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A data-driven deep neural network (DNN) based approach is presented to accelerate FE2 analysis.
It is computationally expensive to perform multiscale FE2 analysis since at each macroscopic integra-

tion point an independent microscopic finite element analysis is needed. To alleviate this computational
burden, DNN based surrogates are proposed for nonlinear homogenization that can serve as effective
macroscale material models. A probabilistic approach is considered for surrogates’ development, and
an efficient data sampling strategy from the macroscopic deformation space is used for generating train-
ing and validation datasets. Frame indifference of macroscopic material behavior is consistently handled,
and two training methods – regular training where only input/output pairs are included in the training
dataset via L2 loss function, and Sobolev training where the derivative data is also used with the Sobolev
loss function – are compared. Numerical results demonstrate that Sobolev training leads to a higher test-
ing accuracy as compared to regular training, and DNNs can serve as efficient and accurate surrogates for
nonlinear homogenization in computationally expensive multiscale FE2 analysis.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, deep neural network (DNN) based modeling and
simulation approaches have received considerable attention due to
the rapid development in computational hardware (e.g., high-
performance GPU and CPU devices) and availability of big data
[1–3]. Historically, after the development of back-propagation
algorithms in 1986 [4], researchers have successfully trained neu-
ral networks for different applications. In machine learning, back-
propagation optimization algorithms have been used for image
recognition tasks with convolutional neural networks (CNN) [5–
7], and in regression problems with long sequences with long
short-term memory (LSTM) recurrent neural networks (RNN) [8–
10], among others. However, it was not until 2012 when the first
deep neural network called Alexnet was successfully trained for
computer vision applications, did the deep neural networks start
receiving unprecedented attention. Alexnet used ReLU activations
to increase the training efficiency and was trained using multiple
GPUs [11]. Since then more efforts have been made towards
designing efficient DNN architectures (e.g., GoogleNet [3], ResNet
[12], and other densely connected networks [13]) and training/
learning algorithms. For example, advanced weight initialization
techniques were proposed to address gradient vanishing/exploding
issues when training deep neural networks [14–17]; batch normal-
ization layer was developed to avoid internal covariate drift issues
[18]; regularization techniques like dropout were designed to
address the overfitting issues [19]; and optimization algorithms
based on mini-batch stochastic gradient methods such as Adam
optimizer [20] were developed to increase efficiency in training
deep networks. With these developments, DNN models are now
widely used in applications ranging from image classification
[11,21], speech recognition [22], machine translation systems
[23,24], to natural language processing [25,26], among many
others.

With these advancements in DNNs, there is also an increasing
interest in the use of DNN models in computational mechanics
[27–32]. In particular, DNN can provide efficient surrogates in var-
ious tasks which can lead to increased computational efficiency.
This is especially true for computational multiscale analysis where
finite element analyses across multiple scales have to be carried
out concurrently [33]. Multiscale analysis is employed in many
applications [34,35] and is indispensable for heterogeneous mate-
rials where complex mechanical properties are needed to be cap-
tured, e.g., fibrous materials [36], contact modeling at microscale
[37], fracture propagation at microscale [38], etc. Previous studies
have explored different strategies for leveraging DNN to speed up
computations in multiscale mechanics. For instance, Unger and
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Könke adopted multilayer perceptron neural networks to approxi-
mate the homogenized strain–stress relationship for concrete
modeling, where softening due to damage is included [39]. The
authors later used similar neural networks for replacing the macro-
scopic stress and crack opening response at the interface between
concrete and reinforcement [40]. Le et al. [41] explored the use of
neural networks to approximate the homogenized constitutive
behavior of small-strain nonlinear elastic unit cells with random
microstructures that are described by geometric and material
descriptors (e.g., size of inclusion, phase material properties, etc.).
As a result, the input of the surrogate includes both macro strain
measure and geometric and material descriptors, while the output
is the homogenized strain energy. The homogenized stress and
tangent are then obtained through direct differentiation. This work
was further extended to the finite strain regime by Nguyen-Thanh
et al. [42]. In another study, Bessa et al. [43] explored both kriging
and neural network models as surrogates for homogenization of
RVE made of hyperelastic phases with random microstructures
described through a set of geometric descriptors. The authors also
explored model reduction methods to reduce computational
expense in order to build large databases for expensive RVE evalu-
ations, which include plasticity and damage for further data-driven
tasks. Huang et al. [44] used feedforward neural network as surro-
gate for linear homogenization analysis where the training data
consists of indirect data such as load/displacement samples rather
than direct observations of strain/stress data. This work was later
extended by the authors to hyperelasticity and small strain elasto-
plasticity [45], where the lower triangular matrix from the Cho-
lesky decomposition of the tangent moduli, which is assumed to
be positive-definite, is learned using neural networks. Focusing
on elastic problems, Fernández et al. [46] examined three DNN
models for learning the homogenized constitutive laws – one for
material strain/stress relationship, one for material strain and
strain energy mapping, and one for strain energy function in terms
of the material strain invariants – of an elastic/hyperelastic cubic
lattice with internal symmetries. Under small strain assumptions,
Ghavamian et al. [47] explored the use of a recurrent neural net-
work (RNN) for homogenization of elastoplastic solids in the FE2

analysis with a sequence-to-sequence input (macro strain) and
output (macro stress) relationship. Logarzo et al. [48] developed
a RNN based surrogate, which given the sequence of macro strain
(representing a loading path) outputs sequences of both homoge-
nized stress and user-defined localized quantities of interest (e.g.,
maximum plastic strain in the RVE domain). Wu et al. [49] consid-
ered the use of RNN as a surrogate model for the homogenization
of RVE consisting of elastoplastic phases under finite strains, where
the strain sequence in each training sample is obtained through a
sequence of random walk in the strain space. In another study,
with underlying hyperelastic constituents, Linka et al. [50] con-
structed a machine learning constitutive model using a general
anisotropic hyperelasticity theory where the strain energy is writ-
ten as a function of generalized invariants. Compared to the afore-
mentioned studies, where material and geometric descriptors
serve as input for surrogate models, Rao and Liu [51] proposed a
3D convolutional neural network (CNN) based surrogate for linear
homogenization, where for a given 3D microstructure image as
input, the elasticity tensor is predicted. Xiao et al. [52] conducted
both regression (for linear constitutive modeling using Gaussian
process and support vector machines) and classification (for failure
probability approximation using DNNs) tasks for homogenization
analysis of metal-ceramic composites considering microstructural
uncertainties such as the size, shape and number of inclusions.

Although advancements have been made in the previous stud-
ies towards the development of data-driven surrogate models for
multiscale simulations, many critical aspects are not completely
addressed and remain unresolved. For instance, DNN surrogates
2

are not constructed using probabilistic frameworks, and therefore,
many theoretical and practical issues related to learning DNNs are
not handled consistently. This is important especially if such mod-
els are to be extended for uncertainty quantification tasks. More
importantly, in most of the past studies, the range of applicability
of the developed surrogates is not clearly presented. As these data-
driven models are mostly performing a regression task, it is impor-
tant to quantify the range in which such surrogates are applicable.
In general, under a pure data-driven framework, the surrogate
models’ results cannot be extrapolated outside the training range.
Hence, the range of applicability of a surrogate model, i.e., working
data space for the model, is of paramount importance and should
be explicitly specified.

The goal of this paper is to develop a data-driven approach for
accelerating constitutive modeling of periodic heterogeneous
hyperelastic media in FE2 analysis. To this end, a consistent proba-
bilistic framework is presented within which DNN surrogates for
constitutive models of periodic media are constructed. An efficient
strategy for data generation in the macro principal stretch space is
also proposed, and with a clear specification of training data space,
a detailed study on the required size of the training dataset is also
carried out. Multiple state-of-the-art neural network architectures
are examined in search of effective DNN surrogates. In addition, an
advanced learning strategy based on Sobolev training [53] is
adopted for an improved training performance, where the 1st-
order derivatives are incorporated in the loss function along with
the target output labels. The efficacy of the proposed strategies is
demonstrated on the representative examples within the context
of finite strain FE2 analysis.

The rest of this paper is organized as follows: Section 2 intro-
duces the FE2 analysis for multiscalemechanics problems. Section 3
presents probabilistic learning approaches for DNN models used in
this study. Section 4 explores the performance of different DNN
architectures and learning approaches in two homogenization
problems. In Section 5, the trained DNN models are employed as
surrogates in FE2 analysis of three different structures. The conclu-
sions of this paper are given in Section 6.
2. FE2 analysis

For general heterogeneous media, constructing an analytical
constitutive law can be challenging, if not impossible. In this sec-
tion, the focus is on media that have periodic microstructures such
that an unambiguous representation of the unit cell can be found.
Assuming that the length scale (l) of the microstructure is much
smaller than the characteristic length (L) of the macroscale prob-
lem, i.e., L � l, the 1st-order computational homogenization can
be used to characterize the macroscopic material behaviors [33].
As a result, homogenization analysis is carried out to replace the
traditional constitutive model evaluation at each integration point
of the macroscale problem. The name FE2 is coined since finite ele-
ment analysis must be carried out at both the global macroscale
level and integration point level in a nested way.
2.1. Macroscale problem

Consider a continuum body �B that undergoes a motion that
takes it from a reference configuration �X0 2 R3 to a spatial
configuration �Xt , where an overbar is used to denote terms at
the macroscale. The boundary of �X0, denoted as @ �X0, is decom-
posed into the disjoint sets @ �X0u and @ �X0r such that
@ �X0 ¼ @ �X0u [ @ �X0r and @ �X0u \ @ �X0r ¼ £ with prescribed motion
on @ �X0u and traction on @ �X0r. Taking an arbitrary material point
of the body with position vector �X 2 �X0 in the reference configura-
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tion and �x 2 �Xt in the spatial configuration, the motion can be
described by a smooth one-to-one mapping �x ¼ �u �X; t

� �
where

t 2 R
þ denotes time (see Fig. 1). The associated macro deformation

gradient is defined by �F ¼ r�X �u with det �F > 0 andr�X the material
gradient operator, i.e., w.r.t. �X. The macroscopic linear momentum
balance under quasi-static conditions is described by the boundary
value problem (BVP) that reads

$�X :
�P ¼ 0 in �X0

�u ¼ b�u on @ �X0u

�P:�N ¼ b�T on @ �X0r

8><>: ð1Þ

where �P is the 1st Piola-Kirchhoff (PK) stress tensor, and b�u and b�T
are the prescribed displacement and 1st PK traction vectors, respec-
tively, on the boundaries with unit outward normal �N. Here Eq. (1)1
represents the balance of linear momentum under the absence of
body forces, while the balance of angular momentum is implicitly
satisfied by the symmetry of Kirchhoff stress �s, i.e., �P:�FT ¼ �F:�PT .

With the prescribed boundary and loading conditions, the
motion of the continuum body is then determined by the mate-
rial’s constitutive model. For example, for hyperelastic materials
a free energy density function �w �F

� �
is postulated such that the

1st PK stress is calculated as

�P ¼ @�w

@�F
ð2Þ

with the tangent moduli computed by

�A ¼ @�P
@�F

¼ @2�w

@�F@�F
ð3Þ

The implementation details on macroscale BVP are given in
Appendix A.1. For general heterogeneous (hyperelastic) solids, con-
structing an analytical closed-form of the energy function �w �F

� �
can

be highly non-trivial [54,55]. To aid this process, within the FE2

framework, the macroscopic constitutive laws are computationally
obtained from the solution of a microscale homogenization
analysis.
Initial configuratio

Macroscale BVP

RVE
(one unit cell)

Microstructure

Fig. 1. Illustration of the FE2 analysis of s

3

2.2. Microscale problem

Given a media with periodic microstructure, a unit cell can be
found that can serve as a representative volume element (RVE).
This RVE can then be used to characterize the macroscopic behav-
ior of the media [56]. The RVE at a material point �X deforms from a
reference configuration X0 to the current configuration Xt through
a smooth one-to-one mapping u, i.e., x ¼ u X; tð Þ with X 2 X0 and
x 2 Xt the position vectors in the two configurations. The RVE
domain consists of a solid part B0 and void part H0, i.e.,
X0 ¼ B0 [H0, with boundaries @B0 ¼ @X0 [ @H0, see Fig. 1. It is
noted that microscopic heterogeneities can also be introduced by
incorporating multiple solid material phases at the microscale
scale with or without a void phase. In this study, the microstruc-
tural stability is assumed to be preserved during the motion, such
that the periodicity of the microstructure remains unchanged, and
the deformed unit cell can still serve as the RVE for estimating the
material homogenized properties. The theoretical and computa-
tional aspects of multiscale stability can be found in [57] and
[56,58] and are out of the scope of this study.

In the deformation-driven 1st-order homogenization frame-
work, the deformation of the microstructure located at �X is driven
by a deformation gradient �F �X; t

� � ¼ r�X �u ¼ I þr�X �u where
�u ¼ �x� �X is the macroscopic displacement field. The macroscopic
material properties (homogenized stress and tangent moduli) are
then evaluated under this deformation mode. The microscopic dis-
placement field u X; tð Þ over the RVE domain X0 is assumed to be
driven by the macroscopic deformation �F �X; t

� �
by

u X; t; �X
� � ¼ �F �X; t

� �� I
� �

:X þ u
�

X; t; �X
� � ð4Þ

where u
�

X; t; �X
� �

is the displacement fluctuation field. The corre-
sponding microscopic deformation gradient is

F X; t; �X
� � ¼ �F �X; t

� �þ $X u
�

X; t; �X
� � ð5Þ

where the gradient operator rX is w.r.t. microscale coordinates X.

In the following, the dependence of the fields u, u
�
and F on �X is

not explicitly expressed for the notational convenience, e.g.,
n Current configuration

, 

olids with periodic microstructures.



N. Feng, G. Zhang and K. Khandelwal Computers and Structures 263 (2022) 106742
u X; tð Þ is used instead of u X; t; �X
� �

. Following [59], the microscale
displacement field has to satisfy the kinematical admissibility
constraintsZ
B0

u X; tð ÞdV ¼ 0 and �F �X; t
� � ¼ I þ 1

V

Z
@X0

u X; tð Þ � N Xð ÞdS ð6Þ

in which V is the volume of the domain X0 and N is the unit normal
vector on the boundary @X0. These kinematical admissibility con-
straints can be equivalently expressed in terms of the fluctuation
field asZ
B0

u
�

X; tð ÞdV ¼ 0 and
Z
@X0

u
�

X; tð Þ � N Xð ÞdS ¼ 0 ð7Þ

where it is assumed that the coordinate system on the microscale is
chosen such that

R
B0

XdV ¼ 0. It can be seen that the constraint in
Eq. (7)1 is equivalent to removing rigid-body translation, while
the constraint in Eq. (7)2 implicitly removes rigid-body rotation.
The constraints in Eq. (6) or (7) correspond to the constant traction
boundary conditions [56], i.e.,

T X; tð Þ ¼ �P �X; t
� �

:N Xð Þ on @X0 ð8Þ

where T X; tð Þ ¼def P X; tð Þ:N Xð Þ represents the 1st PK (nominal) trac-
tion acting on the reference surface with normal N Xð Þ; P X; tð Þ
denotes the microscopic 1st PK stress field corresponding to a mate-
rial point �X at the macroscale, while �P �X; t

� �
represents the macro-

scopic/homogenized 1st PK stress (see Eq. (11)). Additional
constraints can be introduced in a consistent way that may lead
to periodic boundary conditions or linear displacement boundary
conditions [56,59].

Since periodic microstructures are considered in this study, the
periodic boundary conditions are used, where the boundary @X0 is
divided into a pair of negative and positive sides, @Xþ

0 and @X�
0 ,

periodicity implies

u
�þ ¼ u

�� on @X0 ð9Þ

where u
�þ and u

�� are displacement fluctuations on the negative side
and positive side, respectively. From periodicity, any point on the
positive side can be reached by translating the corresponding point
on the negative side with a periodic lattice vector a1 or a2 or
� a1 � a2ð Þ, see Fig. 2. The boundary constraint in Eq. (9) automati-
cally satisfies the constraints in Eqs. (6) or (7).

The transition between the micro and macro scales is governed
by the Hill-Mandel condition [60,61], which states that 8�X 2 �X0,

t 2 Rþ and kinematically admissible u
�

�P : d�F ¼ 1
V

Z
B0

P : dFdV ð10Þ
Fig. 2. Partitioning of boundary of RVE

4

which implies the equivalence of the incremental virtual work
between the micro and macro scales.

The stress homogenization relation

�P ¼ 1
V

Z
B0

PdV ¼ 1
V

Z
@B0

T � XdS

� 1
V

Z
@X0

T � XdS with T ¼ P:N ð11Þ

and the weak form of the microscale equilibrium equationZ
B0

P : rXdu
�
dV ¼ 0 ð12Þ

can be obtained from Eq. (10) by choosing du
� ¼ 0 and d�F ¼ 0,

respectively. Here, the second equality in Eq. (11) can be proved
using the divergence theorem and the fact that rX :P ¼ 0, while
the third equality is due to the traction-free void boundaries, i.e.,
T ¼ 0 on @H0. The implementation details on the homogenization
analysis are given in Appendix A.2.
3. Data-driven nonlinear homogenization

Although the FE2 framework presented in Section 2 accommo-
dates inelastic constitutive behaviors, the focus of this study is
on finite strain hyperelastic solids. As a result, the constitutive laws
of the microstructure constituents are path independent. However,
FE2 analysis can still be computationally prohibitive as it requires
an independent nonlinear finite element analysis at each integra-
tion point of the macroscale BVP. To relieve the computational bur-
den, a data-driven approach is proposed in this section to replace
the underlying homogenization analysis at each integration point.

3.1. Input/output of the surrogate for homogenization

For homogenization analysis, the inputs include the RVE model
(geometric microstructure and constituents’ constitutive laws) and
macroscopic deformation gradient �F , while the outputs are the
homogenized 1st PK stress �P and tangent moduli �A (¼ @�P=@�F). In
this study, the data-driven surrogate models are developed for
RVEs with prescribed geometric microstructures and constitutive
laws. Hence, developed surrogate models are intended to work
for the specified RVE model and cannot be used for arbitrary
(stochastic) RVEs. Therefore, the input and output pairs for the sur-
rogate model for a given RVE are �F and �P, respectively. In other
words, the mapping defined from the homogenization of a given
RVE, i.e., , is to be replaced by a DNN surrogate.

It is noted that the frame indifference requires that the mapping
should satisfy for any rotation tensor
into positive and negative parts.
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�Q 2 SO 3ð Þ [62]. Although this physics constraint can be enforced
by adding penalization terms during the surrogate training phase
or can be directly learned from data by increasing the data size,
the training efficiency will deteriorate. To address this issue, the
material tensor pair (�C; �S) is adopted as the input/output pair of
the surrogate model, where �C ¼ �FT :�F is the macroscopic right Cau-
chy Green strain tensor and �S is the macroscopic 2nd PK stress.
Using this input/output pair the frame indifference is automati-
cally satisfied, as �C and �S are frame invariant. Therefore, the surro-
gates are developed to learn the mapping M : �C ! �S from the data.
The homogenized 1st PK stress �P and tangent moduli �A that are
needed in FE2 are recovered by the push-forward operations

�P ¼ �F:�S and �Aijkl ¼ FipFkq
�Cpjql with �C ¼def 2 @�S

@�C
ð13Þ

Hence, this problem can be categorized as a regression problem,

where the target mapping �C#
M �S is learned from the data. Further-

more, to enforce the symmetry of �S, only the symmetric parts of �C
and �S are used, e.g., the size of the input or output tensor is 6 � 1
for 3D while 3 � 1 for 2D problems. The tangent moduli �C is
obtained by direct differentiation of the surrogate model , i.e.,

ð14Þ

The flowchart of FE2 analysis with the direct homogenization
analysis or surrogate evaluation is shown in Fig. 3. Note that the
homogenization analysis requires a nonlinear finite element analy-
sis of the unit cell at each macroscale integration point and the
main computational expense in FE2 is associated with this nested
analysis step. However, the use of surrogate models will obviate
this expensive analysis step that is required at a macroscale inte-
gration point. In this sense, the surrogate model directly pro-
vides the derivatives of the homogenized hyperelastic free
energy for the periodic material. The following subsections present
two different unit cells microstructures that are considered for FE2

analysis in this paper.

3.1.1. Unit cell-1: three-phase periodic solids
In the first case, a unit cell with three material phases is consid-

ered as shown in Fig. 4. The three material phases are all hyperelas-
tic materials but with different stiffness that is modeled by a neo-
Hookean constitutive model (see Eq. (A9)). The geometry, FE mesh,
and model parameters of the unit cell are also shown in Fig. 4. For
this unit cell, standard 4-node quadrilateral elements are used to
discretize the domain.

3.1.2. Unit cell-2: two-phase periodic solids
The second case considers a two-phase unit cell with a leaf-

shaped inclusion. Again, the underlying materials follow the neo-
Hookean model with parameters given in Fig. 5, where the geom-
etry and FE mesh information is also provided. In this unit cell, due
to the geometric complexity of the domain, linear triangle ele-
ments are used for the FE discretization.

3.2. Probabilistic background of the regression problem

Consider a dataset of random variables

Dtrain ¼ Z rð Þ :¼ Y rð ÞjX rð Þ
n om

r¼1
of m i.i.d samples, i.e.,

Z rð Þ � p z rð Þ� � ¼ p y rð Þjx rð Þ� �
, where X rð Þ 2 R

d and Y rð Þ 2 R
d, a random

variable Z ¼ Y jX � p yjxð Þ, and the random model parameters
H � p hð Þ that are assumed to respect the graph in Fig. 6. The joint
probability density function (PDF), p z;Dtrain; hð Þ, can be then
expressed as
5

p z;Dtrain; hð Þ ¼ p hð Þp Dtrainjhð Þp zjhð Þ ð15Þ
where

p Dtrainjhð Þ ¼
Ym

r¼1
p z rð Þjh� � ð16Þ

In Eq. (15), p hð Þ is the prior PDF of the parameters H, p zjhð Þ is
the conditional PDF of data, and p Dtrainjhð Þ is the conditional prob-
ability of the data. In a regression task, the goal is to infer the con-
ditional PDF p zjDtrainð Þ, which is also known as posterior predictive
PDF, for a given prior PDF (p hð Þ) and the conditional PDF of the data
(p zjhð Þ). This posterior predictive PDF is given by

p zjDtrainð Þ ¼ EH� p hð Þ p DtrainjHð Þp zjHð Þ½ 	
EH� p hð Þ p DtrainjHð Þ½ 	 ð17Þ

Further simplifications are made in probabilistic point estima-
tion approaches, e.g., maximum likelihood estimation (MLE) and
maximum a posteriori (MAP) estimation [63], wherein for the cal-
culation of the posterior predictive PDF p zjDtrainð Þ, it is assumed that
the model parameters H have negligible uncertainties, i.e.,

p hð Þ ¼ d h� h
� �

where h ¼ EH� p hð Þ H½ 	 are the unknown parameters.

With this assumption, the posterior predictive PDF p zjDtrainð Þ is
obtained as

pðzjDtrainÞ ¼
p Dtrainj h
� �

p zj h
� �

p Dtrainj h
� � ¼ p zj h

� �
ð18Þ

Thus, in the case of point estimation methods, the goal is to

determine the model parameters h that can be used to describe

the conditional data density p zj h
� �

. In regression, a common

model for the conditional data density p zj h
� �

is the Gaussian

PDF [63], i.e.,

ð19Þ

where the function with unknown parameters, w, specifies

the mean of the conditional PDF p zj h
� �

. In a regression task, the

parametric form of the mean function has to be specified
in terms of parameters w and many functional forms of this
dependence can be considered [63]. In particular, in deep
machine learning, neural networks are used as mean function
approximators to express this parametric dependence, and the

learning task is then to estimate the model parameters h bybh ¼ bw; br2
� �

from the available data Dtrain. After the model
parameters are estimated, the deterministic regression is
described in terms of the most probable estimate of by of Y given
X ¼ x as

ð20Þ
For the FE2 surrogates developed in this paper, the input x is

taken as the macroscopic right Cauchy Green strain tensor �C, the
output by is taken as the macroscopic 2nd-Piola Kirchhoff stress
tensor �S and the learned mapping .

3.3. Regular training

In the case of maximum likelihood estimation (MLE), the model

parameters h in Eq. (19) are determined by maximizing the proba-
bility of data which is expressed as

L h
� �

¼def p Dtrainj h
� �

¼
Ym
r¼1

p y rð Þjx rð Þ; h
� �

ð21Þ



Create FE model of macroscale 
BVP

Apply load increment of the 
prescribed load/displacement

END

BEGIN

RVE 
input file

Material subroutine (macro): 

Homogenization analysis Surrogate evaluation ,,OR

Assembly of element internal 
force and tangent stiffness matrix

Initialize/Update nodal 
displacement

Newton-Raphson iteration
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Reached prescribed load/displacement?
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No

Fig. 3. Flowchart of FE2 analysis with direct homogenization analysis or surrogate (DNN).

Fig. 4. Geometry, FE mesh, and model parameters of the unit cell-1.

Fig. 5. Geometry, FE mesh, and model parameters of the unit cell-2.
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Fig. 6. Probabilistic graphical model for regression.
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where L h
� �

is the likelihood function for the parametric family

p yjx; h
� �

. In practice, to avoid the issues related to numerical under-

flow, the log-likelihood function is considered, i.e.,

l h
� �

¼def lnL h
� �

¼
Xm
r¼1

ln p y rð Þjx rð Þ; h
� �

ð22Þ

Finally, MLE of the unknown parameters h is obtained by max-

imizing l h
� �

, i.e.

bhMLE 2 argmin
h

�l h
� �

ð23Þ

with

ð24Þ

where the Gaussian PDF of p yjx; h
� �

in Eq. (19) is used. By consid-

ering the stationary conditions @l h
� �

=@w ¼ 0 and @l h
� �

=@r2 ¼ 0,

the MLE of w, i.e., bwMLE, is obtained by solving a least squares opti-
mization problembwMLE 2 argmin

w
LMSE wð Þ ð25Þ

ð26Þ

and br2
MLE is computed by

br2
MLE ¼

1
d
LMSE bwMLE

� � ð27Þ
7

In general, the MSE loss function LMSE wð Þ in Eq. (26) is noncon-
vex and this optimization problem can be solved using nonlinear
programming methods, e.g., nonlinear least squares [64]. In
machine learning, where neural networks are used to parametrize
the function and the size of the dataset (m) is large, this opti-
mization problem is then usually solved using stochastic optimiza-
tion approaches (SOA) [20]. To this end, the loss function LMSE wð Þ is
reformulated in an expectation form, i.e.,

LMSE wð Þ ¼ ED� pdata dð Þ k�L Dð Þk2
h i

with

pdata dð Þ ¼ 1
m

Xm
r¼1

d d� d rð Þ
� �

ð28Þ

where d rð Þ ¼ x rð Þ; y rð Þ� �
is the r th data point in the training dataset

and pdata dð Þ is a discrete empirical data distribution defined by the
training data. With the MSE loss function expressed in the expecta-
tion form shown in Eq. (28), the SOA can be used to solve this prob-
lem [20]. The main advantage of using SOA is that the optimization
can proceed by using only a small subset of the datasets, i.e., by
using mini-batches, which makes the optimization process more
efficient, especially when large datasets are used [65].

3.4. Sobolev training – With 1st-order derivative data

Recently, the idea of Sobolev training for neural networks is
introduced in [53], where the derivatives of mapping were also
used to learn the underlying mapping from the data. It was shown
in [53] that incorporating the derivatives information in neural
network training improves not only the accuracy of the network
prediction but also the data efficiency and generalization capabili-
ties of the learned mapping. More specifically, consider a dataset

Dtrain ¼ x rð Þ; y rð Þ; J rð Þ
� �n om

r¼1
where and is a

smooth mapping between inputs x rð Þ and outputs y rð Þ that gener-
ates the data. Using Sobolev training [53], an optimal estimate of
w is then found by optimizing a multi-objective function Lc wð Þ, i.e.,bw 2 argmin

w
Lc wð Þ ð29Þ

ð30Þ

where kp > 0 is a user-defined hyperparameter that serves as a
weighting factor between the two loss terms. For using SOA, the
objective function Lc wð Þ is again expressed in an expectation form
as

Lc wð Þ ¼ EU� pdata uð Þ k�L Uð Þk2 þ kpkD Uð Þk2
h i

ð31Þ

with

ð32Þ

and

pdata uð Þ ¼ 1
m

Xm
r¼1

d u� u rð Þ� � ð33Þ



N. Feng, G. Zhang and K. Khandelwal Computers and Structures 263 (2022) 106742
where u rð Þ ¼ x rð Þ; y rð Þ; J rð Þ
� �

is the rth data point in the training

dataset.
Remark: From a probabilistic viewpoint, the solution of the

optimization problem in Eq. (29) can be seen as a maximum a pos-
teriori estimate (MAP) bwMAP ofw, in a sense that the prior distribu-
tion p wð Þ of the parameters w has the following property

ð34Þ

which means that the prior PDF belongs to one-parameter exponen-
tial family distribution [66] and can be rewritten as

p wð Þ ¼ h wð Þ exp g kp
� �

T wð Þ � A kp
� �� �

with

h wð Þ ¼ 1;A kp
� � ¼ lnC kp

� �
;g kp
� � ¼ �kp and

ð35Þ

where T wð Þ can be shown to be the sufficient statistics [67], in the
sense that by letting V ¼ T Wð Þ, the conditional PDF p wjvð Þ reads

p wjvð Þ ¼ p w;vð Þ
p vð Þ ¼ p v jwð Þp wð Þ

EW� p wð Þ p vjWð Þ½ 	

¼ p v jwð Þ exp gv � Að Þ
exp gv � Að Þ RXw

p vjwð Þdw ¼ p vjwð ÞR
Xw

p v jwð Þdw

with p v jwð Þ ¼ d v � T wð Þð Þ and Xw ¼ w : T wð Þ ¼ vf g ð36Þ
and does not depend on kp. Hence, the optimization problem in Eq.
(29) can be equivalently considered as optimizing the negative log-
arithm of the posterior PDF p wjDtrainð Þ / p wð Þp Dtrainjwð Þ. From this
viewpoint, incorporating the derivative data has a regularizing
influence on the model, which leads to the aforementioned desir-
able features.

3.5. Stochastic optimization algorithm (SOA)

To solve the optimization problem in Eq. (25) or (29), mini-
batch stochastic gradient descent is used. The main idea is to
divide the training dataset Dtrain into nb mini-batches, i.e. D1, D2,

 
 
, Dnb . The number of samples in each batch is sb ¼ m=nb and is
called the batch size. Then, the gradient is evaluated over a mini-
batch instead of the entire training dataset, and this gradient is
used to update the model parameters. All mini-batch datasets are
used one by one to compute a stochastic gradient as an approxima-
tion for the true gradient, and one cycle over all the mini-batches is
termed as an epoch. Hence, one epoch consists of nb optimization
iterations. At the k th iteration within an epoch (k ¼ 1, 2, 
 
 
, nb),

the stochastic gradient is given by
@LDk wð Þ

@w

���
w¼wk

where LDk
wð Þ denotes
8

the loss function in Eq. (26) for regular training or Eq. (30) for Sobo-
lev training evaluated by the mini-batch training data Dk. The eval-
uated stochastic gradient is, however, usually noisy and can be far
away from true gradient, which can result in slow convergence. To
address this issue, Adam optimizer [20] that considers moving
statistics of the stochastic gradient is used to make an approxima-
tion for the true gradient. In the Adam optimization algorithm, the
learning rate is adjusted at each iteration. At k th optimization step
in each epoch, the update of an arbitrary trainable variable wk 2 w
is given by

wk ¼ wk�1 � akmk ð37Þ
with

ak ¼ affiffiffiffiffiffi
vk

p þ �l

mk ¼ 1

1� b1ð Þk
b1mk�1 þ 1� b1ð Þgk½ 	

vk ¼ 1

1� b2ð Þk
b2vk�1 þ 1� b2ð Þ gkð Þ2
h i

gk ¼def @LDk
wð Þ

@w

����
w¼wk�1

ð38Þ

where b1 and b2 are decay rates for the first and second-order
moment estimates of stochastic gradient whose recommended val-
ues are b1 = 0.9 and b2 = 0.999 [20];mk and vk are the first and second
order moment estimates of stochastic gradient at k th optimization
step in each epoch and are initialized by m0 ¼ v0 ¼ 0; �l ¼ 10�8 is
a small constant for numerical stability; ak is the learning rate at
the current step and a is a hyperparameter used for controlling
the learning rate with a recommended value of 0.001 [20].

4. DNN architecture selection and training aspects

This section gives details of the DNN surrogate model together
with important training aspects. The implementation and training
of DNNs are carried out using Tensorflow [68], while all the FE2

analyses and homogenization analyses for generating datasets
are performed in a Matlab-based in-house finite element library
CPSSL-FEA developed by the authors. In all the examples, the Adam
optimizer [20] is used with the following hyperparameters: decay
rates b1 = 0.9 and b2 = 0.999, learning rate (a) = 0.001, mini-
batch size = 1024, and total number of epochs = 3000. For training
parameters initialization, all the biases are initialized to zeros
while all weights in convolutional (Conv) and fully-connected
(FC) network layers are initialized using the Xavier normal initial-
ization method [15]. With the Xavier method, the variances of DNN
output are close to the variance of its input, and this helps to pre-
vent the gradient vanishing or exploding issues during the network
training [15].

To evaluate the overall performance of different trained DNN
models, mean squared error is used for computing the training/
testing error over the complete training/testing dataset. Moreover,
for generating the overall error statistics, for each testing sample, if
the target stress is y and the network prediction is y, the prediction
performance of the network is evaluated by using the following
relative error metric

er ¼ ky � y k2
kyk2

� 100 %ð Þ ð39Þ



Fig. 8. Illustration of uniformly generated samples in the �k1; �k2
� �

space. Blue box
denotes the boundary of the data space; red lines denote generated load paths on
which the samples lie; red points denote generated samples. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

N. Feng, G. Zhang and K. Khandelwal Computers and Structures 263 (2022) 106742
4.1. Training/Testing datasets

The input of the DNN model is �C which, for 2D plane strain, can
be parameterized by

�C ¼ �U2 with �U ¼ Q �KQ T ; Q hð Þ ¼ cos h � sin h

sin h cos h


 �
; �K ¼

�k1
�k2

" #
ð40Þ

where �k1 and �k2 are macroscopic principal stretch ratios, h is the
angle of the principal axes w.r.t. the standard Euclidean bases
e1; e2f g. Due to symmetry, the training parameters can be chosen
as �k1; �k2 2 �kmin; �kmax

� 

and h 2 0;p=2½ Þ where �kmin and �kmax are the

lower and upper bounds of the macroscopic stretch ratios that
determine the surrogate model application range. In this study,
�kmin = 0.5 and �kmax = 2 are chosen for the training of the surrogate
models and the surrogate models are only applicable within this
dataspace.

4.1.1. Training data generation
For the efficiency of training data generation, the Latin Hyper-

cube Sampling (LHS) [69] is carried out in parameter space
h;af g 2 0;p=2½ Þ � 0;2p½ Þ where h represents the angle of principal
axes in Eq. (40) and a is the sweeping angle in the principal stretch
ratios space, see Fig. 7 where a loading path is described by a line
starting from the undeformed state �k1 ¼ �k2 ¼ 1

� �
with an inclined

angle a and ending at the boundary of the macro stretch ratios
space 0:5; 2½ 	 � 0:5; 2½ 	 at point A. The loading path is then divided
uniformly into a prescribed number of Nl load steps, see the red
dots in Fig. 7. As a result, each sampled value of a represents a sam-
pled loading path. The red lines in Fig. 8 illustrate a uniform sam-
pling of a with 50 points in 0;2p½ Þ in the macro stretch ratios
space. In Fig. 8, each loading path (red line) is then divided uni-
formly into a number of loading steps (Nl), where Nl is proportional
to the length of the total path (O-A). For example, in Fig. 8, Nl is
defined such that the shortest loading path (from point (1, 1) to
point (1, 0.5) or point (0.5, 1)) has 10 steps and the Nl is proportion-
ally increased for other loading paths. After generating the samples
for �C, the corresponding �S and �C are obtained by a homogenization
analysis to generate the full training dataset

Dtrain ¼ �C rð Þ; �S rð Þ; �C rð Þ� �m
r¼1. It is noted that in this dataset generation,

only one homogenization analysis is carried out for each loading
path rather than for each sample. For the validation of a surrogate
model during the training process, the dataset is spit in a ratio of
9:1 to two sets – training set and validation set. In this study, the
appropriate size of the training dataset is also investigated, see Sec-
tion 4.3, where for different dataset sizes the corresponding sam-
pling densities in each domain are given in Table 1.
Fig. 7. Parameterization of macroscopic deformation gradient load path.

9

4.1.2. Testing data generation
To evaluate the performance of the trained model in the train-

ing dataspace range, i.e., �k1; �k2; h 2 0:5; 2½ 	 � 0:5; 2½ 	 � 0; p=2½ Þ,
the input �C in the testing-dataset is generated by a nT ¼
100 � 100 � 100 uniform grid in the (�k1; �k2; h) parameter space.

The data �C rð Þ; �S rð Þ; �C rð Þ� �� �nT
r¼1 in the testing-dataset is then gener-

ated by running nT homogenization analysis, one at each grid
point.

4.1.3. Data preprocessing
For the better numerical performance of neural network mod-

els, both the input and output of training data are normalized using
their statistics. The normalization is carried for each component of
the input vector (e.g., �Cij) and output vector (e.g., �Sij) indepen-
dently. For example, for any component v (v can represent �Cij, �Sij
etc.), the normalization is given by

bv rð Þ ¼ v rð Þ � lvffiffiffiffiffiffi
Vv

p ; r ¼ 1; 
 
 
 ;m ð41Þ

with

lv ¼ E v½ 	 � 1
m

Xm
r¼1

v rð Þ and Vv ¼ Var v½ 	

� 1
m

Xm
r¼1

v rð Þ � lv

� �2
ð42Þ

where v is the vector of training data for component v, i.e.

v ¼ v 1ð Þ 
 
 
 v mð Þ� 
T where m is the total number of training sam-

ples. The normalized training dataset, bDtrain, contains all the normal-
ized components bv. The testing dataset is also normalized by the
statistics from the training dataset (lv and Vv in Eq. (42)) using
Eq. (41).

4.1.4. Scaling strategies for network derivatives
In this study, two scaling strategies for the network derivatives

used in the Sobolev training are considered – one uses full training
dataset statistics and the other one uses mini-batch dataset statis-
tics. Since the derivatives are only used for training and not for the
model evaluation, the preprocessing of the derivative data can be
made during training without storing the statistics.

(a) 1st scaling strategy

For the 1st scaling strategy, the preprocessing of the derivatives
follows Eqs. (41) and (42) in Section 4.1.3 with v replaced by half of



Table 1
Sampling densities in each domain and the number of samples in the shortest loading path for different training datasets.

Size of dataset 0.5 � 106 106 1.5 � 106 2 � 106 2.5 � 106 3 � 106

Samples in (a, h) by LHS 1.8 � 104 3.6 � 104 5.4 � 104 7.2 � 104 9 � 104 1.08 � 105

Steps in shortest loading path 20 20 20 20 20 20
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�C (i.e., the target mapping derivative J in Eq. (30)). Due to the pre-
processing of the input and output data, the calculation of the nor-
malized approximate derivative given by DNN is obtained through
chain rule by

d@�Sij
@�Ckl

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Var �Sij½ 	
Var �Ckl½ 	

r
@b�Sij
@b�Ckl

� E 1
2
�Cijkl

� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var 1

2
�Cijkl

� 
q ð43Þ

where the statistics such as expectation E½ 	 and variance Var½ 	 of
those quantities �Sij, �Ckl and �Cijkl are computed over the full training

dataset (see Eq. (42)). It is noted that the term @b�Sij=@
b�Ckl represents

the derivative of the DNN model, while the calculated term
d@�Sij
@�Ckl

� �
is

the one used in the loss function in Eq. (30). In this case, the statis-
tics of �Cijkl are pre-calculated before training process.

(b) 2nd scaling strategy

In the 2nd scaling strategy, the preprocessing of the derivatives
data is done for each mini-batch separately during the training
process, i.e., the statistics of the derivatives are computed over sb
samples inside each batch by

Esb

1
2
�Cijkl


 �
� 1

sb

Xsb
r¼1

1
2
�Cijkl and Varsb

1
2
�Cijkl


 �

� 1
sb

Xsb
r¼1

1
2
�C

rð Þ
ijkl � Esb

1
2
�Cijkl


 �� �2

ð44Þ

where �C
rð Þ
ijkl are derivative data from mini-batch training dataset Dk,

and hence the calculation of the normalized approximate derivative
given by DNN is obtained by

d@�Sij
@�Ckl

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Var �Sij½ 	
Var �Ckl½ 	

r
@b�Sij
@b�Ckl

� Esb
1
2
�Cijkl

� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varsb

1
2
�Cijkl

� 
q ð45Þ
4.2. DNN architecture candidates

Fig. 9 shows the basic neural network architecture that is used
to describe the mean function in Eq. (19). Between input x
(i.e., �C) and output y (i.e., �S), there are K blocks, each of which is a
combination of one or more different types of neural network
operation layers. Specifically, four types of neural network blocks
are considered in this study (see Fig. 10). In Fig. 10, block type 1 rep-
resents fully-connected (FC) layer; block type 2 represents FC layer
with ResNet connection [12], where it is required that the first neu-
ral network block in Fig. 9 has to be an FC layer since ResNet can
only be applied to layers of the same input and output dimensions;
block type 3 contains FC layer and convolutional (Conv) layer [6];
while block type 4 and block type 5 include FC, Conv, and ResNet
layers. The difference between block type 4 and block type 5 is
the relative positions of the FC and Conv layers. These layers are
chosen since FC and Conv layers provide approximation capacity
by introducing trainable parameters, and ResNet connection pro-
vides shortcuts in backpropagation process, which can prevent gra-
10
dient vanishing or exploding issues in training stage. The details on
the mathematical operations in FC, Conv and ResNet connections
are provided in the following subsections.

4.2.1. Fully connected layer

Suppose the l th fully connected layer x l½ 	 contains n l½ 	
H neurons

with the input from the last layer x l�1½ 	 of size n l�1½ 	
H � 1, the math-

ematical operation in this layer reads

x l½ 	 ¼
h l½ 	
1 if layer l is the last layer

U h l½ 	
1

� �
otherwise

8<: ð46Þ

h l½ 	
1 ¼ W l½ 	x l�1½ 	 þ b l½ 	 ð47Þ

where W l½ 	 is the weight matrix of size n l½ 	
H � n l�1½ 	

H and b l½ 	 is the bias

vector of size n l½ 	
H � 1. As a result, vector h l½ 	

1 is of size n l½ 	
H � 1. For

intermediate layers, nonlinear activation functions denoted as
U 
ð Þ, are used to create nonlinear mappings using element-wise sca-
lar operation. Here, ReLU activation function is adopted, i.e.
U 
ð Þ ¼ UReLU 
ð Þ, which is defined as

UReLU xð Þ ¼ x if x > 0
0 otherwise

�
ð48Þ
4.2.2. Convolutional (Conv) layer
Suppose l th layer is a Conv layer, then operations including pad-

ding, convolution, and activation are applied sequentially to the

input x l�1½ 	 of dimension n l�1½ 	
H � n l�1½ 	

C . Here, an equal padding oper-
ation [70] is used, which means that zero blocks are padded on the
top and bottom sides of the volume x l�1½ 	 such that the height of the
volume after the following convolution operation remains the

same as x l�1½ 	, i.e. n l�1½ 	
H . The output of the padding operation is

denoted as h l½ 	
1 ¼ 0; x l�1½ 	;0

� 

where the size of each zero block is

denoted as p l½ 	 � n l�1½ 	
C . As a result, the size of h l½ 	

1 is

2p l½ 	 þ n l�1½ 	
H

� �
� n l�1½ 	

C . The determination of p l½ 	 is discussed later.

After padding, the convolution operation is applied to the vol-

ume h l½ 	
1 using n l½ 	

C filters. The size of each filter is f l½ 	 � n l�1½ 	
C and

the filter stride used is denoted by s l½ 	. In each filter, there is a

weight matrix W l½ 	
i and bias b l½ 	

i (i ¼ 1, 2, 
 
 
, n l½ 	
C ). With the i th filter,

the convolution operation outputs a vector

v i ¼h l½ 	
1 �W l½ 	

i ¼

h l½ 	
1 1 : f l½ 	
h i

HW l½ 	
i þb l½ 	

i

h l½ 	
1 s l½ 	 þ1 : s l½ 	 þ f l½ 	
h i

HW l½ 	
i þb l½ 	

i

h l½ 	
1 2s l½ 	 þ1 :2s l½ 	 þ f l½ 	
h i

HW l½ 	
i þb l½ 	

i

..

.

h l½ 	
1 2p l½ 	 þn l�1½ 	

H � f l½ 	 þ1 :2p l½ 	 þn l�1½ 	
H

h i
HW l½ 	

i þb l½ 	
i

2666666666664

3777777777775
ð49Þ

with dimension

2p l½ 	 þ n l�1½ 	
H � f l½ 	

s l½ 	 þ 1

 !
� 1 ð50Þ



Fig. 9. Sketch of neural network architecture.
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and h l½ 	
1 p : q½ 	 means that the volume h l½ 	

1 is sliced along the height
from p to q. The operation H applies to two volumes a and b of
the same size, denoted as n1 � n2, and is given by

aHb ¼def
Xn1
i¼1

Xn2
j¼1

a i; j½ 	b i; j½ 	 ð51Þ

Finally, the vectors v i (i ¼ 1, 2, 
 
 
, n l½ 	
C ) are stacked together to

output a new volume

h l½ 	
2 ¼ v1 v2 
 
 
 v

n l½ 	
C

h i
ð52Þ

which is of size

2p l½ 	 þ n l�1½ 	
H � f l½ 	

s l½ 	 þ 1

 !
� n l½ 	

C ð53Þ

By the definition of equal padding, it is required that the height

of h l½ 	
2 is equal to the height of x l�1½ 	. Thus, the padding size can be

determined as

p l½ 	 ¼ 1
2

n l�1½ 	
H � 1

� �
s l½ 	 þ f l½ 	 � n l�1½ 	

H

h i
ð54Þ

As a result, the size of the volume h l½ 	
2 becomes n l�1½ 	

H � n l½ 	
C .

To add nonlinearities in the layer, elementwise ReLU activation

function is applied to the volume h l½ 	
2 and results in the output of

the Conv layer as

x l½ 	 ¼ UReLU h l½ 	
2

� �
ð55Þ
4.2.3. ResNet connections
When the ResNet connection is applied between l th layer and

(lþ s)th layer where s is a positive integer, the input of
(lþ sþ 1)th layer is obtained as

x lþsþ1½ 	
in ¼ x lþs½ 	

out þ x l½ 	
in ð56Þ

where x l½ 	
in is the input of l th layer and x lþs½ 	

out is the output of (lþ s)th

layer.

4.3. Training data size – Regular training

The training data size depends on the complexity of the under-
lying mapping that must be learned and may vary for the consid-
ered problems. To determine the appropriate size of the training
dataset, multiple training datasets of different sizes, i.e., m2{0.5 �
106, 1 � 106, 1.5 � 106, 2 � 106, 2.5 � 106, 3 � 106} (Table 1), are
examined for training a fully connected feedforward DNN surro-
gate with three hidden layers and 80 neurons in each hidden layer.
11
This DNN surrogate is trained for the unit cell-1 shown in Fig. 4.
The mean squared training and testing errors are shown in
Fig. 11, where it can be observed that the training and testing error
decreases with the increase in the size of the datasets. However,
improvements in the accuracy are not significant when the dataset
size increases from 2.5 million to 3 million. From this pilot study,
the training dataset size is fixed at 2.5 million for all the cases con-
sidered in this paper.
4.4. DNN architecture exploration – Regular training

Although a feedforward DNN surrogate with three layers and 80
neurons in each layer provides good accuracy when an appropriate
dataset is used, a further investigation on the DNN architecture is
carried out to find surrogates with higher computational efficiency
and accuracy. To this end, first, some hyperparameters such as the
number of hidden layers and the number of neurons in each layer
are investigated. This task is carried out using DNN with block type
1, i.e., feedforward neural network. The number of hidden layers nl

and the number of neurons in each layer np are chosen from the
sets 1; 2; 3; 4; 5f g and 20; 40; 60; 80; 100f g, respectively. The
testing errors for the 25 feedforward neural networks are shown
in Fig. 12. Considering a balance between computational efficiency
and accuracy, the combination of nl = 3 and np = 80 is chosen for FC
layers.

As shown in Fig. 10, more expressive capacity in the DNN archi-
tecture can be achieved by adding Conv layers and/or ResNet con-
nections. To investigate if the added capacity can be useful in
improving the performance of DNN, architectures considering
block type 2, 3, 4 and 5 are trained with the same training dataset
and optimization setup mentioned in Section 4. For the four differ-
ent types of architectures, three (K = 3) repeated blocks and FC
layer with 80 neurons are considered. For block types 3–5, the filter
size and stride in the Conv layers are fixed to be 2� 1 and 1,
respectively, and the number of filters is chosen as 32, which is
the optimal number from a grid search from the set
8; 16; 32; 64; 128f g.
The comparison of different architectures in terms of the rela-

tive testing errors are given in Table 3 and Fig. 13. As can be seen,
the network architectures with block type 4 and 5 have similar test-
ing performance and give the larger number of testing samples
with relative errors smaller than different thresholds and the
smallest upper bound of all testing relative errors as compared to
the other three architectures. The results show that adding ResNet
connections or Conv layers to feedforward neural networks helps
to improve the neural network capacity and results in lower error
statistics. Besides, these special architecture features do not intro-
duce many additional model parameters as compared to when an
FC layer is added. As a result, the neural network architectures con-



Fig. 10. Five types of neural network blocks.
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sidering block type 4 and 5 are chosen as the final candidate models
to be trained for replacing the homogenization analysis. The total
number of trainable parameters is provided in Table 2.
4.5. Sobolev training vs. regular training

As discussed in Section 3.4, when the derivatives of the target
output w.r.t. the inputs are accessible, the use of Sobolev training
in the loss function can be beneficial. For Sobolev training, the final
12
neural network architectures with block type 4 and 5 in Section 4.4
are trained using the loss function in Eq. (30) with the weighting
factor kp = 8 � 10-4. The weighting factor is determined through
a grid search from the set {10-1, 10-2, 10-3, 8 � 10-4, 5 � 10-4,
10-4, 10-5}. The derivatives, i.e., J = �C in Eq. (30), are obtained from
homogenization analysis (see Appendix A). It is observed that the
training error drops from 2:76� 10�6 (regular) to 1:19� 10�6

(Sobolev with 1st scaling strategy) or 1:06� 10�6 (Sobolev with
2nd scaling strategy) and the testing error drops from



Fig. 11. Training and testing mean squared errors with different training data sizes.

Fig. 13. Box plot of relative errors of testing data points for different neural
networks.

Table 2
Number of trainable parameters for different network
architectures.

Network type Number of trainable parameters

1 13,523
2 13,523
3 14,006
4 14,006
5 14,006

Table 3
The percentage of testing samples with relative errors smaller than different
thresholds for different neural network models.

Block type 5% threshold 2% threshold 1% threshold 0.5% threshold

1 99.98% 97.79% 89.31% 72.14%
2 99.98% 98.99% 93.02% 79.53%
3 99.99% 99.85% 97.23% 87.90%
4 99.99% 99.93% 98.88% 92.13%
5 99.99% 99.92% 98.69% 92.11%
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2:78� 10�6 (regular) to 1:20� 10�6 (Sobolev with 1st scaling strat-
egy) or 1:06� 10�6 (Sobolev with 2nd scaling strategy). A detailed
comparison of the relative testing error statistics is given in Table 4
and Table 5, where it shows a higher percentage of relative errors
below 2%, 1%, and 0.5% with Sobolev training as compared to reg-
ular training. Besides, it can be found that when Sobolev training is
used, the architecture considering block type 5 and 2nd scaling
strategy for network derivatives has more testing samples with
small relative errors as compared to the other three cases where
either architecture with block type 4 or 1st scaling strategy is con-
sidered. In Figs. 14 and 15, box plots are used to show the overall
distribution of the relative testing error statistics with Sobolev and
regular training. On each box, the upper and lower bounds repre-
sent the worst and best relative error, respectively, and the bottom
and top edges of the box indicate the 25th and 75th percentiles,
respectively, and the central mark denotes the median. From
Figs. 14 and 15, it can be observed that Sobolev training leads to
smaller values of upper bound, median, 25th, and 75th percentiles
of the relative testing error statistics than regular training, which
again confirms the better testing performance of Sobolev training.
Moreover, when Sobolev training is used, the network architecture
with block type 5 and 2nd scaling strategy gives the best perfor-
mance in terms of testing error statistics. Hence, the architecture
with block type 5 using Sobolev training and 2nd scaling strategy
for network derivative will be adopted in all the following
examples.
4.6. FE2 tests on one macro-element

In this section, DNN surrogate models with block type 5 in
Fig. 10 are constructed and trained with Sobolev loss function
Fig. 12. Testing errors of feedforward neural network

13
and 2nd scaling strategy for two different unit cells. Although the
determination of the training data size, as well as the hyperparam-
eters of the DNN, are only studied on unit cell-1 (Section 3.1.1), the
same settings are adopted for the DNN surrogate for unit cell-2
(Section 3.1.2), as well. Results in Section 4.6.2 serve as the justifi-
cation of this choice, where the satisfactory performance of the
constructed DNN surrogate is observed.
s with a different number of layers and neurons.



Table 4
The percentage of testing samples with relative errors smaller than different thresholds for regular and Sobolev training of DNN with block type 4 on unit cell-1.

Training 5% threshold 2% threshold 1% threshold 0.5% threshold

Regular 99.99% 99.93% 98.88% 92.13%
Sobolev + 1st scaling strategy 99.99% 99.97% 99.37% 94.84%
Sobolev + 2nd scaling strategy 99.99% 99.97% 99.38% 94.88%

Table 5
The percentage of testing samples with relative errors smaller than different thresholds for regular and Sobolev training of DNN with block type 5 on unit cell-1.

Training 5% threshold 2% threshold 1% threshold 0.5% threshold

Regular 99.99% 99.92% 98.69% 92.11%
Sobolev + 1st scaling strategy 99.99% 99.97% 99.37% 94.86%
Sobolev + 2nd scaling strategy 99.99% 99.97% 99.55% 95.74%
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4.6.1. Unit cell-1
The DNN surrogate of the unit cell-1 in Section 3.1.1 is trained

with the 2.5 million training dataset. The error statistics on the
testing dataset are shown in Fig. 15 and Table 5.
4.6.1.1. Uniaxial tension and compression. To demonstrate how the
trained DNN surrogate performs as compared to the direct homog-
enization result, uniaxial tension and compression test is carried
out on one element with 4 integration points. The test settings
are shown in Fig. 16a, where u = -30 for compression and
u = 100 for tension. The load–displacement curves generated using
the trained DNN model and direct homogenization result are com-
pared in Fig. 17a, where a close match can be observed. The macro-
scopic stretch ratios at all integration points during the loading
process are plotted together with the data range of the training
space in Fig. 17b, where all the data points are bounded by the
training data range, as intended.
4.6.1.2. Simple shear. The second single element test is a simple
shear test, shown in Fig. 16b, where u = 150 is used. The load–dis-
placement curves from the trained DNN model and homogeniza-
tion result are shown in Fig. 18a, where a close match is again
observed. The macroscopic stretch ratios at all integration points
during the loading process are plotted in Fig. 18b, where all the
points are again bounded by the training data range.
Fig. 14. Box plot of relative testing errors with regular and Sobolev training of DNN
with block type 4 for unit cell-1.
4.6.2. Unit cell-2

The same architecture of the DNN, as used for unit cell-1 and
given in Section 4.4, is again chosen for unit cell-2 and is trained
using regular and Sobolev training with the same weighting factor,
i.e., kp = 8 � 10-4, and 2nd scaling strategy for network derivatives
using 2.5 million training samples. Comparisons of the regular and
Sovolev training in terms of statistics of the testing errors are
shown in Fig. 19 and Table 6. Compared to regular training, Sobolev
training leads to a larger number of testing samples with relative
errors smaller than different thresholds, and smaller upper bound
and median of all testing relative errors. Thus, Sobolev training
gives a better testing performance than regular training in this test
case as well.
Fig. 15. Box plot of relative testing errors with regular and Sobolev training of DNN
with block type 5 for unit cell-1.
4.6.2.1. Uniaxial tension and compression. The uniaxial tension and
compression test in Fig. 16a are carried out again for the unit cell
in Fig. 5 with u = -30 for compression and u = 100 for tension.
The comparison of the load–displacement curves from the trained
DNNmodel and homogenization result is given in Fig. 20a, where a
close match can be observed. The macroscopic stretch ratios at all
integration points during the loading process are plotted in Fig. 20b
14
which shows that all the points are bounded by the training data
range.
4.6.2.2. Simple shear. The simple shear test shown in Fig. 16b with
u = 150 is again checked for unit cell-2 in Fig. 5. Fig. 21a shows the
load–displacement curves from the trained DNN model and
homogenization result, where a close match can be seen. Fig. 21b
plots the macroscopic stretch ratios at all integration points during



Fig. 16. One quadrilateral element test.

Fig. 17. Uniaxial tension and compression test results for unit cell-1.

Fig. 18. Simple shear test results for unit cell-1.

Fig. 19. Box plot of relative testing errors with regular and Sobolev training and 2nd
scaling strategy for unit cell-2.
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the loading process, where all the points are bounded by the train-
ing data range, as desired.

4.7. Computational efficiency

To evaluate the computational efficiency of the DNN surrogate
model when compared to direct homogenization analysis, a load-
ing path corresponding to shear deformation is examined at an
integration point for both unit cells in Section 4.6. To this end, a
single integration point is considered in a macro element that
undergoes a deformation gradient �F ¼ �U, with �U parameterized
by �k1 ¼ 1þ 2k and �k2 ¼ 1� k with h = 0� or 45�, see Eq. (40). The
CPU time consumptions with DNN surrogate and direct homoge-
nization analyses for different k and h are plotted for comparison
with unit cell-1 in Fig. 22, and with unit cell-2 in Fig. 23. For both
unit cells, the CPU time for DNN evaluation does not depend on the



Table 6
The percentage of testing samples with relative errors smaller than different thresholds for regular and Sobolev training of DNN with block type 5 on unit cell-2.

Training 5% threshold 2% threshold 1% threshold 0.5% threshold

Regular 99.99% 99.91% 98.62% 92.04%
Sobolev + 2nd scaling strategy 99.99% 99.96% 99.28% 94.52%

Fig. 20. Uniaxial tension and compression test results for unit cell-2.

Fig. 21. Simple shear test results for unit cell-2.

Fig. 22. CPU time from homogenization analysis and DNN evaluation for unit cell-1.
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Fig. 23. CPU time from homogenization analysis and DNN evaluation for unit cell-2.
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deformation k and is always around 0.06 sec, while the CPU time
for direct homogenization analysis depends on the deformation,
since higher deformation usually needs more Newton-Raphson
iterations to converge and may also require multiple loading steps.
The CPU time difference between DNN and homogenization analy-
sis can be much higher when the unit cell finite element model is
big and expensive to evaluate, see unit cell-2 in Fig. 5 where a
dense mesh is needed to capture the complex geometry. In
Fig. 23, the CPU time for homogenization analysis is about 100
times to 400 times longer than that for DNN evaluation depending
on the deformation k.
Fig. 24. Geometry and FE mesh of the (macroscale) Cook’s membrane problem.

Fig. 25. Results of Cook’s membrane with DNN and homogeniz
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5. FE2 numerical tests

To show the effectiveness of using the trained surrogate in FE2

analysis, two macroscale BVPs are considered with the unit cells
given in Sections 4.6.1 and 4.6.2.

5.1. Cook’s membrane with unit cell-1

5.1.1. No rotation of microstructure
The Cook’s membrane macroscale problem sketched in Fig. 24 is

considered with the microstructure and unit cell in Fig. 4. The
macroscopic displacement-load curves obtained from using DNN
and direct homogenization analysis in FE2 are compared in
Fig. 25a, where a close match can be observed. The stretch ratios
at all macroscale integration points during the loading process
from DNN based analysis in Fig. 25b confirms that the input of
DNN stays well within the training data range, as required. Next,
the macroscale deformation gradient field and 1st PK stress field
from the DNN based and homogenization based FE2 analyses are
compared in Figs. 26 and 27, where good matches can
be seen. Fig. 28 shows the histograms of relative errors
of the macroscopic deformation gradient and 1st PK stress
fields. The upper bounds of the relative errors of the
two fields are 0.11% and 3.27%, respectively, for macroscopic
deformation gradient and 1st PK stress. The maximum errors
correspond to �F ¼ 0:6851 0:7520 �0:6423 0:8043½ 	T and
�P ¼ �0:1239 0:3163 �0:0696 0:4007½ 	T , respectively. Fig. 29
shows the microscopic deformation gradient and 1st PK stress
fields at the macroscale integration point A in Fig. 24 at the last
ation analysis on unit cell-1 (no microstructure rotation).



field field field field
H

om
og

en
iz

at
io

n
D

N
N

Fig. 26. Macroscopic deformation gradient fields from DNN and homogenization based FE2 analyses (no microstructure rotation).
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Fig. 27. Macroscopic 1st PK stress fields from DNN and homogenization based FE2 analyses (no microstructure rotation).
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(a) Deformation gradient (b) 1st PK stress field

Fig. 28. Histograms of the relative errors of the macroscopic deformation gradient and 1st PK stress fields (no microstructure rotation).

Fig. 29. Microscopic deformation gradient and 1st PK stress fields from homogenization analysis at macroscale integration point A in Fig. 24 (no microstructure rotation) with
�F ¼ 0:9713 0:4663 -0:1611 1:0713½ 	T .

Fig. 30. Results of Cook’s membrane with DNN and homogenization analysis on unit cell-1 (90� microstructure rotation).
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Fig. 31. Macroscopic deformation gradient fields from DNN and homogenization based FE2 analyses of the Cook’s membrane (90� microstructure rotation).
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Fig. 32. Macroscopic 1st PK stress fields from DNN and homogenization based FE2 analyses of the Cook’s membrane (90� microstructure rotation).
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(a) Deformation gradient (b) 1st PK stress field

Fig. 33. Histograms of the relative errors of the macroscopic deformation gradient and 1st PK stress fields (90� microstructure rotation).

Fig. 34. Microscopic deformation gradient and 1st PK stress fields from homogenization analysis at macroscale integration point A in Fig. 24 (90� microstructure rotation)
with �F ¼ 0:9780 0:5253 -0:2044 1:0331½ 	T .

Fig. 35. Geometry and FE mesh of the (macroscale) arch problem.

N. Feng, G. Zhang and K. Khandelwal Computers and Structures 263 (2022) 106742
loading step from homogenization analysis, where highly non-
homogeneous distributions can be seen. This result shows that
the trained DNN surrogate model can learn the complex behavior
of the unit cell directly from the data.
21
5.1.2. Rotation of microstructure by 90�
As the macroscopic material behavior of the media made of unit

cell-1 in Fig. 4 is anisotropic, the orientation of the macroscopic
material in applications can be different due to specific engineering
considerations. This change of orientation of microstructure can be
made outside the homogenization analysis and in the DNN surro-
gate model by considering a change of basis. For example, suppose
the microstructure is rotated by an angle a (2D case) and a macro-
scopic deformation gradient �F is imposed, the deformation pattern
of the rotated unit cell can be equivalently captured by the un-
rotated unit cell undergoing a macroscopic deformation gradient
�F� with

�F� ¼ Q �að Þ:�F:Q �að ÞT ð57Þ
where the rotation matrix Q is defined in Eq. (40)3 and note that
Q �að Þ ¼ Q að ÞT . The homogenized 1st PK stress tensor �P of the
rotated unit cell under �F is then obtained by

�P ¼ Q að Þ:�P�:Q að ÞT ð58Þ



Fig. 36. Results of the arch problem with DNN and homogenization analysis on unit cell-2.
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Fig. 37. Macroscopic deformation gradient fields from DNN and homogenization based FE2 analyses of the arch problem.
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where �P� represents the homogenized 1st PK stress of the un-
rotated unit cell under �F�.

To show the idea of rotated unit cell microstructure, a = 90� is
considered and a direct homogenization analysis on the rotated
22
unit cell is carried out. Meanwhile, the FE2 analysis with the
trained DNN using the strategy in Eqs. (57) and (58) is also carried
out. The two results are compared in Figs. 30–34, similarly as in
Section 5.1.1, and Fig. 33 shows the corresponding relative errors
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Fig. 38. Macroscopic 1st PK stress fields from DNN and homogenization based FE2 analyses of the arch problem.

Fig. 39. Histograms of the relative errors of the macroscopic deformation gradient and 1st PK stress fields.
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Fig. 40. Microscopic deformation gradient and 1st PK stress fields from homogenization analysis at macroscale integration point A in Fig. 35 with
�F ¼ 1:2851 -0:0532 0:0191 0:8993½ 	T .

Fig. 41. Geometry and FE mesh of the (macroscale) shallow arch problem.
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of the macroscopic deformation gradient and 1st PK stress fields
from DNN based FE2 analyses. The relative errors of the macro
deformation gradient are bounded by 0.12% which happens at
�F ¼ 0:7159 0:6876 �0:6406 0:7824½ 	T , while the relative
errors of the macro 1st PK stress are bounded by 3.53% that hap-
pens at �P ¼ �0:0703 �0:0557 �0:1481 0:1754½ 	T . From the
results, it can be seen that the trained DNN model, as combined
Fig. 42. Results of the shallow arch problem with D

24
with the transformation strategy in Eqs. (57) and (58), can be effi-
ciently used to serve as the macroscale material subroutine irre-
spective of the orientation of the underlying microstructure.

5.2. Arch with unit cell-2

This example considers an arch-like structure with load applied
at the center of its top surface as shown in Fig. 35, where using
symmetry only half macro-domain is considered in FE2 by assum-
ing that there is no asymmetric bifurcation during the loading pro-
cess. The macroscopic material is assumed to be periodic with unit
cell in Fig. 5. Fig. 36a shows the macroscopic displacement-load
curves from DNN surrogate and direct homogenization analysis
in FE2, where a good match can be seen. The stretch ratios at all
macroscale integration points during the loading process from
DNN based FE2 analysis in Fig. 36b justifies the use of DNN. Figs. 37
and 38 plot the macroscale deformation gradient field and 1st PK
stress field from the DNN based and homogenization based FE2

analyses, where no distinct differences can be observed.
Moreover, the histograms of relative errors of the two fields from
the DNN based analyses are shown in Fig. 39, where the two error
bounds are 0.12% and 11.39%, respectively, for the deformation
NN and homogenization analysis on unit cell-1.
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gradient and 1st PK stress. The error bounds correspond to the
points with �F ¼ 0:7790 �0:3009 0:3605 0:9863½ 	T and
�P ¼ 0:0023 �0:0138 �0:0094 0:0035½ 	T . Finally, Fig. 40 shows
the microscopic deformation gradient and 1st PK stress fields at
the macroscale integration point A in Fig. 35 at the last loading step
from homogenization analysis, where highly non-homogeneous
deformation can be seen. These results again validate the efficacy
of the trained DNN surrogate for reproducing results in FE2 with
high accuracy.

5.3. Shallow arch with unit cell-1

In this example, a shallow arch structure with displacement
applied at the middle of the top surface is considered, as shown
in Fig. 41. The macroscopic material consists of periodic unit cells
shown in Fig. 4. The displacement-load curves from DNN and
homogenization based FE2 analyses are plotted in Fig. 42a which
show good matches in snap-through behaviors for this example.
Fig. 42b shows the stretch ratios at all macroscopic integration
points during the loading process, which confirms that the DNN
(a) Deformed shape from homogenization at 
state A

(c) Deformed shape from homogenization at 
state B

(e) Deformed shape from homogenization at 
state C

Fig. 43. Deformed shapes from homogenization (left colu

(a) Deformation gradient

Fig. 44. Histograms of the relative errors of the macroscopic defo

25
model works well within the training data range. The deformed
shapes at loading states A, B, and C in Fig. 42a from both DNN
and homogenization based FE2 analyses are compared in Fig. 43,
where good matches can be observed. Furthermore, Fig. 44,
Fig. 45, and Fig. 46 plot the relative error statistics of macroscopic
deformation gradient and 1st PK stress fields from DNN based FE2

analysis at loading states A, B, and C, respectively. At loading state
A, the maximum relative error is 0.043% at the deformation gradi-
ent �F ¼ 1:0039 0:0510 0:0615 0:9960½ 	T and 6.78% for 1st PK
stress �P ¼ �0:0015 0:0037 0:0026 0:0234½ 	T . At loading state
B, the relative error is bounded by 0.075% for the deformation
gradient �F ¼ 0:8794 0:4341 �0:4400 0:9087½ 	T and 9.28% for
1st PK stress �P ¼ 0:0103 0:0343 0:0172 0:0175½ 	T . At
loading state C, the maximum relative errors are 0.061% for defor-
mation gradient �F ¼ 0:8746 �0:4427 0:4500 0:9043½ 	T and
9.87% for 1st PK stress �P ¼ 0:0273 �0:0269½ �0:02700:0153	T .
All these results show the efficacy of the trained DNN
model in the FE2 analysis for structures with complex mechanical
behaviors.
(b) Deformed shape from DNN at state A

(d) Deformed shape from DNN at state B

(f) Deformed shape from DNN at state C

mn) and DNN (right column) results at certain states.

(b) 1st PK stress field

rmation gradient and 1st PK stress fields at loading state A.



(a) Deformation gradient (b) 1st PK stress field

Fig. 45. Histograms of the relative errors of the macroscopic deformation gradient and 1st PK stress fields at loading state B.

(a) Deformation gradient (b) 1st PK stress field

Fig. 46. Histograms of the relative errors of the macroscopic deformation gradient and 1st PK stress fields at loading state C.
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6. Conclusions

In this paper, the use of a data-driven approach is explored to
expedite the computationally expensive finite strain FE2 analysis.
In particular, the homogenization analysis at each macro integra-
tion point is replaced by a trained DNN surrogate model, which
obviates the need for finite element analysis on the underlying unit
cell. To fulfill the requirement of frame indifference, the rigid-body
rotation part is separated from the deformation gradient, and only
the work conjugate pair �C; �S

� �
is used in the surrogate model, and

the push-forward operations are then applied outside the surro-
gate material subroutine. The surrogate modeling falls into the cat-
egory of a regression problem, where the mapping has to
be learned from data. Formulated in a consistent probabilistic
framework, the regression task by machine learning with deep
neural networks is presented from a theoretical viewpoint. In
preparation of training data, an efficient radial sampling strategy
from the macroscopic deformation space is proposed, where sam-
ples are grouped into different loading paths and are generated
with a smaller number of homogenization analyses. Different neu-
ral network architectures (i.e., fully connected layers, convolu-
tional layers, and ResNet connections) and training strategies
(regular and Sobolev), are investigated. It is shown that Sobolev
training, with additional derivative information, leads to higher
training accuracy as compared to regular training, and a combina-
tion of different types of layers and connections gives an improved
surrogate model performance. The high accuracy of the DNN surro-
gates is demonstrated on uniformly distributed testing samples in
the considered training dataspace. The DNN surrogate is shown to
26
lead to a significant improvement in the computational expense as
compared to direct homogenization. Finally, a series of FE2 exam-
ples are examined, where a close match between the direct FE2

analysis with homogenization and FE2 with DNN surrogate is
observed. The results presented in this paper show the clear poten-
tial of DNN in regression tasks that are encountered in computa-
tionally expensive multiscale FE2 analysis. Future work will focus
on 3D metamaterials and inelastic material behaviors.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The presented work is supported in part by the USNational
Science Foundation through grant CMMI-1762277. Any opinions,
findings, conclusions, and recommendations expressed in this arti-
cle are those of the authors and do not necessarily reflect the views
of the sponsors.

Appendix A. Implementation details: FE2 Analysis

This appendix gives details on the implementation of the FE2

analysis. The implementation details on the homogenization anal-
ysis in Section A.2 has been presented in our previous paper [56]
and is given again here for the completeness. Some derivation pro-
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cess is omitted for the sake of brevity, and interested readers are
referred to Ref. [56].

A.1. Macroscale analysis

The macroscale BVP is solved using standard Galerkin based
finite element analysis. The finite element discretized weak form
of Eq. (1) is

�R ¼ �F int � �Fext ¼ 0 ðA1Þ
with

�F int ¼ A
e¼1

�nele
�F
e
int with �F

e
int ¼

Z
�X
e
0

BT �PdV

�Fext ¼
Z
@ �X0r

NT �TdA ðA2Þ

where N and B represent the shape function matrix and its deriva-
tives such that �u ¼ N�ue and �F ¼ B�ue with �ue the element displace-
ment vector and �u and �F the vector form of displacement and
deformation gradient. Here �P and �T are the vector forms of 1st PK
stress and applied PK traction. The e th element integration domain

is denoted by �X
e
0 such that �X0 ¼ S�nele

e¼1
�X
e
0 where �nele is the number of

element. The material subroutine is given by the homogenization
analysis in the next section. To ensure asymptotic quadratic conver-
gence rate of Newton-Raphson (NR) solver, the structural stiffness
matrix is calculated by

�KT ¼ @�R
@�u

¼ A
e¼1

nele �ke
T with �ke

T ¼
Z

�Xe
0

BT �A½ 	BdV ðA3Þ

where �A½ 	 is a matrix form of the 4th-oder tensor �A.

A.2. Microscale (homogenization) analysis

In the deformation driven scheme, the macroscopic deforma-
tion gradient �F is given at the current macroscale integration point.
The 1st-order homogenization is then driven by �F . The periodic
boundary condition in Eq. (9) together with the rigid-body con-
straint are enforced through Lagrange multipliers. After finite ele-
ment discretization, the nonlinear system of equations reads

R u; k;lð Þ ¼
R1 u; k;lð Þ

R2 uð Þ
R3 uð Þ

264
375 ¼

F int uð Þ � AT
1k� AT

2l

�A1u
�A2u

264
375þ

0
0
h

264
375 ¼ 0

ðA4Þ
where k and l represent Lagrange multiplier vectors that are used
to enforce rigid-body translation constraint and periodic boundary
conditions, respectively. F int represents the global internal force
vector defined by

F int uð Þ ¼ A
e¼1

nele
Fe
int with Fe

int ¼
Z
Xe
0

BTPdV ðA5Þ

where Xe
0 represents the eth element integration domain satisfying

B0 ¼ Snele
e¼1X

e
0 and nele are the total number of elements in the RVE.

It is remarked here that B has the same meaning as that in Sec-
tion A.1 but is pertaining to the finite element mesh of RVE rather
than the macroscale BVP finite element mesh.

The matrices A1 and A2, and vector h are constructed such that
(for 2D problem)

uo ¼ A1u

uþ � u� ¼ A2u
27
h ¼
�F � I
� �

:L1
..
.

�F � I
� �

:Lm

264
375 ¼ LM½ 	 �F

� 
� I½ 	� �

¼

X
�
1 0 Y

�
1 0

0 X
�
1 0 Y

�
1

..

. ..
. ..

. ..
.

X
�
m 0 Y

�
m 0

0 X
�
m 0 Y

�
m

26666666664

37777777775
2m�4

�F11
�F21
�F12
�F22

2664
3775�

1
0
0
1

2664
3775

0BB@
1CCA ðA6Þ

where u is the global nodal displacement vector, uþ ¼ uþ
1 ; 
 
 
 ;uþ

m

� 
T
and u� ¼ u�

1 ; 
 
 
 ;u�
m

� 
T includes m nodal displacements defined on
the positive and negative boundary sides, respectively.

Lq ¼ X
�
q; Y

�
q

h iT
is the translational vector from the qth node on the

negative side to the qth node on the positive side. Here uo is the dis-
placement of an arbitrarily chosen node that is fixed to remove
rigid-body translation.

The nonlinear system in Eq. (A4) is solved using the NR method
and the Jacobian matrix, which is needed for NR solver, can be cal-
culated as

JT½ 	 ¼
@R1=@u @R1=@k @R1=@l

@R2=@u @R2=@k @R2=@l

@R3=@u @R3=@k @R3=@l

264
375 ¼

KT �AT
1 �AT

2

�A1 0 0
�A2 0 0

264
375

ðA7Þ
where the term KT is the tangent structural stiffness matrix calcu-
lated by

KT ¼ @F int

@u
¼ A

e¼1

nele
ke
T with ke

T ¼
Z
Xe
BT

A½ 	BdV and A ¼ @P
@F

ðA8Þ

in which the tangent moduli A is obtained from material subrou-
tine. In this study, a regularized neo-Hookean hyperelasticity model
is adopted to simulate the constitutive behaviors of different under-
lying materials in the microstructure, of which the free energy reads

w Cð Þ ¼ 1
2
j J � 1ð Þ2 þ l

2
Î1 � 3
� �

ðA9Þ

where C is the right Cauchy-Green tensor and bI1 is the first invariant

of bC , i.e., bI1 ¼ trbC with bC ¼ J�2=3C and J the determinant of the
deformation gradient. j and l are bulk and shear modulus of the
material.

A.2.1. Homogenized stress and tangent moduli
Using Eq. (11)2 and the definition of matrix LM½ 	 given in Eq.

(A6), the homogenized stress �P is computed as

�P
� 
 ¼ 1

V
LM½ 	Tl ðA10Þ

where the bracket outside �P means that it is arranged in a 4� 1 vec-
tor form (2D), similarly as �F

� 

used in Eq. (A6).

The 4th-order homogenized tangent moduli �A is rephrased in a
matrix form as �A½ 	 ¼ @ �P

� 

=@ �F
� 


. From Eq. (A10), it is clear that �A½ 	 is
determined by the derivative of Lagrange multiplier lwith respect
to �F . To this end, the set of global equilibrium equation (Eq. (A4)) is
perturbed at the equilibrium state by a perturbation D�F and by a
straightforward manipulation it finally gives

�A½ 	 ¼ � 1
V

L̂M
h iT

JT½ 	�1 L̂M
h i

ðA11Þ

where the matrix bLM

h i
is of size N þ 2þ 2mð Þ � 4 for a 2D case and

is defined by



N. Feng, G. Zhang and K. Khandelwal Computers and Structures 263 (2022) 106742
L̂M

h i
¼

0N�4

02�4

LM½ 	2m�4

264
375 ðA12Þ

in which N represents the total number of DOFs in the displacement
field u, i.e., the size of u vector.
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