracture-resistant
designs is challenging, and entails path-dependent sensitivity analysis,7,8 and also leads to related issues such as con-
vergence in finite element analysis due to material damage9 and complex material interpolation schemes for inelastic
constitutive models.10,11 In the past, fracture-resistant structural designs have been explored with various continuum
damage mechanics (CDM) based models, for example, ductile designs with Lemaitre and nonlocal CDM models,9,11,12

brittle fracture mitigated designs with nonlocal CDM models10,13 and phase-field models.14–16 For instance, Kato
et al.10 designed nonlinear elastoplastic reinforced composites by maximizing the total work given an upper limit
on material volume, while Amir and Sigmund13 investigated the stiffness design of reinforced concrete structures
with constrained material volume, both with nonlocal inelastic-damage model for concrete while considering differ-
ent models for reinforcement and concrete-reinforcement interface. Kai and Waisman12 and Russ and Waisman14

considered topological design for minimizing material usage with stiffness and damage constraints where material
damage is modeled with nonlocal damage and phase-field fracture models, respectively; Li et al.9,11 employed topol-
ogy optimization for maximizing plastic energy dissipation with constrained material volume and damage using local
and nonlocal damage models. In a recent study, Li and Khandelwal17 investigated elastoplastic energy-absorbing
designs with controlled damage with a micromechanics-based Gurson–Tvergaard–Needleman porous plasticity model.
Studies have also exploited uncoupled damage models, for example, the Johnson–Cook failure criterion and Crach-
FEM fracture model for damage-proof designs.18–20 Irrespective of these advancements, all the previous works on
the fracture-resistant topology optimization are confined to the small strain regime. However, fracture initiation for
many ductile metals (e.g., structural grade steels ASTM A997, A36), is often preceded by large (plastic) deforma-
tion, and the small strain assumption might not be applicable. While a similar design philosophy can be used with
finite deformation-based ductile fracture models, such an extension is yet not available and is the focus of this
study.

Ductile damage models for metals under finite deformations consider the progressive loss of load-carrying capac-
ity due to nucleation, shearing, growth, and coalescence of micro voids.21–23 For micromechanically motived damage
approaches, along with the earlier works,24,25 Gurson26 first established a yield criterion for porous solids based on
homogenization of an existing spherical void embedded in a von Mises plastic solid. With a pre-existing void that is
assumed to remain spherical during loading, the homogenized yield surface is pressure-sensitive and shrinks as the
voids grow. Later, modifications to the Gurson model were made by Chu and Needleman,27 Tvergaard,28 and Tver-
gaard and Needleman29 to account for void nucleation and coalescence. The resulted model is generally referred to as
the Gurson–Tvergaard–Needleman (GTN) model and is mostly used for modeling ductile fracture under high-stress tri-
axiality. Under low-stress triaxiality, the influence of void shape change (elongation) due to shear deformations was
investigated in fracture tests,30,31 where the influence of the third deviatoric stress invariant (or Lode parameter) on the
void shape evolution and coalescence was demonstrated. Based on these results, various shear modifications have been
proposed, for example, Xue,32 Nahshon and Hutchinson,33 Malcher et al.,34 Zhou et al.,35 and Dæhli et al.36 A review of
the porous plasticity for the ductile damage modeling can be found in Reference 21. Despite this progress, most GTN-type
model implementations in the literature are confined to the small strain regime.37–39 As ductile damage often accompanies
large deformation, the formulation and implementation of ductile fracture models in the finite strain regime are crucial.
More importantly, the predictive capabilities of these advanced finite strain-based damage models can be employed in an
inverse topology design framework, wherein the goal is to design fracture/damage resistant elastoplastic energy-dissipating
systems under large deformations. In essence, the design task will entail designing a structural topology guided by the
physics of finite strain elastoplastic damage such that the designed structures have desirable performance measured in
terms of fracture-resistance and energy dissipation.

The contribution of this study is to formulate the shear-modified GTN model proposed by Nielsen and Tvergaard40 in
a consistent finite strain framework with numerical implementation details and to extend the previous work on the small
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strain GTN guided fracture-resistant designs17 to finite strain applications. Specifically, a finite-strain shear-modified
GTN model is first developed, which is formulated based on multiplicative elasto-plasticity and combines different fea-
tures, that is, shear modifications33,40 and numerical improvements,41 from the previous studies. A series of 2D and 3D
numerical simulations are carried out to demonstrate the performance of the implemented model. This finite strain based
ductile fracture model is then incorporated in a density-based topology optimization framework. To this end, based on this
model, an analytical path-dependent sensitivity calculation using an adjoint method is derived. With the incorporation
of techniques such as adaptive linear energy interpolation for addressing mesh distortion42 and p-norm approximation
of maximum damage field,5 the design of fracture-resistant energy-dissipating structures is explored under finite strains.
Ultimate postperformance analysis of the optimized designs is also carried out to investigate different critical fracture
mechanisms.

The rest of the article is organized as follows. In Section 2, a finite strain shear modified GTN model is presented.
A brief review of F-bar element formulation that is used in the numerical implementation is presented in Section 3. A
density-based topology optimization framework for the fracture-resistant design task is developed in Section 4. Section 5
gives the derivation of the path-dependent sensitivity analysis. In Section 6, a series of numerical examples are carried
out to verify model implementation and to demonstrate the model performance. In Section 7, the path-dependent sen-
sitivity calculation is verified together with two design optimization examples. Finally, concluding remarks are given
Section 8.

2 FINITE STRAIN SHEAR MODIFIED GTN MODEL

A finite strain shear modified GTN model based on the multiplicative elastoplastic formulation is presented in this
section.

2.1 Kinematics

Let Ω0 ∈ R3 be the reference configuration of a continuum body of interest with X representing arbitrary material point
position in Ω0, that is, X ∈ Ω0. A motion of the body that carries it from its reference configuration to its current configu-
ration Ωt ∈ R3 can be described by a smooth one-to-one mapping x = 𝝋(X, t) where t ∈ R+ denotes time. The associated
local deformation gradient is defined by F ≔ 𝛁X𝝋 with det F > 0. With the multiplicative decomposition assumption,43

the deformation gradient is split into elastic and inelastic parts by

F = Fe.Fp, (1)

where Fp represents a local inelastic deformation that can be attributed to dislocations of the crystal lattice from a
micromechanics viewpoint and Fe represents elastic distortions. Other strain measures that will be useful in the follow-
ing model descriptions are plastic right Cauchy–Green tensor Cp and left elastic Cauchy–Green tensor (also called elastic
Finger tensor) be that are defined, respectively, as.

Cp = FpT
.Fp and be = Fe.FeT (2)

which are related to each other by pull-back and push-forward operations.

Cp−1 = F−1.be.F−T and be = F.Cp−1
.FT . (3)

The material time derivative of the elastic Finger tensor ḃe can be expressed as.

ḃe = v
[
be] + l.be + be.lT with v

[
be] = F.

̇
Cp−1.FT , (4)

wherev
[
be] denotes Lie derivative, l the spatial velocity gradient given by l = Ḟ.F−1 and

̇
Cp−1 the material time derivative

of the inverse of Cp.



4 ZHANG and KHANDELWAL

2.2 Free energy

The Helmholtz free energy for isotropic elastic–plastic solids is assumed to take the form

𝜓 = 𝜓 e (be) + 𝜓p(𝛼), (5)

where 𝜓 e (be) denotes elastic strain energy at macroscale while 𝜓p(𝛼) accounts for isotropic hardening, and 𝛼 is the
microscopic effective plastic strain of the undamaged matrix material. It is noted that kinematic hardening is not included
in the current framework. The elastic strain energy function used in this study is defined as.41,44

𝜓 e (be) = 𝜓 e
vol

(
Je) + 𝜓 e

iso

(
b̂

e)
,

𝜓 e
vol

(
Je) = 1

2
𝜅
(
ln Je)2

, (6)

𝜓 e
iso

(
b̂

e)
= 1

4
𝜇

[
I ∶

(
lnb̂

e)2
]
,

where Je ≔ det Fe represents elastic volumetric deformation and b̂
e ≔ Je− 2

3 be quantifies isochoric deformations. Here, 𝜅
and 𝜇 are the bulk and shear modulus. The use of logarithmic Hencky strains ln Je and ln b̂

e
in expressing the stored

energy is advantageous for numerical implementations, as shown in Appendix A. The energy due to plastic hardening
𝜓p(𝛼) is not explicitly specified here, instead, its derivative 𝜕𝜓p∕𝜕𝛼 is prescribed in the next section, motivated from a
thermodynamics perspective.

2.3 Thermodynamics

Thermodynamics require energy dissipation Dint to be nonnegative during any deformation, that is,

Dint = 𝝉 ∶ d − 𝜓̇ =
(
𝝉 − 2𝜕𝜓

e

𝜕be .b
e
)

∶ d −
(

2𝜕𝜓
e

𝜕be .b
e
)

∶
(1

2
v

[
be] .be−1

)
− 𝜕𝜓

p

𝜕𝛼
𝛼̇ ≥ 0, (7)

where d = 1
2

(
l + lT) is the rate of deformation tensor. Equation (7) utilizes the decomposition of ḃe in Equation (4) and

the fact that 𝜕𝜓 e∕𝜕be commutes with be due to isotropy. Following the standard Coleman–Noll procedure,45 the following
relationships can be established

𝝉 = 2𝜕𝜓
e

𝜕be .b
e, (8)

Dint = 𝝉 ∶
(
−1

2
v

[
be] .be−1

)
+ h𝛼̇ ≥ 0, (9)

where

h ≔ −𝜕𝜓
p

𝜕𝛼
, (10)

specifies isotropic hardening rule, where h is the thermodynamic variable conjugate to 𝛼. A function with combined linear
and saturation hardening terms are used to describe this variable, that is,

h(𝛼) = k1𝛼 + k2(1 − exp(−𝛿𝛼)), (11)

where k1 and k2 control the magnitudes of the linear hardening and saturated hardening, respectively, and 𝛿 controls the
saturation rate.

2.4 Yield criterion

The yield criterion for porous metals was first proposed by Gurson,26 which was later modified by Chu and Needleman27

for void nucleation, Tvergaard and Needleman29 for void coalescence, Nahshon and Hutchinson,33 and Nielsen and
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Tvergaard40 for void shearing. As suggested by Mahnken,41 the yield function is formulated in a linear form, as opposed
to quadratic form, as

𝜙 = ‖𝝉dev‖ −
√

2
3

sign(z)
√|z| 𝜁J (12)

with

z = 1 + q3f ∗2 − 2q1f ∗Cosh[M], (13)

𝜁 (𝛼) = 𝜎y0 + h(𝛼), (14)

f ∗ =

{
f if f ≤ fC

fC + K (f − fC) if f > fC
with K =

f ∗U − fC

fF − fC
, (15)

Cosh[M] ≔
{

cosh M if M ≤ Mc

cosh Mc + sinh Mc (M − Mc) + 1
2

cosh Mc(M − Mc)2 if M > Mc

M = 3
2

q2
1
𝜁

𝜏m
J
,

(16)

where ||.|| is the Euclidean norm that results in isotropic yield criterion, and extension to anisotropic yield criterion can be
found in References 39 and 46. Here, 𝜏m = tr(𝝉)∕3 is the Kirchhoff pressure and 𝝉dev = 𝝉 − 𝜏mI is the deviatoric part of 𝝉 ;
J = det F is the Jacobian; 𝜁 is the microscopic effective stress of the undamaged matrix material with 𝜎y0 the initial yield
stress (the relationship between 𝜁 and 𝛼 is characterized as a uniaxial stress–strain curve); f represents void volume frac-
tion; q1, q2, and q3 are model parameters; parameter fC denotes the critical void volume fraction beyond which accelerated
(by coefficient K > 1) void volume fraction growth is expected due to voids coalescence; parameter fF represents the void
volume fraction at final fracture (f = fF); f ∗U stands for the ultimate value of the modified void volume fraction (f ∗ = f ∗U )
at which macroscopic stress carrying capacity vanishes. As a result, the coefficient K is determined by f ∗ (fF) = f ∗U . The
value of f ∗U can be determined through lim𝝉→0 𝜙 (f ∗) = 0, which gives f ∗U = 1∕q1 when q3 = q2

1 (chosen in this study). The
modification of cosh(⋅) to Cosh(⋅) is suggested in Reference 41 for numerical stability, where Mc is a threshold parameter.

2.5 Flow rule and void volume fraction evolution law

The flow rule for the macroscopic plastic strain (Fp or Cp or equivalently be) is derived following the principle of maximum
dissipation,47 that is,

−1
2
v

[
be] .be−1 = 𝛾A with A ≔ 𝜕𝜙

𝜕𝝉
, (17)

where 𝛾 is the plastic multiplier. The flow rule for the microscopic effective plastic strain is obtained by enforcing the
condition that the plastic work in the microscopic matrix material is equal to the macroscopic plastic work, that is,
(1 − f )𝜁𝛼̇ = 1

J
𝝉 ∶ 𝛾A, which yields

𝛼̇ = 𝛾

(1 − f )𝜁J
𝝉 ∶ A. (18)

The flow rule for the void volume fraction ḟ is considered to be the sum of contributions from void growth (ḟ g), nucleation
(ḟ n) and shearing (ḟ s)

ḟ = ḟ g + 𝓀ḟ n + ḟ s with 𝓀 (𝜏m) =

{
1 if 𝜏m ≥ 0
0 if 𝜏m < 0

, (19)

where the parameter 𝓀 is used to control the void nucleation rate such that nucleation only happens under tension, that
is, positive hydrostatic stress. In Equation (19), the void growth rate is governed by the conservation of mass
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ḟ g = 𝛾(1 − f )A ∶ I (20)

and the void nucleation and shearing are postulated, respectively, as27

ḟ n = 𝛼̇ = 𝛾

(1 − f )𝜁J
𝝉 ∶ A with  ≔ fN

sN
√

2𝜋
e−

1
2

(
𝛼−𝛼N

sN

)2

(21)

and33,40

ḟ s = 𝛾k𝜔f𝜔0
𝝉dev

𝜏e
∶ A with 𝜏e =

√
3
2
‖𝝉dev‖ and 𝜔0 = 𝜔(𝝉)𝛺(T) (22)

with

𝜔(𝝉) = 1 −
(

27
2

J̌3

𝜏3
e

)2

with J̌3 = det 𝝉dev (23)

Ω(T) =

⎧⎪⎪⎨⎪⎪⎩
1 for T < T1

(T−T2)2

ΔT2

[
3 + 2(T−T2)

ΔT

]
for T1 ≤ T ≤ T2

0 for T > T2

with ΔT = T2 − T1,

T ≔ 𝜏m
𝜏e

(24)

where in the void nucleation term in Equation (21) suggested by Chu and Needleman,27 fN denotes the void volume frac-
tion to be nucleated, sN the standard deviation and 𝛼N the mean nucleation strain. The shear modification in Equation (22)
introduced by Nahshon and Hutchinson33 is to account for softening and fracture under shear deformation which was
later modified by adding function Ω(T) by Nielsen and Tvergaard40 for eliminating shear modifications at high-stress
triaxiality. The motivation of function 𝜔(𝝉) ∈ [0, 1] is to distinguish axisymmetric stress states (𝜔 = 0) and all states con-
sisting of a pure shear stress plus a hydrostatic pressure (𝜔 = 1).33 However, as discussed in Nielsen and Tvergaard,40 for
some stress states high triaxiality can be along with nonzero 𝜔 value. To control the effect of the shear modification term
with the stress triaxiality T, function Ω(T) is introduced by Nielsen and Tvergaard.40 Here, k𝜔 controls the magnitude of
damage growth rate in pure shear states, T1 and T2 are chosen parameters (T1 < T2) such that the shear modification by
Nahshon and Hutchinson33 is used when T ≤ T1 and is not present when T ≥ T2.

40 The integration of these rate equations
in Equations (17)–(19) is given in Appendix A.

2.6 KKT and consistency conditions

The plastic loading and unloading processes are described by Karush–Kuhn–Tucker (KKT) conditions

𝛾 ≥ 0, 𝜙 ≤ 0, 𝛾𝜙 = 0 (25)

and the consistency condition

𝛾𝜙̇ = 0. (26)

2.7 Remarks

The GTN model will degenerate to a finite strain J2 plasticity model if the parameters

f0 = q1 = q3 = fN = k𝜔 = 0 (27)

are chosen.
The numerical implementation details of the shear modified GTN model are given in Appendix A.
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3 FINITE ELEMENT ANALYSIS WITH F-BAR FORMULATION

In the finite element simulations with the GTN model, both 3-D and 2-D plane strain conditions are considered, and F-bar
(4-node quadrilateral for 2-D and 8-node brick for 3-D) elements are used. Although the plastic flow in GTN model is
compressible and volumetric locking might not be severe, F-bar element formulation48 is still used in this study in order
to handle locking in the case of J2 plasticity. For completeness, a brief review of F-bar formulation is given here. First, a
modified deformation gradient F is defined as

F =

{
r1∕2F (in − plane part) for 2 − D plane strain

r1∕3F for 3 − D
with r = detF0

detF

, (28)

where F and F0 are the deformation gradients evaluated at the current quadrature point and the centroid of the element,
respectively. The first Piola–Kirchhoff (PK) stress P is then computed as

P =

{
r−1∕2P (in − plane part) for 2 − D plane strain

r−2∕3P for 3 − D
, (29)

where P is the first PK stress evaluated by any (elastic or inelastic) constitutive model with the deformation gradient input
as F.

The finite element discretization of the weak form of balance of linear momentum gives the global equilibrium
equations

R(u) = Fint(u) − Fext = 0,

Fint(u) =
nele
e=1

Fe
int (ue) ,Fe

int (ue) = ∫𝛺e
0

BTP dV, (30)

where B denotes the derivative of shape functions and Fext is the external force vector evaluated in the standard way.

4 DENSITY-BASED TOPOLOGY OPTIMIZATION

In the density-based topology optimization,2 a design is described by an element-wise constant density field 𝜌(X)
that indicates the presence (𝜌 = 1) or absence (𝜌 = 0) of the material in an element. To accommodate gradient-based
optimizers, the discrete density variables are relaxed to continuous values, that is, 𝜌 ∈ [0, 1], where 0 ≤ 𝜌 ≤ 1 rep-
resents the mixture of void and solid phases. This density-based approach for structural topology optimization is
illustrated in Figure 1, where the design domain is described by a FE discretized density field that is optimized for
predefined objective and constraint functions. During the optimization process, FE analysis and sensitivity analysis
are carried out at each optimization iteration to examine the optimality conditions and to provide gradient informa-
tion for the next design update. The conceptual design is provided by the final optimized topology but with poten-
tial gray areas, which is further postprocessed via B-splines fitting to obtain the discrete design that can be readily
manufactured.

4.1 Topology optimization formulation

In this study, the objective is to maximize the plastic work together with constraints on material damage (f ) and material
usage. To this end, the mathematical optimization formulation reads

min
x

f0(x) = −W p

s.t. R(u) = 0 (31)
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F I G U R E 1 Flow chart of the structural topology optimization

H
(

Cp, 𝛼, f , …
)
= 0

f1(x) =
Dmax

D
− 1 ≤ 0

f2(x) = 1
V

nele∑
e=1
𝜌(x)ve − Vf ≤ 0

0 ≤ xe ≤ 1, e = 1, … ,nele,

where the equality constraints R(u) = 0 and H
(

Cp, 𝛼, f , …
)
= 0 that represents the structural global equilibrium and

local constitutive equations are not enforced by the optimization algorithm, but instead are satisfied by solving the
structural responses (displacement u and internal variables e.g., Cp, 𝛼, f , … ) that in turn govern the objective and con-
straint functions values. This nested solution approach is commonly used in large-scale topology optimization.49 Here
xe (e = 1, … ,nele) denote the design variables that are mapped to the density variables 𝜌e (e = 1, … ,nele) through the
density filter.50

𝝆 = Wx with Wij =
wijvj∑nele

k=1wikvk
and wij = max

(
rmin − ‖‖Xi − Xj‖‖ , 0) (32)

in which rmin is the filter radius, eth element and Xi the coordinates of the centroid of the ith element. The density filter
is used to address mesh dependency and checkerboard pattern of the optimized topology.51

The plastic work, W p, during the loading process t ∈ [0,T] is calculated by

W p = ∫T ∫𝛺0

(𝝉 ∶ 𝛾A) dV ≈
n∑

k=1

nele∑
e=1

nipt∑
s=1
𝜌

pw
e

(
𝝉k

es
∶ Δ𝛾k

es
Ak

es

)
wes , (33)

where the subscripts s, e, and k denote the indices for integration point, element, and loading step, respectively. Here,
wes is the product of Jacobian and quadrature weight at sth integration point in eth element. A penalization on the
intermediate densities (𝜌 < 1) with power pw > 1 is introduced for optimization purposes for suppressing intermediate
densities.

The maximum damage Dmax is approximated through a p-norm function of the void volume fraction by

Dmax =

( nele∑
e=1

( nipt∑
s=1

(
f n
es

)pd

))1∕pd

, (34)

where a large value is usually used for the power pd to approximate the maximum value of void volume fraction f , which
is the measure of damage in the domain, at the last step n.



ZHANG and KHANDELWAL 9

4.2 Material interpolation by density variable

The dependence of the objective and constraint functions on the design variables x is through the interpolation of
the material constitutive parameters by the density variables 𝝆 as well as penalizations in Equations (33) and (34).
Table 3 lists the model parameters that are used in the shear modified GTN model for topology optimization, which
are taken as the model parameters for the solid elements. For intermediate densities 𝜌 < 1, the model parameters are
interpolated as

E(𝜌) =
[
𝜀1 + (1 − 𝜀1) 𝜌p1

]
E,

𝜎y0(𝜌) =
[
𝜀2 + (1 − 𝜀2) 𝜌p2

]
𝜎y0, (35)

k1(𝜌) = [𝜀1 + (1 − 𝜀1) 𝜌p2] k1,

k2(𝜌) = [𝜀1 + (1 − 𝜀1) 𝜌p2] k2,

while other parameters remain constant irrespective of the density values. Here, 𝜀1 and 𝜀2 are lower bounds, p1 and p2
are penalization powers.

To ensure the convergence of finite element analysis, especially during early stage of optimization, where many inter-
mediate density elements are present, a reduction of the damage evolution in the intermediate densities is introduced by
replacing Equation (19) with

ḟ = 𝜌pf
(

ḟ g + 𝓀ḟ n + ḟ s
)
, (36)

where penalization power pf changes from greater than zero to zero during the optimization via continuation. Note that
Equation (19) is recovered when pf = 0.

4.3 Adaptive linear energy interpolation for mesh distortion

In the density-based topology optimization, due to the material interpolation by density (see Section 4.2), ele-
ments with low density have low stiffness. As a result, during the loading process, these low-stiffness elements
can undergo large distortions, which can hinder the convergence of finite element analysis. To address that, a
linear energy interpolation scheme that is first proposed by Wang et al.52 and later extended to an adaptive
scheme in Zhang et al.42 is utilized. The basic idea is to split the element deformation energy into two parts,
one formulated with small deformation theory and the other one with finite deformation theory. The interpo-
lation of the element energy is based on its density variable 𝜌 such that when 𝜌 = 0 small deformation the-
ory is used, while when 𝜌 = 1 finite deformation theory is used. To this end, the deformation gradient F is
interpolated as

F = I + 𝜂𝛻Xu with 𝜂(𝜌) =
exp(𝛽𝜌)

exp(c𝛽) + exp(𝛽𝜌)
, (37)

where c and 𝛽 are interpolation parameters chosen as 𝛽 = 120 and c = 0.08 with c value adaptively updated (if needed)
using the scheme proposed in Zhang et al.42 It should be noted that the F-bar formulation in Section 3 is based on
the interpolated deformation gradient in Equation (37). The element internal force in Equation (30) is accordingly
modified to

Fe
int = ∫𝛺e

0

𝜂BTPdV + ∫𝛺e
0

(
1 − 𝜂2)BT

L [C ∶ 𝜺]dV, (38)

where BL denotes the matrix of shape functions derivatives that gives the vector form of the small strain measure when
applied to displacement, that is, [𝜺] = BLu with 𝜺 ≔ 𝛻s

Xu, and C is the linear isotropic elastic moduli determined by the
interpolated Young’s modulus E(𝜌) = [𝜀1 + (1 − 𝜀1) 𝜌pL]E and a constant Poisson’s ratio 𝜈 (E and 𝜈 are the same as that of
the GTN model) where pL is the penalization power.
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4.4 Parameter settings

In the topology optimization, continuation scheme is used to slowly increase the penalization powers p1, p2, pw, and
pL and gradually decrease relaxation power pf to avoid analysis failure during early optimization iterations due to large
deformations, and to relax the nonconvexity of the original optimization problem. Specifically, p1 is raised from 1 to 5
by an increment 0.2 per 25 iterations; p2 and pw are raised from 1 to 3 by 0.1 per 25 iterations; pf is reduced from 3
to 0 by −0.1 every 25 iterations; pL is increased from 4 to 6 by 0.1 per 25 iterations. Here, the power pd in the p-norm
function in Equation (34) is fixed to be 15. The lower bounds are chosen as 𝜀1 = 10−8 and 𝜀2 = 10−3 in Equation (35). Other
optimization parameters, for example, rmin in Equation (32), D and Vf in Equation (31), are specified later for different
problem settings. It should be noted that the parameters should be carefully chosen for successful optimization. Following
is the rationale for the selection of some of the above parameters: (a) p1 is chosen to be greater than p2 to reduce both
energy dissipation and damage in the low-density elements to penalize intermediate densities and relax design space; (b)
pL is chosen to be greater than p1 to discourage using low-density elements to exploit small deformation kinematics42;
and (c) the power pd in the p-norm function is chosen to be 15 to balance the nonconvexity and accuracy of the maximum
damage approximation.17

5 SENSITIVITY ANALYSIS

Due to the path-dependent behavior of the elastoplastic GTN model, the sensitivity analysis is also path-dependent. The
adjoint method is adopted for sensitivity analysis, as the number of design variables far exceeds the number of objective
and constraint functions. The calculations follow the framework proposed by Michaleris et al.,53 which is expanded in
the work of Alberdi et al.8 for inelastic topology optimization problems.

5.1 Adjoint formulation

The adjoint function is constructed as

F̂ = F
(

u1, … ,un, v1, … , vn,𝝆
)
+

n∑
k=1

𝝀kTRk (uk,uk−1, vk, vk−1,𝝆
)
+

n∑
k=1

𝝁kTHk (uk,uk−1, vk, vk−1,𝝆
)
, (39)

where F represents the objective (f0) or constraint (f1 or f2) function, uk and vk are the solution and auxiliary variables
at step k and are determined by the corresponding global equilibrium (Rk = 0) and local constitutive equations (Hk = 0),
and 𝝀k and 𝝁k are the corresponding adjoint variables. The goal here is to compute the derivative dF∕dx which can be
immediately obtained from the derivative dF∕d𝝆 through simple chain using Equation (32). Hence, the main effort is to
compute the derivatives dF∕d𝝆.

Because the equilibrium and constitutive equations are always satisfied irrespective of the density variables 𝝆, it is
clear that dF̂∕d𝝆 ≡ dF∕d𝝆. Taking derivatives of F̂ with respect to 𝝆 and eliminating all terms that contain the implicit
derivatives duk∕d𝝆 and dvk∕d𝝆 yields

dF̂
d𝝆

= 𝜕F̂
𝜕𝝆

+
n∑

k=1

(
𝝀kT 𝜕Rk

𝜕𝝆
+ 𝝁kT 𝜕Hk

𝜕𝝆

)
, (40)

where the adjoint variables 𝝀k and 𝝁k are calculated in backward order from the following system of equations.

step n ∶{
𝜕F
𝜕un + 𝝀nT 𝜕Rn

𝜕un + 𝝁nT 𝜕Hn

𝜕un = 0,
𝜕F
𝜕vn + 𝝀nT 𝜕Rn

𝜕vn + 𝝁nT 𝜕Hn

𝜕vn = 0,
step k (k = n − 1, … , 2, 1) ∶{

𝜕F
𝜕uk + 𝝀k+1T 𝜕Rk+1

𝜕uk + 𝝁k+1T 𝜕Hk+1

𝜕uk + 𝝀kT 𝜕Rk

𝜕uk + 𝝁kT 𝜕Hk

𝜕uk = 0,
𝜕F
𝜕vk + 𝝀k+1T 𝜕Rk+1

𝜕vk + 𝝁k+1T 𝜕Hk+1

𝜕vk + 𝝀kT 𝜕Rk

𝜕vk + 𝝁kT 𝜕Hk

𝜕vk = 0.

(41)
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Finally, all the explicit derivatives needed to complete the adjoint sensitivity calculation in Equation (40) are

For F ∶ 𝜕F
𝜕𝝆
,
𝜕F
𝜕uk

,
𝜕F
𝜕vk

,

For Rk ∶ 𝜕Rk

𝜕𝝆
,
𝜕Rk

𝜕uk
,
𝜕Rk

𝜕uk−1
,
𝜕Rk

𝜕vk
,
𝜕Rk

𝜕vk−1
,

For Hk ∶ 𝜕Hk

𝜕𝝆
,
𝜕Hk

𝜕uk
,
𝜕Hk

𝜕uk−1
,
𝜕Hk

𝜕vk
,
𝜕Hk

𝜕vk−1
. (42)

In this study, the solution variables (u) are chosen as the displacement field, whereas the auxiliary variables (v) are chosen
to be

[
Δ𝛾 𝛼 f be]T at each quadrature point. The corresponding constraints are the global equilibrium equations for

u and local constitutive equations for v, which are formulated as

Rk =
nele
e=1

Rk
e = 0 with Rk

e =
nipt∑
s=1

[
𝜂BT

es
Pk

es
+

(
1 − 𝜂2)BT

L,es

[
C ∶ 𝜺k

es

]]
wes − Fe

ext, (43)

Hk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hk
1

⋮

Hk
e

⋮

Hk
nele

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0 with Hk

e =

⎡⎢⎢⎢⎢⎢⎣

Hk
e1

Hk
e2

Hk
e3

Hk
e4

⎤⎥⎥⎥⎥⎥⎦
and

for elastic step (i.e., Δ𝛾 = 0 at sth quadrature point)

Hk
es
=

⎡⎢⎢⎢⎢⎢⎣

h1

h2

h3

h4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Δ𝛾
𝛼 − 𝛼k−1

f − fk−1

be − betr

⎤⎥⎥⎥⎥⎥⎦
,

while for plastic step (i.e., Δ𝛾 > 0 at sth quadrature point)

Hk
es
=

⎡⎢⎢⎢⎢⎢⎣

h1

h2

h3

h4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜏d −
√

2
3

sign(z)
√|z| 𝜁J

𝛼 − 𝛼k−1 − Δ𝛾
(1−f )𝜁J

(𝜏d + C0𝜏m)

f − fk−1 − 𝜌pf Δ𝛾
(
(1 − f )C0 + 𝓀 (𝜏m) 

(1−f )𝜁J
(𝜏d + C0𝜏m) +

√
2
3

k𝜔f𝜔0

)
exp(2Δ𝛾A).be − betr

⎤⎥⎥⎥⎥⎥⎥⎦
, (44)

where the subscript “es” is used to denote the term evaluated at the sth integration point in eth element. It should be noted
that the subscript “e” in Rk

e and Hk
e denotes the element number, whereas the superscript “e” in be denotes the elastic

Finger tensor. The element external force Fe
ext is assumed to be configuration independent. The definition of C0 is given

in Appendix A. All the required derivatives are given in Appendix B.

6 NUMERICAL EXAMPLES: MODEL PERFORMANCE

To verify the implementation of the shear modified GTN model given in Appendix A as well as to show the performance
of the model as compared to other models such as the original Gurson model (without void nucleation, shearing terms,
and growth acceleration due to voids coalescence), GTN model (without shear modification) and J2 plasticity model,
some of the benchmark problems including 2D plane strain localization, necking of 3D cylindrical bar and other high
and low-stress triaxiality controlled fractures are examined in this section. In the nonlinear finite element analysis, the
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6.413

7
6

6.
6

2

Unit: mm

F I G U R E 2 Sketch of the plane strain localization problem

T A B L E 1 Model parameters for the plane strain localization problem

Model Parameters

J2 plasticity f0 = q1 = q3 = fN = k𝜔 = 0 E = 206.9 GPa, 𝜈 = 0.29, 𝜎y0 = 0.45 GPa, k1 = −0.012924 GPa,

Gurson f0 = 0.01, fN = k𝜔 = 0, q1 = q3 = 1 k2 = 0.265 GPa, 𝛿 = 16.93

Shear modified GTN f0 = 0.01

Newton–Raphson scheme with an adaptive step-size strategy is used, and convergence is assumed when the energy resid-
ual drops below 1.0E-12.54 All the numerical computations are carried out in a matlab-based in-house finite element
library CPSSL-FEA developed at the University of Notre Dame.

6.1 Plane strain localization

The 2D plane strain localization problem has been examined in the previous studies.44,48,55 As shown in Figure 2,
a quarter of the specimen with a width of 12.826 mm and height of 53.334 mm is discretized by a 10× 20 finite
element (FE) mesh with 4-node F-bar element and is subjected to prescribed displacements (u = 5 mm) at the top
surface. The strain localization is triggered by a width reduction of 1.8% at the center of the bar. Here, three constitu-
tive models are considered—shear modified GTN, original Gurson, and J2 plasticity models—by choosing a different
set of model parameters, see Table 1, where all the unspecified parameters are chosen from Table 3. In addition,
f ∗ ≡ f is considered in the original Gurson model. The load–displacement curves for the three models are shown
in Figure 3, while the strain localizations can be seen in Figure 4. It can be seen from Figure 3 that due to the
added nucleation and shear modified terms, the damage in the shear modified GTN model develops much faster
than that in the original Gurson model, while both introduce more softening effects compared to the J2 plastic-
ity model. In addition, the final displacement of u = 5 cannot be reached with the GTN model and the specimen
fails around the displacement of u = 3.63. This example also verifies the model and plane strain F-bar element
implementation.

6.2 Necking of a cylindrical bar

To demonstrate the model performance in a 3D case, the necking of a cylindrical bar under tension48,55 is examined.
The cylindrical bar is of radius 6.413 mm and length 53.334 mm. Due to symmetry, only the symmetric octant section, as
shown in Figure 5, is modeled and discretized by 860 8-node 3D F-bar elements. A geometric imperfection of 1.8% of the
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F I G U R E 3 Load–displacement curves of the plane strain localization problem with three models

(A) J2 plasticity model results (B) Gurson model results (C) Shear modified GTN 

model results

F I G U R E 4 Deformed meshes and equivalent plastic strain (𝛼) distributions of the plane strain bar at the final loading point from three
models. (A) J2 plasticity model results, (B) Gurson model results, (C) shear modified GTN model results

6.413

2
6

.6
6

7

Unit: mm

6.413

F I G U R E 5 FE mesh of the symmetric octant part of 3D cylindrical bar
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T A B L E 2 Model parameters for the 3D cylindrical bar necking problem

Model Parameters

J2 plasticity f0 = q1 = q3 = fN = k𝜔 = 0 E = 206.9 GPa, 𝜈 = 0.29, 𝜎y0 = 0.45 GPa, k1 = 0.12924 GPa,

Shear modified GTN f0 = 0, fC = 0.05, fF = 0.3, f ∗U
= 0.667, fN = 0.01, sN = 0.1,
𝛼N = 0.35, k𝜔 = 3, T1 = 0,
T2 = 0.5, Mc = 15,
q3 = q2

1 = 2.25, q2 = 1

k2 = 0.265 GPa, 𝛿 = 16.93

F I G U R E 6 Load–displacement curves of the cylindrical bar necking problem with two models

(A) J2 plasticity model results (B) shear modified GTN model results

F I G U R E 7 Deformed meshes and equivalent plastic strain (𝛼) distributions of the 3D cylindrical bar at the final loading point from
two models

radius is introduced at the center to trigger the necking, where the radius reduction is linear from the top to the center.
The bar is under tension, with a displacement u = 7 mm applied at the top surface. The J2 plasticity and shear modified
GTN models are considered with the material parameter settings given in Table 2. Figure 6 shows the load–displacement
curves, where a close match can be observed before the start of void coalescence after fC. For visualization purposes,
the deformation of the full specimen together with the lateral cross-sectional plastic strain (𝛼) distribution are plotted in
Figure 7 for the two models. The results further verify the model implementation and show the influences of added void
growth, nucleation, and shearing terms.



ZHANG and KHANDELWAL 15

(A) Specimen geometry in x-y plane 

(thickness in z-direction is 1.5 mm)

(B) FE mesh (quarter part) with 78255 

elements

90

= 5
20

2.5

5

Unit: mm

F I G U R E 8 Geometry and FE mesh of the notched plate

F I G U R E 9 Load–displacement curves of the notched plate problem with GTN (k𝜔 = 0) model and shear modified GTN model with k𝜔
= 3

6.3 Notched plate

To show stress triaxiality controlled fracture induced by nucleation and void growth, a notched plate shown in Figure 8A
with one end fixed and the other end under displacement control (tension) is considered.56 The geometry of the specimen
as well as the FE mesh of its symmetric quarter section is shown in Figure 8. The material parameters are the same as
those for the shear modified GTN model in Table 2, except for k𝜔, which is chosen to be either 0 or 3 in this example.
It is noted that the original GTN model without shear modification is recovered when k𝜔 = 0. The load–displacement
curves of the two cases (k𝜔 = 0 and k𝜔 = 3) are plotted in Figure 9, where no significant differences can be observed. This
implies that the shear modification term (fs) in Equation (19) has a negligible effect on the fracture in this example. This is
further confirmed by the similar void volume fraction (f ) distributions in the two cases in Figure 10. This behavior can be
explained using Equations (22) and (24), where ḟ s is vanishing when the triaxiality is high, that is, T > T2 in the fracture
region, see Figure 11 where T > 1.5 at the fracture tip. Figure 12 shows the contribution of each fracture mechanism—void
nucleation (fn), growth (fg) and shearing (fs)—in the elements of the three layers from the center of the plate, where
negligible fs in Figure 12B can be observed and the final fracture is largely attributed to the void growth, as expected.
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F I G U R E 10 Void volume fraction (f ) distributions on the deformed meshes of the notched plate at final converged loading points with
different k𝜔 values

F I G U R E 11 Stress triaxiality (T) distributions on the deformed meshes of the notched plate at final converged loading points with
different k𝜔 values
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F I G U R E 12 Different contributions (fn, fg, and fs) to the void volume fraction f at each integration point in the critical fracture region
(three layers of elements from the center of the plate) of the notched plate at final converged loading points with different k𝜔 values ()Note:
the integration point index is numbered by the order of the total f value

(A) Specimen geometry in x-y plane 

(thickness in z-direction is 1.5 mm)

(B) FE mesh (half thickness) with 66920 

elements

F I G U R E 13 Geometry and FE mesh of the shear plate

6.4 Fracture under shear

This example intends to show how the fracture is controlled by void shearing mechanism when the stress triaxiality is
low. To this end, a notched plate of thickness 15 mm shown in Figure 13A is considered. The plate is fixed at one end and
under uniform displacement (tension) at the other end. Due to the out-of-plane symmetry condition, only half-thickness
of the specimen is considered in the FE model, see Figure 13B. The specimen of similar geometry has been experimentally
investigated in Reference 56. The material parameters are again the same as the shear modified GTN row in Table 2,
except k𝜔 which is varied, that is, k𝜔 ∈ {0, 1, 2 and 3}, to study the effect of the shear modification term in the model.
The load–displacement curves obtained for these cases are plotted in Figure 14, where it can be seen that the mechanical
response highly depends on the shear modification term—that is, higher k𝜔 value results in an earlier fracture. It is noted
that the case with k𝜔 = 0 does not reach the final failure up to the applied displacement, which is 2.5 mm (see Figure 14).
To show the difference brought by the shear modification in terms of the parameter k𝜔, Figure 15 and Figure 16 plot
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F I G U R E 14 Load–displacement curves of the shear plate problem with different k𝜔 values

F I G U R E 15 Void volume fraction (f ) distributions on the deformed meshes of the shear plate at final converged loading points with
different k𝜔 values
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F I G U R E 16 Stress triaxiality (T) distributions on the deformed meshes of the shear plate at final converged loading points with
different k𝜔 values

F I G U R E 17 Critical fracture/shear region with highlighted elements

the void volume fraction (f ) and stress triaxiality (T) distributions, respectively, in the critical region. This shows that in
the neighborhood of the highest fracture (f ) value in Figure 15, for k𝜔 = 0 case, T ≤ 0.5 while for k𝜔 = 1, 2, and 3 cases,
T ≤ 0 and continuously decreases as k𝜔 increases (see Figure 16). As a result, from Equations (22)–(24), the contribution
from void shearing can be high and this is further verified by plotting the proportions of fn, fg and fs in the critical region
(highlighted in Figure 17) in Figure 18. It can be observed from Figures 18B,C that the void growth fg can be negative due
to negative pressure (compression). In addition, for k𝜔 = 1, 2, and 3, the final fracture is largely attributed to void shearing.
Hence, the shear modification is of critical importance in capturing the shear fracture mechanism in this example.



20 ZHANG and KHANDELWAL

(A) = 0 (B) = 1

(C) = 2 (D) = 3

F I G U R E 18 Different contributions (fn, fg, and fs) to the void volume fraction f at each integration point in the critical fracture region
of the shear plate at final converged loading points with different k𝜔 values (Note: the integration point index is numbered by the order of the
total f value)

7 TOPOLOGY OPTIMIZATION RESULTS

In this section, topology optimization is carried out using the shear-modified GTN model. In the following optimization
problems, the shear modified GTN model is used with the parameters given in Table 3, which are adapted from Kiran and
Khandelwal57 for ASTM A992 steels considering mesh dependency, and the mesh size in all the numerical examples is
chosen to be around 5 mm. The density filter radius is chosen as rmin = 12 mm. As displacement control is considered in
the optimization examples, padding blocks are added at the loading area to avoid strain localization. The padding blocks
are considered to be hyperelastic by choosing the material parameters as E = 4 GPa, 𝜎y0 = 1.0E+9 together with those
in Equation (27) and Table 3. Since the damage constraint value D in this study is chosen to be below the coalescence
threshold fc, f ∗ is replaced by f (Equation (15)) in FE analysis during the optimization process. This helps to improve
FE convergence, as fast void evolution after fc can happen for some intermediate designs. However, the f ∗ function in
Equation (15) is used for all the postperformance analyses after optimization. The method of moving asymptotes58 is
used as the optimization algorithm with default parameter settings. Initial designs consist of a homogeneous distribution
of density values, that is, 𝜌 = Vf , where Vf is the threshold value in the volume fraction constraint in Equation (31).
Unless otherwise stated, the optimization examples are terminated after 800 iterations, where clean topology has emerged.
Finally, in accordance with the GTN model parameters in Table 3, the element size in all the B-spline fitted designs is
controlled to be around 5 mm. The B-spline fitting of the optimized design after optimization is carried out using Rhino59

with a level-set value of 0.5.
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T A B L E 3 Shear modified GTN model parameters for topology optimization studies

Parameter E 𝝂 𝝈y0 k1 k2 𝜹 fN 𝜶N sN f0

200 GPa 0.3 376 MPa 460 MPa 120 MPa 22.6 0.02 0.35 0.05 0

fC fF f∗U q1 q2 q3 T1 T2 Mc k𝛚

0.08 0.1 0.6667 1.5 1.0 2.25 0 0.5 15 3

= 15 mm

200 mm

m
m

0
0

1

1 2 2010

200181

40

F I G U R E 19 Cantilever with homogeneous density field 𝜌 = 0.8 for sensitivity verification (20 ×10 FE mesh with numbering)

(A) Equivalent plastic strain ( ) distribution (B) Damage ( ) distribution

F I G U R E 20 Results of cantilever with homogeneous density field 𝜌 = 0.8

7.1 Sensitivity verification

The adjoint sensitivity calculation proposed in Section 5.1 and Appendix B is verified using the central differ-
ence method on a cantilever problem sketched in Figure 19. The cantilever is discretized by a 20 × 10 FE mesh
with a homogeneous density field 𝜌 = 0.8. The material parameters for the shear modified GTN model are cho-
sen from Table 3 except the initial void volume fraction, which is set as f0 = 0.01. The optimization parameters
in Equation (31) are set as D = 0.02 and Vf = 0.8. The equivalent plastic strain (𝛼) and damage (f ) distribu-
tions are shown in Figure 20. In the central difference method, a perturbation of Δ𝜌 = 10−4 is used for each ele-
ment’s density. The sensitivities, that is, df0∕d𝜌 and df1∕d𝜌, using the two methods are compared in Figure 21
where close matches can be observed with relative errors around 10−5 ∼ 10−10. Thus, the adjoint sensitivity cal-
culation is correct and can be used in the gradient-based optimization algorithms in the topology optimization
problems.

7.2 Cantilever problem

The cantilever problem sketched in Figure 22 is considered with the design domain discretized by a FE mesh 120× 60.
The volume constraint in Equation (31) is considered with Vf = 0.65. Here, two cases listed in Table 4 are considered,
where optimization with J2 plasticity in case-1 is realized by choosing the parameters in Equation (27) and removing
the constraint f1 in Equation (31). The optimized topologies are shown in Figure 23, and the corresponding optimization
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(A) Derivative 

(B) Derivative 

F I G U R E 21 Comparison of sensitivity analysis results from adjoint method and central difference method. Left: match between the
two methods; Right: relative error of adjoint method w.r.t. central difference method

Design domain

= 80

600

300 20

Padding block
20

80

Unit: mm

F I G U R E 22 Sketch of the cantilever problem

T A B L E 4 Two optimization cases

Case-1 J2 plasticity design with no damage constraint

Case-2 GTN design with D = 2× 10−3

histories of objective and damage constraint function values are plotted in Figure 24 where smooth convergence can be
observed. The two optimized designs are then both analyzed with the same shear modified GTN model and the results
are shown in Figures 25 and 26. As is shown in Figure 25, the overall load–displacement curves of the two designs do not
differ much up to the target displacement (80 mm). However, a further check on the energy dissipation and void volume
fraction distributions in Figure 26 reveals that without modeling and constraining fracture in J2 model-based topology
optimization, the resulted fracture at the target displacement in the optimized design can be high, that is, fmax = 0.0353.
On the contrary, the maximum fracture in the shear modified GTN design is constrained below the target threshold value,
which is 2× 10−3. As a result, the plastic work is less concentrated (more spread out) in the solid components in the GTN
design, as the plastic strain that leads to the evolution of void volume fraction is constrained due to the fracture constraint,
see Figure 26A,C.
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(A) J2 plasticity design (B) GTN design with = 2×10-3

F I G U R E 23 Optimized topologies for the two cases in Table 4

(A) J2 plasticity design (B) GTN design

F I G U R E 24 Optimization histories of objective and damage constraint function values for the two cases in Table 4

F I G U R E 25 Load–displacement curves from analyses of the two designs in Figure 23 using shear modified GTN model

To study the ultimate performances including the final fracture mechanisms of the two optimized designs, the
two designs in Figure 23 are fitted using B-splines to get rid of the void and intermediate densities, and the cor-
responding FE models are shown in Figure 27. The two fitted designs are then loaded and analyzed under the
displacement control until complete fracture, that is, fmax ≈ fF , is reached. The load–displacement curves and some
performance measures are shown in Figure 28, where the ductility factor is defined as the ratio between the ulti-
mate displacement and the yield displacement, that is, uu∕uy.

60 For example, the yield displacement is uy = 9.5 mm
for both designs, while the ultimate displacement uu = 106.2 mm for J2 design and uu = 199.3 mm for GTN design,
see Figure 28. As can be seen, compared to the J2 design, the GTN design has higher ductility, load-carrying capacity,
and energy-absorbing capacity. Figures 29 and 30 show the distributions of energy dissipation, plastic strain (𝛼), and
void volume fraction and its different components at the failure point of the two designs, respectively. Again, plastic
strain and plastic work distributions are more spread out in the GTN design in Figure 30, as compared to the J2 design
in Figure 29. The fracture patterns in the two designs are similar, both with damage initiated at two locations—the
top and bottom sides of the tensile bar close to the support area. The final fracture happens at the top corner and
is dominated by the nucleation and growth of voids, while the contribution of void volume fraction due to shear is
negligible.
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(A) Energy dissipation distribution: = 

1.254×103 kJ) (J2 design)

(B) Void volume fraction distribution with 

= 0.0353 (J2 design)

(C) Energy dissipation distribution: = 

1.273×103 kJ) (GTN design)

(D) Void volume fraction distribution with 

= 0.0020 (GTN design)

F I G U R E 26 Results of analyses with GTN model at the target displacement (u = 80 mm) for the two designs in Figure 23

(A) J2 plasticity design (B) GTN design

F I G U R E 27 B-spline fitted topologies for the two cases in Table 4

Designed

displacement

Designs J2 design GTN design

Ductility factor 11.18 20.98

Load carrying capacity [kN] 21.40 23.72

Energy dissipation [kJ] 1.916×103 4.108×103

F I G U R E 28 Ultimate performances of the two designs in Figure 27 using the GTN model
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(A) Energy dissipation (kJ) (B) Plastic strain (C) Total void fraction 

(D) Void nucleation (E) Void growth (F) Void shear 

0.1

0.0201

0.0194

0.0789

0.0096

0.0011

F I G U R E 29 Ultimate performance of the J2 design at the failure point A (u = 106.2 mm) in Figure 28 (color maps in (D)∼ (F) are
adjusted to be the same shown in the color bar of (F) for a better comparison)

(A) Energy dissipation (kJ) (B) Plastic strain (C) Total void fraction 

0.1

(D) Void nucleation (E) Void growth (F) Void shear 

≈ 0.0200

≈ 0.0167

≈ 0.0793

≈ 0.0034

≈ 0.0008

F I G U R E 30 Ultimate performance of the GTN design at the failure point B (u = 199.3 mm) in Figure 28 (color maps in (D)∼ (F) are
adjusted to be the same shown in the color bar of (F) for a better comparison)

7.3 L-shape problem

The second example considers an L-shape problem shown in Figure 31, where a pre-existing column with the top side
fixed at the boundary is not designed and is incorporated to enhance overall stability. The L-shape domain is discretized
by 7500 F-bar quadrilateral elements. With material volume fraction constraint Vf = 0.5, two different damage constraints
are considered, that is, D = 1× 10−4 and D = 5× 10−4, see Equation (31). Due to slow convergence, the optimization
is terminated after 2000 iterations and the optimized topologies are shown in Figure 32. No distinguishable difference
can be observed from the load–displacement curves in Figure 33 of the two designs, although the damage (f ) in the
design with D = 1× 10−4 is five times smaller than that of the design with D = 5× 10−4, see Figure 34B,D. Next, B-spline
fitted designs are generated (Figure 35) to study the ultimate performance of the two designs. The load–displacement
curves up to the failure point of the two fitted designs are shown in Figure 36, together with some performance mea-
sures. It can be seen, for the design with D = 1× 10−4 both the ductility and energy dissipation are higher while the



26 ZHANG and KHANDELWAL

Design domain

500

500

250

250

70

= 80

80

20

20

Padding block

Unit: mm

F I G U R E 31 Sketch of L-shape problem

(A) GTN design with = 1×10-4 (B) GTN design with = 5×10-4

F I G U R E 32 Optimized topologies for different damage constraints

F I G U R E 33 Load–displacement curves of the two designs in Figure 32
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(A) Energy dissipation ( : kJ) ( = 0.0001) (B) Void volume fraction ( = 0.0001)

(C) Energy dissipation ( : kJ) ( = 0.0005) (D) Void volume fraction ( = 0.0005)

F I G U R E 34 Analysis results at target displacement u = 80 mm for the two topologies in Figure 32

(A) Design with = 1×10-4 (B) Design with = 5×10-4

F I G U R E 35 B-spline fitted designs for the two topologies in Figure 32

load carrying capacity is lower, as compared to the counterparts of the design with D = 5× 10−4. Next, from the dam-
age (f ) distributions of the two designs at the designed displacement (Figure 37) as well as at each ultimate failure
point (Figures 38C and 39C), it is interesting to observe that the fracture locations change as the applied load increases.
As a result, the two designs exhibit two different final fracture patterns, see Figures 38C and 39C. In the design with
D = 1× 10−4, damage initiates at two locations during loading and eventually localizes to one that leads to the final
failure, see Figure 38. Similarly, in the design with D = 5× 10−4, see Figure 39, damage initiates at four locations at dif-
ferent loading stages, before the final fracture localization. In both designs, void nucleation and growth still play the
main role in the final failure, while shear-related damage is negligible. It is remarked that the performances of the
design before and after B-spline fitting can be different, see Figures 34 and 37, where the damage is about five times
higher after B-spline fitting. This is due to the effect of gray areas removal and geometric variations during B-spline
fitting.
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GTN designs = 1×10-4 = 5×10-4

Ductility factor 25.14 23.37

Load carrying capacity [kN] 18.73 19.12

Energy dissipation [kJ] 3.038×103 2.810×103

Designed

displacement

F I G U R E 36 Ultimate performances of the two designs in Figure 35

(A) Design with = 1×10-4 (B) Design with = 5×10-4

F I G U R E 37 Void volume fraction (f ) distributions of the two designs in Figure 35 at designed displacement (u = 80 mm)

(A) Energy dissipation (kJ) (B) Plastic strain (C) Total void fraction 

(D) Void nucleation (E) Void growth (F) Void shear 

0.090

0.0200

0.0208

0.0705

0.0125
0.0025

F I G U R E 38 Ultimate performance of the design with D = 0.0001 at the failure point A (u = 182.3 mm) in Figure 36 (color maps in
(D)∼ (F) are adjusted to be the same shown in the color bar of (F) for a better comparison)
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(A) Energy dissipation (kJ) (B) Plastic strain (C) Total void fraction 

0.081

0.0097

0.0203

0.0199

0.0201

0.0012

0.0168

0.0047

0.0611

0.0019

(D) Void nucleation  (E) Void growth  (F) Void shear  

F I G U R E 39 Ultimate performance of the design with D = 0.0005 at the failure point B (u = 169.4 mm) in Figure 36 (color maps in
(D)∼ (F) are adjusted to be the same shown in the color bar of (F) for a better comparison)

8 CONCLUSIONS

This study presents a finite strain shear modified GTN model based on the multiplicative decomposition of the defor-
mation gradient. The model implementation details are provided and verified with multiple examples. The performance
of the model is demonstrated via different 2D and 3D examples, where the shear modification term, which is active
only under low-stress triaxiality, is shown to be capable of capturing the damage due to shear. More importantly,
this study takes the first attempt to incorporate this model in a finite strain regime into topology optimization for
fracture-resistant energy-dissipating structural designs. Using a density-based method, the optimization framework is
realized by appropriate material interpolation schemes for design parameterization, adaptive linear energy interpolation
for low-density elements distortion under large deformations, and consistent path-dependent sensitivity calculations for
the gradient-based optimization algorithm. No assumptions on the magnitude of strains are made and the ultimate per-
formance of the optimized topologies is evaluated and confirmed by a postanalysis on the corresponding B-spline fitted
designs, which can be potentially manufactured for further experimental investigations. It is remarked that the structural
performance of optimized designs can be different after B-spline fitting due to the removal of gray areas and the varia-
tions of geometric boundaries. However, this difference can be further reduced by using higher mesh density together
with projection Schemes.61

Compared to the maximum energy-absorbing designs with the J2 plasticity model, it is shown that the GTN model
assisted design with fracture constraint may lead to higher ductility, energy-absorbing capacity, and ultimate load-carrying
capacity. More interestingly, it is observed that fracture can initiate at multiple locations during the large deformations
and the critical fracture location can shift from one location to another during the loading process due to stress redistri-
butions. Moreover, it is important to note that as the designs are obtained for target design displacements, the structural
performance (e.g., energy dissipation and damage) is only optimized up to that design point. Hence, the optimality of
the ultimate performance at failure is not guaranteed, in general, although promising results have been obtained for the
cantilever problem in Section 7.2.

In future work, experimental work will be carried out to validate the proposed finite strain formulation of
the shear modified GTN model together with model parameter calibration. To this end, the presented sensitiv-
ity analysis can be extended to carry out sensitivity analysis w.r.t. to geometric and material parameters. More-
over, in the future work on the fracture-resistant energy-dissipating designs, cyclic loading scenarios with kine-
matic hardening models46,62 and structural stability constraints63 in the optimization formulation can be explored.
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In addition, high-performance computing resources can be employed to carry out topology optimization in 3D
design domains, which require additional computational resources. These issues will be addressed in our future
work.
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APPENDIX A. IMPLEMENTATION DETAILS OF FINITE STRAIN SHEAR
MODIFIED GTN MODEL

This appendix gives details on the implementation of the finite strain shear modified GTN model. Some notations useful
in the following derivations are introduced first, which are

ñ ≔ 𝝉dev‖𝝉dev‖ or 𝝉dev = ‖𝝉dev‖ ñ,

Sinh[M] ≔ 𝜕 Cosh[M]
𝜕M

,

C0 ≔
√

3
2

q1q2f ∗ 1√|z|Sinh[M],

A ≔ 𝜕𝜙

𝜕𝝉
= ñ + C0

3
I.

Due to isotropy, the Kirchhoff stress 𝝉 and elastic Finger tensor be are coaxial (see Equation (8)). The coaxiality of 𝝉 ,
𝝉dev and 𝝉vol is obvious. The eigen decompositions of these tensors are.

ñ =
3∑

a=1
ñana ⊗ na with ni.nj = 𝛿ij, (A2)

𝝉 =
3∑

a=1
𝜏ana ⊗ na, 𝝉vol = 𝜏mI, 𝝉dev =

3∑
a=1

(𝜏a − 𝜏m)na ⊗ na, (A3)

be =
3∑

a=1
𝜆e

a
2na ⊗ na, (A4)

where na (a = 1,2,3) are orthonormal bases and 𝜆e
a (a = 1,2,3) the square roots of the eigenvalues of be. Here the Kirchhoff

pressure 𝜏m = (𝜏1 + 𝜏2 + 𝜏3) ∕3. A bracket is used to denote the vector representation of tensors in eigen spaces, that is,

[ñ] =
⎡⎢⎢⎢⎣
ñ1

ñ2

ñ3

⎤⎥⎥⎥⎦ , (A5)

[𝝉] =
⎡⎢⎢⎢⎣
𝜏1

𝜏2

𝜏3

⎤⎥⎥⎥⎦ , [𝝉vol] =
⎡⎢⎢⎢⎣
𝜏m

𝜏m

𝜏m

⎤⎥⎥⎥⎦ = [Pvol] [𝝉], [𝝉dev] =
⎡⎢⎢⎢⎣
𝜏dev,1

𝜏dev,2

𝜏dev,3

⎤⎥⎥⎥⎦ = [Pdev] [𝝉], (A6)

where the volumetric and deviatoric projection matrices [Pvol] and [Pdev] are defined as

[Pvol] ≔ 1
3
[1][1]T = 1

3

⎡⎢⎢⎢⎣
1 1 1
1 1 1
1 1 1

⎤⎥⎥⎥⎦ ,
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[Pdev] ≔ [I] − [Pvol] =
⎡⎢⎢⎢⎣

2
3

− 1
3

− 1
3

− 1
3

2
3

− 1
3

− 1
3

− 1
3

2
3

⎤⎥⎥⎥⎦ , (A7)

in which [I] denotes (3 × 3) identity matrix and [1] ≔ [
1 1 1

]T .
In this appendix, the current step k is omitted in the subscript while the last step is denoted by a subscript (k − 1).

A.1. Integration of rate equations
There are three rate equations that need to be integrated for solving for the corresponding internal variables be (or Cp or
Fp), 𝛼, and f .

The first rate equation in Equation (17) can be derived, with the help of Equation (4)2, further to.

Ċi = −2𝛾F−1.A.F.Ci with Ci ≔ Cp−1 (A8)

which is then integrated using exponential map integrator that gives.

Ci = exp
(
−2𝛾Δt

(
F−1.A.F

))
.Ci

k−1 (A9)

which, by a straightforward manipulation, gives.

betr
= exp(2Δ𝛾A).be with betr ≔ F.Ci

k−1.F
T and Δ𝛾 ≔ 𝛾Δt. (A10)

Taking the logarithm of Equation (A10) and expressing the results in eigen space gives.

3∑
a=1
𝜀etr

a ntr
a ⊗ ntr

a = Δ𝛾ñ + Δ𝛾 C0

3
I +

3∑
a=1
𝜀e

ana ⊗ na, (A11)

where the eigenvalues and eigenvectors of betr are denoted by
(
𝜆e

a
tr)2 and ntr

a (a = 1,2,3), respectively, with 𝜀etr

a ≔ ln 𝜆e
a

tr.
Here Equation (A4) is used with 𝜀e

a ≔ ln 𝜆e
a. Finally, Equation (A11) leads to.

[
𝜺e] = [

𝜺etr
]
− Δ𝛾[ñ] − Δ𝛾 C0

3
[1] and na = ntr

a , a = 1, 2, 3, (A12)

where [𝜺e] =
[
𝜀e

1 𝜀e
2 𝜀e

3
]T and

[
𝜺etr] = [

𝜀etr

1 𝜀etr

2 𝜀etr

3

]T .
The second rate equation in Equation (18) for 𝛼 can be straightforwardly integrated using backward Euler rule as.

𝛼 = 𝛼k−1 +
Δ𝛾

(1 − f )𝜁J
(‖𝝉dev‖ + C0𝜏m) . (A13)

Similarly, the third rate equation in Equation (19) for f is integrated as.

f = fk−1 + Δ𝛾

(
(1 − f )C0 + 𝓀


(1 − f )𝜁J

(‖𝝉dev‖ + C0𝜏m) +
√

2
3

k𝜔f𝜔0

)
. (A14)

A.2. Stress tensor
Due to isotropy, the elastic strain energy at macroscale 𝜓 e only depends on the eigenvalues of be, see Equation (6). As a
result, the Kirchhoff stress 𝝉 defined in Equation (8) can be expressed in the eigen space as.

𝝉 =
3∑

a=1
𝜆e

a
𝜕𝜓 e

𝜕𝜆e
a

na ⊗ na =
3∑

a=1

𝜕𝜓 e

𝜕𝜀e
a

na ⊗ na ≡ 𝜕𝜓 e

𝜕𝜺e . (A15)



34 ZHANG and KHANDELWAL

On the other hand, the strain energy 𝜓 e in Equation (6) can be rephrased, after a straightforward manipulation, as

𝜓 e
vol

(
Je) = 1

2
𝜅
(
𝜀e

1 + 𝜀
e
2 + 𝜀

e
3
)2
,

𝜓 e
iso

(
b̂

e)
= 𝜇

[
𝜺e

dev

]T [
𝜺e

dev

]
with

[
𝜺e

dev

]
= [Pdev]

[
𝜺e] . (A16)

Hence, with the calculated eigen vectors na = ntr
a (a= 1,2,3), the eigenvalues of the Kirchhoff stress 𝝉 can be computed

by

[𝝉vol] =
𝜕𝜓 e

vol (J
e)

𝜕 [𝜺e]
= 3𝜅 [Pvol]

[
𝜺e] ,

[𝝉dev] =
𝜕𝜓 e

iso

(
b̂

e)
𝜕 [𝜺e]

= 2𝜇 [Pdev]
[
𝜺e] . (A17)

Therefore, if elastic trial step satisfies the yield criterion 𝜙 ≤ 0 in Equation (12), that is, 𝜺e = 𝜺etr and Δ𝛾 = 0, 𝛼 = 𝛼k−1
and f = fk−1, the stress can be updated by Equation (A17). Otherwise, the plastic flow is not zero at the current step. For
this case, the calculation of stress tensor requires the updated internal variables. To that end, the substitution of Equation
(A12) in Equation (A17) leads to

𝜏m = 𝜏 tr
m − 𝜅Δ𝛾C0 with 𝜏 tr

m ≔ 𝜅[1]T
[
𝜺etr

]
,

𝜏d = 𝜏 tr
d − 2𝜇Δ𝛾 with 𝜏d ≔ ‖𝝉dev‖ , 𝜏 tr

d ≔ ‖‖‖𝝉 tr
dev

‖‖‖ , [𝝉 tr
dev

] ≔ 2𝜇 [Pdev]
[
𝜺etr

]
, (A18)

where note that [𝝉dev] = 𝜏d[ñ] and
[
𝝉 tr

dev

]
= 𝜏 tr

d [ñ] and [ñ] can be calculated by.

[ñ] =
[

ñtr
]
=

[
𝝉 tr

dev

]
‖‖‖𝝉 tr

dev
‖‖‖ =

[Pdev]
[
𝜺etr]√[

𝜺etr]T [Pdev]
[
𝜺etr] . (A19)

Hence, the stress together with the internal variables (𝜏m, 𝜏d,Δ𝛾 , 𝛼, and f ) are obtained by solving a system of nonlinear
equations

Rmat =

⎡⎢⎢⎢⎢⎣
R1
R2
R3
R4
R5

⎤⎥⎥⎥⎥⎦
= 0 with

R1 = 𝜏d −
√

2
3

sign(z)
√|z|𝜁J,

R2 = 𝛼 − 𝛼k−1 −
Δ𝛾

(1 − f )𝜁J
(𝜏d + C0𝜏m) , (A20)

R3 = f − fk−1 − Δ𝛾
(
(1 − f )C0 + 𝓀 

(1−f )𝜁J
(𝜏d + C0𝜏m) +

√
2
3

k𝜔f𝜔0

)
,

R4 = 𝜏m − 𝜏 tr
m + 𝜅Δ𝛾C0,

R5 = 𝜏d − 𝜏 tr
d + 2𝜇Δ𝛾,

using Newton–Raphson (NR) solver. The calculation of the Jacobian matrix 𝜕Rmat∕𝜕𝝌 with 𝝌 =
[
Δ𝛾 𝛼 f 𝜏m 𝜏d

]T ,
can be straightforwardly carried out.

A.3. Consistent tangent moduli
The consistent tangent moduli A ≔ 𝜕P∕𝜕F is needed for guaranteeing quadratic convergence rate in NR solver, where P
is the first PK stress with P = 𝝉 .F−T . Expressed in index form.



ZHANG and KHANDELWAL 35

Aijkl = JF−1
jp aipkqF−1

lq with Jaijkl =
𝜕𝜏ij

𝜕Fkq
Flq − 𝜏il𝛿jk, (A21)

where the only term that needs to be calculated is 𝜕𝝉∕𝜕F and is computed by chain rule.

𝜕𝝉

𝜕F
= 𝜕𝝉

𝜕𝜺etr ∶ 𝜕𝜺
etr

𝜕betr ∶ 𝜕betr

𝜕F
+ 𝜕𝝉
𝜕J
⊗
𝜕J
𝜕F
. (A22)

Since the tensors 𝝉 , 𝜺etr and betr
are coaxial, following the procedures given in Appendix A in de Souza Neto et al.,47

the calculation of the terms 𝜕𝝉∕𝜕𝜺etr and 𝜕𝜺etr∕𝜕betr
can be carried out in the eigen space and requires only 𝜕[𝝉]∕𝜕

[
𝜺etr]

and 𝜕
[
𝜺etr] ∕𝜕 [betr

]
.

A.3.1. Plastic step
For plastic step, from Equation (A20), it can be seen that the driving force for the stress tensor 𝝉 comes from 𝜺etr and J.
Thus, taking the total differentiation of Rmat in Equation (A20) at the solution point gives.

dRmat =
𝜕Rmat

𝜕𝝌
d𝝌 + 𝜕Rmat

𝜕
[
𝜺etr]d

[
𝜺etr

]
+ 𝜕Rmat

𝜕J
dJ = 0, (A23)

where, again, the tedious but straightforward derivation of the derivative terms 𝜕Rmat∕𝜕
[
𝜺etr] and 𝜕Rmat∕𝜕J is omitted

here for brevity. From Equation (A23), it can be seen that

𝜕𝝌

𝜕
[
𝜺etr] =

[
𝜕Rmat

𝜕𝝌

]−1
𝜕Rmat

𝜕
[
𝜺etr] ,

𝜕𝝌

𝜕J
=

[
𝜕Rmat

𝜕𝝌

]−1
𝜕Rmat

𝜕J
(A24)

which gives the derivatives 𝜕𝜏m∕𝜕
[
𝜺etr], 𝜕𝜏d∕𝜕

[
𝜺etr], 𝜕𝜏m∕𝜕J and 𝜕𝜏d∕𝜕J.

With that, the term 𝜕[𝝉]∕𝜕
[
𝜺etr] is calculated as

𝜕[𝝉]
𝜕
[
𝜺etr] = [1] 𝜕𝜏m

𝜕
[
𝜺etr] + 𝜕 [𝝉dev]

𝜕
[
𝜺etr]

𝜕 [𝝉dev]
𝜕
[
𝜺etr] =

[
ñtr

] 𝜕𝜏d

𝜕
[
𝜺etr] + 𝜏d

𝜕
[

ñtr
]

𝜕
[
𝜺etr]

𝜕
[

ñtr
]

𝜕
[
𝜺etr] = [Pdev]√[

𝜺etr]T [Pdev]
[
𝜺etr] − [Pdev]

[
𝜺etr]([

𝜺etr]T [Pdev]
[
𝜺etr]) 3

2

(
[Pdev]

[
𝜺etr

])T
(A25)

and the term 𝜕𝝉∕𝜕J is calculated as.

𝜕𝝉

𝜕J
= 𝜕𝜏m

𝜕J
I + 𝜕𝜏d

𝜕J
ñ. (A26)

The derivation of the term 𝜕
[
𝜺etr] ∕𝜕 [betr

]
is straightforward, that is,

𝜕
[
𝜺etr]

𝜕
[

betr
] =

⎡⎢⎢⎢⎢⎢⎣

1

2𝜆etr
1

2 0 0

0 1

2𝜆etr
2

2 0

0 0 1

2𝜆etr
3

2

⎤⎥⎥⎥⎥⎥⎦
. (A27)
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Finally, the remaining terms in Equation (A22), that is, 𝜕betr
∕𝜕F and 𝜕J∕𝜕F, are derived as.

𝜕betr

𝜕F
= I⊠

(
F.Ci

k−1
)
+

(
F.Ci

k−1
)
⊡ I, (A28)

𝜕J
𝜕F

= JF−T , (A29)

where the operations⊠ and⊡ are defined such that

A⊠ B ≔ AikBjlei ⊗ ej ⊗ ek ⊗ el,

A⊡ B ≔ AilBjkei ⊗ ej ⊗ ek ⊗ el, (A30)

for any second-order tensors A and B.

A.3.2. Elastic step
For elastic step, the computations of 𝜕𝜺etr∕𝜕betr

and 𝜕betr
∕𝜕F still follow Equations (A27) and (A28), while the other terms

in Equation (A22) are calculated as

𝜕[𝝉]
𝜕
[
𝜺etr] = 𝜕[𝝉]

𝜕 [𝜺e]
= 3𝜅 [Pvol] + 2𝜇 [Pdev] ,

𝜕𝝉

𝜕J
= 0. (A31)

APPENDIX B. DERIVATIVES REQUIRED FOR THE SENSITIVITY ANALYSIS

This appendix gives the required derivatives in Equation (42) for the sensitivity analysis. For the ease of presentation,
tensor notations are also used besides matrix forms. It is remarked here that the constitutive model (GTN) evaluation is
based on the modified deformation gradient F in Equation (28). Hence, all the terms inside the model (e.g., Fe, Fp, be, 𝝉 , P,
J, f , 𝛼) are based on the input F instead of F. Due to high computational cost of 3D nonlinear topology optimization, only
2D plane strain problems are considered for the fracture-resistant design optimization. Therefore, the derivation in this
section is based on 2D plane strain assumption. It can, however, be extended to 3D case straightforwardly. For notational
convenience in the derivation, the dependence on F is revealed only on the Kirchhoff and first PK stress tensors by using
𝝉 and P while overbar is not used on the others. Note that the step index—k for the current step and (k − 1) for the
previous step—will be present in the super/subscript when needed for clarification purposes. Besides, super/subscripts
that include load step, element, and integration point indices are omitted for simplicity when there is no confusion. Some
useful derivatives are given below for reference.

Derivatives w.r.t. 𝜌.

𝜕F
𝜕𝜌

= 𝜕𝜂

𝜕𝜌
𝛻Xu, 𝜕F0

𝜕𝜌
= 𝜕𝜂

𝜕𝜌
𝛻0

Xu, (B1)

𝜕r
𝜕𝜌

= 𝜕r
𝜕F

∶ 𝜕F
𝜕𝜌

+ 𝜕r
𝜕F0

∶ 𝜕F0

𝜕𝜌
with 𝜕r

𝜕F
= −rF−T and 𝜕r

𝜕F0
= rF−T

0 , (B2)

𝜕F
𝜕𝜌

= 1
2

r−1∕2 𝜕r
𝜕𝜌

F + r1∕2 𝜕F
𝜕𝜌
, (B3)

𝜕J
𝜕𝜌

= JF−T
0 ∶ 𝜕F0

𝜕𝜌
, (B4)

𝜕betr

𝜕𝜌
= 𝜕betr

𝜕Fk
∶ 𝜕Fk

𝜕𝜌
+ 𝜕betr

𝜕Fk−1
∶ 𝜕Fk−1

𝜕𝜌
, (B5)

𝜕𝝉

𝜕𝜌
= ℊ𝝉 ,

𝜕𝜏d

𝜕𝜌
= ℊ𝜏d,

𝜕𝜏m

𝜕𝜌
= ℊ𝜏m with ℊ =

p1 (1 − 𝜀1) 𝜌p1−1

[𝜀1 + (1 − 𝜀1) 𝜌p1]
, (B6)

𝜕𝜁

𝜕𝜌
=
𝜕𝜎y0

𝜕𝜌
+ 𝜕k1

𝜕𝜌
𝛼 + 𝜕k2

𝜕𝜌
(1 − exp(−𝛿𝛼)), (B7)
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𝜕M
𝜕𝜌

= 3
2

q2
1
𝜁J

(
𝜕𝜏m

𝜕𝜌
− 𝜏m

𝜁

𝜕𝜁

𝜕𝜌
− 𝜏m

J
𝜕J
𝜕𝜌

)
, (B8)

𝜕z
𝜕𝜌

= 𝜕z
𝜕M

𝜕M
𝜕𝜌
, (B9)

𝜕C0

𝜕𝜌
=

√
3
2

q1q2f ∗
(
−1

2
1|z|3∕2 sign(z) 𝜕z

𝜕𝜌
Sinh[M] + 1√|z| 𝜕Sinh[M]

M
𝜕M
𝜕𝜌

)
, (B10)

𝜕A
𝜕𝜌

= 1
3
𝜕C0

𝜕𝜌
I, (B11)

where the Equation (B6) is due to the choice of be as auxiliary variable and the dependency of 𝝉 on be through Equation (8).
With that, the derivative 𝜕ñ∕𝜕𝜌 = 0, which leads to the derivative in Equation (B11).

Derivatives w.r.t. u

𝜕F
𝜕u

= 𝜂B, 𝜕F0

𝜕u
= 𝜂B0, (B12)

𝜕r
𝜕u

= r𝜂
(

F−T
0 ∶ B0 − F−T ∶ B

)
, (B13)

𝜕F
𝜕u

= r1∕2 𝜕F
𝜕u

+ 1
2

r−1∕2F⊗ 𝜕r
𝜕u
, (B14)

𝜕J
𝜕u

= 𝜕detF0

𝜕u
= J𝜂F−T

0 ∶ B0, (B15)

𝜕M
𝜕u

= 𝜕M
𝜕J
𝜕J
𝜕u
, (B16)

𝜕z
𝜕u

= 𝜕z
𝜕M

𝜕M
𝜕u
, (B17)

𝜕C0

𝜕u
= 𝜕C0

𝜕M
𝜕M
𝜕u
, (B18)

𝜕A
𝜕u

= 1
3

I⊗ 𝜕C0

𝜕u
, (B19)

where simple derivatives such as 𝜕M∕𝜕J, 𝜕z∕𝜕M, and 𝜕C0∕𝜕M are omitted.
Derivatives of betr

𝜕betr

𝜕Fk
= I⊙

(
F
−1
k−1.be

k−1.F
T
Δ

)
+

(
FΔ.be

k−1.F
−T
k−1

)
⊡ I, (B20)

𝜕betr

𝜕Fk−1
= −FΔ ⊙

(
F
−1
k−1.be

k−1.F
T
Δ

)
−

(
FΔ.be

k−1.F
−T
k−1

)
⊡ FΔ, (B21)

𝜕betr

𝜕be
k−1

= 1
2
(FΔ⊠ FΔ + FΔ⊡ FΔ) , (B22)

where FΔ ≔ Fk.F
−1
k−1, betr

= FΔ.be
k−1.F

T
Δ, and again the step number is put as subscript in be and F. The operations⊠ and

⊡ are defined in Equation (A30), while the operation ⊙ is defined as

A⊙ B ≔ AikBljei ⊗ ej ⊗ ek ⊗ el, (B23)

Derivatives w.r.t. 𝝉

𝜕𝜏m

𝜕𝝉
= 1

3
I, 𝜕𝜏d

𝜕𝝉
= ñ, (B24)

𝜕ñ
𝜕𝝉

= 𝜕

𝜕𝝉

(
𝝉dev‖‖𝝉dev‖‖

)
= 1
𝜏d

P
s
dev −

1
𝜏2

d

𝝉dev ⊗ ñ = 1
𝜏d

(
P

s
dev − ñ⊗ ñ

)
, (B25)
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𝜕T
𝜕𝝉

= 1
3𝜏e

I −
√

3
2
𝜏m

𝜏2
e

ñ, (B26)

𝜕J̌3

𝜕𝝉
= J̌3𝝉

−T
dev ∶ P

s
dev, (B27)

𝜕𝜔

𝜕𝝉
= −272

2
J̌3

𝜏6
e

(
𝜕J̌3

𝜕𝝉
− 3

√
3
2

J̌3

𝜏e

𝜕𝜏d

𝜕𝝉

)
, (B28)

𝜕M
𝜕𝝉

= 1
3
𝜕M
𝜕𝜏m

I, (B29)

𝜕z
𝜕𝝉

= 𝜕z
𝜕M

𝜕M
𝜕𝝉
, (B30)

𝜕A
𝜕𝝉

= 𝜕ñ
𝜕𝝉

+ 1√
6

q1q2f ∗I⊗

(
−1

2
1|z| 3

2

sign(z)Sinh[M] 𝜕z
𝜕𝝉

+ 1√|z| 𝜕Sinh[M]
M

𝜕M
𝜕𝝉

)
, (B31)

where the straightforward derivatives such as 𝜕M∕𝜕𝜏m and 𝜕z∕𝜕M are omitted.
Derivatives of exp(2Δ𝛾A)

𝜕exp(2Δ𝛾A)
𝜕Δ𝛾

= 2A.exp(2Δ𝛾A), (B32)

𝜕exp(2Δ𝛾A)
𝜕𝛼

= 2𝛥𝛾exp(2Δ𝛾A). 𝜕A
𝜕𝛼
, (B33)

𝜕exp(2Δ𝛾A)
𝜕f

= 2𝛥𝛾exp(2Δ𝛾A). 𝜕A
𝜕f
, (B34)

𝜕exp(2Δ𝛾A)
𝜕A

=
𝜕[exp(2Δ𝛾A)]

𝜕[A]
=

3∑
i=1

3∑
j=1

(
2Δ𝛾𝛿ije2Δ𝛾Ai

)
ei ⊗ ej, (B35)

𝜕exp(2Δ𝛾A)
𝜕be =

𝜕exp(2Δ𝛾A)
𝜕A

∶ 𝜕A
𝜕be , (B36)

where a bracket [■] outside a tensor denotes the eigenvalue vector of the tensor. The derivative 𝜕 exp(2Δ𝛾A)∕𝜕A in
Equation (B35) is carried out in the eigen space following the approach in Reference 47. The derivative 𝜕A∕𝜕be is
computed by chain rule with the term 𝜕A∕𝜕𝝉 in Equation (B31) and the term 𝜕𝝉∕𝜕be in Equation (B37).

Derivatives w.r.t. be

The implicit dependence on be comes exclusively from the Kirchhoff stress 𝝉 . The derivative 𝜕𝝉∕𝜕be can be simply
carried out using chain rule as

𝜕𝝉

𝜕be = 𝜕𝝉

𝜕𝜺e ∶ 𝜕𝜺
e

𝜕be , (B37)

where the derivatives 𝜕𝝉∕𝜕𝜺e and 𝜕𝜺e∕𝜕be can be straightforwardly carried out in the eigen space with derivatives of the
eigenvalues 𝜕[𝝉]∕𝜕 [𝜺e] and 𝜕 [𝜺e] ∕𝜕

[
be] computed as

𝜕[𝝉]
𝜕 [𝜺e]

= 3𝜅 [Pvol] + 2𝜇 [Pdev] ,

𝜕 [𝜺e]
𝜕
[
be] =

⎡⎢⎢⎢⎢⎣
1

2𝜆e
1

2 0 0

0 1
2𝜆e

2
2 0

0 0 1
2𝜆e

3
2

⎤⎥⎥⎥⎥⎦
, (B38)

where [Pvol] and [Pdev] are given in Appendix A, and 𝜆e
i (i = 1,2,3) are square root of the eigenvalues of be.
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B.1 Derivatives of W p

Since W p is different by only a negative sign from the objective function, this section gives the derivatives of W p, that
is, taking F as W p in Equation (42)1. By the notations introduced in Appendix A, Equation (33) can be equivalently
rephrased as

W p =
n∑

k=1

nele∑
e=1

nipt∑
s=1
𝜌

pw
e Δ𝛾k

es
(𝜏d + C0𝜏m)k

es
wes , (B39)

B.1.1. Derivative 𝝏W p∕𝝏𝝆

𝜕W p

𝜕𝝆
=

[
𝜕W p

𝜕𝜌1

𝜕W p

𝜕𝜌2
… 𝜕W p

𝜕𝜌nele

]
, (B40)

where for e = 1, … ,nele,

𝜕W p

𝜕𝜌e
=

n∑
k=1

nipt∑
s=1

[
𝜌

pw
e Δ𝛾k

es

(
𝜕𝜏d

𝜕𝜌
+ 𝜕C0

𝜕𝜌
𝜏m + C0

𝜕𝜏m

𝜕𝜌

)k

es

wes + pw𝜌
pw−1
e Δ𝛾k

es
(𝜏d + C0𝜏m)k

es
wes

]
, (B41)

in which the terms 𝜕𝜏d∕𝜕𝜌, 𝜕C0∕𝜕𝜌 and 𝜕𝜏m∕𝜕𝜌 are given in Equations (B6) and (B10).

B.1.2. Derivative 𝝏W p∕𝝏uk

𝜕W p

𝜕uk
=

nele
e=1

𝜕W p

𝜕uk
e

with 𝜕W p

𝜕uk
e

=
nipt∑
s=1
𝜌

pw
e Δ𝛾k

es

(
𝜏m
𝜕C0

𝜕u

)k

es

wes , (B42)

in which 𝜕C0∕𝜕u at each quadrature point is given in Equation (B18).

B.1.3. Derivative 𝝏W p∕𝝏vk

𝜕W p

𝜕vk
=

[
𝜕W p

𝜕vk
1

𝜕W p

𝜕vk
2

… 𝜕W p

𝜕vk
nele

]
with

𝜕W p

𝜕vk
e

=
[
𝜕W p

𝜕vk
e1

𝜕W p

𝜕vk
e2

· · · 𝜕W p

𝜕vk
e(nipt)

]
, e = 1, … ,nele, (B43)

where

𝜕W p

𝜕vk
es

=
[
𝜕W p

𝜕Δ𝛾k
es

𝜕W p

𝜕𝛼k
es

𝜕W p

𝜕f k
es

𝜕W p

𝜕(be)k
es

]
, s = 1, … ,nipt (B44)

with

𝜕W p

𝜕Δ𝛾k
es

= 𝜌pw
e (𝜏d + C0𝜏m)k

es
wes , (B45)

𝜕W p

𝜕𝛼k
es

= 𝜌pw
e Δ𝛾k

es

(
𝜕C0

𝜕𝛼
𝜏m

)k

es

wes , (B46)

𝜕W p

𝜕f k
es

= 𝜌pw
e Δ𝛾k

es

(
𝜕C0

𝜕f
𝜏m

)k

es

wes , (B47)

𝜕W p

𝜕
(

be)k
es

= 𝜌pw
e Δ𝛾k

es

(
𝜕𝜏d

𝜕be + 𝜕C0

𝜕be 𝜏m + C0
𝜕𝜏m

𝜕be

)k

es

wes , (B48)
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in which

𝜕C0

𝜕𝛼
=

√
3
2

q1q2f ∗
(
−1

2
1|z|3∕2 sign(z) 𝜕z

𝜕𝛼
Sinh[M] + 1√|z| 𝜕Sinh[M]

𝜕M
𝜕M
𝜕𝛼

)
, (B49)

𝜕M
𝜕𝛼

= −3
2

q2
𝜏m

𝜁2J
𝜕𝜁

𝜕𝛼
, (B50)

𝜕z
𝜕𝛼

= −2q1f ∗Sinh[M]𝜕M
𝜕𝛼
, (B51)

𝜕C0

𝜕f
=

√
3
2

q1q2Sinh[M]

(
1√|z| 𝜕f ∗

𝜕f
− 1

2
1|z|3∕2 sign(z)f ∗ 𝜕z

𝜕f

)
, (B52)

𝜕C0

𝜕be =
√

3
2

q1q2f ∗
(

1√|z| 𝜕Sinh[M]
𝜕M

𝜕M
𝜕be − 1

2
1|z|3∕2 sign(z)Sinh[M] 𝜕z

𝜕be

)
, (B53)

𝜕M
𝜕be = 𝜕M

𝜕𝜏m

𝜕𝜏m

𝜕𝝉
∶ 𝜕𝝉

𝜕be , (B54)

𝜕z
𝜕be = 𝜕z

𝜕𝜏m

𝜕𝜏m

𝜕𝝉
∶ 𝜕𝝉

𝜕be , (B55)

where the terms 𝜕𝜏m∕𝜕𝝉 , 𝜕𝝉∕𝜕be can be found in Equations (B24) and (B37), while other terms such as 𝜕𝜁∕𝜕𝛼, 𝜕z∕𝜕f ,
𝜕f ∗∕𝜕f , 𝜕M∕𝜕𝜏m, and 𝜕z∕𝜕𝜏m can be straightforwardly carried out and are omitted therefore.

B.2 Derivatives of Dmax
For the damage constraint f1 in Equation (31), the derivatives of Dmax are required in Equation (42)1 with F being taken
as f1.

B.2.1. Derivative 𝝏Dmax∕𝝏𝝆

𝜕Dmax

𝜕𝝆
= 0. (B56)

B.2.2. Derivative 𝝏Dmax∕𝝏uk

𝜕Dmax

𝜕uk
= 0. (B57)

B.2.3. Derivative 𝝏Dmax∕𝝏vk

By definition, it is clear that 𝜕Dmax∕𝜕vk = 0 for k ≠ n, while for k = n,

𝜕Dmax

𝜕vn =
[
𝜕Dmax
𝜕vn

1

𝜕Dmax
𝜕vn

2
… 𝜕Dmax

𝜕vn
nele

]
with

𝜕Dmax

𝜕vn
e

=
[
𝜕Dmax
𝜕vn

e1

𝜕Dmax
𝜕vn

e2

· · · 𝜕Dmax
𝜕vn

e(nipt)

]
, e = 1, … ,nele, (B58)

where for s = 1, … ,nipt,

𝜕Dmax

𝜕vn
es

=
[
𝜕Dmax
𝜕Δ𝛾n

es

𝜕Dmax
𝜕𝛼n

es

𝜕Dmax
𝜕f n

es

𝜕Dmax

𝜕(be)n
es

]
(B59)

with

𝜕Dmax

𝜕Δ𝛾n
es

= 0, 𝜕Dmax

𝜕𝛼n
es

= 0, 𝜕Dmax

𝜕
(

be)n
es

= 0 (B60)
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and

𝜕Dmax

𝜕f n
es

= 1
pd

( nele∑
e=1

( nipt∑
s=1

(
f n
es

)pd

)) 1
pd

−1

⋅
(

pd
(

f n
es

)pd−1
)
. (B61)

B.3 Derivatives of Rk

B.3.1. Derivative 𝝏Rk∕𝝏𝝆
The derivative 𝜕Rk∕𝜕𝝆 is a sparse matrix that needs assembly of the element term 𝜕Rk

e∕𝜕𝜌e (e = 1, … ,nele) with the
understanding of 𝜕Rk

e∕𝜕𝜌j = 0 for e ≠ j,

𝜕Rk
e

𝜕𝜌e
=

nipt∑
s=1

(
𝜕𝜂e

𝜕𝜌e
BT

es
Pk

es
+ 𝜂eBT

es

𝜕Pk
es

𝜕𝜌e

)
wes +

nipt∑
s=1

((
1 − 𝜂2

e
)

BT
L,es

[
𝜕C

𝜕𝜌e
∶ 𝜺k

es

]
− 2𝜂e

𝜕𝜂e

𝜕𝜌e
BT

L,es

[
C ∶ 𝜺k

es

])
wes (B62)

with

𝜕P
𝜕𝜌

= −1
2

r−3∕2 𝜕r
𝜕𝜌

P + r−1∕2 𝜕P
𝜕𝜌

and 𝜕P
𝜕𝜌

= 𝜕𝝉

𝜕𝜌
.F

−T
+ 𝝉 .

𝜕F
−T

𝜕𝜌
(B63)

which are understood as being evaluated at sth quadrature point in eth element. Here, an overbar is used to denote terms
that are evaluated based on F (see Section 3).

B.3.2. Derivatives 𝝏Rk∕𝝏uk and 𝝏Rk∕𝝏uk−1

It is clear that

𝜕Rk

𝜕uk−1
= 0. (B64)

For 𝜕Rk∕𝜕uk, it takes standard finite element assembly with the element term evaluated as

𝜕Rk
e

𝜕uk
e
=

nipt∑
s=1
𝜂eBT

es

𝜕Pk
es

𝜕uk
e

wes +
nipt∑
s=1

(
1 − 𝜂2

e
)

BT
L,es

[C]BL,es wes (B65)

with

𝜕P
𝜕ue

= −1
2

r−
3
2 P⊗ 𝜕r

𝜕ue
+ r−

1
2
𝜕P
𝜕ue

, (B66)

𝜕P
𝜕ue

= 𝜕P
𝜕F

|||||𝝉 fixed
∶ 𝜕F
𝜕ue

with 𝜕P
𝜕F

|||||𝝉 fixed
= −

(
𝝉 .F

−T)
⊡ F

−1
, (B67)

where, again, subscripts/superscript are omitted for brevity. Here 𝝉 depends exclusively on be and 𝜌, see Equations (6)
and (8).

B.3.3. Derivatives 𝝏Rk∕𝝏vk and 𝝏Rk∕𝝏vk−1

First, obviously
𝜕Rk

𝜕vk−1
= 0. (B68)

Second, the derivative 𝜕Rk∕𝜕vk is a sparse matrix that requires assembly of the element term 𝜕Rk
e∕𝜕vk

e (e = 1, … ,nele)
while 𝜕Rk

e∕𝜕vk
j = 0 for e ≠ j. The nonszero term is derived as

𝜕Rk
e

𝜕vk
e
=

[
𝜕Rk

e
𝜕vk

e1

𝜕Rk
e

𝜕vk
e2

… 𝜕Rk
e

𝜕vk
e(nipt)

]
,
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𝜕Rk
e

𝜕vk
es

=
[

0 0 0 𝜕Rk
e

𝜕(be)k
es

]
, s = 1, … ,nipt,

𝜕Rk
e

𝜕
(

be)k
es

= 𝜂e
(

rk
es

)−1∕2BT
es

𝜕P
k
es

𝜕
(

be)k
es

wes ,

𝜕P
𝜕be = 𝜕P

𝜕𝝉
∶ 𝜕𝝉

𝜕be with 𝜕P
𝜕𝝉

= 1
2

(
I⊠ F

−1
+ I⊡ F

−1)
.

(B69)

B.4 Derivatives of Hk

This section gives the derivatives only for the plastic step, see (44), while for the elastic step, the calculation of the
derivatives is straightforward.

B.4.1. Derivative 𝝏Hk∕𝝏𝝆

𝜕Hk

𝜕𝝆
=

⎡⎢⎢⎢⎢⎣
𝜕Hk

1
𝜕𝜌1

0 0

0 ⋱ 0

0 0
𝜕Hk

nele
𝜕𝜌nele

⎤⎥⎥⎥⎥⎦
with

𝜕Hk
e

𝜕𝜌e
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕Hk
e1

𝜕𝜌e
𝜕Hk

e2
𝜕𝜌e

⋮
𝜕Hk

e(nipt)
𝜕𝜌e

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
𝜕Hk

es

𝜕𝜌e
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕h1
𝜕𝜌e
𝜕h2
𝜕𝜌e
𝜕h3

𝜕𝜌e
𝜕h4
𝜕𝜌e

⎤⎥⎥⎥⎥⎥⎥⎦
, s = 1, … ,nipt (B70)

with

𝜕h1

𝜕𝜌e
= 𝜕𝜏d

𝜕𝜌e
−

√
2
3

sign(z)

(
1
2

1√|z| sign(z) 𝜕z
𝜕𝜌e
𝜁J +

√|z|J 𝜕𝜁
𝜕𝜌e

+
√|z|𝜁 𝜕J

𝜕𝜌e

)
, (B71)

𝜕h2

𝜕𝜌e
= Δ𝛾

(1 − f )𝜁J
(𝜏d + C0𝜏m)

(
1
𝜁

𝜕𝜁

𝜕𝜌e
+ 1

J
𝜕J
𝜕𝜌e

)
− Δ𝛾

(1 − f )𝜁J

(
𝜕𝜏d

𝜕𝜌e
+ 𝜕C0

𝜕𝜌e
𝜏m + C0

𝜕𝜏m

𝜕𝜌e

)
, (B72)

𝜕h3

𝜕𝜌e
= −𝜌pf

e Δ𝛾
(
(1 − f ) 𝜕C0

𝜕𝜌e
+ 𝓀 

(1−f )𝜁J

(
𝜕𝜏d
𝜕𝜌e

+ 𝜕C0
𝜕𝜌e
𝜏m + C0

𝜕𝜏m
𝜕𝜌e

)
− 𝓀 

(1−f )𝜁J
(𝜏d + C0𝜏m)

(
1
𝜁

𝜕𝜁

𝜕𝜌e
+ 1

J
𝜕J
𝜕𝜌e

)
+

√
2
3

k𝜔f 𝜕𝜔0
𝜕𝜌e

)
−pf 𝜌

pf −1
e Δ𝛾

(
(1 − f )C0 + 𝓀 

(1−f )𝜁J
(𝜏d + C0𝜏m) +

√
2
3

k𝜔f𝜔0

)
,

(B73)
𝜕h4

𝜕𝜌e
=
𝜕exp(2Δ𝛾A)

𝜕𝜌e
.be − 𝜕betr

𝜕𝜌e
, (B74)

where the terms 𝜕𝜏d∕𝜕𝜌e, 𝜕𝜏m∕𝜕𝜌e, 𝜕z∕𝜕𝜌e, 𝜕𝜁∕𝜕𝜌e, 𝜕J∕𝜕𝜌e, 𝜕C0∕𝜕𝜌e are given in Equations (B6), (B9), (B7), (B4) and (B10),
while 𝜕𝜔0∕𝜕𝜌e, 𝜕 exp(2Δ𝛾A)∕𝜕𝜌e and 𝜕betr

∕𝜕𝜌e can be computed as

𝜕𝜔0

𝜕𝜌e
=

(
𝛺
𝜕𝜔

𝜕𝝉
+ 𝜔𝜕𝛺

𝜕T
𝜕T
𝜕𝝉

)
∶ 𝜕𝝉
𝜕𝜌e
, (B75)

𝜕exp(2Δ𝛾A)
𝜕𝜌e

=
𝜕exp(2Δ𝛾A)

𝜕A
∶ 𝜕A
𝜕𝜌e
, (B76)

𝜕betr

𝜕𝜌e
= 𝜕betr

𝜕Fk
∶ 𝜕Fk

𝜕𝜌e
+ 𝜕betr

𝜕Fk−1
∶ 𝜕Fk−1

𝜕𝜌e
(B77)

with the help of Equations (B26), (B28), (B6), (B35), (B11), (B20), (B21), and (B3).
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B.4.2. Derivatives 𝝏Hk∕𝝏uk and 𝝏Hk∕𝝏uk−1

The derivative matrix 𝜕Hk∕𝜕uk is sparse and can be assembled by the element term 𝜕Hk
e∕𝜕uk

e (e = 1, … ,nele)

𝜕Hk
e

𝜕uk
e
=

⎡⎢⎢⎢⎢⎢⎣

𝜕Hk
e1

𝜕uk
e

⋮
𝜕Hk

e(nipt)
𝜕uk

e

⎤⎥⎥⎥⎥⎥⎦
with

𝜕Hk
es

𝜕uk
e
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕h1
𝜕uk

e
𝜕h2
𝜕uk

e
𝜕h3

𝜕uk
e

𝜕h4
𝜕uk

e

⎤⎥⎥⎥⎥⎥⎥⎦
, s = 1, … ,nipt, (B78)

where

𝜕h1

𝜕uk
e
= −

√
2
3

sign(z)𝜁

(
1
2

sign(z) 1√|z| 𝜕z
𝜕uk

e
J +

√|z| 𝜕J
𝜕uk

e

)
, (B79)

𝜕h2

𝜕uk
e
= Δ𝛾

(1 − f )𝜁J2 (𝜏d + C0𝜏m)
𝜕J
𝜕uk

e
− Δ𝛾𝜏m

(1 − f )𝜁J
𝜕C0

𝜕uk
e
, (B80)

𝜕h3

𝜕uk
e
= −𝜌pf Δ𝛾

(
(1 − f )𝜕C0

𝜕uk
e
− 𝓀

(1 − f )𝜁J2 (𝜏d + C0𝜏m)
𝜕J
𝜕uk

e
+ 𝓀𝜏m

(1 − f )𝜁J
𝜕C0

𝜕uk
e

)
, (B81)

𝜕h4

𝜕uk
e
=
𝜕exp(2Δ𝛾A)

𝜕uk
e

⊚ be − 𝜕betr

𝜕uk
e
, (B82)

in which 𝜕z∕𝜕uk
e , 𝜕J∕𝜕uk

e and 𝜕C0∕𝜕uk
e , are given in Equations (B17), (B15) and (B18), respectively, and the operation⊚

is defined such that for any third-order tensor  and second-order tensor B,

⊚ B ≔ imkBmjei ⊗ ej ⊗ ek. (B83)

The derivatives 𝜕 exp(2Δ𝛾A)∕𝜕uk
e and 𝜕betr

∕𝜕uk
e in Equation (B82) are obtained using chain rule by

𝜕exp(2Δ𝛾A)
𝜕uk

e
=
𝜕exp(2Δ𝛾A)

𝜕A
∶ 𝜕A
𝜕uk

e
, (B84)

𝜕betr

𝜕uk
e
= 𝜕betr

𝜕Fk
∶ 𝜕Fk

𝜕uk
e

(B85)

with the help of Equations (B35), (B19), (B20), and (B14).
Similarly, the sparse derivative matrix 𝜕Hk∕𝜕uk−1 is assembled from the elementary term 𝜕Hk

es
∕𝜕uk−1

e (e = 1, … ,nele
and s = 1, … ,nipt)

𝜕Hk
es

𝜕uk−1
e

=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕h1
𝜕uk−1

e
𝜕h2
𝜕uk−1

e
𝜕h3

𝜕uk−1
e
𝜕h4
𝜕uk−1

e

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0
0
0
𝜕h4
𝜕uk−1

e

⎤⎥⎥⎥⎥⎥⎦
with 𝜕h4

𝜕uk−1
e

= − 𝜕betr

𝜕uk−1
e

= − 𝜕betr

𝜕Fk−1
∶ 𝜕Fk−1

𝜕uk−1
e
, (B86)

where the terms 𝜕betr
∕𝜕Fk−1 and 𝜕Fk−1∕𝜕uk−1

e can be found in Equations (B21) and (B14).

B.4.3. Derivatives 𝝏Hk∕𝝏vk and 𝝏Hk∕𝝏vk−1

First, the derivative matrix 𝜕Hk∕𝜕vk is calculated as

𝜕Hk

𝜕vk
=

⎡⎢⎢⎢⎢⎣
𝜕Hk

1
𝜕vk

1
· · · 0

⋮ ⋱ ⋮

0 · · ·
𝜕Hk

nele
𝜕vk

nele

⎤⎥⎥⎥⎥⎦
with

𝜕Hk
e

𝜕vk
e
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕Hk
e1

𝜕vk
e1

𝜕Hk
e2

𝜕vk
e2

⋱
𝜕Hk

e(nipt)
𝜕vk

e(nipt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B87)
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for e = 1, … ,nele, and

𝜕Hk
es

𝜕vk
es

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕h1
𝜕Δ𝛾k

es

𝜕h1
𝜕𝛼k

es

𝜕h1
𝜕f k

es

𝜕h1

𝜕(be)k
es

𝜕h2
𝜕Δ𝛾k

es

𝜕h2
𝜕𝛼k

es

𝜕h2
𝜕f k

es

𝜕h2

𝜕(be)k
es

𝜕h3

𝜕Δ𝛾k
es

𝜕h3

𝜕𝛼k
es

𝜕h3

𝜕f k
es

𝜕h3

𝜕(be)k
es

𝜕h4
𝜕Δ𝛾k

es

𝜕h4
𝜕𝛼k

es

𝜕h4
𝜕f k

es

𝜕h4

𝜕(be)k
es

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, s = 1, … ,nipt (B88)

with

𝜕h1

𝜕Δ𝛾k
es

= 0, (B89)

𝜕h1

𝜕𝛼k
es

= − 1√
6

1√|z| 𝜕z
𝜕𝛼k

es

𝜁J −
√

2
3

sign(z)
√|z| J 𝜕𝜁

𝜕𝛼k
es

, (B90)

𝜕h1

𝜕f k
es

= − 1√
6

1√|z|𝜁J 𝜕z
𝜕f k

es

, (B91)

𝜕h1

𝜕
(

be)k
es

= 𝜕𝜏d

𝜕
(

be)k
es

− 1√
6

1√|z|𝜁J 𝜕z
𝜕
(

be)k
es

, (B92)

𝜕h2

𝜕Δ𝛾k
es

= − 1
(1 − f )𝜁J

(𝜏d + C0𝜏m) , (B93)

𝜕h2

𝜕𝛼k
es

= 1 + Δ𝛾
(1 − f )𝜁2J

(𝜏d + C0𝜏m)
𝜕𝜁

𝜕𝛼k
es

− Δ𝛾𝜏m

(1 − f )𝜁J
𝜕C0

𝜕𝛼k
es

, (B94)

𝜕h2

𝜕f k
es

= − Δ𝛾
(1 − f )2𝜁J

(𝜏d + C0𝜏m) −
Δ𝛾𝜏m

(1 − f )𝜁J
𝜕C0

𝜕f k
es

, (B95)

𝜕h2

𝜕
(

be)k
es

= − Δ𝛾
(1 − f )𝜁J

⎛⎜⎜⎝
𝜕𝜏d

𝜕
(

be)k
es

+ 𝜕C0

𝜕
(

be)k
es

𝜏m + C0
𝜕𝜏m

𝜕
(

be)k
es

⎞⎟⎟⎠ , (B96)

𝜕h3

𝜕Δ𝛾k
es

= −𝜌pf

(
(1 − f )C0 + 𝓀


(1 − f )𝜁J

(𝜏d + C0𝜏m) +
√

2
3

k𝜔f𝜔0

)
, (B97)

𝜕h3

𝜕𝛼k
es

= −𝜌pf Δ𝛾

(
(1 − f )𝜕C0

𝜕𝛼k
es

+ 𝓀
1

(1 − f )𝜁J
(𝜏d + C0𝜏m)

𝜕
𝜕𝛼k

es

− 𝓀


(1 − f )𝜁2J
(𝜏d + C0𝜏m)

𝜕𝜁

𝜕𝛼k
es

+ 𝓀


(1 − f )𝜁J
𝜏m
𝜕C0

𝜕𝛼k
es

)
,

(B98)

𝜕h3

𝜕f k
es

= 1 − 𝜌pf Δ𝛾

(
−C0 + (1 − f )𝜕C0

𝜕f k
es

+ 𝓀


(1 − f )2𝜁J
(𝜏d + C0𝜏m) + 𝓀


(1 − f )𝜁J

𝜏m
𝜕C0

𝜕f k
es

+
√

2
3

k𝜔𝜔0

)
, (B99)

𝜕h3

𝜕
(

be)k
es

= −𝜌pf Δ𝛾
⎛⎜⎜⎝(1 − f ) 𝜕C0

𝜕
(

be)k
es

+ 𝓀
(1 − f )𝜁J

⎛⎜⎜⎝
𝜕𝜏d

𝜕
(

be)k
es

+ 𝜕C0

𝜕
(

be)k
es

𝜏m + C0
𝜕𝜏m

𝜕
(

be)k
es

⎞⎟⎟⎠ +
√

2
3

k𝜔f 𝜕𝜔0

𝜕
(

be)k
es

⎞⎟⎟⎠ , (B100)

𝜕h4

𝜕Δ𝛾k
es

=
𝜕exp(2Δ𝛾A)
𝜕Δ𝛾k

es

.be, (B101)

𝜕h4

𝜕𝛼k
es

=
𝜕exp(2Δ𝛾A)

𝜕𝛼k
es

.be, (B102)
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𝜕h4

𝜕f k
es

=
𝜕exp(2Δ𝛾A)

𝜕f k
es

.be, (B103)

𝜕h4

𝜕
(

be)k
es

= 1
2
[exp(2Δ𝛾A)⊠ I + exp(2Δ𝛾A)⊡ I] +

𝜕exp(2Δ𝛾A)

𝜕
(

be)k
es

⊞
(

be)k
es
, (B104)

where the operation⊞ is defined such that for any fourth-order tensor A and second-order tensor B,

A⊞ B ≔ AimklBmjei ⊗ ej ⊗ ek ⊗ el (B105)

Second, the derivative matrix 𝜕Hk∕𝜕vk−1 is calculated in a similar manner as in Equation (B87) but with

𝜕Hk
es

𝜕vk
es

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕h1
𝜕Δ𝛾k−1

es

𝜕h1
𝜕𝛼k−1

es

𝜕h1
𝜕f k−1

es

𝜕h1

𝜕(be)k−1
es

𝜕h2
𝜕Δ𝛾k−1

es

𝜕h2
𝜕𝛼k−1

es

𝜕h2
𝜕f k−1

es

𝜕h2

𝜕(be)k−1
es

𝜕h3

𝜕Δ𝛾k−1
es

𝜕h3

𝜕𝛼k−1
es

𝜕h3

𝜕f k−1
es

𝜕h3

𝜕(be)k−1
es

𝜕h4
𝜕Δ𝛾k−1

es

𝜕h4
𝜕𝛼k−1

es

𝜕h4
𝜕f k−1

es

𝜕h4

𝜕(be)k−1
es

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B106)

where

𝜕h1

𝜕Δ𝛾k−1
es

= 0, 𝜕h1

𝜕𝛼k−1
es

= 0, 𝜕h1

𝜕f k−1
es

= 0, 𝜕h1

𝜕
(

be)k−1
es

= 0, (B107)

𝜕h2

𝜕Δ𝛾k−1
es

= 0, 𝜕h2

𝜕𝛼k−1
es

= −1, 𝜕h2

𝜕f k−1
es

= 0, 𝜕h2

𝜕
(

be)k−1
es

= 0 (B108)

𝜕h3

𝜕Δ𝛾k−1
es

= 0, 𝜕h3

𝜕𝛼k−1
es

= 0, 𝜕h3

𝜕f k−1
es

= −1, 𝜕h3

𝜕
(

be)k−1
es

= 0, (B109)

𝜕h4

𝜕Δ𝛾k−1
es

= 0, 𝜕h4

𝜕𝛼k−1
es

= 0, 𝜕h4

𝜕f k−1
es

= 0, 𝜕h4

𝜕
(

be)k−1
es

= − 𝜕betr

𝜕
(

be)k−1
es

, (B110)

in which the term 𝜕betr
∕𝜕

(
be)k−1

es
is given in Equation (B22).


